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Abstract— Being able to navigate accurately is one of the basic
capabilities a mobile robot needs to effectively execute a variety of
tasks, including collision avoidance, docking, manipulation, and
path following. One popular approach to achieve the desired
accuracy is to use artificial landmarks for a sufficiently accurate
localization. In this paper, we consider the problem of optimally
placing landmarks for robots navigating repeatedly along a given
set of trajectories. Our method aims at minimizing the number
of landmarks for which a bound on the maximum deviation of
the robot from its desired trajectory can be guaranteed with
high confidence. The proposed approach incrementally places
landmarks utilizing linearized versions of the system dynamics
of the robot, thus allowing for an efficient computation of
the deviation guarantee. To verify this guarantee for the real
and possibly non-linear system dynamics of the robot, our
method then performs a Monte Carlo simulation. We evaluate
our algorithm in extensive experiments carried out both in
simulation and with a real robot. The experiments demonstrate
that our method requires substantially fewer landmarks than
other approaches to achieve the desired accuracy.

Index Terms— Localization, Autonomous Navigation, Service
Robots

I. INTRODUCTION

One of the main challenges for mobile service robots is

autonomous navigation. Especially in industrial applications,

a high degree of accuracy is required to avoid collisions

and, e.g., to ensure reliable docking maneuvers. However,

robots navigating autonomously tend to deviate from their

desired trajectory due to uncertainty in motion and position.

Typically, they are equipped with on-board sensors to estimate

the deviation and react according to a feedback control law.

In service tasks, robots usually have to repeatedly execute

a fixed number of trajectories. As real world environments

often contain dynamic and ambiguous areas, many practical

applications rely on artificial landmarks placed along these

trajectories to allow for accurate self-localization [6, 7]. In

these applications, placing the artificial landmarks is often

expensive or the computational power of the robot is limited.

Therefore, it is beneficial to select the smallest possible num-

ber of landmark positions which still guarantees an accurate

navigation.

In this paper, we present a novel algorithm for land-

mark placement. It computes a landmark configuration which

guarantees that the deviation of the robot from its desired

trajectory stays below a user-defined threshold dmax with high

confidence. To check if the guarantee holds, we use the specific

properties of the robot and its navigation task in the landmark

placement algorithm. The algorithm works in two stages. In a

Fig. 1. The miniature e-puck robot we use in the experiments. Mounted
on top is a wireless webcam detecting uniquely identifiable visual markers
attached to the ceiling.

first stage, it uses a linearized motion model and observation

model of the robot to efficiently place landmarks in an

incremental fashion. This stage aims at placing the smallest

number of landmarks for which the deviation guarantee holds.

In a second stage, the algorithm employs a Monte Carlo

simulation for the computed landmark configuration to check

if the guarantee also holds for the possibly non-linear models.

Our approach has several characteristics which make it

especially useful for mobile robot navigation. It can deal

with arbitrary trajectories, and the maximum allowed deviation

of the robot can be defined individually for every part of

the trajectories. Taking into account the properties of the

individual robotic system results in customized landmark sets:

while high-precision robots only need few landmarks for

reaching the deviation guarantee, low cost systems typically

require more landmarks. As our placement algorithm effi-

ciently evaluates the guarantee using linear models, it can

deal even with large instances of the landmark placement

problem (i.e., long trajectories). Note that our incremental

method simultaneously determines the number of landmarks

needed and their positions to meet the desired guarantee.

This paper is organized as follows. After discussing related

work in the following section, we formalize the problem

definition in Section III. In Section IV we describe the

prediction of the deviation from the trajectory in linearized

systems. Afterwards, in Section V, we present our incremental

landmark placement algorithm. Finally, we provide extensive

experiments in which we evaluate the algorithm in simulation

as well as with the real e-puck robot [9] depicted in Fig. 1.

II. RELATED WORK

In the past, the problem of finding an optimal set of

landmark positions has been addressed from several points
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of view. Sala et al. [12] select landmark positions so that at

every position in the map, at least k landmarks are observable.

Jourdan and Roy [8] consider a set of possible target positions.

They place sensors on the walls of buildings to minimize the

average position error bound in the sensor network. Unlike

these methods, our approach takes into account the full spec-

ification of the robot and its navigation task.

Vitus and Tomlin [15] also consider the full problem specifi-

cation to place sensors in the environment. They approximate

the a-priori covariances with the a-posteriori covariances of

the most likely run of the robot. Similar to our approach,

van den Berg et al. [3] evaluate sensor positions using the exact

a-priori distributions in a linearized system. As they focus

mainly on path planning, they restrict themselves to randomly

sampled positions of a single sensor. Our previous work [1]

selects landmarks maximizing the mutual information between

the sensor readings and the states of the robot. It solely applies

Monte Carlo simulations to estimate the a-priori distributions,

which makes it computationally more demanding.

While all of the approaches above place artificial land-

marks or sensors before operation of the robot, the following

approaches decide whether to utilize observed landmarks

during operation. In contrast to our method, their decisions

are based on a-posteriori distributions, i.e., the information

already gathered by the robot. Thrun [14] selects the subset

of the observed landmarks for localization which minimizes

the average posterior localization error. Strasdat et al. [13]

and Zhang et al. [17] both consider landmark selection in the

context of the simultaneous localization and mapping (SLAM)

problem. Strasdat et al. use reinforcement learning to create a

landmark selection policy whereas Zhang et al. minimize the

entropy of the a-posteriori distributions.

In contrast to the above-mentioned approaches, our method

optimizes the positions of the landmarks so that the robot stays

within a user-defined region around the trajectory with high

a-priori probability.

III. PROBLEM DEFINITION

We consider the problem of placing landmarks for localiza-

tion and control of a mobile robot. We assume the time to be

discretized into steps of equal duration. At each time step t

the state of the robot is defined by a vector xt ∈ X , which

changes over time according to the stochastic motion model

xt = f(xt−1,ut−1,mt) (1)

where ut ∈ U is the control command at time t. Thereby,

the motion is disturbed by Gaussian noise mt ∼ N (0,Mt).
For self-localization, we assume that the robot is equipped

with a sensor taking measurements of a set of landmarks

A = {l1, ..., ln} according to the measurement function

zt = h(xt,nt,A) (2)

where the sensor signal is disturbed by Gaussian noise

nt ∼ N (0, Nt). The covariances Mt and Nt model the un-

certainty in the motion and the measurements, respectively.

We define a navigation task as a trajectory that the robot

should follow. A trajectory T = (〈x⋆
0,u

⋆
0〉, . . . , 〈x⋆

T ,u
⋆
T 〉) can

be considered as a series of states and desired controls the

robot should execute to reach these states. In this navigation

task, we assume that the trajectory will be executed using

a linear-quadratic regulator (LQR) [4] feedback controller.

At each time step t the LQR controller selects the control

command ut which minimizes the quadratic cost function

E

[

T
∑

ℓ=t

((xℓ−x⋆
ℓ )

TC(xℓ−x⋆
ℓ )+(uℓ−u⋆

ℓ )
TD(uℓ−u⋆

ℓ ))
]

, (3)

where C and D are positive definite weight matrices.

The localization uncertainty and, as a result, also the de-

viation from the desired trajectory strongly depend on the

specific configuration of landmarks A = {l1, ..., ln} which are

observed during operation. Our approach selects landmarks li
from a continuous space of possible landmark locations L. We

evaluate the quality of a landmark configuration based on the

deviation of the (real) state xt from the desired state x
⋆
t at each

time step t (ignoring the control part u⋆
0:T of the trajectory).

In particular, we consider the Euclidean distance between the

part of the state x
pos
t describing the position of the robot and

x
⋆pos
t . We focus on limiting the deviation

dpos(xt,x
⋆
t ) = ‖xpos

t − x
⋆pos
t ‖2 (4)

of the robot from its trajectory at all time steps t ∈ [0, T ]. Our

approach aims at finding the landmark configuration A with

the fewest elements for which the deviation guarantee

∀t ∈ [0, T ] : p (dpos(xt,x
⋆
t ) ≤ dmax(x

⋆
t ) | A) ≥ pmin (5)

holds. This guarantee ensures that the probability of deviating

at most dmax from the desired trajectory is at least pmin. Note

that dmax can be either a globally constant value or depend on

the position or time.

IV. PREDICTING THE DEVIATION FROM THE TRAJECTORY

To validate the guarantee (5) for a certain landmark configu-

ration A, we need to compute p (dpos(xt,x
⋆
t ) ≤ dmax(x

⋆
t ) | A).

For this, we consider the a-priori probability distribution

p(xt − x
⋆
t | A) =

∫ ∫

p(xt − x
⋆
t | u0:t−1, z1:t,A)

· p(u0:t−1, z1:t | A) du0:t−1 dz1:t , (6)

which averages over the observations z1:t and controls u0:t−1

that are not yet available during landmark placement.

For general, non-linear systems, the a-posteriori distribu-

tions p(xt − x
⋆
t | u1:t−1, z1:t,A) can be used to estimate the

a-priori distributions (6) via Monte Carlo simulation by sam-

pling observations and controls and averaging over numerous

runs [1]. However, this is computationally expensive for large

instances of the landmark placement problem.

A. A-Priori State Estimation in Linearized, Gaussian Systems

In the main part of our landmark placement algorithm, we

locally linearize the system and approximate all distributions

by Gaussians. This allows for an analytical evaluation of the

guarantee (5), making it more efficient than Monte Carlo

simulations. Linearizing the motion model (1) and the sensor
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model (2) around the desired trajectory (x∗
0:T , u∗

0:T ) by first

order Taylor expansion leads to

xt = f(x⋆
t−1,u

⋆
t−1,0) +At(xt−1 − x

⋆
t−1) (7)

+Bt(ut−1 − u
⋆
t−1) + Vtmt ,

zt = h(x⋆
t ,0,A) +Ht(xt − x

⋆
t ) +Wtnt , (8)

with the Jacobians

At =
∂f

∂x
(x⋆

t−1,u
⋆
t−1,0), Bt =

∂f

∂u
(x⋆

t−1,u
⋆
t−1,0),

Vt =
∂f

∂m
(x⋆

t−1,u
⋆
t−1,0),

Ht =
∂h

∂x
(x⋆

t ,0,A), Wt =
∂h

∂n
(x⋆

t ,0,A) . (9)

In this linearized system, the Gaussian a-posteriori distribution

p(xt−x
⋆
t | u1:t−1, z1:t,A) ∼ N (µt−x

⋆
t , Pt) of the deviation

from the trajectory can be computed recursively using a

Kalman filter [16]. The Kalman filter propagates a given ini-

tial Gaussian distribution p(x0 − x
⋆
0 | A) ∼ N (µ0 − x

⋆
0, P0)

according to the actual control commands in the motion update

µ̄t − x
⋆
t = At(µt−1 − x

⋆
t−1) +Bt(ut−1 − u

⋆
t−1)

P̄t = AtPt−1A
T
t + VtMtV

T
t . (10)

and according to the measurements in the observation update

Kt = P̄tH
T
t (HtP̄tH

T
t +WtNtW

T
t )−1 (11)

µt − x
⋆
t = µ̄t − x

⋆
t +Kt(zt − h(x⋆

t ,0,A)−Ht(µ̄t − x
⋆
t ))

Pt = (I −KtHt)P̄t . (12)

Note that the covariance Pt and the Kalman gain Kt depend,

via the Jacobians, on x
⋆
0:t and u

⋆
0:t−1 but not on the actual

values of u0:t−1 and z1:t (see (10), (11), (12)). Therefore they

can be calculated before the robot starts operation (a-priori).

The minimization of the expected deviation from the desired

trajectory (3) in the LQR controller can also be solved a-priori,

linearly relating the control command ut to the estimated state

µt via a feedback matrix Lt:

ut − u
⋆
t = Lt(µt − x

⋆
t ) . (13)

Lt depends on the a-priori known Jacobians (9) and the weight

matrices (3) and is derived explicitly in [4].

As described above, we express the whole navigation al-

gorithm, which consists of executing a motion command,

making an observation, localizing, and selecting the next

motion command depending on the localization, by linear

functions. For this linear navigation system, van den Berg et

al. [2] proved that the a-priori joint distribution of xt and µt

is a Gaussian
[

xt − x
⋆
t

µt − x
⋆
t

]

∼ N (

[

0
0

]

, Rt =

[

St Cov(xt, µt)
Cov(xt, µt)

T Ut

]

) ,

and that its covariance Rt can be computed recursively by

R0 =

[

P0 0
0 0

]

, Rt = FtRt−1F
T
t +Gt

[

Mt 0
0 Nt

]

GT
t ,

with

Ft =

[

At BtLt−1

KtHtAt At +BtLt−1 −KtHtAt

]

, (14)

Gt =

[

Vt 0
KtHtVt KtWt

]

. (15)

Rt only depends on a-priori known variables, namely the Jaco-

bians (9), the Kalman gain (11), and the feedback matrix (13).

These variables can be computed a-priori since we linearize

the models around the (a-priori known) desired states x⋆
0:T and

not around the (a-priori unknown) estimates µ0:T as it is done

for example in the extended Kalman filter [16].

B. Evaluation of the Deviation Guarantee

In the linearized system we can efficiently check whether

the deviation guarantee (5) holds. Let S
pos
t be the part of the

a-priori covariance St of p(xt − x
⋆
t | A) corresponding to the

position of the robot. The length at(A) of the major semi-axis

of the pmin-confidence ellipsoid of S
pos
t can be calculated using

at(A) = c
√

λt , (16)

where λt is the largest eigenvalue of S
pos
t and c is a scaling fac-

tor corresponding to pmin via the regularized Gamma function

as described in [2]. If at(A) ≤ dmax, then the pmin-ellipsoid of

S
pos
t is inside a circle with radius dmax and guarantee (5) holds

for the linearized system. Note that this test is a conservative

approximation and is exact if the pmin-ellipsoid is a sphere.

C. Visibility of Landmarks

For robots with a limited sensor range, the non-linearity

of the sensor model at the border of the field of view of

the robot induces a large discrepancy between the real model

and its linearization. To avoid this, we conservatively estimate

for every landmark if the robot will observe it at time t,

following the approach of Vitus and Tomlin [15]: We consider

a landmark as visible at time t only if it is pmin-visible, i.e.,

it is visible from every position inside the pmin-ellipsoid of

S
pos
t around x

⋆pos
t . If a landmark configuration satisfies the

guarantee (5) when only pmin-visible landmarks are observed,

it also satisfies it when using all visible landmarks. Note

that for general state spaces and fields of view (like in the

framework proposed in [11]), checking if a certain landmark

is pmin-visible is highly non-trivial and could for example be

done using a sampling based approach.

However, for the two dimensional case (i.e., x
pos
t = [x y])

and for a robot with a circular field of view with radius r,

there exists a closed form solution to checking if a given

landmark l is pmin-visible. Consider the pmin-ellipse of S
pos
t

centered at the origin of the coordinate system. We apply a

principal axis transformation on the ellipse so that afterwards

its semi-axes lie on the axes of the coordinate system. Ap-

plying this transformation on S
pos
t yields a diagonal matrix

S
pos
t

′
= diag(λ1, λ2) with the diagonal elements identical

to the eigenvalues of the matrix. Any point x
′ = [x′

1, x
′
2]

T

on the transformed ellipse E can then be described as x
′ =

c · diag(
√
λ1,
√
λ2) · x for a point x = [x1, x2]

T on the

unit circle C and the scaling factor c from (16). To check if
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landmark l is pmin-visible given an a-priori estimate (x⋆
t , St),

we apply the principal axis transformation also on the relative

position (l − x
⋆
t ) of the landmark, resulting in l′ = [l′1, l

′
2].

Checking if l is pmin-visible means checking if

max
x
′∈E
‖x′ − l′‖2 ≤ r

⇔max
x∈C
‖c diag(

√

λ1,
√

λ2)x− l′‖2 ≤ r

⇔ max
x1∈[−1,1], sgn∈{−1,1}

(

(c
√

λ1x1 − l′1)
2

+ (c
√

λ2 sgn
√

1− x2
1 − l′2)

2 − r2
)

≤ 0 .

Applying a distinction of cases for sgn, we set the derivative

with respect to x1 of the function inside the max-operator to 0

and reorder the resulting equation. This yields a quartic term,

which can be solved analytically in an efficient way.

V. INCREMENTAL LANDMARK PLACEMENT ALGORITHM

Our landmark placement approach aims at minimizing the

number of landmarks that have to be placed for the deviation

guarantee to hold. Since the dimensionality of the search

space grows with the length of the trajectory, in general,

globally searching for the optimal landmark configuration is

computationally intractable. However, using an incremental

placement algorithm, we can efficiently find an approximate

solution to the landmark placement problem.

A. Landmark Placement for the Linearized System

In a first stage, our algorithm employs the linearized sys-

tem to incrementally place landmarks. Considering linearized

Gaussian models has the advantage that the a-priori distribu-

tions can be efficiently calculated analytically. The objective

of our approach is to minimize the number of landmarks

needed for the deviation guarantee to hold on the whole

trajectory x
⋆
0:T . We approximate this minimum by maximizing

the number of time steps every single landmark guarantees (5).

Let

tmax(A,x⋆
0:T ) = max{t | as(A) ≤ dmax ∀s ≤ t} (17)

be the maximum time step for which the landmark set A
guarantees (5) in the linearized system for the first part of

the trajectory x
⋆
0:tmax

. In every iteration our algorithm adds the

landmark l⋆ which maximizes tmax to the already selected set

of landmarks A. In some cases, one additional landmark is

not enough to increase tmax. This can happen for example if

dmax(x
⋆
tmax+1) is chosen considerably smaller than dmax(x

⋆
tmax

).
In these cases, the algorithm selects the landmark which

minimizes atmax
(A) instead. Reducing atmax

(A) increases the

likelihood that in the next step a landmark can be found which

increases tmax again (see (17)). Algorithm 1 describes the

incremental landmark placement for the linearized system.

B. Monte Carlo Validation

In a second stage, we check the computed landmark con-

figuration A for the deviation guarantee via Monte Carlo

simulation using the real (possibly non-linear, non-Gaussian)

Algorithm 1 Landmark Placement for the Linearized System

Input: trajectory x
⋆
0:T , space of landmark locations L

Output: landmark configuration A
A ← ∅

t← 0
while t < T do

l⋆ ← argmax
l∈L

tmax(A ∪ {l},x⋆
0:T )

t⋆ ← tmax(A ∪ {l⋆},x⋆
0:T )

if t⋆ = t then

l⋆ ← argmin
l∈L

atmax
(A ∪ {l})

end if

A ← A∪ {l⋆}
t← t⋆

end while

return A

models. This is necessary to account for approximation errors

due to the linearization and the Gaussian assumption. The

Monte Carlo simulation samples robot states x0:T , controls

u0:T , and observations z1:T of the landmarks in A and counts

the number of time steps t in which dpos(xt,x
⋆
t ) ≤ dmax(x

⋆
t ),

as required in guarantee (5). Averaging over numerous runs

yields an estimate pMC of pmin for which the deviation guar-

antee in the real system holds. If pMC < pmin, one can use

arbitrary heuristics to place additional landmarks. For example,

one could run our algorithm for increased values of pmin or

decreased values of dmax.

VI. EXPERIMENTAL RESULTS

We evaluated our landmark placement algorithm and com-

pared it to other landmark placement approaches in extensive

experiments both in simulation and with a real robot.

A. Setup of the Simulation Experiments

In the simulation experiments, we considered a wheeled

robot with a differential drive. For self-localization we simu-

lated three different kinds of sensors detecting uniquely iden-

tifiable landmarks: a range-only sensor, measuring only the

distance to the landmarks, a bearing-only sensor, measuring

only the relative angle between the robot and the landmarks,

and a range-and-bearing sensor, measuring both. In this setup,

the differential drive motion model and all sensor models have

non-linear components. For all sensors, we assumed a circular

field of view around the robot with radius 2m. We evaluated

our algorithm on five navigation tasks T1-T5 for all three

sensor models, resulting in 15 experiments. Fig. 2 shows the

landmarks our algorithm computed for the three sensor models

in the first task T1, together with a-priori and a-posteriori

distributions. Fig. 3 depicts the landmark configurations and

a-priori distributions for the other four tasks T2-T5 for a range-

only sensor. For all trajectories, we set pmin = 99% and

dmax = 0.5m. For the pick-and-place task T5, we changed

dmax to 0.2m in the pick up zone and in the deposit zone

(gray rectangles). Because of the high accuracy necessary to

fulfill this task, we simulated a more precise robotic system

than for the other tasks, i.e., we scaled down the noise values.
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Fig. 2. The Landmark configurations (red triangles) our algorithm computed
for a figure eight trajectory T1 for three different sensor models: range-only
(left), bearing-only (middle) and range-and-bearing (right). The blue points
and ellipses in the upper row correspond to the means and 99% covariance
ellipses of the a-priori distributions, and in the lower row to the a-posteriori
distributions of simulated sample runs. The true positions of the robot in the
sample runs are depicted as black lines.
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Fig. 3. The Landmark configurations (red triangles) our algorithm computed
for four sample trajectories T2-T5 using a range-only sensor. T2 is a square,
T3 a curved shape, T4 a sweeping trajectory, and T5 a pick-and-place task.
The blue points and ellipses correspond to the means and 99% covariance
ellipses of the a-priori distributions. In T5, the pick up zone and the deposit
zone are marked as gray rectangles.

B. Restriction of the Search Space

To implement the argmax and argmin operators in Algo-

rithm 1, we used an insight gained from empirical evaluations.

In the experiments, l⋆ typically lay inside the field of view

of x
⋆
t . Therefore, we restricted the search space for the

optimizations to this area. As tmax and atmax
usually had several

local optima inside the field of view of x⋆
t , we did a search on

a discrete grid covering this region followed by a fine search

with Powell’s method [10] around the optimum on the grid.

To evaluate this strategy, we also ran grid searches on the

full environment of the robot followed by Powell optimization

steps. In all 15 experiments, Algorithm 1 with the full searches

did not select less landmarks than our implementation with the

restricted search spaces. On an Intel R© CoreTM i7 2.8GHz with

12GB RAM, the execution time of our algorithm averaged

over the 15 experiments was 138 sec utilizing the restricted

search spaces and 617 sec using the full searches.

C. Influence of the Sensor Model

As can be seen in Fig. 2, the amount of landmarks our

algorithm computes and their configuration strongly depend

on the chosen sensor model. For the range-only sensor, the

landmarks tend to be further away from the trajectory than

for the other two sensor models. The numbers of landmarks

needed are stated in the first row of Table I. Also the results of

the Monte Carlo simulations in our algorithm varied strongly

for the different sensor models. In every Monte Carlo simula-

tion, we performed 1000 simulated runs of the robot to get an

estimate pMC of pmin. For all trajectories and all sensor models,

the values of pMC for the landmark sets our approach computed

are stated in the fifth row of Table I. For the range-only

sensor, pMC is considerably above the intended value of 99%
in all tasks. For the range-and-bearing sensor, pMC is slightly

below 99% in the pick-and-place task and for the bearing-only

sensor, pMC is below 99% in three of the five tasks. These

results indicate that the non-linear components of the range

measurements are less critical for landmark placement than

the ones of the bearing measurements.

D. Comparison to other Landmark Placement Strategies

For comparison, we evaluated three other landmark place-

ment methods. Each method starts with a minimum number of

landmarks and successively increases the number (or density)

of landmarks until it finds a set for which the guarantee in the

linearized system holds.

• On trajectory places landmarks equidistant on the desired

trajectory.

• On grid places a landmark in the center of each cell of

a regular grid. Starting with one cell covering the whole

environment, the cell size is decreased at every iteration

until the deviation guarantee holds. For efficiency, land-

mark positions which are outside the field of view of all

states x
⋆
0:T on the desired trajectory are not used.

• Random successively places landmarks at randomly cho-

sen positions observable from the desired trajectory.

The numbers of selected landmarks and the values of pMC

for all landmark placement strategies are stated in Table I.
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TABLE I

NUMBERS OF SELECTED LANDMARKS AND RESULTS OF MONTE CARLO SIMULATIONS

Range-only sensor Bearing-only sensor Range-and-bearing sensor
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Number of landmarks

Our approach 14 12 11 18 10 11 9 7 16 7 9 8 6 13 5

On trajectory − − 25 − 58 41 − 12 − 23 12 9 10 17 7

On grid 48 32 38 56 23 26 19 17 30 18 20 20 17 25 16

Random 108 63 62 138 62 75 66 51 88 31 38 29 38 37 15

pMC

Our approach 0.999 0.998 0.999 0.999 0.999 0.979 0.978 0.991 0.994 0.826 0.999 0.997 0.998 0.994 0.986

On trajectory − − 0.996 − 0.962 0.353 − 0.955 − 0.773 0.996 0.999 0.983 0.999 0.980

On grid 0.999 0.999 0.999 0.999 0.998 0.997 0.981 0.995 0.999 0.931 0.996 0.999 0.995 0.999 0.999

Random 0.999 0.999 0.999 0.999 0.998 0.996 0.996 0.999 0.999 0.999 0.999 0.999 0.996 0.999 0.999

Dashes in the table indicate that no valid landmark configura-

tion could be found. For all experiments, our approach placed

less landmarks than the other approaches. The on trajectory

method is the best method after ours for the range-and-

bearing sensor, measured in the number of landmarks placed.

However, for the other two sensor models, the on trajectory

method was not always able to find a landmark configuration

which satisfied the guarantee in the linearized system. For

this method, especially the non-linearities in the bearing-only

sensor model resulted in low values for pMC.

E. Experiments with a Real Robot

To further validate the simulation experiments, we evaluated

a landmark set our algorithm generated also on the real e-puck

robot [9] depicted in Fig. 1. As a range-and-bearing sensor,

we utilized a webcam pointing upwards detecting uniquely

identifiable ARToolkit markers [5] attached to the ceiling. We

considered the navigation task T1 scaled down to suit the

miniature size of our robot (diameter 75mm) and the lower

ceiling. Scaling the task by the factor 0.08 yields dmax =
0.04m. To evaluate the deviation dpos(xt,x

⋆
t ) of the e-puck

robot from its desired trajectory, we obtained the reference

positions xt from a MotionAnalysis motion capture system

with four digital Raptor-E cameras. During 20 autonomous

runs, dpos(xt,x
⋆
t ) was below dmax in 99.7% of the time steps.

VII. CONCLUSIONS

In this paper, we presented a landmark placement method

guaranteeing a bound on the maximum deviation of the robot

from its trajectory with high confidence. During a placement

stage, our approach approximates the real motion model and

sensor model by their linearizations to efficiently evaluate

the guarantee. In a subsequent validation stage, we apply

a Monte Carlo simulation using the real system dynamics

to check if the selected landmark set satisfies the deviation

guarantee also for the possibly non-linear models. In contrast

to other approaches, our algorithm is customizable to specific

robotic systems and navigation tasks and inherently chooses

the number of landmarks needed. In extensive experiments, we

demonstrated that our method outperforms other approaches.
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