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Abstract

Starting from a critical analysis of recently reported surprisingly
large uncertainties in length and position measurements deduced within
the framework of quantum gravity, we embark on an investigation both
of the correlation structure of Planck scale fluctuations and the role
the holographic hypothesis is possibly playing in this context. While
we prove the logical independence of the fluctuation results and the
holographic hypothesis (in contrast to some recent statements in that
direction) we show that by combining these two topics one can draw
quite strong and interesting conclusions about the details of the fluctu-
ation structure and the microscopic dynamics on the Planck scale. We
further argue that these findings point to a possibly new and general-
ized form of quantum statistical mechanics of strongly (anti)correlated
systems of degrees of freedom in this fundamental regime.
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1 Introduction

In recent years it has been argued that the at first glance quite remote
Planck scale might perhaps become observationally accessible by devising
certain ingeneous (thought) experiments. More specifically, arguments were
given that the quantum fluctuations of the space-time metric or of distance
measurements may come within the reach of observability using already
existing equipment like, for example, the large and extremely sensitive in-
terferometers, designed to detect gravitational waves. This argument was in
particular advanced by Amelino-Camelia (see [1] or [2]) and supported by
various thought experiments and qualitative calculations given by Jack Ng
et al (see e.g. [3] or [4]). Interesting arguments concerning the interface of
general relativity and quantum physics are also advanced in [5].

These arguments are provisional as a generally accepted theory of quan-
tum gravity does not yet exist and are of a character similar to the quantum
mechanical calculations before the advent of true quantum mechanics in
1926. Nevertheless it is believed that they will hold in a qualitative sense in
any future theory of quantum gravity. In the following we will also stick to
this provisional reasoning.

The quantum gravity literature of the past decades abounds with such
heuristic arguments concerning the quantum behavior on the Planck scale
(see in particular the numerous remarks in [6] or [7] or the paper by Pad-
manabhan, [8]) with the expected result that the relevant fluctuation effects
are essentially of Planck scale character. We note also the discussion in e.g.
[9] where a possible minimal length is related to large extra dimensions of
space-time. One should however note that the reasoning is not always com-
plete as it is of course important to take for example also the uncertainty in
position of the (relevant parts of the) measuring devices into account. We
took some pains to discuss this particular point in more detail in the follow-
ing. In contrast to these findings there are more recent arguments claiming
that some of these fluctuations (induced by quantum gravity) can already
be seen on a (in general) much larger scale, depending in a somewhat sur-
prising way also on the size of the quantities or objects being measured. For
example in [3] the uncertainty, δl, of a length or distance measurement is
claimed to go as

δl & lp(l/lp)
1/3 (1)

with l the length being measured and lp the Planck length.
The other interesting step consists of amalgamating this reasoning with a

version of the hypothetical holographic principle, stating that on the Planck
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scale the number of degrees of freedom or the information capacity of a spa-
tial volume, V , go with the surface area of V and not! with the volume itself
as in ordinary (statistical) physics. A nice recent review is for example [10]
(we note that we plan to give a more complete list of references elsewhere).
It is claimed that the holographic principle, stated in this particular form,
supports the above findings ([3]). In the following we want to scrutinize
both lines of reasoning and show that we come to different results. In this
connection we note that there are arguments that this particular form of
the holographic principle cannot hold in all possible situation. In the fol-
lowing we mainly deal with weak gravitational fields and relatively small but
macroscopic subvolumes of practically infinite space where these arguments
do not apply. Anyway, we think that the last word is not yet said on this
subject matter as there exist possible modifications of this relatively simple
variant of the principle also in more general situations. We will come back
to this question at the end of the paper.

We then proceed to show that both the fluctuation results and the holo-
graphic hypothesis imply particular (anti)correlation constraints of their
own. By putting these two observations together we are able to derive strong
constraints on the correlations and dynamics of degrees of freedom on the
Planck scale. These findings seem to support the view that in this funda-
mental regime a new or extended form of statistical mechanics of strongly
coupled or entangled degrees of freedom and open systems may become
necessary. We make some remarks in this direction in the last section.

Concluding this brief résumé we want to mention two recent papers which
discuss the interesting point of a possible change of particle dispersion rela-
tions near the Planck scale and its consequences for area laws and entropy
bounds ([11] and [12]). We plan to come back to possible relations to our
work elsewhere.

2 A Discussion of Some Recent Results

The first line of reasoning we mentioned above starts from an earlier finding
of Wigner et al ([13]), dealing with quantum effects concerning clocks and
mirrors treated as test particles in a gravitational field, gik(x), and the
setting-up of a coordinate system on the space-time manifold. This line
of thought is supplemented by e.g. Ng et al by the wellknown argument
concerning the emergence of a black hole if too much mass is concentrated
in a very small region of space, the critical parameter being the Schwarzschild
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radius
rs = 2GM/c2 (2)

Abbreviating the more detailed calculations in [13], one can argue as
follows. If one insists to measure distances in a gravitational field by ex-
changing light signals between freely moving small and sufficiently localized
clocks and mirrors (tacitly assuming that they do not disturb too much the
given field gik(x)), the following conclusion seems to be inevitable. We as-
sume the clock (and the mirror) initially to be localized with uncertainty δl.
Standard quantum mechanics leads to a momentum uncertainty

δp & ~/δl (3)

The average time, τ , it takes for a light pulse to reach the mirror is

τ = l/c (4)

with l the average distance between clock and mirror. In the time interval τ
the initial relative position uncertainty of clock and mirror increases roughly
as

δl + δv · τ = δl + ~/mδl · l/c = δl + ~l/mcδl (5)

with the minimum δl being

δlmin = (~l/mc)1/2 (6)

(see [3]).
Quantum mechanics alone suggests to make the mass, m, of the clock

(and mirror) large in order to reduce the uncertainty in distance measure-
ment. Here now general relativity comes into the play. Realizing for example
the clock as a spherical cavity of diameter d, surrounded by a mirrored wall
of mass m, in which a light signal bounces back and forth, the clock must
tick off time at a rate so that

d/c . δl/c (7)

in order that the uncertainty in distance measurement is not greater than
δl. On the other hand d must be larger than the Schwarzschild radius of the
clock, rs, so that signals can be exchanged at all. This implies

δl & Gm/c2 (8)

Ng et al now combine these two estimates to get

δl3 & Gm/c2 · ~l/mc (9)

3



or
δl & lp(l/lp)

1/3 = (ll2p)
1/3 (10)

with lp = (~G/c3)1/2 the Planck length. Correspondingly we get

δτ & (τt2p)
1/3 (11)

with tp = lp/c the Planck time.
We briefly want to recapitulate how the true spatial distance is measured

in a gravitational field in general relativity. This is particularly clearly dis-
cussed in [14], see also [15]. It comes out that for “infinitesimal” distances
(which can in fact be macroscopic in a sufficiently weak field for practical
purposes) we have

dl2 = (gαβ − g0αg0β/g00)dxαdxβ = γαβdxαdxβ > 0 (12)

with greek indices running from 1 to 3 and γαβ being the spatial metric
(the sign convention being −+++). We note that in a physically realisable
reference system we have g00 < 0 (and corresponding constraints for the
γαβ). Note that in general gravitational fields the notion of true distance
(measured for example with little measuring rods or light signals) has only
an absolute meaning in the small. This is only different in particular cases
like a static field (gik independent of the time coordinate).

The crucial point in the analysis of Wigner et al was that clocks and
mirrors are treated as strongly localized freely moving test particles tracing
out their individual world lines (or geodesics) in a given gravitational field
(similar discussions can e.g. be found in [16] or [17]). This is reasonable in
a certain context as e.g. in discussions of introducing appropriate coordi-
nate grids or material reference systems which do not distort too much the
given space-time. The situation however changes if questions of principle are
adressed in certain thought experiments concerning fundamental limitations
of e.g. length measurements in quantum gravity. We argue in the following
section that in that case some of the above constraints can be avoided or
at least relaxed so that the lower limit provided by e.g. Ng et al can be
considerably improved upon.

3 An Alternative Thought Experiment

We now describe a different set up which is not designed to create for ex-
ample a full coordinate grid or minimally disturb a given gravitational field.
We rather concentrate on the important question of the existence of a priori
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limitations of measuring distances in the very small with uncertainties much
larger than lp.

We note that a severe restriction in the approach of Wigner et al or Ng
et al derives from the assumption that clocks and mirrors are freely moving
particles of mass m. This resulted in the additional (l-dependent) position
uncertainty ~l/mcδl. We speculate what an experimenter in the laboratory
would do. He would fix clock and mirror on an optical bench, which we, for
calculational convenience, realize as a three-dimensional harmonic (macro-
scopic) quantum crystal in a way described below. The unavoidable zero
point motion of the atoms of the solid is of the order

∆q ∼ (~/M0)
1/2 (13)

with M0 the mass of the atoms and ∆q their position uncertainty (see e.g.
[18]).

There exist various possibilities to implement the coupling between clock,
mirror and solid quantum mechanically. One possibility is to confine both
clock and mirror, as it is done with ordinary quantum objects, in macro-
scopic (ionic or optical) traps which, on their part, are attached to the solid.
One may assume that these devices are attached to a (macroscopic) part of
the solid and not to a single atom. This will yield an extra uncertainty of
the order (~/M)1/2 instead of (~/M0)

1/2 with M the mass of the respective
part of the solid.

We approximate possible experimental set-ups by assuming the clock
(and mirror) to be bounded in the ground state of a harmonic oscillator
potential. This yields

∆q2 =< x2 >= (mω/~)1/2 ·

∫

x2 exp(−mωx2/~)dx ∼ (~/mω) (14)

The momentum uncertainty

∆p & ~/∆q (15)

does now no longer matter as the particle cannot drift away during the
measurement process.

Remark: The solid of course generates a gravitational field of its own but we
think, this does not represent a real problem in this context as we are only
interested in questions of principle. Assume for example that the original
metric was the Minkowski metric which is now sligthly disturbed by the field
of the solid.
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We now observe that by increasing m and/or ω, we still have to obey
the Schwarzschild constraint, but as the clock can not wander away we get
a bound like

δl & (Gm/c2 · ~/mω)1/3 + (~/Mω)1/2 = (G~/c2ω)1/3 + (~/Mω)1/2

= (l2pc/ω)1/3 + (~/Mω)1/2 (16)

which does no longer contain an explicit l-dependence. M is possibly limited
by practical or experimental constraints. But as the respective region of the
lattice need not be an infinitesimal one the Scharzschild-constraint is at least
not openly manifest.

At this place it is perhaps helpful to add a remark concerning another
deep question of principle which tacitly underlies all the discussions of the
kind presented above and similar ones but which, on the other hand, is sel-
domly openly addressed. In quantum mechanics proper it turned out that
uncertainty in measurement (Heisenberg) is essentially the same as uncer-
tainty in definability (Bohr) which mirrors sort of a preexisting harmony
and is by no means a trivial property from an epistomological point of view.
As to this important point cf. the discussion in [19] about the seemingly
different viepoints of Heisenberg and Bohr.

To put it briefly and relating it to our present problem concerning the
much more remote Planck scale: in our view it is not always entirely obvi-
ous that every seeming limitation concerning the measurement of a certain
quantity like e.g. a distance by using a particular measuring device really
corresponds to a truely fundamental limitation of definability of the quan-
tity under discussion, that is, as having its roots in for example irreducible
primordial fluctuations of space-time as such. To really decide this may be a
touchy business given the great recent advances in measurement techniques.

4 Anticorrelated Space-Time Fluctuations

In [3] it is argued that the l-dependent fluctuation formula for length mea-
surements, derived there, is further corroborated by an application of the
so-called holographic principle. We want to show in this and the following
section that the holographic principle is not really a cause for the given fluc-
tuation formula but has rather a logical status which is independent of that
result.

We start with a simple thought experiment concerning the nature of
Planck fluctuations which we presented already quite some time ago ([20],
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we however presume that many other researchers in the field are aware of
this phenomenon). We assume that the quantum vacuum on Planck scale
is a fluctuating system behaving similar to systems in quantum statistical
mechanics with the characteristic correlation parameters

lp = (~G/c3)1/2 , tp = lp/c , Ep = ~νp = ~t−1

p (17)

We make, to begin with, the simplest possible but naive assumption, assum-
ing that in each Planck cell of volume l3p we have essentially independent
energy fluctuations of size Ep which implies that the characteristic correla-
tion length is assumed to be lp.

Picking now a macroscopic spatial volume (compared to the Planck
scale!), V , we have N = V/l3p ≫ 1 of such cells labelled by 1 ≤ i ≤ N .

Defining the stochastic variable EV :=
∑N

1
Ei, the central limit theorem

tells us that the expected fluctuation of EV is

∆EV :=< EV · EV >1/2∼ Ep · N
1/2 (18)

where we assumed < Ei >= 0 (a point we comment upon later). ∆EV

would still be very large as both N1/2 and Ep are large because N itself is
typically gigantic for macroscopic V . The question is now, why are these
volume-dependent large fluctuations not observed?

Remark: In ordinary statistical mechanics extensive quantities like e.g. E
go with the volume, V , or N . In that case it is frequently reasonable to
neglect fluctuations, being of order N1/2, as the scale used in our measure-
ment devices is typically adjusted to the occurring values of the extensive
variables. Regarding the Planck scale, we may however take the average of
the vacuum energy to be zero, or put differently, we do not measure it with
our local devices, but the fluctuations are expected to be large locally and
should be detectable in principle (see also the remarks in [8]).

We note that a similar reasoning yields for the momentum fluctuations

∆pV ∼ ppl · N
1/2 (19)

Conclusion 4.1 On the Planck scale the hypothetical individual fluctua-
tions must be strongly negatively or anti-correlated so that the integrated
fluctuations in the volume V are almost zero.
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We infer that what is called for are effective microscopic screening mecha-
nisms!

The above picture is of course quite crude but the same result would
essentially follow under much weaker and more realistic assumptions as they
are, for example, frequently made in (quantum) statistical mechanics (cf.
[21]). To be specific, let q(x) , x ∈ R

d be a certain (quantum) observable
density like e.g. some charge, current or particle density. We normalize, for
calculational convenience, its expectation value, 〈q(x)〉, to zero. We assume
the system to be translation invariant and the correlation function

F (x − y) := 〈q(x) · q(y)〉 (20)

to be integrable, i.e.
F (s) ∈ L1(Rd) (21)

With QV :=
∫

V q(x)ddx the integral over a certain volume, V , we get

0 ≤ 〈QV QV 〉 =

∫

V
dx

∫

V
dyF (x − y) =

∫

V
dx

(
∫

x−V
dsF (s)

)

≤

∫

V
dx sup|(. . .)| ≤

∫

V
dx ·

∫

Rd

ds |F (s)| = V · const (22)

as
∫

Rd ds |F (s)| is finite by assumption. We can infer the following:

Conclusion 4.2 With 〈q(x)q(y)〉 ∈ L1(Rd) and

lim
V →Rd

∫

V
F (s) 6= 0 (23)

we get
〈QV QV 〉

1/2 ∼ V 1/2 (24)

as in the case of complete independence of random fluctuations.

Remark: Note that N ∼ V and summation is replaced by integration over
q(x). The same reasoning holds of course for discrete degrees of freedom.

This Gaussian type of fluctuation can only be avoided if the correlation
function F (s) displays a peculiar fine tuned (oscillatory) behavior, more
precisely, it must hold that

lim
V →Rd

∫

ds F (s) = 0 (25)

8



Lemma 4.3 The rate of the vanishing of the above integral is encoded in
the rate of vanishing of the Fourier transform, F̂ (k), near k = 0.

(see [21] and [22] and further references given there). We hence can conclude
that the behavior near k = 0 of F̂ (k) is relevant for the degree of fluctuation
of QV .

To establish this relation rigorously and also for other reasons (q(x) is
frequently not an operator function of x but more singular, i.e. only an op-
erator valued distribution) it is customary in quantum statistical mechanics
and field theory to replace the sharp volume integration over V by a smooth
scaling function. One may take for example

fR(x) := f(|x|/R) (26)

with f ≥ 0 f = 1 for |x| ≤ 1 and being of compact support. Instead of QV

we use in the following

QR :=

∫

q(x)fR(x)ddx (27)

Remark: We note, without going into any details, that one can give numer-
ical estimates of the difference in behavior of the two quantities. A certain
disadvantage of a sharp volume cut off is that it introduces an artificial non-
integrability in Fourier space as the F.Tr. of a discontinuous function cannot
be L1! One can show that in our case it is only in L2.

We get after Fourier transformation:

〈QR · QR〉 = R2d ·

∫

ddk F̂ (k)|f̂(Rk)|2 (28)

Making a variable transform we get

〈QR · QR〉 = Rd

∫

ddk F̂ (k/R)|f̂ (k)|2 ∼ const · Rd · R−α ·

∫

kα · |f̂(k)|2ddk

(29)
asymptotically for R → ∞ if

F̂ (k) ∼ |k|α near k = 0 (30)

and vice versa. To show this we simply express F̂ (k) as kα ·G(k) with G(k)
finite and nonvanishing at k = 0.
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Observation 4.4 Small or almost vanishing fluctuations in macroscopic
volumes (compared to the Planck scale) can be achieved by certain covariance
properties of the quantities under discussion, that is, a certain degree of
vanishing of the F.Tr. of 〈q(x)q(y)〉 at k = 0. For example, if q(x) is
the zero (charge) component of a conserved 4-current, we have typically a
behavior ∼ |k|2 near k = 0 for space dimension d = 3. If q(x) is the 00-
component of a conserved 2-tensor current, like e.g. the energy-momentum
tensor, we have in general a behavior ∼ |k|4.

(See [23] and [22]).
From the preceding discussion we hence can conclude that small-fluctuations

in x-space can obviously be achieved by fine-tuned anticorrelations in 〈q(x)q(y)〉,
which, nevertheless, can be of short range, i.e. integrable.

Corollary 4.5 Small fluctuations as such in V imply fine-tuned anticorre-
lations but not necessarily correlations having a long range.

This is remarkable as we will show in the following that the holographic
principle is intimately connected with long-range correlations of a peculiar
type. This implies that it is not a necessary prerequisite for establishing
small Planck fluctuations.

Remark: Recently Brustein et al (see for example [24] and [25]) used field
theoretic fluctuation results similar to our results derived in e.g. [21] and
[22] to argue that such area-like scaling of fluctuations (occurring however
in only very particular situations) may be related to the area laws of the
holographic principle. We have to refrain in this letter-size format to go into
more details but plan to discuss this subtle point elsewhere.

We conclude this section with providing a, as we think, instructive ex-
ample taken from ordinary physics which shows how easily these strongly
anticorrelated fluctuations appear even in non-relativistic physics. We take
again the 3-dimensional harmonic crystal mentioned already above. We as-
sume it to be fixed macroscopically in a definite position, so that in the
language of statistical mechanics its state represent a pure phase, in other
words we assume a (spontaneous) breaking of translation invariance. We
concentrate in the following for convenience on the atoms lying on the x-
axis, their equilibrium positions being the coordinates {j · a} , j ∈ Z , a the
lattice constant. The momentary position of the j-th particle is xj. We
know from statistical mechanics (cf. e.g. [18]) that the fluctuations of the
microscopic particle positions are finite (in three space dimensions!), i.e.

δx2

j = 〈(xj − j · a)2〉 < ∞ (31)
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for all j. On the other hand we have

xj − j · a =

j
∑

k=1

(xk − xk−1) − ja + x0 (32)

with < x0 >= 0.
The stochastic variables (xk −xk−1) =: uk with < uk >= a play here the

role of the individual length fluctuations, δl, in the corresponding Planck
scale model. The crystal condition we assume to be implemented by δx2

j ≤

a2 (or a slightly weaker condition) which is independent of j due to the
assumed translation invariance. We note that there exist various possibilities
to formulate such a condition but this is of no relevance for our present
discussion.

We have

δx2

j = 〈

(

j
∑

k=1

(uk − a) + x0

)2

〉 =

〈

j
∑

k=1

(uk − a)2〉 + 〈

j
∑

k 6=k′=1

(uk − a)(uk′ − a)〉 + 2〈x0 ·

j
∑

1

(uk − a)〉 + 〈x2

0〉

(33)

With both δx2

k and δu2

k independent of k and roughly of the same order, i.e.
being . (2a)2 we see that, while the lhs of the equation is of order (2a)2,
the first sum on the rhs is of order j · (2a)2. The third term on the rhs can
be calculated as follows.

〈x0 ·

j
∑

1

(uk − a)〉 = 〈x0 · (xj − x0 − ja)〉 = 〈x0 · (xj − x0)〉 =

〈(x0 − 〈x0〉) · (xj − 〈xj〉)〉 − 〈x2

0〉 (34)

as 〈x0〉 = 0 by assumption. In a pure phase we have clustering of correlation
functions, hence the first term on the rhs of the last equation goes to zero
for j large. The third term of equation (33) is therefore of order ∼ 〈x2

0
〉 for

j large and is hence compensated by the fourth term.
We hence arrive at the important constraint equation

〈

j
∑

k 6=k′=1

(uk − a)(uk′ − a)〉 ≈ −〈

j
∑

k=1

(uk − a)2)〉 . −j · (2a)2 (35)
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Conclusion 4.6 As δx2

j is globally bounded, δx2

j . a2, we find that the

contributions in 〈
∑j

k 6=k′=1
(uk − a)(uk′ − a)〉 are to a large part strongly

negatively correlated in order to compensate the linear positive increase in j
of the first term on the rhs of equation (33) (remember that < uk >= a).

Tranferring these observations to our Planck scale model, we can asso-
ciate xj or j · a with the momentary and averaged macroscopical length we
are going to measure, δxj with its fluctuation and the uk with the individ-
ual but strongly anticorrelated length fluctuations of the respective pieces
of roughly Planck size. We see that an organized anticorrelation over large
length scales is obviously not entirely unnatural. In the example we just
studied it is connected with the occurrence of spontaneous symmetry break-
ing (of translation invariance), that is, a phase transition. We hence con-
clude that it may happen under certain circumstances that the fluctuation
of a macroscopic length is of the same order as the fluctuations of its much
smaller parts in contrast to what may be infered from a naive application
of the central limit theorem.

5 Implications of the Holographic Principle

In the preceding section we dealt with the possibility of small or vanishing
Planck scale fluctuations in macroscopic or mesoscopic regions and conse-
quences thereof. Our analysis led to strong anticorrelation result but, as
we saw, not necessarily to a long-range anticorrelation (see, however, the
last example of the harmonic crystal where exactly this happens to be the
case). We now add another aspect in form of the holographic principle. We
employ it in the simple form typically used in various recent thought exper-
iments. That is, for simplicity reasons, we only deal with situations where
a space-like holographic bound is supposed to hold (cf. [10]).

As in the literature, cited above, we assume a given volume, V , to be
divided into N = V/l3p or N ∼ V cells. We make the asumption that each
cell can store a finite amount of information, in the simplest case one bit,
represented by an internal state labelled by the numbers ±1.

If these microscopic states can be independently chosen or more realisti-
cally, as in the preceding section, are only finitely or short-ranged correlated,
we get an information storage capacity

I ∼ V (36)

as it prevails in ordinary physics. The holographic principle claims that on
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the Planck scale we have instead in certain situations a behavior

I ∼ V 2/3 (surface area) or I ∼ l2 (37)

if l is the diameter of V .
In [3] it is argued that such a behavior would naturally lead to the

length-fluctuation result reported there, i.e.

δl & lp(l/lp)
1/3 (38)

We want to show in the following that this is, in our view, not the case and
that a different scenario is more plausible.

In a first step we show that the holographic principle alone does not! im-
ply strong negative correlations among the microscopic degrees of freedom.
This property is rather the consequence of our above small-fluctuation re-
sult. If, for example, our microscopic degrees of freedom are positively but
long-range correlated in V , this would, on the one hand, diminish the in-
formation storage capacity (all spins or most of them are typically almost
aligned in a given microscopic fluctuation pattern in V ), but an averag-
ing over such states would produce large global fluctuations proportional to
(some fractional power of) V . But such large fluctuations are not observed
as was argued in the preceding sections.

Conclusion 5.1 The holographic principle as such entails long-range corre-
lations among the microscopic degrees of freedom in V (positive or negative
ones). The small-fluctuation result, on the other hand, entails strongly neg-
ative correlations (but not necessarily of long range!). Taken together both
principles entail strongly negatively correlated long-ranged fluctuations!

In [3] or [4] the holographic principle comes into the play by arguing that
the number of degrees of freedom in the volume V is on the one hand l3/δl3

and on the other hand l2/l2p, with δl the minimal uncertainty of a length
measurement of l (cf. the discussion at the beginning of this paper). Ng
argues that δl is at the same time the minimal length which can be resolved
in V , put differently, which can be attributed a physical meaning. He then
relates the two expressions to each other as

l3/δl3 . l2/l2p (39)

and gets
δl & (l2p · l)

1/3 (40)
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We however provided arguments in the preceding sections that these expres-
sions are not! logically related.

We showed above that we may have δl ∼ lp and hence in principle
(neglecting interactions among the cells) an available number of degrees
of freedom, N = l3/l3p, without running into a logical contradiction. The
reason is that in our view the information in V is not! stored in single
more or less uncorrelated bits of size l3p or possibly varying size δl3, but
rather in a strongly correlated pattern, extending over the full volume V .
That is to say, a configuration on the surface of V can be freely chosen (so

to speak), leaving us with a total of roughly 2l2/l2p different surface states,
i.e. I = l2/l2p, each of which induces, due to long-ranged anti-correlations a
more or less unique configuration within V , extending this respective surface
configuration. As to this point see also the remarks in section 7 of [27].

This point of view has various consequences and ramifications also for
black hole physics which we only briefly mention (see the beautiful Galiean
trialogue, [26]). Suffice it to remark that, adopting this point of view, there
is no real problem in combining individual length fluctuations of roughly
Planck size, lp, with an information storage capacity going only with the
surface area of V .

We further note that the unique dependence of a volume state on a cor-
responding surface state is not entirely unusual outside ordinary (statistical)
physics. Consider, for example, the Dirichlet property employed in elliptic
boundary value problems. With L an elliptic partial differential operator
and g(x) a configuration on the boundary, ∂V , of V , there exists under
fairly weak conditions a unique solution, f(x), in V , i.e. Lf = 0, extending
smoothly to the boundary function, g(x). If we discretize this problem we
get roughly an example with I ∼ |∂V |, where it is understood that we label
the volume states by the uniquely associated surface states.

What we have said may provide a clue as to the more hidden reasons
why the holographic principle does not hold in the regime of the physics
of more ordinary length and energy scales. In ordinary quantum statistical
mechanics, for example, or when studying the asymptotic distribution of
eigenvalues of elliptic partial differential operators in a finite volume under
selfadjoint boundary condition (cf. e.g. [28]), the number of states below a
certain energy threshold E is proportional to the phase-space volume (see
below). In this scenario we typically work with a fixed (Hamilton) operator,
L (i.e. including fixed boundary conditions, for example f = 0 on ∂V ) and
study the eigenvalue problem

Lfi = λifi , λi ≤ E (41)
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with all fi being in principle physically admissible states.
We note that in statistical mechanics or theories of many degrees of

freedom in general we have to deal with Hamiltonians, describing the inter-
action of many constituents (their number being typically proportional to
the ordinary geometric volume). In this case V does not denote the ordinary
geometric volume the system is occupying but the generalized phase-space
volume which is a region having a huge dimension and is rather of the order
eV if V denotes the ordinary geometric volume. The information content is
then of the order log eV = V (cf. e.g. [30]).

Statistical mechanics tells us that one can in many cases regard a subsys-
tem, enclosed in the subvolume V , as being to some extent independent of
the ambient system which may be treated as a heat bath, by neglecting the
usually short ranged boundary effects or, rather, incorporating them in a
statistical manner. More specifically, one makes for example a random phase
approximation in order to arrive at a canonical partition function with re-
spect to the subsystem contained in V (see e.g. [29]). In such a scenario, i.e.
macroscopically excited states in the interior, the entropy is typically pro-
portional to the geometric volume. We note that a similar behavior prevails
if we study the entanglement-entropy of macroscopically excited eigenstates
of a Hamiltonian (describing the interaction of many degrees of freedom)
restricted to a subvolume (cf. [30]). That is, we can make the following
observation.

Observation 5.2 In ordinary quantum statistical mechanics we study a
subsystem contained in a subvolume, V , by neglecting to a certain extent
the different microscopic boundary states the system can occupy, or, more
specifically, by taking them only into account in a statistical way in, say,
the canonical partition function, while we treat the bulk Hamiltonian as a
fixed operator (i.e. fixed boundary conditions). We hence regard the possible
correlations between the interior of V and the heat bath outside as both suf-
ficiently weak and irregular. We assume however that the internal degrees
of freedom, that is, the eigenstates of H, can in principle all be excited as
their energy differences are assumed to be relatively small (this latter point
being important in our view). This yields a relation like I ∼ V .

Things however may change dramatically if the subsystem cannot really
be assumed to be separated from the ambient space due to very long range
correlations between interior and exterior. We now have to deal with a
truely open subsystem. In that case varying boundary conditions have a
strong effect on the interior of the system and can no longer be emulated
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in a simple statistical overall manner, quite to the contrary, in extreme
situations each possible boundary state may induces a particular state in
the interior.

Observation 5.3 In this latter case we have to change our working hy-
pothesis. Phrased in the language of statistical mechanics, we are no longer
allowed to deal, on the one hand, with a fixed Hamiltonian, H, i.e. fixed
boundary conditions together with the full sequence of its possible eigen-
states, and incorporate the boundary fluctuations in the canonical partion
function. Instead of that we rather may have to work with a fixed formal
Hamilton operator for the interior of a given region supplemented with vary-
ing boundary conditions or, stated differently, a particular Hamiltonian for
each boundary state. But it may now happen that we only see the respective
ground states of this class of Hamiltonians being excited (or some few of the
lowest lying of them) as the higher excited states may turn out to have a
very high energy and are virtually not excited. In our Dirichlet example we
thus may be allowed to take only the solutions

Lf = 0 · f , f = g on ∂V (42)

into account but now have to cover the full set of different possible boundary
conditions (or, rather, a countable set of typical ones).

Such a scenario would lead to an area-like behavior of entropy or informa-
tion content.

Remark: We note that in supersymmetry breaking and other model theo-
ries it is sometimes argued that the super-partners or higher excited modes
cannot be seen at ordinary energies due to their supposed huge masses.

6 Conclusion

We want to conclude this paper with a comment concerning seemingly re-
lated findings in ordinary physics described by the notion of entanglement-
entropy (see [30] and the references given there). We already mentioned that
macroscopically excited eigenstates of Hamiltonians describing the interac-
tion of many degrees of freedom lead in the generic case to partial states
on subvolumes having an entropy which is proportional to the volume while
groundstates, away from criticallity, that is in the regime of short-range cor-
relations, in the general case have an entanglement-entropy which goes with
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the area of the boundary of the subvolume (note that there exist examples,
i.e. groundstates of product form, where it happens to be zero).

The holographic principle, on the other hand, deals with the maximally
possible entropy or information storage capacity of a region. That means,
we have to include also the highly excited states in our considerations. But
our above remark shows that in ordinary physics these lead usually to a
volume-behavior of entanglement-entropy. Therefore we reach the following
conclusion.

Conclusion 6.1 The area law of the holographic principle cannot be un-
derstood within the context of ordinary (statistical) physics but needs pre-
requisites as described in the preceding sections, thus leading to a kind of
generalized statistical mechanics.
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