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1 Background material 

1.1 The purpose of this book 

This is a practical guide to human linkage analysis, with emphasis on the use of various computer programs. 

Little theoretical background will be provided. For theoretical and methodological background and 

references, we refer the reader to Ott (1991) [1], to which this book is sort of a companion. Since this is 

predominantly a technical how-to book, we do not want to reference sources already referenced in the 

companion book except for major issues and new sources. 

 Text and exercises (files are available online) of the current online version are essentially the same 

as in our original Handbook [2] except that software and computers have developed greatly and we updated 

some of the corresponding references. 

 Much of this book consists of detailed instructions on how to carry out linkage analyses such that 

also novices will be able to successfully complete them. The book is intended to be used for self-study or as 

http://www.jurgott.org/linkage/handdata.zip
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a manual in linkage courses. Most exercises employ the LINKAGE programs version 5.1, though brief 

discussions of other programs will be given (version 5.2 is very similar to version 5.1). All exercises in this 

book are written for execution on Windows or Linux PCs. Some ILINK results may differ slightly between 

machines. For example, in this book, ILINK analyses were done on a VAX, to illustrate some minor 

differences between implementations. 

 To carry out on a PC the exercises described in the subsequent chapters, you need to enter data into a 

computer file with the aid of a text editor or word processing program. You may use WORD or WordPerfect 

for that purpose but must make sure that the files you create are in ASCII or "text" file format. To test 

whether a file is in ASCII or in a word processor's own format, type it out on the screen, that is, issue the 

DOS command TYPE FNAME, where FNAME is the name of your data file. If it appears normal on the 

screen, then it is in ASCII format; otherwise you will see strange symbols or the lines will not start at the left 

margin. Useful text editors are NOTEPAD, NOTEPAD++, or the Crimson Editor; in Linux, I like gedit and 

Leafpad. 

 To obtain copies of the LINKAGE programs, please consult my webpage and the Appendix material. 

1.2 Notation and definitions 

We sometimes use mathematical notation, which may not be familiar to all readers. Here is a list of symbols 

and their meaning. 

 Intervals are indicated with parentheses or brackets, depending on whether the endpoints do or do not 

belong to the interval. [a,b] defines an interval between the values a and b, both values inclusive (closed 

interval), whereas (a,b) denotes an interval excluding the endpoints a and b (open interval). 

 That x belongs to a certain set of values or to an interval is indicated by , which stands for “member 

of” or “element of”. For example, x  [a, b) is equivalent to a  x < b. 

 Binomial coefficients are written in the usual manner as 








k

n
 (pronounced n choose k), where 









k

n
= 

n!/[k!(n – k)!] with n! (n factorial) being defined as n  (n – 1)  (n – 2) ...  2  1. 

 A vertical bar, │, can have more than one meaning. In probability statements, it indicates a 

condition. For example, P(X│Y) is short for "the conditional probability that X occurs given that Y occurs 

or is true." For sets of parameter values, the same symbol indicates a restriction on the range of values 

considered. For example, (θ │ 0.02 < θ < 0.15) reads “values of θ such that they are larger than 0.02 and 

smaller than 0.15.” 

1.3 Review of linkage analysis principles 

In this section, a brief summary of human genetic linkage analysis will be given, what it is, and how it 

works. We will see that there are two different aspects a linkage analysis, testing and estimation. These two 

ideas will be compared and contrasted, and we will see when, and how to use each of these aspects. Various 

reviews of linkage analysis and pedigree analysis have been published [3, 4]. 

1.3.1 Basic introduction to human genetics 

As we all know, human beings are sexually reproducing organisms. A man's sperm cell infiltrates and 

fertilizes his wife's egg cell, with the resulting zygote containing a complete and unique set of genetic 

information defining many of the biological characteristics of the newly developing human being. This 

genetic information is stored in coded form within molecules of deoxyribonucleic acid (DNA). DNA is 

composed of a linear arrangement of smaller molecules, known as nucleotides, whose sequence forms a 

code which contains information defining the structure of various protein molecules to be synthesized by the 

cell, the regulation of the production of such molecules, and a great many other functions, the sum total of 

which define much of who a person will become. While the major function of DNA is the encoding of the 

structure of various protein molecules, only a small fraction of the total DNA in any cell is actually involved 

in this process. Those sections of the DNA that are responsible for coding protein structures are called 

genes. They are inherited according to the mendelian laws. In general, any piece of DNA (or of a 

chromosome such as a secondary restriction) inherited in a mendelian manner is called a locus; thus genes 

are a particular type of loci. 

 In humans, this linear string of DNA, containing both genes and non-coding sequences, is divided 

into 23 segments called chromosomes. Further, each child receives one copy of each chromosome from the 

mother, and one from the father, for a total of 46 chromosomes, comprised of 22 pairs of so-called 

http://www.jurgott.org/linkage/handdata.zip
http://notepad-plus-plus.org/
http://crimsoneditor.com/
http://tarot.freeshell.org/leafpad/
http://www.jurgott.org/linkage/LinkagePC.html
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autosomes, and one pair of sex chromosomes. The sex chromosomes come in variants X and Y, and are 

involved in the determination of the sex of an individual, with all men having one X chromosome and one Y 

chromosome (XY), and all women having two X chromosomes (XX).  

 As was stated above, each offspring has two copies of each chromosome (except that the sex 

chromosomes in males are X and Y), one derived from each of the parents, and transmits one copy of each 

chromosome to his or her offspring. Each chromosome segregates independently, meaning, for example, if a 

mother transmits her maternally derived copy of chromosome 1 to an offspring, she still has an equal chance 

to transmit her paternally or maternally derived copy of chromosome 2, etc. This division of the DNA into 

independently segregating chromosomes allows for an increase in diversity of the population, as opposed to 

forcing each individual to receive half of his DNA from each of two of his four grandparents (i.e. one entire 

genome as opposed to 23 separate chromosomal entities). However, nature has a way of even further 

increasing the diversity of the species, through a process known as recombination.  

1.3.2 Recombination 

Every human being produces germ cells (sperm or egg), containing one copy of each chromosome (haploid 

chromosome set). When a sperm fertilizes an egg, the two haploid chromosome sets are combined making a 

new zygote containing two copies of each chromosome (diploid chromosome set). This diploid cell then 

develops into a new human being, whose every cell contains an identical full diploid set of chromosomes. 

However, since each cell contains two identical copies of each chromosome, an obvious question is where 

do these haploid germ cells come from, and how is it determined which copy they will receive of each 

chromosome? The answer is that they go through a complicated process called meiosis. For a full detailed 

description of meiosis, the reader is referred to any genetics textbook, like Ayala and Kiger (1984), for 

example. To sum up the relevant points, when a germ cell is formed, the two homologous copies of each 

chromosome pair up, and each member of a pair goes into one daughter cell and the other member into the 

other daughter cell (which eventually become gametes). In this distribution of homologous chromosomes, it 

is random whether the paternally or maternally derived chromosome of each pair goes into a specific 

daughter cell. Consequently, a gamete will contain some chromosomes from the father and some 

chromosomes from the mother of the individual producing the gamete. 

 There is, however, one additional source of variation, which is the main focus of our study. When the 

pairs of homologous chromosomes line up side by side, they undergo a process called crossing over [5], 

which results in a so-called recombination [5]. In recombination, portions of the maternal homolog 

recombine with the paternal homolog to form a hybrid chromosome in the place of the original ones. Let us 

assume we have chromosomes MMMMMMMMMM and PPPPPPPPPP lined up beside each other, where 

M stands for a maternally derived gene and P for a paternal gene. They could recombine in such a way that a 

crossover takes place between genes 2 and 3 and another one occurs between genes 6 and 7. The two 

resulting chromosomes would then be represented by MMPPPPPMMM and PPMMMMMPPP. For a more 

detailed description of recombination involving four chromosome strands see Ott (1991). 

 Recombination is a frequent process, and it appears that at least one such crossover event must occur 

on each chromosomal arm (or chromosome) in each meiosis (Sturt, 1976). Small acrocentric chromosomes 

typically show only one crossover, with larger chromosomes experiencing two or three crossovers. The 

entire basis of linkage analysis is that recombination events occur between two genetic loci (genes, DNA 

markers, chromosomal aberrations, etc.) in a rate related to the distance between them on the same 

chromosome. In other words, loci that are physically very close to each other tend to be inherited together 

more often than not. The goal of linkage analysis is to determine whether two loci tend to co-segregate more 

often than they should if they were not physically close together on the same chromosome. 

1.3.3 Linkage analysis 

We have seen that each individual carries two copies of each chromosome, one derived from each parent. 

Each of the two chromosomes may carry different variations of the DNA sequence at a given locus. These 

variations are then referred to as alleles (some people use the term gene for allele). Traditionally, the term 

allele has referred to different variant forms of a protein-encoding gene, that typically had different 

phenotypic expressions, like the A, B, and O alleles at the ABO blood group. However, with the advent of 

DNA polymorphisms that are inherited in a mendelian form, the term allele has been expanded to include 

any mendelianly inherited variation in the DNA sequence at a given locus. 
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 The two homologous chromosomes segregate independently. Therefore, an allele at one locus on one 

chromosome segregates together with a given allele at another locus on another chromosome with 50% 

probability. Alleles at loci on the same chromosome should co-segregate at a rate that is somehow related to 

the distance between them on the chromosome. This rate is the probability of a recombination event 

occurring between the two loci, or recombination fraction (hereafter denoted by θ). Multiple recombination 

events can occur on the same chromosome. If in a gamete two loci have experienced two crossovers 

between them, then the final result shows a non-recombination between the two loci (for example, the first 

and last loci on chromosome MMPPPPPMMM considered above). 

 The recombination fraction ranges from θ = 0 for loci right next to each other through θ = ½ for loci 

far apart (or on different chromosomes), so that it can be taken as a measure of the genetic distance or map 

distance between gene loci. This measure works fine for small distances. The unit of measurement is 1 map 

unit = 1 centimorgan (cM), corresponding approximately to a recombination fraction of 1%. However, 

because of the occurrence of multiple crossovers, the recombination fraction is not an additive distance 

measure. Therefore, it must be transformed by a map function into the map distance. For example, the 

Haldane map function turns θ = 0.27 (27%) into 39 cM, and the Kosambi map function translates θ = 0.27 

into 0.30 Morgans (30 cM, centimorgans; see Ott (1991), or Liberman and Karlin (1984), for more 

information). 

 Two loci are said to be genetically linked when θ < ½, and the phenomenon that this occurs is termed 

genetic linkage. The object of linkage analysis is to estimate θ and to test if θ is less than ½, that is, whether 

an observed deviation from 50% recombination is statistically significant. The estimate of the recombination 

fraction, usually denoted by ̂ , is in simple cases the proportion of recombinants (proportion of children 

carrying a recombinant gamete) out of all opportunities for recombination and ranges in principle between 0 

and 1. Because maximum likelihood estimates are defined on the set of admissible parameter values and the 

recombination fraction cannot exceed ½ (unless there is so-called chromatid interference), its estimate is 

usually also restricted to [0, ½]. 

 Notice that the term linkage refers to loci, not to specific alleles at these loci. For example, it is 

wrong to say that, in a given pedigree, the disease gene is linked with the A allele at the marker locus. In a 

child, alleles at different loci are said to be in coupling (as opposed to being in repulsion) when they 

originated from the same parent. Further, two loci residing on the same chromosome are said to be syntenic; 

they may or may not be linked. 

 A rudimentary test of linkage between two loci could be set up by comparing, in a chi-square test, an 

observed number k of recombinations and n – k of non-recombinations with their expected numbers of n/2 

each under no linkage. The main problem with this, however, is that in most human pedigree data, it is not 

possible to count recombinants and non-recombinants. For this reason, people typically use likelihood-based 

methods for testing linkage. Using sophisticated analysis programs, like LINKAGE, it is possible to evaluate 

the likelihood of a given pedigree under different assumptions about the recombination fraction between two 

loci. Further, since the Neymann-Pearson lemma tells us that if there is a best test of a given hypothesis, it is 

of the form of a likelihood ratio test, we have good theoretical basis for using the likelihood ratio test as our 

test of choice. In linkage analysis, our likelihood ratio is formed as L(θ)/L(θ = 0.5), with the denominator 

corresponding to the likelihood of our data under the assumption of no linkage. Likelihoods will be 

discussed in more detail in the exercises to follow. 

 In linkage analysis, the test is typically formulated in terms of the common (base 10) logarithm of 

this ratio, or lod score. The formula for the lod score is Z(θ) = log10[L(θ)/L(0.5)], or equivalently, Z(θ) = 

log10[L(θ)] – log10[L(θ = 0.5)]. These log likelihoods are then calculated via one of the many available 

linkage analysis programs. The main emphasis of this book will be on how to utilize the LINKAGE program 

package to compute these lod scores in practical situations. In some simple cases, the likelihoods can be 

evaluated by hand, as you will see later, but in the majority of family data, this is either impractical or 

impossible. This is true especially when we have diseases with complicated modes of inheritance as one of 

our loci.  

 The most common application of linkage analysis is to try and find the location, in the genome, of a 

gene responsible for a certain mendelianly inherited disease. In these situations, we often have complicated 

modes of inheritance, in which we are not certain which individual has which alleles at the disease locus. 

Consider, for example, the situation where we have a dominant disease. Assuming that D represents the 

dominant disease-causing allele, and + represents the normal or "wild type" allele, we must define the 

genotype-phenotype relationships or penetrances. In this case, we know that unaffected individuals have 
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genotype +/+, and that affected individuals have either genotype D/+ or D/D, however, we cannot discern 

one from the other phenotypically. The computer programs will compute accurate likelihoods, allowing for 

both possibilities for each affected individual. As you will see in the course of this book, likelihoods can be 

computed for these, as well as much more complicated penetrance models. The important thing for our 

purposes now, is to understand how these likelihoods can then be converted to lod scores, and what these lod 

scores tell us. 

1.3.4 Testing 

Basically there are two aspects of linkage analysis that can be performed by the use of such lod scores. The 

first is a test of linkage. In other words, do our data provide us with sufficient information to say that we 

have found linkage between our two genes? Since we usually have marker loci with known genetic location, 

and a disease for which we want to find the genetic cause, we can rephrase this test as "Is there evidence for 

linkage of our disease gene to our marker locus?". We have already defined a test statistic, the lod score, 

typically denoted as Z(θ), but we have not yet decided how to apply this test. In other words, for what 

critical region is our test statistic determined to provide sufficient evidence to say that we have found 

linkage to our disease gene? By convention in linkage analysis, people accept a critical value for this statistic 

of 3 as significant evidence for linkage. A theoretical examination of this cutoff point (see Ott, 1991) assures 

that only 1/20 times will a lod score of 3 be spurious for mendelian disorders, and so this is taken as the 

minimum acceptable level for a significant test with a simple autosomal disease. Similarly, for diseases 

known from segregation analysis to be on the X-chromosome, a lod score of 2 is considered to represent a 

significant linkage finding, since the prior probability of linkage is much higher than for an autosomal 

disease. For complex diseases, however, this lod score of 3 threshold may be too low, but we will defer 

further discussion of this until chapter 25. 

 The lod score test is usually performed by maximizing the lod score over all values of θ on the 

interval [0, 0.5]. If the maximum of this lod score curve exceeds 3, the test of linkage is significant, and the 

location of our disease has likely been found. But, if we are doing a genomic screen, what should an 

investigator do when he finds a lod score that is not significant, yet is still quite large, since typically not all 

potentially available families are analyzed in the early stages of a linkage analysis? In general, if a lod score 

of around 2 is found, it may be advisable to type further families for that marker, or to look for other 

markers in the vicinity of that one. If upon typing further individuals, the lod score drops, then it was most 

likely spurious, but it may also rise, to exceed the threshold of 3, in which case you have found a significant 

linkage.  

1.3.5 Estimation 

After significant evidence for linkage of the disease to a given marker has been found, the next step is to 

determine the exact location of this gene, to make it easier to isolate, and eventually study the gene itself. 

We have already explained that there is a monotonic relationship between recombination fraction and 

physical distance on the chromosome, so if we can determine the recombination fraction between the disease 

and marker, we will have some idea where to look for the gene itself. If you remember, the lod score test 

was based on the maximum of the lod score, maximized over θ. We know that the maximum of the 

likelihood function occurs at the same point as the maximum of the log of the likelihood function, so we can 

just find the value of θ at which our lod score is maximized, and use this as our estimate of the 

recombination fraction between disease and marker. This is referred to as the maximum likelihood estimate 

(MLE) of θ, and is denoted by ̂ . 

 Standard likelihood theory tells us that we can obtain a consistent estimate of any parameter given a 

set of data (AND the correct model), by maximizing the likelihood of the data with respect to that parameter, 

that is, in the limit of a large number of observations, the MLE is unbiased with a variance tending to 

become zero. For finite data sets, however, MLEs in human genetics are generally biased. In the presence of 

modelling or diagnostic or marker typing errors [6], MLEs may be inconsistent (asymptotically biased). 

 In addition to point estimates discussed above, one may also obtain interval estimates. Two types of 

intervals are discussed below, confidence intervals and support intervals. 

 Confidence intervals for a parameter such as the recombination fraction or a gene frequency are 

intimately connected with statistical tests about the parameter in question. On the basis of a set of 

observations, one may test the null hypothesis, H0:p = p0, whether the parameter estimate is significantly 

different from an assumed parameter value, p0. The test may be carried out for a multitude of parameter 
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values, p0. The set of all those parameter values p0 for which the test is not significant constitutes the 

confidence interval for p. Therefore, a significant test result for some value pt implies that pt is outside the 

confidence interval for p, and vice versa. 

 A support interval is, in principle, quite a different construct. It is based on the support (a synonym 

for loge likelihood) for a parameter provided by a set of observations. The m-unit support interval (Edwards, 

1992) consists of all those parameter points with associated loge likelihood within m units of the maximum 

loge likelihood; the parameter values inside a support interval are considered "plausible" because their 

support is only m units lower than that of the best supported parameter value. Examples of how to compute 

confidence and support intervals are given in Appendix A (BINOM program). In human genetics, support is 

also used to mean log10 likelihood. For example, one speaks of 1-lod-unit or 3-lod-unit support intervals. 

 There is a connection between confidence and support intervals. Consider a regular test situation in 

which you want to test the null hypothesis that a parameter p has a certain value, p0. You do this by 

obtaining a maximum likelihood estimate, , and want to contrast  versus p0. Under the null hypothesis, the 

test statistic, X
2
 = 2ln[L( p̂ )/L(p0)], follows an asymptotic chi-square distribution with 1 degree of freedom 

(df), where L(p) denotes the likelihood at the value p. In this situation, a 2-unit support interval may be 

interpreted as an approximate 95% confidence interval for p, and a 3.32-unit support interval as an 

approximate 99% confidence interval. 

 The above discussion is relevant to the test of the null hypothesis of no linkage (H0: θ = 0.5) versus 

linkage (H1: θ < 0.5). As is well-known, the test is declared significant when Zmax3. True to the intimate 

relation between statistical tests and confidence intervals, a confidence interval should contain those values, 

θ0, for which the test of H0: θ = θ0 is not significant. In linkage analysis, we construct support intervals rather 

than confidence intervals but also expect a meaningful relationship between support interval and test result. 

Consequently, the support interval associated with the test criterion Zmax  3 must be a 3-lod-unit support 

interval. The earlier recommendation (Conneally et al., 1985) of testing with Zmax  3 but constructing 1-lod-

unit support intervals leads to an inconsistency between statistical test and support interval when 1 < Zmax < 

3. Therefore, that recommendation also stated that no support interval should be constructed when Zmax < 3. 

We feel that this solution to the problem is unsatisfactory and that the test for linkage and its associated 

support interval should be consistent. Therefore, we recommend the use of 3-lod-unit support intervals. The 

exercises in this book adhere to this rule. 

 We realize that support interval and confidence interval are constructs belonging to different schools 

of thought (likelihood approach versus statistical testing approach); each has merits in its own right. We 

hope that our way of intertwining these two constructs is not offensive to representatives of either school. 

1.4 Installing the LINKAGE programs 

We assume here that you obtained the PC version of the LINKAGE programs from our website, which 

provides detailed instructions for installation of these programs. A more efficient and sophisticated program 

version is FastLINK, notable in Linux. Users are encouraged to install FastLINK rather than the regular 

LINKAGE package. This is especially important for pedigrees with loops (see section 7). 

 

  

http://www.jurgott.org/linkage/LinkagePC.html
http://www.ncbi.nlm.nih.gov/CBBResearch/Schaffer/fastlink.html
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Part I: Two-point Linkage Analysis 

2 File system used by LINKAGE 
 In this introductory chapter, we will go over the basic file structure of the LINKAGE programs (version 

5.1). Topics covered will include the basics of how to enter pedigree data in preparation for doing a linkage 

analysis. A schematic view of how files and programs interact is shown in Figure 2-1. 

 

2.1 PEDIGREE DRAWINGS 

 

First, let us assume the pedigree structure and data shown in Figure 

2-2. For those of you not too familiar with this type of diagram, 

circles refer to females, and squares refer to males, individuals 

who are filled in are affected with the disease in question, while 

those who are white are unaffected. Further, under each individual, 

his marker data are given. In this example there is one marker 

locus indicated. 

 

 

 

2.2 PEDIGREE FILES 

The first thing you must do is to create a pedigree file with your word processor, in which you describe the 

pedigree to be analyzed. In such a file, you must enter one line per individual, containing the following 

information:  

 
Column 1 : Pedigree identifier  The identifier can be a number or a character string 

Column 2 : Individual's ID  The identifier can be a number or a character string 

Column 3 : The individual's father  If the person is a founder, just put a 0 in each column 

Column 4 : The individual's mother If the person is a founder, just put a 0 in each column 

Column 5 : Sex (gender)   ( 1 = Male, 2 = Female ) 

Column 6+: Genetic data   (Disease and Marker Phenotypes) 

 

 In this case, our first genetic locus is the disease, which will be coded as an affection status type of 

locus. (In the LINKAGE programs, there are 4 different ways of entering the phenotypic data, called locus 

types. Their usage will be explained in more detail later.) You should then enter the phenotypic data by 

entering a 2 if the individual is affected, a 1 if unaffected, and a 0 if the person's affection status is unknown. 

In this case, the second genetic locus is our marker, which we will code as an allele numbers type of locus. 

This is the most straightforward way of entering codominant marker information. To do this, you must enter 

the allele number corresponding to each of the two alleles, separated by at least one space. The most 

important thing to remember about this type of locus is that you must number your alleles with integers 

starting from 1. For example if you had a two allele locus at which you had alleles 3.6, and 5.2, you would 
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have to renumber them as 1 and 2 to enter them in your pedigree file as an allele numbers type of locus. If an 

individual has not been typed, and the marker phenotype is unknown, you must enter 0 for each allele (eg. 

Phenotype = 0 0). Note that an individual cannot have one allele known, and the other unknown in this type 

of locus. They must be either both known, or both unknown! A clever way of evading this problem in 

simple situations will be dealt with in chapter 10. 

 For example, let us enter the pedigree data for the pedigree shown in Figure 2-2, in a file called 

EX1.PRE. We will assign the pedigree the name ex1, and give the pedigree members the names father, 

mother, dau1, dau2, son1, dau3, and son2, where dau is short for daughter. Most work will be done in a 

command (cmd) window (also called DOS box). If you use NOTEPAD as your text editor, you may type 

notepad ex1.pre to which the editor responds by saying that no such file can be found and whether you want 

to create it.  

 To enter the father, we would first enter the pedigree name ex1, followed by a space, and in the next 

column, we'd type father, the individual's name (or ID number). Since he is a founder, we'd enter zeroes in 

the next two columns, since his parents are unknown (NOTE: Either both parents must be unknown, or 

neither parent. If one parent is known, but the other is unknown, you would have to add a “dummy” parent 

with unknown phenotypes, and no parents). Next, you would enter a 1 for his sex (1 = male, 2 = female). 

The father is affected, so you would type a 2 in the affection status column, and then at the marker he has 

alleles 1 and 2, so you would enter 1 and 2 in the next two columns, followed by <Enter>. Now, the line in 

your pedigree file for this individual should look like this: 

 
ex1 father 0 0  1  2  1 2 

 

 The number of spaces between fields doesn't matter, but making the spacings of different lengths 

will help you recognize alleles belonging to the same locus. Now, enter the rest of the pedigree on your own. 

CAUTION: Be certain that your word processing program produces an ASCII file, with the file ending 

immediately after the last line. NO blank lines are permitted at the end, nor blank spaces on the line 

following the last individual. To ensure that your input file does not contain any empty trailing lines, press 

Ctrl-End, which will position the cursor at the end of the file. If this position is not in column 1 of the line 

immediately following the last pedigree data line, press the Backspace key repeatedly until the cursor is all 

the way to the right on the last pedigree data line, then press Enter. 

 
ex1  father 0  0  1 2 1 2 

ex1  mother 0  0   2 1 1 1 

ex1  dau1  father mother 2 1 1 2 

ex1 dau2  father mother 2 2 1 2 

ex1 son1  father mother 1 2 1 2 

ex1 dau3  father mother 2 1 1 1 

ex1 son2  father mother 1 1 1 1 

2.3 MAKEPED 

Now that you've entered these data into a pedigree file, save it as EX1.PRE. Next, you will need to process 

this pedigree file with the MAKEPED program, which will add several pointers required by the LINKAGE 

programs. To do this, type the following at the DOS prompt.  

 
MAKEPED infile outfile n 

 

where infile is the name of the pedigree file without pointers (EX1.PRE in this case) and outfile is the name 

of the file to be created by MAKEPED (EX1.PED in this case). It is a good general convention to use the 

extension .PRE to refer to a pedigree file before it is processed by MAKEPED, and to use the extension 

.PED afterwards. The letter n on the command line is optional and tells the program that no loops are present 

and all probands are to be selected automatically (see below); with n as the third parameter on the command 

line, MAKEPED will run without querying the user as outlined below. If no n is given, the program will 

then ask  

 
 Does your pedigree file contain any loops? (y/n)  

 

to which you will respond n, since there were neither consanguinity nor marriage loops in this simple 

http://www.jurgott.org/linkage/LinkagePC.html
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pedigree. We will discuss how to handle loops in a subsequent exercise. Next, it will ask 
 Do you want probands selected automatically? (y/n)  

 

In this case, you would enter y, since we will not be calculating genetic risks. The MAKEPED program will 

now run for a few seconds (actually, the program will further run a separate program called LOOPS, which 

checks for undeclared loops, and will be discussed later), and produce a pedigree file EX1.PED that is 

readable by the LINKAGE programs. If you look at the file in your word processor, you will notice that all 

ID numbers are now integers, and not characters any more, and there are several extra columns. The 

meanings of each column are as follows: 

 

Column 1: Pedigree Number 

Column 2: Individual ID number 

Column 3: ID of father 

Column 4: ID of mother 

Column 5: First Offspring ID 

Column 6: Next Paternal Sibling ID 

Column 7: Next Maternal Sibling ID 

Column 8: Sex (1 = Male, 2 = Female. Unknown sex not permitted) 

Column 9: Proband Status (1 = proband, higher numbers indicate doubled individuals formed in 

breaking loops. All other individuals have a 0 in this field.)  

Cols 10+: Disease and Marker Phenotypes (as in the original Pedigree File.) 

 

 Also, at the end of each line, the program will give the original pedigree names, and individual 

names from your pedigree file, so you can still identify which individual in the processed file corresponds to 

which person in the *.PRE file. However, to be safe, it is always better to make any future modifications to 

the pedigree data in the *.PRE file, and then rerun MAKEPED. 

2.4 PARAMETER FILES (PREPLINK) 

Now that you've specified the pedigree to be analyzed, it is necessary to generate a parameter file, in which 

you define the model parameters for each locus in the pedigree file, and other parameters required for the 

analysis. To create this file, use the PREPLINK program. Just type PREPLINK at the DOS prompt to begin 

running this program. 

 

The screen should appear similar to the following: 

 
****************PRESENT STATUS****************** 

(a) Number of Loci   : 2 

(b) Sexlinked    : N 

(c) Calculate Risk   : N 

(d) Mutation    : N 

(e) Haplotype Frequencies  : N 

(f) Locus Order    : 1 2 

(g) Interference    : N 

(h) Recombination Sex Difference  : N 

(i) Program Used    : MLINK 

(j) Recombination Values  : 

  0.100 

**********OTHER OPTIONS************************** 

(k) See or Modify Loci Description 

(l)  See or Modify Recombination to Vary 

(m) Read Datafile 

(n) Write Datafile 

(o) Exit 

*************************************************** 

Enter letter to see or modify values 

 

 Now, we will have to make the specifications in this program match our desired analysis. To begin 

with, we should check the first line (a) Number of Loci, which is currently given a value of 2 by default. 

Since this is correct for our analysis, we needn't change this. The second line, (b) Sexlinked, would be used 
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to tell the program whether we will be using autosomal markers or X-linked ones. Currently, the default 

value is N, meaning the disease and markers are autosomal, so we needn't alter this. Next, we come to the 

option (c) Calculate Risk. If one wanted to compute genetic risks, one could select this option to specify the 

risk locus and allele. Similarly, option (d) Mutation would allow one to specify one locus at which mutations 

can occur. However, there is the additional restriction that mutation can only occur from one specific allele 

to another. Hence it is primarily useful for disease loci, with normal alleles being mutated into disease 

alleles with a specific frequency. For our purposes, however, we will assume the absence of mutation, so we 

can ignore this option, which by default is set to No. Option (e) Haplotype frequencies is also set to No by 

default, since by default, the programs assume linkage equilibrium, and compute haplotype frequencies from 

gene frequencies at each locus. If one wanted to incorporate linkage disequilibrium data in the analysis, it 

would be imperative to specify haplotype frequencies for all possible haplotypes with this option. We 

assume linkage equilibrium, so we can leave this set at the default as well. The locus order can be input here 

as well, but since we have only two loci, it is immaterial, so we should leave it at the default setting, 1 2. (g) 

Interference has only been incorporated in a very rudimentary fashion, as you will see in later chapters. For 

now, just ignore this option, and leave it set to no, since it is unavailable for general use. Option (h) 

Recombination Sex Difference can be very important, since in general there are different rates of 

recombination in male and female meioses. This is discussed in detail in Part II, and for now, we will 

assume that there is None. Option (i) allows you to choose the program with which to perform the analysis. 

We will stick with the default program, MLINK, and defer further discussion of this until later. Similarly, 

the (j) Recombination values option allows you to set the recombination fraction at which to compute lod 

scores. In general, it is not necessary to specify program used, recombination values, recombination sex 

difference, or locus order in PREPLINK, since you can override these choices interactively when running 

the LCP program, as you will see in upcoming chapters. 

 Next, we must specify the genetic parameters which define the loci to be analyzed. To do this, you 

must now choose option (k) See or modify loci description. When you type k, followed by pressing the 

<Enter> key, you will see a screen like the following: 

 
**************************************************** 

(1) Allele Numbers GENE FREQS : 0.500000 0.500000 

(2) Allele Numbers GENE FREQS : 0.500000 0.500000 

**************************************************** 

(a) SEE OR MODIFY A LOCUS 

(b) DELETE LOCUS 

(c) ADD LOCUS 

(d) CHANGE ORDER TO CORRESPOND TO PEDIGREE FILE (NOT CHROMOSOME ORDER) 

(e) CHANGE LOCUS TYPE 

(f) RETURN TO MAIN MENU 

**************************************************** 

enter letter to modify values 

 

 We will now make Locus 1 correspond to the first locus in our pedigree file, which was the disease 

locus. To change locus 1 from allele numbers to affection status, choose option (e), to which you will be 

prompted 

 
ENTER LOCUS TO CHANGE 

 

to which you should respond 1. Next you will be given a menu of options as follows: 

 
ENTER NEW LOCUS TYPE: 

(a) BINARY FACTORS 

(b) QUANTITATIVE TRAIT 

(c) AFFECTION STATUS 

(d) ALLELE NUMBERS 

 

You should choose (c) AFFECTION STATUS, after which you will see a menu like the one above, with 

allele numbers changed to affection status in the description of locus 1. We still must modify the other 

parameters, like gene frequency and penetrances at locus 1, so choose option (a) SEE OR MODIFY A 

LOCUS, and specify locus 1. You will then see a current default description of locus 1, as follows: 
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****************************************** 

LOCUS NUMBER:   1 

****************************************** 

(a) Number of Alleles   : 2 

(b) Number of Liability Classes : 1 

(c) Penetrances: 

GENOTYPE 1 1  0.000000 

GENOTYPE 1 2 0.000000 

GENOTYPE  2 2 1.000000 

(d) Gene Frequencies : 

 0.500000 0.500000 

(e) EXIT 

****************************************** 

enter letter to modify values 

 

Since we have assumed two alleles (one normal, one disease), the Number of Alleles is correct. Likewise, 

line (b) Number of Liability Classes : 1 is correct. We'll get into the meaning and application of liability 

classes later on. Let us just assume for the moment that we have a fully penetrant dominant disease (for 

more information about penetrance, see chapter 5), and that allele 2 is the disease allele. If this is the case, 

our (c) Penetrances must be modified to reflect this. The penetrances given as default correspond to a 

recessive disease with full penetrance. (Can you see this?) Now enter c to modify the penetrances to 

correspond to a fully penetrant dominant disease as follows (the program presents the old penetrance value 

and prompts you with ?, at which you must enter the new value, which may or may not coincide with the old 

value.) : 

 
ENTER NEW PENETRANCES 

GENOTYPE 1 1 OLD PEN 0.000000 

? 

0 

GENOTYPE 1 2 OLD PEN 0.000000 

? 

1 

GENOTYPE 2 2 OLD PEN 0.000000 

? 

1 

 

 Once you've responded as above, your locus description will again be shown with these modified 

values. Note that you must enter a new penetrance, followed by <Enter> whenever you are prompted, even 

if it will remain the same as the default value. Next, you must modify the gene frequencies, since the disease 

allele is certainly not at such a high frequency in the population. Let us assume the disease allele has a 

population frequency of 0.00001, giving the normal allele a frequency of 0.99999. So, choose option (d), 

and respond as follows: 

 
ENTER 2 NEW GENE FREQUENCIES 

0.99999 0.00001 

 

 The order in which you enter them is important, since you defined the penetrances above in such a 

way that allele 2 is the disease causing allele (can you see this?), so you must be certain that allele 2 receives 

the correct gene frequency of 0.00001. Now, this locus is properly specified, so we can choose option (e) 

Exit to take us back to the menu screen where each locus is specified. The top should now look like this: 

 
******************************************* 

(1) affection status GENE FREQS : 0.999990 0.000010 

(2) allele numbers  GENE FREQS : 0.500000 0.500000 

******************************************* 

 

 Now, we should look at locus 2, by choosing (a) SEE OR MODIFY A LOCUS, and specifying locus 

2. We will then see a screen like this: 
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********************* 

Locus Number : 2 

********************* 

(a) Number of Alleles: 2 

(b) Gene Frequencies: 

 0.500000 0.500000 

(c) EXIT 

********************* 

enter letter to modify values 

 

 Since there are only two alleles at this codominant marker locus, and we are assuming equal gene 

frequencies, we needn't change anything here. In general, one must have reliable estimates of the gene 

frequencies for all alleles at each locus, as it has been repeatedly demonstrated (Ott, 1992, for example) that 

assuming equal gene frequencies for a given marker locus can lead to increased false positive evidence for 

linkage when the true gene frequencies deviate from equality (almost always, this is the case). At this time, 

you should (c) EXIT, followed by (f) RETURN TO MAIN MENU, and (n) WRITE DATAFILE. You will then 

be asked to supply the name of the file to be saved, which should be EX1.DAT. The extension *.DAT is used 

by convention to refer to the Parameter File for the analysis. You may next choose (o) EXIT, as you have 

finished specifying the parameters for the analysis. If you wish, you may now look at this parameter file in 

your word processor. It should look like the following: 

 
2 0 0 5 << NO. OF LOCI, RISK LOCUS, RISK ALLELE, SEXLINKED (IF 1) PROGRAM 

0 0.0 0.0 0 << MUT LOCUS, MUT RATE, HAP FREQUENCIES (IF 1) 

 1 2 

1 2 << AFFECTION, NO. OF ALLELES 

 0.999990 0.000010 << GENE FREQUENCIES 

 1 << NO. OF LIABILITY CLASSES 

 0.0000 1.0000 1.0000 <<PENETRANCES 

3 2 << ALLELE NUMBERS, NO. OF ALLELES 

 0.500000 0.500000 << GENE FREQUENCIES 

 0 0 <<SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

 0.1000 << RECOMBINATION VALUES 

 1 0.10000 0.45000 << REC VARIED, INCREMENT, FINISHING VALUE 

 

These are just the parameters you selected in 

PREPLINK, presented in a format readable 

by the LINKAGE programs. The bottom 

three lines are specific for the program to be 

used for the analysis, but for our purposes at 

this time, we will ignore this section of the 

file. 

 At this point, we have learned how to 

enter pedigree data in a form readable by the 

LINKAGE programs. We have also learned 

how to use the MAKEPED and PREPLINK 

programs to help in making these files. 

Throughout your career in linkage analysis, 

you will keep coming back to these programs, so it is important to understand them, and become fluent in 

the usage of these programs. Before going on to the next chapter, where we'll actually begin to do our own 

linkage analyses, we will do a practice example with entering another set of data in the required formats. 

EXERCISE 2 

For the pedigree shown in Figure 2-3, please create pedigree and parameter files (USEREX2.*), in the way 

we learned in this chapter. In this drawing, the number directly under each individual is his marker 

phenotype, if known. Use PREPLINK to generate a parameter file, specifying the first locus to be a fully 

penetrant dominant disease (Affection Status locus type) with disease allele frequency of 0.00001, and the 

second locus to be a codominant locus (Allele Numbers locus type) with three equally frequent alleles (gene 

frequencies = 0.33333). Remember that unknown individuals are coded as 0 at an affection status locus, and 

0 0 at an allele numbers locus. Watch out for an intentional “typo”! 
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3 Running the LINKAGE programs MLINK and ILINK 
In this chapter, you will be performing your first real 2-point linkage analyses, using the pedigree files you 

created in the previous chapter. We will be using the MLINK, and ILINK programs to perform these 

analyses. After this chapter, you will be able to do your own basic analyses. In practice, one typically does 

not use the analysis programs directly, but sets up an analysis using the LCP program, which is discussed in 

chapter 4. For some types of application, however, it is important that one knows how to handle the analysis 

programs directly. 

3.1 THEORETICAL ANALYSIS 

Let us begin this first linkage analysis with a theoretical analysis of the pedigree from Figure 2-2 in the 

previous chapter, for which you have already made the pedigree file (EX1.PED) and the parameter file 

(EX1.DAT). Let us examine this family more closely. The only way a meiosis can provide information 

about linkage is when the parent in which the meiosis occurred is heterozygous at both loci. Otherwise, no 

information can be obtained about linkage from this parent (i.e. if a parent is 1/1 at a marker locus, there is 

no way to tell which 1 allele was transmitted to any given offspring, so no linkage information is available). 

Since mother is homozygous at the marker locus, and also at the disease locus (since it is a fully penetrant 

dominant disease, she must be homozygous normal to be unaffected), she is uninformative for linkage. So, 

we need only look at the fate of the paternally derived alleles in this family. We know that father is 

heterozygous at the marker locus (1/2), and also at the disease locus (since he is affected, yet he has 

unaffected children he must carry one disease allele, and 

one normal allele). Hence, he is informative for linkage. 

However, we do not know in what phase these alleles exist 

in father, but we know there are only two choices, either he 

has phase D 1 / N 2 or he has phase N 1 / D 2. This type of 

nuclear family is called a phase unknown pedigree, since 

only genotype information is available, and not haplotype 

information on the doubly heterozygous parent. Each of 

these phases then has an equal 50% chance of being correct 

a priori (since we assumed absence of linkage 

disequilibrium). So, we can then examine the offspring to 

count recombinants and non-recombinants under each 

phase. We can disregard what each child got from the 

mother, and consider the pedigree to be reduced to what is 

shown in Figure 3-1, containing only the alleles derived 

from father. 

 Note that there are 3 different haplotypes observed in the children, (a) D 2, (b) N 1, and (c) N 2. If 

phase 1 were correct, haplotypes (a) and (b) would both be recombinants (i.e. non-parental types), and 

haplotype (c) would be non-recombinant (i.e. parental type). Similarly, under phase 2, the opposite situation 

would pertain, and haplotypes (a) and (b) would be non-recombinant, and haplotype (c) would be 

recombinant. Thus, under phase 1, we would have 4 recombinants and 1 non-recombinant in this family, and 

under phase 2, we would have 4 non-recombinants and 1 recombinant. Since the probability of a 

recombination is equal to θ (the so-called recombination fraction), and the probability of a non-

recombination is therefore equal to (1 – θ), we can calculate the likelihood of this pedigree as a function of 

θ. Under phase 1, the probability of observing the data would be equal to P(data) = Kθ
4
(1 – θ), and under 

phase 2, the probability of the data would be Kθ(1 – θ)
4
, where K is a constant coefficient in each case. 

Since each phase has a prior probability of 0.5, we can compute the probability of the phase unknown family 

observed as follows by the law of total probability: P(data) = P(Phase 1)P(data│Phase 1) + P(Phase 

2)P(data│Phase 2); which in this case is equal to: P(data) = (0.5)[Kθ
4
(1 – θ)] + (0.5)[Kθ(1 – θ)

4
]. 

 

Since the likelihood is defined as P(data), we can set up a likelihood ratio test for linkage as 1 
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Since K can be factored out of both numerator and denominator, it is irrelevant for the likelihood ratio, and 

thus is typically ignored in all linkage analyses. Thus, in our family, the likelihood ratio reduces to just 
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The so-called lod score is then just the common logarithm of the likelihood ratio, and is equal to 

(0.5)5 - )])-(1( + ))-(1([ = )( = )Z(
10

4

2
14

2
1

1010 logloglog   .  

The maximum of this lod score occurs at the same point as the maximum of the likelihood, so by 

maximizing the lod score over θ, we will find the maximum likelihood estimate of the recombination 

fraction θ. In this case, the maximum occurs at approximately θ = 0.21, with a corresponding lod score of 

(0.5)5 - ])9(0.21)(0.7 + (0.79))(0.21[ = )( = Z(0.21)
10

4

2
14

2
1

1010 logloglog  , 

which equals Z(θ = 0.21) = 0.124929. 

3.2 MLINK 

Now that we have analytically derived the correct answer, let us confirm our results by performing the same 

analysis with the LINKAGE programs. Let us first analyze our data using the MLINK program, which 

computes lod scores at a user-defined set of recombination fractions. In this example, let us compute the lod 

scores starting at θ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. In other words, we will start at θ = 0, and calculate lod 

scores in steps of 0.1 until we get to θ = 0.5. To do this we will go back into PREPLINK, and set up the 

parameter file to specify this analysis with the MLINK program. Note: The starting value may be 0.0001 

instead of exactly 0, which will avoid a lod score of negative infinity. 

 First, enter PREPLINK on the command line, to activate the program. Next, choose option (m) Read 

Datafile, and specify that the name of the datafile to be read is EX1.DAT (the file we created in the last 

chapter). Now choose option (i) Program Used. This is where we can specify the analysis to be run by 

LINKAGE. You should see a menu of choices like the following: 

 
************************************ 

(a) MLINK : Y 

(b) ILINK : N 

(c) LINKMAP : N 

(d) RETURN TO MAIN MENU 

********************************* 

Use ILINK for CILINK or LODSCORE 

Use LINKMAP for CMAP 

enter letter to modify values 

 

At this point, you should choose (a) to select the MLINK program, followed by (d) RETURN TO MAIN 

MENU. 

 The next thing we will need to adjust is the starting recombination value, by selecting choice (j) 

Recombination values from the main menu. You should then be prompted with 

 
 ENTER 1 NEW THETAS 

 

to which you should respond 0, as we wish to start calculating lod scores from Θ = 0. After entering this, 

you will be automatically returned to the main menu of PREPLINK.  

 There is still one more thing we need to tell the program, which is that we wish to vary the 

recombination fraction in steps of 0.1 up to θ = 0.5. To do this select option (l) See or modify recombination 

to vary, from the main menu. You should see a screen like the following: 

 
***************************************** 

(a) RECOMBINATION TO VARY : 1 

(b) STARTING VALUE : 0.0000 

(c) INCREMENT : 0.0100 
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(d) FINISHING VALUE : 0.5000 

(E) RETURN TO MAIN MENU 

***************************************** 

enter letter to modify values 

 

 We now must set all of these values to specify our desired analysis. The first line, "(a) 

RECOMBINATION TO VARY" may sound confusing. Here we are dealing with only a two-point analysis, so 

there is only one recombination fraction involved. However, if we were doing a multi-point analysis, there 

would be multiple inter-locus recombination fractions, and MLINK can only vary one of them, hence you 

need to specify which one here. For our purposes, leave it at 1. Now, you must set the (b) STARTING 

VALUE to 0.0000, the (c) INCREMENT to 0.1000, and the (d) FINISHING VALUE to 0.5000. This should 

be clear, since we want to increment θ by steps of 0.1, stopping at θ = 0.5. After making these adjustments, 

please enter (e) RETURN TO MAIN MENU, and (n) Write Datafile, calling it EX1.DAT (By the way, YES, 

you do want to overwrite the EX1.DAT file that exists, as you have just modified it, and no longer need the 

old one). 

 Now that we have fully prepared ourselves for the analysis, let us begin. The first thing you must do 

is to copy your pedigree file to a new name, PEDFILE.DAT, by typing  

 
COPY EX1.PED PEDFILE.DAT 

 

at the DOS prompt. Similarly, you will need to copy the parameter file to DATAFILE.DAT, by typing 

 
COPY EX1.DAT DATAFILE.DAT 

 

 This is required when the LINKAGE programs are run directly, though we'll be learning how to 

avoid all of this tedium in the next chapter.  

 We are now finally ready to do the linkage analysis. First, we must run the UNKNOWN program. 

This program is very important in eliminating impossible genotypes from consideration by the analysis 

programs. If you have a pedigree with a large number of individuals with unknown marker or disease 

genotypes, this program will save massive amounts of time. Also, it checks for inconsistencies in your data. 

If you have entered the data in such a way that a non-Mendelian situation arises, the UNKNOWN program 

will inform you of this by saying "Incompatibility detected in this family at Locus 1", or something like that. 

In any event, the LINKAGE programs are set-up, on most computers, so that one MUST run the 

UNKNOWN program before the analysis programs, since it runs quickly, detects inconsistencies, and saves 

much time from the analysis programs in most situations. To run this program, type UNKNOWN at the DOS 

prompt. When the program has completed, type DIR, and you will see that it has produced 2 new files, 

SPEEDFIL.DAT, and IPEDFILE.DAT. In this case, since everybody is typed, and all genotypes are 

uniquely determined, this file should be empty (i.e. the size should be 0 bytes). On the other hand, for the 

same reason, the IPEDFILE.DAT should be essentially identical in substance to the PEDFILE.DAT, with 

different spacings, and without the comments at the end of each line.  

 Now, you are finally ready to perform your first linkage analysis with the MLINK program. To do 

this, simply enter MLINK at the DOS prompt, and the program will begin to calculate lod scores for you. 

When the program is finished, there should be new files produced called OUTFILE.DAT, and 

STREAM.DAT. For our purposes at this time, we will ignore the STREAM.DAT file, though you'll see in 

later chapters why it is important. Now, look at the OUTFILE.DAT file in your word processor. It should 

resemble the following: 

 
LINKAGE (V5.1) WITH 2-POINT AUTOSOMAL DATA 

 ORDER OF LOCI: 1 2 

----------------------------------- 

----------------------------------- 

THETAS 0.500 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.830722 -8.612355 

----------------------------------- 

TOTALS -19.830722 -8.612355 
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-2 LN(LIKE) = 3.966144326368E+001 LOD SCORE = 0.000000 

----------------------------------- 

----------------------------------- 

THETAS 0.000 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -100000002004087734272.000000 -43429358520716623872.000000 

----------------------------------- 

TOTALS -100000002004087734272.000000 -43429358520716623872.000000 

-2 LN(LIKE) = 2.000000040082E+020 LOD SCORE = -43429358520716623872.000000 

----------------------------------- 

----------------------------------- 

THETAS 0.100 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.780789 -8.590670 

----------------------------------- 

TOTALS -19.780789 -8.590670 

-2 LN(LIKE) = 3.956157852618E+001 LOD SCORE = 0.021685 

----------------------------------- 

----------------------------------- 

THETAS 0.200 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.544641 -8.488112 

----------------------------------- 

TOTALS -19.544641 -8.488112 

-2 LN(LIKE) = 3.908928168151E+001 LOD SCORE = 0.124243 

----------------------------------- 

----------------------------------- 

THETAS 0.300 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.613033 -8.517814 

----------------------------------- 

TOTALS -19.613033 -8.517814 

-2 LN(LIKE) = 3.922606586242E+001 LOD SCORE = 0.094541 

----------------------------------- 

----------------------------------- 

THETAS 0.400 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.758215 -8.580866 

----------------------------------- 

TOTALS -19.758215 -8.580866 

-2 LN(LIKE) = 3.951642988211E+001 LOD SCORE = 0.031489 

----------------------------------- 

----------------------------------- 

THETAS 0.500 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.830722 -8.612355 

----------------------------------- 

TOTALS -19.830722 -8.612355 

-2 LN(LIKE) = 3.966144326368E+001 LOD SCORE = 0.000000 

 

You should summarize these data, by extracting the important information, and writing it in a little table. 

The most important pieces of information are the log10(Likelihood), and the Lod Score at each theta. From 

this output file, you can extract the information shown in table 3-1. 
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θ    Log10(Likelihood)  Lod Score 

──────────────────────────────────────── 

0   -infinity      -infinity 

0.1  -8.590670  0.021685 

0.2  -8.488112  0.124243 

0.3  -8.517814  0.094541 

0.4  -8.580866  0.031489 

0.5  -8.612355  0.000000 

Table 3-1: Analysis results of EX1.PED; EX1.DAT 

 

 Essentially, the lod scores can be calculated as shown above, by subtracting the log10(Likelihood) at 

θ = 0.5 from each of the other likelihoods. You should try this by hand to verify that this is how the 

likelihoods are calculated. Further, you may wish to verify these lod scores by using the analytical formula 

we derived above, and substituting in the appropriate values of θ to compute lod scores. They should be 

identical. You should see that from MLINK we get a good idea, not only of where the maximum lod score 

occurs, but we get to see the whole lod score curve, which can provide information about how accurate your 

maximum likelihood estimate is. We'll get into this in subsequent chapters. Notice that at θ = 0.20, the lod 

score is 0.124243, very close to our theoretical maximum, for θ = 0.21. As a test to verify our theoretical 

calculation, let's use the MLINK program to calculate the lod score at θ = 0.21 to verify that we did it 

correctly by hand. Just read your EX1.DAT file back in to PREPLINK, and modify option (l) See or modify 

recombination to vary. This time set (b) STARTING VALUE to 0.21, (c) INCREMENT to 0.1, and (d) 

FINISHING VALUE to 0.22. Then (e) RETURN TO MAIN MENU, write the new EX1.DAT file, and exit 

PREPLINK. Note that in the manner we set up our recombination to vary, it will start at θ = 0.21, and move 

in steps of 0.1 until θ > 0.22, the finishing value. So, in this case, it will only calculate the lod score at θ = 

0.21, since 0.21 + 0.1 = 0.31 > 0.22. Now, copy the EX1.DAT file to DATAFILE.DAT, and we can begin 

the analysis (EX1.PED is unchanged, and still the same as our PEDFILE.DAT). Let's check it out by 

running the UNKNOWN program again, followed by the MLINK program, as outlined above. Your new 

OUTFILE.DAT file should look like this: 

 
LINKAGE (V5.1) WITH 2-POINT AUTOSOMAL DATA 

 ORDER OF LOCI: 1 2 

----------------------------------- 

----------------------------------- 

THETAS 0.500 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.830722 -8.612355 

----------------------------------- 

TOTALS -19.830722 -8.612355 

-2 LN(LIKE) = 3.966144326368E+001 LOD SCORE = 0.000000 

----------------------------------- 

THETAS 0.210 

----------------------------------- 

PEDIGREE | LN LIKE | LOG 10 LIKE 

----------------------------------- 

 1 -19.543061 -8.487426 

----------------------------------- 

TOTALS -19.543061 -8.487426 

-2 LN(LIKE) = 3.908612143922E+001 LOD SCORE = 0.124929 

 

 Look at this file, and you can see that the lod score at θ = 0.21 is 0.124929, both according to the 

MLINK program, and our theoretical analysis. You might have noticed that in this OUTFILE.DAT, the 

likelihoods and lod scores are given not only for θ = 0.21, but also for θ = 0.5. The reason for this is that in 

order to compute a lod score, you need the likelihood at θ = 0.5 as the denominator of the likelihood ratio. 

For this reason, no matter what θ's you want lod scores computed for, the MLINK program will always 

compute the likelihood at θ = 0.5 first (Note that the lod score at this point is ALWAYS 0, since 

L(0.5)/L(0.5) = 1, and log10(1) = 0). 
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3.3 ILINK 

We will also frequently use the ILINK program for two-point analyses. This program doesn't give you the 

lod scores at predefined points, but rather attempts to numerically maximize the likelihood, and only returns 

the likelihoods at the maximum likelihood estimate of the iterated parameter (in this case, the recombination 

fraction). So, let's try to use this program to find the maximum likelihood estimate of θ. We know from our 

theoretical evaluation that the maximum is at approximately θ = 0.21. Let's see if ILINK returns a similar 

result. 

 Go back to PREPLINK, and set up the parameter file to do an ILINK analysis. First call up 

PREPLINK, and read in the EX1.DAT file. Then go back to option (i) Program Used, and select the ILINK 

program. Return to the main menu, and choose option (l) See or modify iterated parameters. Note that this is 

different from what option (l) said when we had specified the MLINK program. Anyway, you should now 

see a menu like the following: 

 
**************************************** 

(a) RECOMBINATION VALUES TO BE ITERATED (1) OR FIXED (0) : 

 0 

(b) LOCUS FOR WHICH VALUES MAY BE ITERATED : 1 

(c) RETURN TO MAIN MENU 

**************************************** 

NB : IF YOU WISH TO ITERATE OTHER PARAMETERS THE DATAFILE 

 MUST BE MODIFIED AFTER EXITING FROM PREPLINK 

enter letter to modify values 

 

 The first option (a) RECOMBINATION VALUES TO BE ITERATED (1) OR FIXED (0) is 

straightforward. In this case, there is only one recombination value, since we only have two loci. We merely 

need to tell the program whether it should try to maximize the likelihood with respect to this parameter, or 

whether it should remain fixed at the specified value. To start out, let's use ILINK to find the maximum 

likelihood estimate of θ, so we should select option (a), and then enter a 1 to iterate the recombination value. 

Now, we are confronted by the option (b) LOCUS FOR WHICH VALUES MAY BE ITERATED. The ILINK 

program can do more than just maximize the likelihood over recombination fractions. It can also estimate 

gene frequencies, penetrances, disequilibrium, sex difference in recombination, etc. For now, though, we are 

only going to be using it to estimate recombination fractions (which are not locus-specific values). Still, the 

program allocates memory as if it were going to maximize the likelihood over all of these parameters. For 

this reason it is a good idea to have one of the marker loci be the locus for which values may be iterated, 

since there are fewer parameters at such a locus (no penetrances!). So, choose option (b), and choose locus 2 

as the new locus for iterated values. Now return to the main menu. There is one thing left that we MUST 

change, and that is (j) recombination values. Since we are maximizing the likelihood over the recombination 

fraction, the value we enter here should be thought of as just a starting value for the maximization 

procedure. The closer it is to the maximum, the quicker the program will converge to the estimate. Also, in 

some cases, different starting values may yield different estimates, as the algorithm could get trapped in a 

local maximum, or the program could stop for reasons other than that the maximum was found. Also, you 

CANNOT start the iteration at θ = 0, as this is a boundary value for θ, and the maximization algorithm used 

in ILINK will not work properly when started at a boundary. For this reason, it is a good idea to start at 0.1. 

In real life, you may want to try multiple starting values, just to be sure they all end up the same place 

roughly. Anyhow, once this is changed, you can save the new EX1.DAT file, and leave PREPLINK. Copy 

this file to DATAFILE.DAT, and run the UNKNOWN program again. Now, instead of typing MLINK at 

the DOS prompt, type ILINK to run the ILINK program. 

 The ILINK program produces three output files, OUTFILE.DAT, FINAL.DAT, and STREAM.DAT. 

Again, we will defer discussion of STREAM.DAT to a later chapter. The most important output file from 

ILINK is the FINAL.DAT file, which should resemble the following: 

 
CHROMOSOME ORDER OF LOCI :  

 1 2 

****************** FINAL VALUES ********************** 

PROVIDED FOR LOCUS 2 (CHROMOSOME ORDER) 

****************************************************** 

GENE FREQUENCIES : 

 0.500000 0.500000 
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****************************************************** 

THETAS: 

 0.212 

****************************************************** 

-2 LN(LIKE) = 3.908608568137E+001 

LOD SCORE = 1.249370510945E-001 

NUMBER OF ITERATIONS = 4 

NUMBER OF FUNCTION EVALUATIONS = 12 

PTG = -1.660797216309E-005 

****************************************************** 

****************************************************** 

 

 This gives us the final estimate of θ = 0.212 (pretty close to our approximate solution), with an 

associated lod score of 0.124937 (slightly larger than our value, as the program estimated θ to 3 decimal 

places, and we only did it to 2). The gene frequencies given are for locus 2, which we specified as the locus 

at which parameters were to be estimated. They were not estimated, but since the program allows for this 

estimation, it output their final values. The –2ln(like) is given here, since it has a nice statistical 

interpretation, being in units of chi-squared asymptotically (We'll be using this later). The other values are 

not so important, but just specify how long it took the program to converge, and information about the 

gradient of the likelihood surface. Let us now look at the other output file, OUTFILE.DAT (remember that 

this was the name of the important file produced by MLINK). This should look like the following: 

 
DIFFER INTER = 3.452668897808E-004 TRUNC UPPER = 1.858135866348E-002 

 

ITERATION 1 T = 0.100 NFE = 2 F = 3.956157852618E+001 

X= 1.000000000000E-001 

G= -1.119885140454E+001 

P= 1.119885140454E+001 

TBND = 8.036538458179E-002 RESET T = 4.015494478452E-002 

 

ITERATION 2 T = 0.020 NFE = 5 F = 3.929637287819E+001 

X= 3.248446298996E-001 

G= 2.951007149097E+000 

P= -4.689220798602E-002 

FSMF = 2.652056479930E-001 PTG =-1.383792410037E-001 TMIN= 6.436095502122E-002 

INITIAL T = 1.000000000000E+000 

TBND = 6.927475669229E+000 RESET T = 1.000000000000E+000 

 

ITERATION 3 T = 2.000 NFE = 8 F = 3.909481766725E+001 

X= 2.310602139275E-001 

G= 8.576558660115E-001 

P= -3.842391630530E-002 

FSMF = 2.015552109388E-001 PTG =-3.295449721438E-002 TMIN= 5.586901493504E-002 

INITIAL T = 1.000000000000E+000 

TBND = 6.013447772779E+000 RESET T = 1.000000000000E+000 

 

ITERATION 4 T = 0.500 NFE = 11 F = 3.908608568137E+001 

X= 2.118482557749E-001 

G= 2.680003275200E-002 

P= -6.196996965180E-004 

FSMF = 8.731985879677E-003 PTG = -1.660797216309E-005 TMIN = 5.586901493504E-002 

EXIT CONDITION 5 

Specified tolerance on normalized gradient met 

 

 Most of the stuff in this file isn’t that important to the user, with the exception of the final line in the 

file, where it indicates the exit condition. In this case, it says "Specified tolerance on normalized gradient 

met". This means the program converged to the maximum, within a predefined tolerance level. Sometimes, 

however, the program exits for other reasons, like "Excessive cancellation in gradient", meaning that the 

final results you've obtained in your FINAL.DAT file are not really the maximum likelihood estimates, and 

perhaps you should restart your ILINK analysis using the end points from FINAL.DAT as starting values for 

a new ILINK analysis. 

 Let us confirm that we have achieved a maximum, by starting ILINK using θ = 0.213 as the starting 

value, and letting it go from there. To do this, read the EX1.DAT file back into PREPLINK, and change the 
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recombination value to 0.213, save the file EX1.DAT, copy it to DATAFILE.DAT, and rerun UNKNOWN 

and ILINK. The FINAL.DAT file should indicate that the new estimate of θ is 0.211, with a lod score of 

0.124938, which is roughly the same as before, and only better in the 6th decimal place. Since this kind of 

accuracy is unimportant, we can stop here, satisfied that the best estimate of θ is approximately 0.21.  

 Again, we can also use ILINK to evaluate the lod score at the specific point θ = 0.21, to verify that 

ILINK computes the same lod score as MLINK, and as we did when we calculated it by hand. To do this, 

read the EX1.DAT file into PREPLINK, and set the recombination fraction to 0.21. Then, go to (l) See or 

modify iterated parameters, and set (a) RECOMBINATION VALUES TO BE ITERATED (1) OR FIXED (0) 

to 0, as we now want to fix the recombination fraction and just calculate the lod score. Then write the new 

EX1.DAT file, and exit PREPLINK. Now copy the EX1.DAT to DATAFILE.DAT as before, and rerun 

UNKNOWN and ILINK, and this time, the FINAL.DAT file should indicate the lod score as 0.124929, to 6 

decimal places. 

 In this chapter, we introduced the principles of basic 2-point linkage analysis. We further calculated, 

theoretically, 2-point lod scores for our sample pedigree, and then introduced the UNKNOWN, MLINK, and 

ILINK programs of the LINKAGE package, and we used them to perform 2-point analyses with our 

example pedigree. In the next chapter, we will see that there is an easier way... 

EXERCISE 3 

Analyze the example pedigree from exercise 2. Try to analyze this pedigree analytically. When you see how 

amazingly complicated and time-consuming it can be, give up, and use the MLINK and ILINK programs to 

compute 2-point lod scores as described in this chapter. Please compute 2-point lod scores for θ = 0, 0.1, 0.2, 

0.3, and 0.4 with MLINK (If you are running into problems, consult the answers given in chapter 12 at the 

end of Part I). Then, do the same with ILINK (can you see how to do this? Hint: It takes 5 separate runs of 

ILINK...). Finally, find the best estimate of θ with ILINK, starting with a value of θ = 0.1, and then refine 

the estimate, by starting ILINK again from the value of θ given in the first FINAL.DAT file. Are you 

satisfied with this precision?  
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4 Setting up a Linkage Analysis Using LCP 
In the last chapter, we learned how to use the LINKAGE programs to do a linkage analysis. Specifically, we 

learned how to manipulate the datafile for each different analysis we wanted to perform. There is a program, 

the Linkage Control Program (LCP) that was written to make the whole process a lot simpler. It allows the 

user to specify different analyses without modifying the parameter file each time by hand. This program 

allows the user to specify any number of different analyses, and then let the computer do the analyses 

non-interactively, freeing up the researcher to do other things. In most situations, one will use the LCP 

program whenever performing a linkage analysis, and we will be using it from this chapter on whenever we 

wish to use the LINKAGE programs (unless specifically specified). The main feature of LCP is that it 

allows the user to set up datafile and pedfile with many loci and then specify subsets of loci for analysis. 

4.1 LCP 

We will now learn how to use LCP to set up an analysis of the data in EX1.PED and EX1.DAT. The LCP 

program is used to write a so-called batch file which contains a series of commands that will define all of the 

steps involved in setting up and performing any set of linkage analyses a person might desire.  

 First, start by typing LCP at the DOS prompt to activate the program. You will be presented with a 

screen like the following: 

 
COMMAND file name [PEDIN.BAT] : PEDIN.BAT 

LOG file name [FINAL.OUT] : FINAL.OUT 

STREAM file name [STREAM.OUT] : STREAM.OUT 

PEDIGREE file name [PEDIN.DAT] : PEDIN.DAT 

PARAMETER file name [DATAIN.DAT] : DATAIN.DAT 

Secondary PEDIGREE file name [] : 

Secondary PARAMETER file name [] : 

 

The so-called COMMAND file name is the name of the batch file which LCP will produce. The default 

name is PEDIN.BAT, and there is usually no reason to change it, unless you will want to repeat the same 

analysis later for some reason. The LOG file is the file, typically called FINAL.OUT, containing all of the 

results of all the analyses performed. Basically, this consists of a collection of the OUTFILE.DAT and 

FINAL.DAT files you were introduced to in the last chapter. The STREAM file, similarly, is a collection of 

STREAM.DAT files, which we will defer discussion of until later on. Finally, we have to indicate the 

PEDIGREE and PARAMETER files in which the data to be analyzed is stored. There is a very useful help 

screen available in LCP, which can be accessed at any time by hitting <Ctrl-H>. You may wish to look at 

this now, to see a summary of the "control characters", which may be useful to you later.  

 At this point, we should adjust this first screen to correspond to our desired analysis. The only names 

we will need to modify at this time are the PEDIGREE and PARAMETER files. Please go to these lines, 

using the cursor keys, and delete the file names currently shown (Use <CTRL-U> to delete any entire line in 

LCP). Now, replace these names with your file names, EX1.PED for the PEDIGREE file, and EX1.DAT for 

the PARAMETER file. Everything else on this screen is set up correctly, so you should now advance to the 

next screen by hitting the <Page Down> key (Linux: ctrl-N advances to the next screen). The next screen 

should look like this: 

 
General pedigrees : <- 

Three-generation pedigrees : 

Experimental cross pedigrees : 

 

 The general version of the LINKAGE programs can be accessed through the General pedigrees 

option on this page. The Three-generation pedigrees option allows the user to choose one of the specialized 

versions of the LINKAGE programs designed to analyze codominant markers only in CEPH-type families, 

which are very specific types of three-generation pedigrees (discussed in detail in Part II). The Experimental 

cross pedigrees option allows the user to use specific versions of the LINKAGE programs designed to 

analyze animal crosses, and will not be used in this book, since they are not designed for human data. For 

our purposes, we will now choose the General pedigrees option from this menu, and then hit the <Page 

Down> key again to move to the next page. Now, you will have a list of the programs to choose from. We 

want to do the same analysis as in the last chapter, so first choose the MLINK program from this menu, and 

hit <Page Down>. You should now see the following menu of choices: 
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Specific evaluation : <- 

Lod score table : 

Multiple pairwise lod table : 

 

 The Specific evaluation option is the one we used in the last chapter, and the one we will use at this 

time. However, in many situations, the Lod score table option may be more useful, as it allows you to pick a 

set of recombination fractions at which to perform the lod score calculations, while under the Specific 

evaluation option, you must increment the steps by a constant factor, as we saw in the previous chapter. For 

now, choose the Specific evaluation option, and hit <Page Down>. The next menu has only one choice (a 

limitation of LCP, not the analysis programs), for No sex difference, so just hit <Page Down> again, and 

finally, you will see a menu of choices that should remind you of what we changed in PREPLINK in the last 

chapter: 

 
    Locus Order:  

  Recombination Fractions: .1 

  Recombination varied  : 1  

  Increment Value : .1 

   Stop Value   : .5 

 

 Now, you should modify the Locus order to be 1 2 ( or 2 1, it makes no difference), with starting 

Recombination fraction of 0. Recombination varied, as discussed in the previous chapter, remains at 1. 

Increment value of 0.1, and Stop value of 0.5 should be set. This, as you remember will calculate the lod 

scores at θ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. Now BE SURE TO HIT <PAGE DOWN> in order to write this 

analysis to the PEDIN.BAT file! However, there is no need to exit from the program at this point. In chapter 

3, we also analyzed the pedigree in question with the ILINK program. So, let us hit <Page Up>  (Linux: ctrl-

P) three times, to bring us back to the menu: 

 
LODSCORE : 

ILINK : 

LINKMAP : 

MLINK : ← 

 

 Now, just move the arrow up to the ILINK program, and hit <Page Down> to select it. Now, you will 

see a screen that is basically meaningless in the context of 2-point analysis: 

 
Specific order : ← 

All orders :  

Inversions of adjacent loci : 

 

 These options are very important when you are trying to do a multipoint analysis, so we will defer 

discussion of these until Part II. For now, just select specific order, and hit <Page Down>. You should now 

see a selection of options regarding sex difference in recombination fractions. In this analysis, we assumed 

there was no sex-difference, so just go to the No sex difference line, and hit <Page Down> again. Finally, 

you will be presented with the screen on which you will select the analysis parameters: 

 
Locus order [] : 

Recombination fractions : 

 

Here, you should enter the Locus order of 1 2 (or equivalently, 2 1, as above), and the starting value for the 

Recombination fraction should be set to 0.1, as in the last chapter. Now hit <Page Down> to enter this 

analysis, and we will then be ready to exit the program, and LCP will write the PEDIN.BAT file. Do this by 

entering <Ctrl-Z>. 

 If you look at the file directory (by typing DIR at the DOS prompt), you should see a new file, 

PEDIN.BAT, which you just created with the LCP program. Feel free to look at it in your word processor. It 

is quite long, and can be confusing to interpret, but basically, it is instructing the computer on how to do all 

of the cumbersome manipulations you had to do by hand in the previous chapter. Anyway, return to DOS, 

and type PEDIN to call this file. It will then perform the analyses you have requested. When it is finished, 
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look at the FINAL.OUT file in your word processor. It should contain a brief summary of each analysis you 

requested, followed by the OUTFILE.DAT file (for the MLINK run), and then the FINAL.DAT file (for the 

ILINK run). These should contain the same lod scores as the analysis in the last chapter. See how easy it is 

when you have LCP to do all of the hard work for you. 

 We would like now to briefly explain how this batch file works. Basically, the batch file uses another 

program, LSP (you'll see this again later...), to modify the parameter files, replacing what you did with 

PREPLINK before, producing PEDFILE.DAT and DATAFILE.DAT files. LSP also writes a summary of 

the analysis which is added to the FINAL.OUT file. Next, it calls the UNKNOWN program and the desired 

analysis program (MLINK or ILINK). It then takes the appropriate output file, and appends it to the 

FINAL.OUT file, and starts the process over for the next analysis, deleting all intermediate files in the 

process. It is really quite handy, and efficient, and makes your life a lot easier. 

 In this chapter, you learned how to use the linkage control program, LCP, to handle most of the 

drudgery of the linkage analysis process. You used this program to efficiently direct the computer through 

all of the required steps involved in using the LINKAGE programs in an automated manner. 

EXERCISE 4 

Please use LCP to perform the analyses you did in exercise 3, and check that the results are, in fact, 

identical. 
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5 Elementary usage of the Affection status locus type 
In this chapter, you will be learning how to manipulate the affection status locus type to allow for autosomal 

dominant and recessive diseases. Further, the concept of reduced penetrance will be introduced on an 

elementary level. You will also have some more example pedigrees to enter, giving you a chance to practice 

all of the skills you've learned thus far. 

5.1 AUTOSOMAL DOMINANT DISEASE 

If you remember, the example pedigree we've been working on so far has been a phase unknown pedigree 

with a dominant disease segregating. Now, let us suppose that we have collected data on the parents of 

father, giving us the pedigree shown in Figure 5-1, with fgrandpa being unaffected, and 2/2 at the marker 

locus, while fgrandma is affected, and 1/1 at the marker locus.  

 

This information tells us that father has to have received the disease 

and the 1 allele together from fgrandma, and the normal allele 

together with the 2 allele from fgrandpa. Thus, we know father's 

phase with certainty to be + 2/D 1. In this case, we can easily 

determine which children are recombinant and which are non-

recombinant. In this family, dau1 is non-recombinant, having 

received the + 2 haplotype from father, while the others are all 

recombinant, having received the non-parental haplotypes D 2 (dau2 

and son1) or + 1 (dau3 and son2). The associated likelihood is then 

just Kθ
4
(1 – θ), K being a constant, giving us a lod score of 

log10[θ
4
(1 – θ)/(0.5)

5
], which equals 5log102 + 4log10θ + log10(1 – θ). 

This lod score function can be easily maximized by just taking the 

first derivative with respect to θ as dZ(θ)/dθ = log(e) [4/θ – 1/(1 – θ)]. 

Setting this equal to zero, and solving for θ yields a maximum likelihood estimate of ̂ = 0.8. Calculating the 

lod score at that point yields Z(θ = 0.8) = log10([0.8]
4
[0.2]/[0.5]

5
) = 0.4185. However, in human genetics, 

recombination fractions larger than 50% are meaningless, since when two genes are completely unlinked, 

the maximum possible recombination fraction is only 0.5. For this reason, the estimate is typically truncated 

to 0.5, given that the larger θ is meaningless. (An estimate of > 0.5 may also indicate that there is some data 

error, if the corresponding lod score is large.) In this case, therefore, our truncated MLE (maximum 

likelihood estimate) of θ would be 0.5, with associated lod score of 0.  

 Please make pedigree (EX2.PED) and parameter (EX2.DAT) files for this new pedigree. Make the 

disease autosomal dominant, as you did for the original pedigree (EX1.*). If you are unclear as to how to do 

that, refer back to chapter 2. Give the disease locus gene frequencies of 0.99999 for the normal (wild type) 

allele, and 0.00001 for the disease allele. Then define an allele numbers locus with 2 equally frequent 

alleles. Now, use LCP to set up an analysis of this pedigree with the MLINK program, starting from θ = 0, 

in steps of 0.1, up to θ = 0.5, and with the ILINK program, using a starting value of θ = 0.1. After getting the 

first estimate of θ, restart the ILINK program to refine the estimate, by setting up a further analysis with 

LCP. When all is said and done, you should interpret the output from FINAL.OUT, and come up with the 

results given in table 5-1. 

 
  θ Log10(Likelihood)  Lod Score 

─────────────────────────────────── 

 0.0 -infinity  -infinity 

 0.1 -12.357079  -2.540602 

 0.2 -11.204114  -1.387637 

 0.3 -10.557742  -0.741265 

 0.4 -10.124935  -0.308458 

 0.5   -9.816477   0.000000 

ILINK: ̂ = 0.798,    Z(̂ ) = 0.4185 

Table 5-1: Analysis results of EX2.PED; EX2.DAT 
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5.2 RECESSIVE DISEASE 

Let us continue now, by looking at an example of a recessive disease. Consider the family in Figure 5-2, 

with grandparents, parents, and offspring. 

 Please make a pedigree file corresponding to this pedigree, and name it EX3A.PRE. Process this file 

with MAKEPED as above (to make EX3A.PED), and create an appropriate parameter file (EX3.DAT) in 

PREPLINK as before, only this time specify the PENETRANCES for a recessive disease, which are as 

follows: 

 

 
 GENOTYPE 1 1 OLD PEN 0.000000 

 ? 

 0 

 GENOTYPE 1 2 OLD PEN 0.000000 

 ? 

 0 

 GENOTYPE 2 2 OLD PEN 1.000000 

 ? 

 1 

 

 Again modify the gene frequencies to be 

0.99999 and 0.00001, as in the previous dominant 

disease example. The marker should be a two allele 

Allele Numbers type locus with equal gene frequency 

for the two alleles. Save this file as EX3.DAT. 

 Now analyze this family with MLINK and 

ILINK as you did above, and examine your output. It should correspond to the results given in Table 5-2. 

 
  θ  Log10(Likelihood) Lod Score 

───────────────────────────────────────── 

0      -15.418525   0.976874 

0.1     -15.606399   0.789000 

0.2     -15.824343   0.571056 

0.3     -16.065391   0.330008 

0.4     -16.291110   0.104290 

0.5     -16.395399   0.000000 

ILINK:  ̂ = 0.000, Z(̂ ) = 0.976874. 

Table 5-2: Analysis results of EX3A.PED; EX3.DAT 

 

 Looking at this family, we can see that no information about linkage is obtained from the 

grandparents, since we have no way of knowing which grandparent was carrying the disease allele in each 

case. If you do not think this is correct, reanalyze this family, omitting fgrandma, fgrandpa, mgrandpa, and 

mgrandma. When you do this, the log10(Likelihood)'s will change, since there are fewer people in the 

family, but the lod scores should remain identical. Make this new pedigree file, EX3B.PED as above, and 

then use LCP to set up an analysis of this new family, using the same parameter file, EX3.DAT. The 

resulting output should be as shown in Table 5-3. 

 
θ   Log10(Likelihood) Lod Score 

─────────────────────────────────── 

0     -13.612340  0.976874 

0.1 -13.800214  0.789000 

0.2 -14.018158  0.571056 

0.3 -14.259206  0.330008 

0.4 -14.484925  0.104290 

0.5 -14.589214  0.000000 

ILINK:  ̂ = 0.000, Z(̂ ) = 0.976874. 

Table 5-3: Analysis results of EX3B.PED; EX3.DAT 
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 Herein, you can see one fundamental difference between recessive and dominant disease analysis. In 

the dominant case we saw above, adding the grandparents helped to establish the phase in the parents, 

adding much additional information about linkage. In this recessive case, we added the grandparents, yet got 

absolutely no change in the lod scores. The grandparents contribute no phase information whatsoever, since 

we have no way of telling which unaffected grandparent was carrying the disease. In general, you can see 

that typing grandparents can be very useful in dominant diseases, while in recessive diseases it may be a 

waste of effort. Can you see how this might affect the experimental approach to mapping a disease, based on 

its mode of transmission? 

 This pedigree is more difficult to analyze by hand, as there are four possible phase combinations for 

the parents. We know that each parent is doubly heterozygous, giving two phase probabilities for each 

parent. Since the parents are independent, we have four combinations of phase at the two parents jointly. 

Fortunately, all of the children are homozygous, so we can tell with certainty what each parent transmitted to 

each child. The formal equations involved are therefore quite complex, so we will not provide them here, as 

they are not very illustrative. 

 Throughout this book we assume a single mutant site (base-pair) to be responsible for dominant or 

recessive disease. Exome and whole-genome sequencing analysis have shown, however, that more than one 

nucleotide in a gene may be mutated and lead to disease. An important situation is the occurrence of 

compound heterozygous sequence variants, for which two parents are each heterozygous but for variants at 

different DNA sites in the same gene. A child may inherit a mutant allele from each parent and is then 

affected in a recessive manner. But at each site, considered by itself, the mutation appears to be dominant. If 

parents are non-consanguineous, the most likely explanation for a recessive disease is compound 

heterozygosity for two different pathogenic mutations, and specific filtering rules in genome sequencing 

have been derived for finding such cases [7]. On the other hand, when two related (unaffected) parent have 

an affected offspring, the child is likely a classical recessive. Among many examples, we quote one with 

Charcot-Marie-Tooth disease [8] and another with compound heterozygous mutations in the GARS gene 

leading to mitochondrial disease [9]. 

5.3 EQUIVALENT NUMBERS OF RECOMBINANTS AND NONRECOMBINANTS 

For most family data, the likelihood is a complicated function of θ and other parameters such as allele 

frequencies. Sometimes it is useful to approximate this function by the LOD score resulting from known 

numbers of recombinants and nonreombinants [1, 10]. This will allow, for example, to gauge the numbers of 

recombination events in a dataset or, if this approximation is satisfactory, to interpolate LOD scores at θ 

values not present in published data. 

 Based on the LOD score, Z(θ) = nlog10[2(1 – θ)] + klog10[θ/(1 – θ)], with k recombinants in n 

meioses, we may obtain “estimates” of k and n in one of two ways, either (1) working with the maximum 

LOD score and the θ value at which it occurs, or (2) working with two LOD score values and the 

corresponding two θ values at which the two LOD scores were obtained. Derivation of the formulas required 

for obtaining k and n is straightforward although a little tedious and is not given here. A spreadsheet 

implementing these formulas is available on my webpage as 

http://www.jurgott.org/linkage/EquivalentLods.xlsx. 

5.4 INCOMPLETE PENETRANCE 

We have spent most of this chapter learning how to model different modes of transmission of a disease using 

the affection status locus type. One other common complication in such modelling is that there is not always 

complete penetrance. For many diseases, even if one has the disease predisposing genotype, the individual 

will not necessarily become affected. In fact often, there are very complicated probability models for this 

phenomenon, as you will see in later chapters. For now, let us just consider the simplest case, in which a 

random individual with the disease predisposing genotype has only a 50% chance of becoming affected. Let 

us go back to the phase unknown example from files EX1.PED and EX1.DAT, and modify EX1.DAT to 

allow for incomplete penetrance of this dominant disease. Just read the file EX1.DAT back into PREPLINK, 

then choose (k) See or modify locus parameters, and (a) SEE OR MODIFY A LOCUS, specifying locus 1, 

the disease. Now, modify the penetrances as follows: 

 

 

 

http://www.jurgott.org/linkage/EquivalentLods.xlsx
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GENOTYPE 1 1 OLD PEN 0.000000E+00 

? 

0 

GENOTYPE 1 2 OLD PEN 1.000000E+00 

? 

0.5 

GENOTYPE 2 2 OLD PEN 1.000000E+00 

? 

0.5 

 

 Then save the new parameter file as INC.DAT, and reanalyze this pedigree with MLINK and ILINK, 

in the same way as before, and examine the new lod scores. The results are given in Table 5-4. 

 
  θ Log10(Likelihood) Lod Score  Z(θ)from EX1 

─────────────────────────────────────────────────────── 

 0.0      -8.612351 0.374811  -infinity 

 0.1      -8.703932 0.283230  0.021685 

 0.2      -8.800774 0.186388  0.124243 

 0.3      -8.892292 0.094870  0.094541 

 0.4      -8.961068 0.026094  0.031489 

 0.5      -8.987162 0.000000  0.000000 

ILINK : ̂  = 0     Z(̂ ) = 0.374811  

Table 5-4: Analysis results of EX1.PED; INC.DAT 

 

 The reason the estimate of θ is now 0 is because the one likely recombinant is most likely assumed to 

be a case of non-penetrance (i.e. the individual has the disease predisposing genotype, but did not express 

the disease for some reason). Let us take a look at this situation in a theoretical manner. 

 As we know from looking at this family in chapter 3, there are two equally likely (a priori) phases for 

father. He can be either (1) + 1/D 2 or he can be (2) D 1/+ 2. Let us see what effect this reduced penetrance 

has on our analysis, shall we. First of all, let us assume, since the disease gene frequency is so small, that 

mother is +/+ at the disease locus. Then, we know with certainty that dau2 and son1 have disease locus 

genotype D/+. However, dau1, dau3, and son2 could each be either +/+ or D/+. Let us examine what 

happens under phase (1). In this case, let us first consider that dau1 could have received + 2 from father. In 

this case, the probability of her being unaffected would be 1, since her disease locus genotype is +/+. The 

probability of receiving the + 2 haplotype would be (1 – θ). If she received D 2 from father, then she would 

be unaffected with probability 0.5, since her disease locus genotype is D/+. Also, the probability of receiving 

this haplotype is θ, since it is recombinant. Thus, the overall probability of observing dau1, and unaffected 

offspring with marker genotype 1/2 would be (1 – θ) + 0.5(θ) = 0.5(2 – θ) . Similarly, dau3 and son2, who 

are identical phenotypically, can be shown to have probability of θ + 0.5(1 – θ) = 0.5(1 + θ). Thus, the total 

probability of this family, assuming Phase I would be [0.5(2 – θ)][0.5(1 + θ)]
2
θ

2
. Under Phase II, it can be 

shown to be [0.5(2 – θ)]
2
[0.5(1 + θ)][1 – θ]

2
. Thus, the total likelihood of this family would be 

 0.5( [0.5(2 – θ)][0.5(1 + θ)]
2
θ

2
 + [0.5(2 – θ)]

2
[0.5(1 + θ)][1 – θ]

2
) 

which can be reduced to the following: 

 K( (2 – θ)(1 + θ)[(1 + θ) θ
2
 + (2 – θ)(1 – θ)

2
]). 

The lod score can then be represented as 
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 One can then compute lod scores as above. For example, if you plug in θ = 0, you will get Z(θ = 0) = 

log10([(2)(1)[0 + 2]/[(3/2)
3
(1/2)]) = log10(4/(27/16)) = log10(64/27) = 0.37481. As you can see, the addition 

of incomplete penetrance makes it extremely difficult to compute lod scores analytically, making the 

computer programs much more important and useful. When you get into complicated pedigrees, with 

complicated disease models, it becomes even more untractable. Still, you see that we can verify the results 

obtained with the LINKAGE programs by hand when we question the results. 
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 In this chapter, we learned how to use the affection status locus type to specify various different 

disease models, including simple applications of reduced penetrance.  

EXERCISE 5 

Reconsider the pedigree from exercise 2, and analyze the pedigree assuming a penetrance of 75% for the 

dominant disease (in file USEREX5.DAT). How does this affect your results? Does it make sense to you? 

Try parametrizing the disease as an autosomal recessive disease with 70% penetrance. Does this result seem 

to make sense? What happens here, if you reduce the penetrance to 30% in the dominant and recessive cases 

separately? Given that this disease is really autosomal dominant with full penetrance, do the results of this 

analysis make sense? What would you expect if the disease were really recessive, and was analyzed as if it 

were dominant? Hint: Use LCP! 
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6 Sex-Linked Recessive diseases 
In this chapter, we will introduce the concept of linkage analysis with sex-linked recessive diseases, and how 

to analyze them in the LINKAGE programs. You will learn how to modify your parameter and pedigree 

files to enter such data, and how to use the LINKAGE programs to analyze it. Since practically all sex-

linked diseases are recessive, one usually refers to them simply as sex-linked. 

6.1 SEX-LINKED DISEASES 

In humans, there are twenty-two pairs of homologous autosomal chromosomes. Each person receives one 

copy of each chromosome from their mother, and one from their father, thus explaining most observed 

patterns of inheritance. Up to now, we have only considered such autosomal loci. However, humans also 

have so-called sex chromosomes, which are responsible, in part, for determining the sex of an individual. In 

humans, these chromosomes are designated X and Y, with XX individuals being female, and XY individuals 

being male. Clearly, every person must receive one X chromosome from their mother, while fathers give 

their X chromosome to their daughters, and their Y chromosome to their sons. On the sex chromosomes, 

recombination can only occur in females, since they have two homologous X-chromosomes, while men have 

the non-homologous X-Y pair. Actually, there is a small region of homology with recombination occurring 

between X and Y, known as the pseudoautosomal region, in which loci behave as if they were autosomal 

[11]. In general, though, it can be assumed that no recombination occurs on the X chromosome in males. 

Also, every male has only one allele at each X-chromosomal locus, in the so-called hemizygous state. This 

property makes it such that if everyone in a pedigree is typed, we will always know with certainty the phase 

in each individual, with the exception of female founders. That is to say, we will know in each non-founder 

female, which allele came from which parent (Males of course only receive X-chromosomal alleles from 

their mothers). This makes sex-linkage very easy to analyze. 

 A large number of diseases in humans, like hemophilia, and some forms of retinitis pigmentosa, are 

known to be inherited as X-linked recessive traits (McKusick, 1990). In fact, most X-chromosomal diseases 

that are known are fully penetrant recessives (sometimes with delayed age of onset), and are quite often 

lethal, like X-linked Agammaglobulinemia (Kwan et al, 1990). These diseases will be discussed again in 

part III. In recessive X-linked diseases, the only affected people are females who are homozygous for the 

disease allele, and males who are hemizygous with the disease allele. The only way a female could be 

homozygous, however, is if she received a disease allele from her affected father. Since many of these 

diseases are either lethal, or cause an affected man to be unlikely to sire children, usually only males are 

affected. If the disease were not lethal, and the population gene frequency of the disease allele were, say, 

0.01, the probability of a random male in the population to be affected would be 0.01, while the probability 

of a random female being affected would be (0.01)
2
 = 0.0001. In any case, the majority of affecteds will be 

male (In this example, they are 100 times more likely to be affected. In part III, you will see that for lethals, 

it is virtually impossible for women to become affected). Similarly, if there were a disease gene on the Y 

chromosome, ONLY males could be affected. In general, sex-linked diseases are characterized by this 

preponderance of male affecteds, and by the absence of any male-to-male transmission of the disease, since 

males can only get X chromosomes from their mothers! Let us now see how to analyze a sample pedigree 

segregating an X-linked recessive disease. 

6.2 PREPARATION OF PEDIGREE AND PARAMETER FILES 

 

Let us consider the pedigree shown in Figure 6-1. Enter this 

pedigree (EX4.PRE) in the standard LINKAGE format, as 

you have done in the previous autosomal examples. The only 

difference is that now, males will have only one allele at each 

locus while females will have two. The way we are required 

to code this in allele numbers format is to enter the allele 

number twice in males, as if they were homozygous. That is 

to say, if a male has allele 2 at a locus, you would enter his 

marker phenotype as 2 2. This makes sure there are the same 

number of columns for males and females in the pedigree file 

at each locus. If you mistakenly enter a heterozygous 

genotype for any male in the pedigree file, the UNKNOWN program will detect it as an inconsistency, since 
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males can only have one allele per X-linked locus. The EX4.PRE file should be as follows: 

 
ex4 father 0  0  1 1 1 1 

ex4 mother 0  0  2 1 1 2 

ex4  son1  father mother 1 1 1 1 

ex4 son2  father mother 1 1 1 1 

ex4 son3  father mother 1 2 2 2 

ex4 dau1  father mother 2 1 1 1 

ex4 son4  father mother 1 2 2 2 

 

Process this file with MAKEPED in exactly the same way as for autosomal traits, and save it as EX4.PED. 

 Now, you will need to create a parameter file with the PREPLINK program. In this case, we will 

have a fully penetrant sexlinked recessive disease with gene frequency of 0.01 for the disease allele, and an 

allele numbers type of marker locus with 3 equally frequent alleles. To make your EX4.DAT parameter file, 

call up the PREPLINK program. From the main menu, you must first select the (b) Sexlinked option, to tell 

the program you will be looking at a sexlinked disease and markers. This will toggle the N in the row 

following (b) Sexlinked to a Y, meaning that from now on the program will operate under the assumption 

that all loci are sex-linked. Next, you must choose option (k) See or modify locus description. Change the 

first locus to affection status, as you have done previously, and change the second locus to allele numbers. 

Then choose option (a) SEE OR MODIFY A LOCUS, specifying locus 1. You should see a screen like the 

following: 

 
************************************* 

LOCUS NUMBER : 1 

************************************* 

(a) NUMBER OF ALLELES : 2 

(b) NUMBER OF LIABILITY CLASSES : 1 

(c) PENETRANCES : 

 MALES: 

ALLELE 1 0.00000E+00 

ALLELE 2 1.00000E+00 

 FEMALES: 

GENOTYPE 1 1 0.00000E+00 

GENOTYPE 1 2 0.00000E+00 

GENOTYPE 2 2 1.00000E+00 

(d) GENE FREQUENCIES : 

 0.500000 0.500000 

(e) EXIT 

************************************* 

enter letter to modify values 

 

 This is slightly different from what we saw in the autosomal case, as we now have to specify 

separate penetrances for males and females. Notice that for males, there are two penetrances, corresponding 

to the two possible hemizygous genotypes (alleles), while females have three, corresponding to the three 

possible 2-allele genotypes. Looking at the indicated penetrance values closely, we can see that the default is 

for an X-linked recessive disease, with the disease causing allele being allele 2. As an exercise in entering 

the penetrances for a sex-linked disease, let us redefine the penetrances so that we have a fully penetrant X-

linked recessive disease, with the disease causing allele being allele 1. The results will be identical! (If you 

don't believe this, try it both ways as an exercise). Let us now enter the appropriate penetrances for our fully 

penetrant X-linked recessive disease, with option (c) PENETRANCES. You should adjust the values as 

follows: 

 
ENTER NEW PENETRANCES 

 MALES: 

ALLELE 1 OLD PEN 0.00000E+00 

? 

1 

ALLELE 2 OLD PEN 1.00000E+00 

? 

0 

 FEMALES: 
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GENOTYPE 1 1 OLD PEN 0.00000E+00 

? 

1 

GENOTYPE 1 2 OLD PEN 0.00000E+00 

? 

0 

GENOTYPE 2 2 OLD PEN 1.00000E+00 

? 

0 

 

 In this case, we specified that all males hemizygous for allele 1, and all females homozygous for 

allele 1 are affected with probability 1, while all other individuals cannot be affected with the disease. In this 

example, we have defined the penetrances such that allele 1 is the disease allele. To make this specification 

complete, you must modify the (d) GENE FREQUENCIES accordingly. Please enter new gene frequencies 

as follows: 

 
ENTER 2 NEW GENE FREQUENCIES 

0.01 0.99 

 

Then, (e) EXIT, and (a) SEE OR MODIFY A LOCUS, specifying locus 2. At this allele numbers locus, you 

can adjust the values just as you would for an autosomal locus, by setting the number of alleles to 3, and the 

gene frequencies to 0.33333, 0.33333, and 0.33334 (so they sum to 1 !). You have already indicated that the 

analysis is to be done on sexlinked data, so the programs will know that males must be hemizygous. Now, 

go back to the main menu, and save the file as EX4.DAT. 

6.3 PERFORMING THE LINKAGE ANALYSIS 

You have already specified in the parameter file, EX4.DAT, that you will be analyzing sex-linked data, so 

you needn’t do anything different in LCP. Just use LCP the same way as you have been throughout the 

course of this book, and specify that the program should do the analysis with MLINK, starting at θ = 0, in 

steps of 0.05 this time, and stopping at θ = 0.45 (We already know the lod score at θ = 0.5 MUST be 0 by 

definition, and the likelihood will be calculated as the first iteration in any case). Also specify an analysis 

with the ILINK program, with starting value of θ = 0.2 (for variety's sake). Now, exit LCP, and do the 

linkage analysis. The results from the FINAL.OUT file are shown in table 6-1. 

 
  θ    Log10(Likelihood)  Lod Score 

─────────────────────────────────────────────── 

 0.0      -4.644217  0.903088 

 0.05      -4.733319  0.813986 

 0.1      -4.827180  0.720125 

 0.15      -4.926119  0.621185 

 0.2      -5.030163  0.517142 

 0.25      -5.138642  0.408663 

 0.3      -5.249414  0.297891 

 0.35      -5.357506  0.189799 

 0.4      -5.453323  0.093982 

 0.45      -5.521958  0.025347 

 0.5      -5.547305  0.000000 

ILINK : ̂ = 0, Z(̂ ) = 0.903088 

Table 6-1: Analysis results of EX4.PED; EX4.DAT 

 

 Let us take a look at this example analytically, to try and understand where this lod score came from. 

In this case, we know for a fact that the disease allele had to come from mother, since father was unaffected, 

making him hemizygous normal. Further, mother has to be heterozygous, since she is unaffected herself, but 

has affected sons. We then know that son1 and son2 got the normal allele from mother together with the 1 

allele at the marker locus. Similarly, we know that son3 and son4 received the disease allele together with 

the 2 allele from mother. However, dau1 could have received either the normal or disease allele from 

mother, since they are phenotypically indistinguishable. Hence, even though we know she received the 1 

allele at the marker locus, we do not have any information about her disease locus genotype, so she is 
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uninformative for linkage, and contributes nothing to the linkage analysis. To verify this, you should try 

analyzing the pedigree, leaving her out. The lod scores (but not the likelihoods) at every point will be 

identical. 

 What we are left with is essentially a phase unknown situation, in which all the information comes 

from transmission from mother to sons. The analysis is then straightforward, as in the first example in the 

book. Mother is equally likely to have phase (1) d 1/+ 2 or phase (2) + 1/d 2. If she has phase (1), then all 

four offspring are obligate recombinants, with probability of θ4. If she has phase (2), they are all non-

recombinants, with probability of (1 – θ)
4
. Hence the overall likelihood of this pedigree as a function of θ is 

just K[0.5θ
4
 + 0.5(1 – θ)

4
] = K[θ

4
 + (1 – θ)

4
]. The lod score is then just log10([θ

4 
+ (1 – θ)

4
]/[(0.5)

4
 + (0.5)

4
]) 

= log10(2
3
[θ

4 
+ (1 – θ)

4
]). If you plug in different values of θ, for example, θ = 0.05, you should get a lod 

score of log10(2
3
[(0.05)

4
 + (0.95)

4
]) = 0.81399, which is the same as you calculated with the LINKAGE 

programs above. 

 Females are not always uninformative for linkage. Let 

us assume that in the pedigree we analyzed above, dau1 

married husband, who is unaffected, and has marker locus 

allele 3 as shown below, and had a child, gson, who was 

affected with marker locus allele 1 (of course, since dau1 is 

homozygous for the 1 allele...), as shown in Figure 6-2.  

 In this case, we cannot tell whether a recombination 

occurred from dau1 to gson, since dau1 is homozygous at the 

marker locus. However, the fact that gson is affected forces 

dau1 to be heterozygous at the disease locus, telling us that 

she received the 1 allele together with the disease allele from 

her mother. This will have a significant effect on the linkage 

analysis. Please add in this information to the pedigree in file 

EX4.PRE (saving it again as EX4.PRE), process the file with 

MAKEPED (saving it as EX4.PED), and reanalyze this pedigree, using the same command file 

(PEDIN.BAT) as before (It is not necessary to rerun LCP, since we are going to do the same analyses 

involving files with the same names as before). Just type PEDIN to analyze this new pedigree. The results 

should be as shown in table 6-2. 

 
  θ    Log10(Likelihood)  Lod Score 

─────────────────────────────────────────────── 

 0.0      -infinity  -infinity 

 0.05      -6.816792  -0.185952 

 0.1      -6.609155   0.021685 

 0.15      -6.530573   0.100267 

 0.2      -6.506597   0.124243 

 0.25      -6.512741   0.118099 

 0.3      -6.536299   0.094951 

 0.35      -6.567995   0.062845 

 0.4      -6.599351   0.031489 

 0.45      -6.622368   0.008472 

 0.5      -6.630840   0.000000 

ILINK : ̂ = 0.211; Z(̂ ) = 0.124938 

Table 6-2: Analysis results of modified EX4.PED; EX4.DAT 

 

Do you notice anything interesting about these lod scores? If you look at the lod scores obtained in the first 

exercise in the book, the phase unknown family with five offspring, you will notice that the lod scores are 

identical. To understand why, let us again look at the analytical computation of the lod score. Using the 

notation above, if mother has phase (1), the four sons are recombinants, but dau1, who received a d 1 

haplotype from mother, is a non-recombinant, with likelihood of Kθ
4
(1 – θ). Similarly under phase (2), the 

four boys represent non-recombinants, and dau1 had to have received a recombinant haplotype from mother, 

so the likelihood would be Kθ(1 – θ)
4
. The overall likelihood of the pedigree would be 

 K[θ
4
(1 – θ) + θ(1 – θ)

4
], 
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for a lod score of 

 log10( [θ
4
(1 – θ) + θ(1 – θ)

4
]/[(0.5)

4
(0.5) + (0.5)(0.5)

4
]) = log10( 2

4
[θ

4
(1 – θ) + θ(1 – θ)

4
]), 

which is identical to the lod score computed for files EX1.*, with the phase unknown family. 

 In this chapter, we learned how to analyze a sex-linked disease in the LINKAGE programs, and saw 

how to do it analytically for some simple examples. Different properties of sex-linked traits were introduced, 

especially the concept of hemizygosity, and its effects on linkage analysis. Further, we saw that if we change 

our pedigree file (or parameter file), without changing its name, we can rerun an analysis without going 

through LCP again, by just calling the same PEDIN.BAT file as was used in the previous analysis. Note that 

to do this, all file names must be unchanged, and the exact same analysis must be performed (i.e. MLINK 

starting from θ = 0, through θ = 0.45, in steps of 0.5, ILINK with starting recombination value of 0.2 in our 

example). 

EXERCISE 6 

Analyze the pedigree in Figure 6-3, 

assuming an X-linked fully penetrant 

recessive disease, with gene frequency 

of 0.01, and a marker with four equally 

frequent alleles (in files USEREX6.*). 

Try to analyze this family both 

analytically, and using the LINKAGE 

programs MLINK and ILINK, at the 

same points as the analysis in this 

chapter above. Try to see exactly what 

is going on at the genotype level, and 

which meioses are informative for 

linkage. Then find the equation for the 

lod score in this family. Compare the 

results with what was obtained from the 

LINKAGE programs. They should be 

the same... 
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7 Loops and Fastlink 
In this chapter you will learn what a loop is, and how to deal with them in the LINKAGE programs. We will 

introduce the concept of consanguinity loops, and marriage loops, and their ramifications in a linkage 

analysis. Further, you will be learning how to deal with these in the LINKAGE programs, and finally, we 

will briefly introduce a utility program called LOOPS, which is designed to detect the presence of unbroken 

loops in a LINKAGE pedigree file, and is automatically run every time MAKEPED is used to process a 

pedigree file. For the first time, we will be analyzing more than one pedigree in one pedigree file. In most 

real linkage studies, you will have multiple pedigrees, and this is your first introduction to this situation. 

 With the introduction of the latest version of FastLINK, loops can be handled automatically. Thus, 

everything in this book about breaking loops is theoretically correct but obsolete in practice. As described in 

one of the FastLINK documents, loops can be handled automatically by the unknown program in FastLINK: 

You first feed your pedigree data into makeped claiming that no loops are present. Then, based on the 

resulting pedfile.dat file, invoke “unknown –l” (l for loops), which will produce a file called lpedfile.dat. 

This file is best copied over pedfile.dat, after which you proceed normally, that is, by running unknown 

(again but without the –l flag) and then the appropriate analysis program. 

7.1 INTRODUCTION TO LOOPS 

In the few very simple examples we've looked at of analytical calculation of likelihoods, you have seen just 

how complicated it can be, even in small nuclear families. In more complex pedigrees, it quickly becomes 

intractable to do such computations by hand. It also quickly becomes apparent that it is not straightforward 

how to design a computer program to handle any general pedigree structure in a theoretically justifiable 

manner. The Elston-Stewart algorithm provides a way of calculating the likelihood in a recursive manner, 

allowing for the possibility of computer-based linkage analyses in general pedigrees. One of the main 

features of this algorithm is its dependence on clipping (or peeling). In clipping, small nuclear families, 

within a larger pedigree, are analyzed, and all of the information is collapsed on to one of the parents (or 

other relatives), whose own sibship is analyzed next, and so-on, until all of the information is collapsed onto 

one final person, the proband (For a detailed description, please consult Ott, 1991, pp.169-172). This is all 

pretty straightforward unless there is a loop in the pedigree. A loop is present in a pedigree when it is 

possible to start at any individual in a pedigree drawing, and draw a connected sequence of lines ending up 

back at the original individual, without retracing your steps. If a loop exists in a pedigree, the collapsing 

would circle around and around in the connected series of individuals, causing the algorithm to get caught in 

an infinite loop.  

 To circumvent this problem, the LINKAGE programs require that in each loop, one individual who 

is both an offspring and a parent must be “doubled”. This effectively “breaks” the loop, as the program will 

consider these two doubled individuals to be genotypically identical including phase, but still separate 

individuals. This allows the breaking of the infinite loop described above, and permits the likelihood to be 

computed, albeit slowly. The most efficient persons to double in any given pedigree are those members of 

the loop with the greatest amount of known genotypic information, including phase. This greatly reduces the 

computational time, as explained in Ott (1991).  

 There are two primary types of loops, 

consanguinity loops, and marriage loops. In a 

consanguinity loop, inbreeding is required. In 

other words, the parents of a given individual 

must be related. In a pure marriage loop, no 

inbreeding occurs, yet a completed pedigree 

circuit is created, nevertheless. An example would 

be two brothers who are married to two sisters, as 

you will see below. The distinction is immaterial 

for the LINKAGE programs, and is only 

important in that it points out that it is possible to 

have loops in a pedigree without inbreeding! 

7.2 CONSANGUINITY LOOPS 

Let us consider again the recessive disease 

http://www.ncbi.nlm.nih.gov/CBBResearch/Schaffer/fastlink.html
http://www.ncbi.nlm.nih.gov/CBBResearch/Schaffer/loops-1.html
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pedigree from EX3A.PED and EX3.DAT, which you analyzed in chapter 5. Suppose that we went out and 

collected more data on that extended family, only to learn that there was a consanguinity loop, as indicated 

in Figure 7-1. 

 Clearly this relatedness will have a major effect on the linkage information in the pedigree. Given the 

very small gene frequency of the disease allele, it is most likely that the disease allele was present in only 

one of the founders (persons with no parents in the pedigree). Hence, that makes fgrandpa and mgrandma 

the most likely carriers of the disease allele. Also, it adds a lot of linkage information, as you will see. So, let 

us analyze this new pedigree with the LINKAGE programs, as before. You can use the same parameter file, 

EX3.DAT, as nothing needs to be changed there. The only difference is in the pedigree file, so please enter 

the pedigree in the figure into a new file, EX5.PRE, in the same format as before (with pedigree identifier 

ex5), and then call up the MAKEPED program to process the pedigree file. Proceed in the MAKEPED 

program exactly as before, only when the program prompts you with the following: 

 
Does your pedigree file contain any loops? (y/n)? -> 

 

 Respond Y, after which you will be asked if you have a file of loop assignments. The answer is No. A 

file of loop assignments would be another file which indicates which individual in which pedigree to break 

the loop(s) at. You do not have one, and generally will not. Next, you will be asked the following: 

 
Enter identifiers for each pedigree and person... 

enter pedigree 0 when finished. 

 Pedigree -> ex5  

 Person -> father 

 

 In this case, you could break the loop at either the father, the mother, the paternal grandfather, or the 

maternal grandmother. You may wonder how to decide where to break it. It makes no difference in the 

results where you break the loop, but it may affect the computing time greatly. You should always break the 

loop at the individual with the least ambiguity in genotype. In this case, father and mother have got to be 

heterozygous at the disease locus, so you know their genotypes more exactly than the grandparents, since the 

disease allele doesn't have to come from a specific grandparent. So in this case, lets break the loop at father. 

Then type 0 when prompted with "Pedigree ->" to continue. You will next be asked: 

 
Do you want these selections saved for later use? (y/n) -> 

 

 Respond n, since "saving" them will only create a file of loop assignments like the one you were 

asked for above, and will not affect the final *.PED file in any way. It is generally of little use to you to 

make a file of loop assignments. Next, have the program select all probands automatically, as before, to 

complete the processing of your file EX5.PED. Now analyze this pedigree with MLINK and ILINK as 

before, using the same parameter file (EX3.DAT), through the LCP program, and compare your results to 

those in Table 7-1. 

 
 ──────────────────────────────────── 

   θ    Log10(Likelihood)   Lod Score 

 ──────────────────────────────────── 

   0  -11.622653   1.879919 

  0.1  -11.901587   1.600985 

  0.2  -12.221869   1.280703 

  0.3  -12.591054   0.911518 

  0.4  -13.015882   0.486690 

  0.5  -13.502572   0.000000 

 ILINK: = 0.001, Z() = 1.878120 

 Table 7-1: Analysis results of EX5.PED; EX3.DAT 

 

 Please compare these values with what was obtained in the prior analysis, in which your maximum 

lod score was only about half as large. In the absence of recombination, every phase-known meiosis 

contributes roughly 0.3 units of lod score. In this case, adding this consanguinity (two additional individuals 

typed), the additional information is roughly equivalent to three new phase known meioses. Why is this the 
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case? Well, the fact that both affecteds are homozygous for the 1 allele, suggests that the disease is probably 

segregating together with the 1 allele throughout the pedigree, from a common ancestor. The concept of 

homozygosity mapping (Smith, 1953; Lander and Botstein, 1987) is based on this idea, that homozygous 

affecteds, whose parents are related, have most likely received a common haplotype without recombination 

from a common founder, allowing us to gain linkage information from all presumed non-recombinant 

meioses from the original founder haplotype to the affected kids. In recessive disease pedigrees, there is 

often a good deal of inbreeding. One of the reasons why marriages between closely related individuals is 

illegal is because of this increased propensity for recessive 

genetic disease among their offspring. However, for 

linkage analysis, these families are a godsend. Consider a 

family with the same structure as above, only with one 

affected child, with marker genotype 1 1. Consider 

everyone else in the pedigree to be untyped at the marker 

locus, and unaffected. Then analyze this pedigree with the 

LINKAGE programs assuming that the gene frequency of 

the 1 allele is 0.01, and there are 2 alleles at the marker 

locus (the disease is as defined for the previous example). 

Analyze this family (shown in Figure 7-2) with LINKAGE 

as you have learned to do. From only one typed individual 

who is affected and homozygous for this rare allele, you 

get a maximum lod score, at θ = 0, of 1.14. 

 This is because both the disease allele and the 

marker are so rare that they most likely entered the 

pedigree only once. Further, if they are both known to be 

present in the affected child, then he must have received 

them together without recombination from a common 

ancestor, assuming each allele entered the pedigree only 

once. The fact that we do not know which ancestor 

carried the disease allele, nor do we know which one 

carried the 1 allele adds noise to our analysis, but when 

one has a recessive disease, this shows that you can gain 

more linkage information per individual typed with 

inbred families in many situations, especially when you 

have a marker locus with a great many rare alleles. It is 

important to consider, however, that while inbred families make a linkage analysis more cost effective, in 

terms of the number of people you need to type, there is a large "cost" in computer time. In fact, the time it 

takes to complete a likelihood calculation in a pedigree increases exponentially with the number of loops in 

the pedigree. 

7.3 MARRIAGE LOOPS 

Let us consider the case where you have two pedigrees to analyze at the same time. This can be done quite 

simply by just including both pedigrees in 

the same pedigree file with different 

pedigree names. At present, you will be 

analyzing two nuclear families with one af-

fected offspring each, as shown in Figure 

7-3. Please make one pedigree file con-

taining both pedigrees, and name the 

pedigrees ex61, and ex62. 

 Name these pedigree files 

EX6A.PRE, and then EX6A.PED. Make a 

parameter file as before with the PRE-

PLINK program, specifying the disease to 

be recessive, with gene frequency for the 

disease allele of 0.00001, as before. At the 
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marker locus, however, allow for three alleles, with gene frequencies of 0.25, 0.40, and 0.35. Call this file 

EX6.DAT. Now analyze these families with MLINK and ILINK as before. As expected, there is no 

information in these pedigrees, since they are phase unknown matings with only one offspring, and no 

linkage disequilibrium. However, for interest's sake, take note of the magnitude of the log likelihoods. You 

should find lod scores of 0 everywhere. 

 But wait, you just discovered a relationship between these two pedigrees, that they are actually two 

siblings marrying two other siblings, as shown in Figure 7-4. This marriage creates a loop in the pedigree, 

because you can start from fathera, and connect him back to himself by going through fathera-motherb-

daub-fatherb-mothera-daua-fathera. This is a loop which must be broken before you can analyze this 

pedigree in the LINKAGE programs, as outlined above. Please enter this combined pedigree as one large 

pedigree and name this file EX6B.PRE. Call MAKEPED, and specify that there is indeed a loop in this 

pedigree, a marriage loop, which can be broken at either of the four parents. You must break a loop at an 

individual in the loop who is an offspring and a parent. The best strategy is to select one such individual 

about whom the most complete genotypic information, including phase, is known. In this example, we know 

that each of the parents are carriers, but the parents who are heterozygous at the disease locus carry 

somewhat less phase information. Clearly the homozygous parents are uninformative for linkage, and we 

know that in motherb, the disease and normal alleles are each on the same haplotype with a 3 allele. So, in 

this example, it may be slightly more economical to break the loop at either mothera or motherb, as they are 

homozygous at the marker locus, while the fathers are heterozygous, and phase unknown. Proceed as in the 

previous example, and analyze the family with MLINK and ILINK. Output is given in table 7-2. 

 
   θ     Log10(Likelihood)   Lod Score 

 ───────────────────────────────────── 

   0  -14.718037    0.374809 

  0.1  -14.901117    0.191729 

  0.2  -15.023110    0.069736 

  0.3  -15.082021    0.010825 

  0.4  -15.095476   -0.002630 

  0.5  -15.092846    0.000000 

 ILINK: = 0.001, Z() = 0.373373 

 Table 7-2: Analysis results of EX6B.PED; EX6.DAT 

 

 Again, the addition of the information on the relatedness of these two pedigrees has taken two 

completely uninformative nuclear families, and given us one larger informative family with positive lod 

scores. Can you see why? How about the log likelihoods? Are they different from the combined family and 

the two smaller ones? Can you explain the magnitude of the difference?  

 The answer to all of these questions centers around the fact that in the case where you have two 

separate nuclear families, there are four independent disease alleles segregating. These alleles each have 

frequency of 0.00001, so the probability of observing four separate such alleles is (0.00001)
4
. Clearly, once 

we add the relationships in, we only need two such disease alleles to explain the pedigree as observed. If one 

member of each grandparental pair is a carrier, then all of the parents can be carriers. The chance to observe 

two independent realizations of the disease allele is much larger, at (0.00001)
2
, which is 10

10
 times more 

likely. Hence the likelihoods are much larger in the second pedigree, than the other two combined. As for 

the linkage information, again we obtain the additional information from the same phenomenon that 

characterized homozygosity mapping. Here, we have two first cousins who are both affected, and who have 

the same marker locus genotype. Further, we can tell that the daughters both got a 1 allele and a disease 

allele from either grandma2 or grandpa2. Further, the 3 allele came from the other grandparental pair 

together with an additional disease allele. Since both grandparental pairs contributed an identical haplotype 

to their grandchildren, there is some linkage information present. Still, there is not much, since each child 

has one homozygous parent, further diluting the information present in this family. As an analogous case to 

the homozygosity mapping example above, consider this same pedigree, only make everyone unknown at 

the marker locus except the two daughters. Then, alter the parameter file so that the gene frequencies of the 

three marker locus alleles are 0.01, 0.98, and 0.01. In this way, we force the 1 and 3 alleles to have occurred 

only once each in this pedigree (most likely). Then rerun the analysis with the MLINK and ILINK programs 

as you have been doing. The maximum lod score from only having typed these two affected cousins is now 
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1.18, with all of the linkage information coming from the loop, and the fact that the observed alleles were so 

rare as to have been most likely occurred only once in the pedigree. 

7.4 LOOPS PROGRAM 

A computer program was written (Xie and Ott, 1992) to detect the presence of unbroken loops in pedigree 

files after they've been processed by the MAKEPED program. This program uses concepts of graph theory 

to detect connected graphs in the pedigree. Essentially, each individual is a node, and each marriage point is 

a node. If any unbroken path can be traced between nodes of the graph, from one individual back to himself 

without retracing, then the program informs you that an unbroken loop still exists, and it gives you a list of 

the nodes involved in the connected graph. Please re-process the files EX5.PRE and EX6B.PRE with 

MAKEPED, specifying that there are no loops. When MAKEPED calls the LOOPS program, it will tell you 

that a loop has been detected, and it will give you a listing of the nodes of the connected graph, in the file 

LOOPS.OUT. Then you can go back, and reprocess the file in MAKEPED, breaking the indicated loop. 

After breaking the loops, the LOOPS program should tell you that there are no loops detected in the 

pedigree. This program is now automatically run after MAKEPED, to detect any undeclared loops you may 

have overlooked. Also, if there are no loops, but you made data entry errors resulting in a loop, this will help 

you catch those. It is possible to use MAKEPED without using the LOOPS program (by typing 

MAKEPED1 instead of MAKEPED), but as a safeguard you should always use the LOOPS program. 

 In this chapter, you learned about loops, and why they are useful in a linkage analysis. You also saw 

how to analyze pedigrees with loops in the LINKAGE programs. Further, you were introduced to how to 

analyze multiple pedigrees at the same time, and were shown how to use the LOOPS program to detect any 

loops which may be present in a pedigree. It should be emphasized that although analyzing pedigrees with 

loops may be more cost efficient for the molecular biologist, they can be very slow to analyze. You will see 

just how slow when you try to solve exercise 7. 

EXERCISE 7 

This problem involves the identification and 

breaking of consanguinity and/or marriage 

loops in pedigree data. Please look at the ped-

igree drawn in Figure 7-5. Make a pre-

MAKEPED pedigree file and a parameter file 

for this pedigree (USEREX7.*). In this case, 

we will be analyzing a fully penetrant re-

cessive disease with gene frequency of 0.001, 

and a four allele codominant allele numbers 

type of marker with equal gene frequencies for 

each allele. Remember that one should always 

break loops at an individual with the least 

genotypic ambiguity. How many loops are 

there in this pedigree? Where is the best place 

to break them? Be sure to check your 

processed file with the LOOPS program to make sure you've broken them all!  

 Try to solve this on your own. Answers are given in chapter 12, but since this is an advanced 

problem, we want you to try to think this through yourselves. If you are unsure how to break loops, reread 

the chapter about consanguinity and marriage loops.  

 Then, analyze this family with the MLINK and ILINK programs in the same manner as in the first 

problem. If you get the wrong answers, check to verify that you've correctly broken each and every loop 

present in the family. Also, be sure you haven't broken too many loops either...  
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8 Locus Types I : Allele numbers and binary factors 
In this chapter, you will be introduced to the binary factors locus type, which is perhaps the most basic way 

of inputting data into the LINKAGE programs. You will also see the relationship between binary factors and 

the allele numbers locus type. We will further see a simple way to use this locus type to code the ABO blood 

group, and, for the first time, how to use LCP to analyze a subset of the total number of loci present in a 

given dataset. 

 In practice, people nowadays work mostly with two-allelic markers, so the binary factors locus type 

is rarely used. The one important thing in this chapter is the LCP program. 

8.1 CODOMINANCE 

In a binary factors type of locus, a phenotype consists of the presence or absence of a number of so-called 

factors. At a given locus, each allele is presumed to cause the presence of a different subset of the total 

number of factors codable by the sum of all alleles at that locus. It is important to point out that every allele 

has its own binary factors notation, and the "or" of any two alleles occurring in a genotype yields the 

notation for the corresponding phenotype. As a simple example, let us consider a locus with two codominant 

alleles (1 = 2, read 1 "is codominant with" 2). The first allele is assumed to cause the presence of one factor, 

and the second allele is assumed to cause the presence of another. In this case, the "factor" may be the 

presence of a given band on a Southern blot, corresponding to the allele in question, or the factor may 

simply refer to the observation at the phenotypic level of the presence of the same allele. It needn't have any 

real phenotypically meaningful interpretation – let us just assume that our locus can cause either of two 

factors to be observed. Alleles are coded by a sequence of 0's and 1's. For each factor at a given locus, we 

must enter one column in our datafile, consisting of either a 0 (if the factor is not present) or a 1 (if the factor 

is present). In this case, our allele 1 would be 1 0, because the first factor (presence of allele 1) is present, 

and the second factor is absent (allele 2 is, of course, not present in allele 1). Analogously, allele 2 would be 

0 1 at this locus. However, what we observe in an individual are phenotypes, which are composed of two 

alleles. Clearly in our codominant locus, we can have three genotypes, 1 1, 1 2, and 2 2 (in allele numbers 

format), each of which corresponds to a unique phenotype, since the locus is codominant. How do we 

combine alleles in this locus type? Well, it is basically a logical OR operation. If any factor is present in 

either the maternally or paternally derived allele, then it is present in the combined phenotype, much like 

the OR operation on a computer. So, if we have genotype 1/1, in binary factors, that is 1 0/1 0. If we perform 

this logical OR operation we get 1 0 OR 1 0 = 1 0. The first factor is present in either the first or the second 

allele (in this case, in both), and the second factor is absent from BOTH alleles. Hence, the phenotype would 

be 1 0. For genotype 1/2, we would now have have binary factors genotype 1 0/0 1, which would correspond 

to a phenotype of 1 0 OR 0 1 = 1 1, since factor 1 is present in the first allele, and factor 2 is present in the 

second allele. Similarly, genotype 2/2 would correspond to a binary factors phenotype of 0 1. It is also 

important to note that in the LINKAGE programs binary factor notation, a phenotype of 0 0 does NOT 

mean absence of both markers (which would not make sense here), but rather is the code for unknown (i.e. 

untyped) phenotypes. The entire situation can be summarized in table 8-1. 

 
─────────────────────────────────────────────────────────── 

   Real          Binary      Factor Status        Binary 

────────────     Factors  ────────────────────    Factors 

Geno. Pheno.    Genotype  Factor 1    Factor 2   Phenotype 

─────────────────────────────────────────────────────────── 

1/1     1 1     1 0/1 0   Present      Absent      1 0 

1/2     1 2     1 0/0 1   Present     Present      1 1 

2/2     2 2     0 1/0 1    Absent     Present      0 1 

Unknown 0 0     Unknown   Unknown     Unknown      0 0 

─────────────────────────────────────────────────────────── 

Table 8-1: Binary factors representation of codominant locus with 2 alleles, 2 factors. 

 

 This table shows both how to code such a codominant system as a binary factors type of locus with 

two alleles and two factors. This simplest application of the binary factors locus type has been implemented 

in the LINKAGE programs in a more user-friendly way, through the allele-numbers locus type, which you 

have been using throughout this book. The simple correspondence between allele numbers and binary 

factors is illustrated in table 8-1. As an exercise, go back to the original phase-unknown pedigree from 

chapter 2, which you entered in the files EX1.DAT and EX1.PED. At this point, add a third locus to the 
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pedigree file (EX1.PRE), in binary factors format, which should be the binary factors equivalent of the allele 

numbers marker locus already entered in this file. Put these new phenotypes directly after the allele numbers 

phenotypes on each line, in the format from table 8-1. Your file should eventually look like the following: 

 
ex1  father 0  0  1 2 1 2 1 1 

ex1  mother 0  0   2 1 1 1 1 0 

ex1  dau1  father mother 2 1 1 2 1 1 

ex1 dau2  father mother 2 2 1 2 1 1 

ex1 son1  father mother 1 2 1 2 1 1 

ex1 dau3  father mother 2 1 1 1 1 0 

ex1 son2  father mother 1 1 1 1 1 0 

 

Save this file, as EX7.PRE, and process it with MAKEPED to produce a pedigree file called EX7.PED. 

Next, we must modify our parameter file to indicate the addition of a new locus. Read the EX1.DAT file into 

the PREPLINK program by typing the following at the DOS prompt: 

 
PREPLINK EX1.DAT 

 

 Now, from the main menu, select option (k) See or modify loci description, and from the subsequent 

menu, choose the (c) ADD LOCUS option. You will be returned to the same menu again, only with an 

additional locus indicated at the top of the screen. Now we will first need to (e) CHANGE LOCUS TYPE, 

specifying locus 3, and specifying that it be changed to (a) BINARY FACTORS. Next, you should (a) SEE 

OR MODIFY A LOCUS, specifying locus 3, and you will see a screen like the following: 

 
****************************************** 

LOCUS NUMBER: 3 

****************************************** 

(a) NUMBER OF ALLELES : 2 

(b) NUMBER OF FACTORS : 2 

(c) FACTORS PRESENT (1) OR ABSENT (0) FOR EACH ALLELE : 

1 0 

0 1 

(d) GENE FREQUENCIES : 

 0.500000 0.500000 

(e) EXIT 

****************************************** 

enter letter to modify values 

 

 Let us disregard what is already there, and set up this locus as discussed above. First let us set the 

number of alleles by choosing option (a) NUMBER OF ALLELES, and specifying that there are 2 alleles. 

Then, specify the (b) NUMBER OF FACTORS to be 2 as well, as explained above. Now, choose option (c) 

FACTORS PRESENT... You should respond to the questions as follows: 

 
ENTER NEW FACTORS. 1=PRESENT 0=ABSENT 

LEAVE A SPACE BETWEEN FACTORS 

ALLELE 1 

1 0 

ALLELE 2 

0 1 

 

This is as we discussed above as well. Now, the gene frequencies should be set to be equal for the two 

alleles, as in the first exercise. Now, go back to the main menu, and save this new file as EX7.DAT. We are 

now ready to analyze this family with the LINKAGE programs. 

 

 Call up the LCP program, specifying pedigree file to be EX7.PED, and parameter file to be 

EX7.DAT. Proceed as in previous examples, by selecting the MLINK program. This time you want to do the 

same analyses as before, starting from θ = 0, in steps of 0.1, stopping at θ = 0.4 (remember that θ = 0.5 

always gives a lod score of 0 by definition). However, this time, after specifying that the analysis be 

performed between loci 1 and 2 (the disease and the allele numbers locus), specify a further analysis with 

Locus Order = 1 3 (the disease and the new binary factors locus). To do this, just hit <Page Down> after 
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entering the analysis parameters for 1 vs 2, and then returning to the same screen, and only modifying the 

first line to read Locus Order 1 3, followed by <Page Down>. Then go back, as before to specify the same 

analyses with ILINK, again specifying first 1 vs. 2, hitting <Page Down>, and repeating the analysis with 1 

vs. 3. Then exit LCP with <Ctrl-Z>, and perform the analysis by typing PEDIN at the DOS prompt. 

Examine the FINAL.OUT file in your word processor, when the analysis is finished, and compare the 

likelihoods and lod scores for the two analyses, 1 vs. 2 , and 1 vs. 3. You should notice that everything is 

equal, as they are exactly the same locus, entered in a different format. If they are not always equal, then 

recheck your pedigree and parameter files for possible errors! 

8.2 MULTIPLE FACTORS - TWO ALLELES (THE CEPH DATABASE) 

There is a large databank for human genetics at the CEPH (Centre d'Étude du Polymorphisme Humain) in 

Paris (Dausset et al, 1990). In this database, much of the phenotypic data has been entered in this binary 

factors format, since historically, this was the first data entry format available. However, there are frequently 

situations in which there are two allele codominant systems with multiple factors. Many of these systems 

contain additional constituently present factors, for example, constant bands on a Southern blot. These add 

no additional genetic information, but many investigators thought it was more meaningful to include full 

banding patterns in the input files, for future reference. As an example of this, let us consider a two-allele 

codominant situation with five factors, of which factors 1, 3, and 4 are constituently present. Now, allele 1 

would be coded as 1 1 1 1 0 (factors 1-4 present, factor 5 absent) and allele 2 would be coded as 1 0 1 1 1 

(factors 1,3,4,5 present, factor 2 absent). In this case, the same logical OR operation can determine our 

phenotypic correspondence. In this case, we would have the situation summarized in Table 8-2. 

 
───────────────────────────────────────────────────── 

     Real             Binary Factors 

───────────────  ──────────────────────────────────── 

Geno.   Pheno.          Genotype           Phenotype 

───────────────────────────────────────────────────── 

1/1      1 1     1 1 1 1 0 / 1 1 1 1 0     1 1 1 1 0 

1/2      1 2     1 1 1 1 0 / 1 0 1 1 1     1 1 1 1 1 

2/2      2 2     1 0 1 1 1 / 1 0 1 1 1     1 0 1 1 1 

Unknown  0 0            Unknown            0 0 0 0 0 

───────────────────────────────────────────────────── 

Table 8-2 : Alternative binary factors representation of codominant locus with 2 

alleles, 5 factors. 

 

 As you can see, this is essentially the same as the two factor situation we utilized above, for if one 

eliminates the constituently present factors, 1, 3, and 4, we are left with exactly the same binary phenotypes 

as we had before. Still, for practice in using this form of the Binary Factors locus type, which is predominant 

in the CEPH database, please go back to the last example, files EX7.PED and EX7.DAT, and add a new 

locus, of the Binary Factors type, with two alleles and five factors as described in table 8-2. Make this locus 

identical in genetic information to loci 2 and 3 in this file. Save the new pedigree (EX8.PED) and parameter 

files (EX8.DAT). Then, analyze the disease versus locus 4, to be sure the likelihoods and lod scores are all 

identical with the ones you obtained from analyzing loci 1 vs 2, or 1 vs 3. 

8.3 DOMINANCE AND RECESSIVITY 

For the next extension, let us consider how to use the binary factors locus type in situations where the allele 

numbers locus type cannot be used. One such case occurs when one wishes to analyze a fully penetrant 

dominant locus. Let us assume that we have a two allele locus, which determines a dominant trait, and allele 

1 is dominant over allele 2 (1 > 2). This can be visualized by assuming that allele one produces some 

protein, while allele 2 produces nothing, and the protein is produced equally effectively with one or two 

copies of allele 1. An intuitive way of coding this would be to specify one factor, the protein in question, and 

have allele 1 be 1, for factor 1 present (the protein is produced), and allele 2 being 0, for factor 1 absent (no 

protein produced). If this were the case, we would have a genotype : phenotype relationship as outlined in 

Table 8-3. 
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──────────────────────────────────────── 

          Binary Factors 

     ───────────────────────── 

Genotype    Genotype        Phenotype 

──────────────────────────────────────── 

  1/1   1/1   1 

  1/2   1/0   1 

  2/2   0/0   0 

Unknown     Unknown   0 

──────────────────────────────────────── 

Table 8-3  : Incorrect attempt at characterizing a dominant trait in binary factors 

notation with one factor. 

 

 This would be fine and dandy, except for the fact that unknown individuals as well as 2/2 individuals 

would be coded as 0. This is unacceptable, so we need to add an additional factor that is constituently 

present, for example, a factor "typed" with an intuitive meaning that if the individual was typed at the locus, 

this factor would be present, and if the individual was not typed, the factor would be absent. This factor 

would behave much like the functionless factors added in EX8.PRE, only now, having the additional 

function of discriminating between 2/2 individuals and unknown individuals, as shown in table 8-4. 

 
───────────────────────────────────────── 

    Binary Factors 

       ──────────────────────── 

Genotype      Genotype   Phenotype 

───────────────────────────────────────── 

  1/1   1 1/1 1  1 1 

  1/2   1 1/0 1  1 1 

  2/2   0 1/0 1  0 1 

Unknown  Unknown  0 0 

───────────────────────────────────────── 

Table 8-4 : Correct representation of a dominant trait in binary factors notation with 

2 factors. 

 

 Please go back to this same example, and recode the fully penetrant disease as if it were a binary 

factors locus type, keeping the gene frequencies the same. Then check it by comparing an analysis of locus 1 

vs 2 with that of locus 5 (the new binary factors representation of the disease) vs locus 2. They MUST be 

identical as well. 

 A recessive condition is also immediately specified as well, since whenever we have a dominance 

relationship there is a built-in recessive relationship. In this case we had 1 > 2 (Allele 1 is dominant over 

Allele 2), which means that 2 < 1 (Allele 2 is recessive to Allele 1), since it is required for there to be 2 

copies of the non-protein producing allele, in this example, for the "absence of protein" phenotype to be 

observed. This is the definition of recessivity. Thus, we can use the same coding scheme as above to code a 

recessive system, only being sure to specify allele 2 as the recessive disease predisposing allele! 

8.4 SYSTEMS WITH DOMINANCE AND CODOMINANCE, ABO BLOOD GROUP 

More complicated dominance/codominance relationships can be specified as well with the binary factors 

notational system. Consider the ABO blood group. To this point, we have not learned any way of coding this 

in a LINKAGE input file, even though it is among the most basic loci in humans. In fact, many early linkage 

studies were done with this very locus, and we do not yet know how to use this kind of data. Well, these 

relationships can be easily coded for in the LINKAGE programs as a binary factors locus. Think about this 

for a while on your own. If you cannot figure it out, then go on to read the following chapter. 

 In the ABO blood group, it is well known that there are three alleles, A, B, and O. The A allele 

causes, among other things, the production of a certain cell-surface antigen "A". Similarly, the B allele 

produces cell-surface antigen "B". The O allele, on the other hand produces NO cell-surface antigens. The 

actions of these three alleles, relative to the production of cell-surface antigens, are independent, so it can be 

clearly seen that the dominance relationship can be summarized as follows: (A = B) > O (A and B are 

codominant, and both are dominant over the O allele). We know how to code the codominance, and we 

know how to code the dominance, but how can we combine the two phenomena in the same locus? Well, let 

us first begin by considering that the cell-surface antigens A and B could be considered as binary factors. If 
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this were the case, allele A would be 1 0, allele B would be 0 1, and allele O would be 0 0. This locus could  

then be summarized as in Table 8-5. 

 
──────────────────────────────────────────────── 

   ABO        Binary Factors 

────────────────── ──────────────────────── 

Phenotype Genotype Genotype    Phenotype 

──────────────────────────────────────────────── 

    A  A/A  1 0 / 1 0  1 0 

  A/O  1 0 / 0 0  1 0 

  

    B  B/B  0 1 / 0 1  0 1 

  B/O  0 1 / 0 0  0 1 

 

    AB A/B  1 0 / 0 1  1 1 

 

    O  O/O  0 0 / 0 0  0 0 

 

 Unknown  Unknown  Unknown  0 0 

───────────────────────────────────────────────── 

Table 8-5 : Incorrect representation of ABO blood group in binary factors format with 2 

factors. 

 

 This is an intuitively satisfying approach, except that now O blood type individuals are 

indistinguishable from unknown individuals in terms of their binary factors phenotypes. Disregarding the O 

allele completely, however, we see a straightforward codominance relationship between A and B alleles. 

Further, disregarding the A allele, we can see a straight dominance relationship specified with B > O. The 

same holds for A > O. Thus, our dominance relationships are correct, and we merely need to allow the 

program to distinguish O phenotypes from unknown individuals. This is the same situation we encountered 

in the straight dominance example above. To remedy this situation add an additional constituently present 

factor (“genotyped”), to allow for this discrimination, as shown in Table 8-6. 

 
─────────────────────────────────────────────────── 

    ABO    Binary Factors 

────────────────────    ─────────────────────────── 

Phenotype Genotype   Genotype        Phenotype 

─────────────────────────────────────────────────── 

    A    A/A  1 0 1 / 1 0 1       1 0 1 

    A/O       1 0 1 / 0 0 1       1 0 1  

    

    B    B/B       0 1 1 / 0 1 1       0 1 1 

    B/O       0 1 1 / 0 0 1       0 1 1 

 

    AB   A/B       1 0 1 / 0 1 1       1 1 1 

 

    O    O/O       0 0 1 / 0 0 1       0 0 1 

 

 Unknown    Unknown        Unknown          0 0 0 

─────────────────────────────────────────────────── 

Table 8-6 : Correct representation of ABO blood group in binary factors notation - 3 

alleles. 

 

 In this chapter, you learned about the binary factors locus type, and how to use it to enter phenotypic 

data under codominance, dominance, recessivity, and any combination thereof. We also studied the 

relationship between Binary Factors and Allele Numbers locus types, and learned that the allele numbers 

locus type is just a shorthand form for entering codominant binary factors data. Additionally, for the first 

time, you used LCP to extract subsets of loci from a pedigree and parameter file to perform analyses on 

various subsets of the loci in these files. 
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EXERCISE 8 

Go back and re-enter the data from all 

previous user exercises, adding binary 

factors representations of all allele 

numbers locus types, and fully 

penetrant diseases. Compare the results 

to make sure they are compatible. 

 Add the ABO blood group data 

to the pedigree in exercise 2, as shown 

in Figure 8-1 (Make new files 

USEREX8.*, containing the disease 

and both loci). Use gene frequencies of 

0.28 for the A allele, 0.06 for the B 

allele, and 0.66 for the O allele 

(Cavalli-Sforza and Bodmer, 1971). Analyze this data in 2-point analysis, disease vs. ABO, and marker 1 vs. 

ABO. Are these results consistent? Why or why not? 
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9 Advanced applications of Affection Status I : Incomplete Penetrance Revisited 
In this chapter we will be using the affection status locus type to allow for various penetrance models which 

are sometimes quite complicated. We will review the basics of incomplete penetrance, and learn how to 

allow for age-dependent penetrance through the use of so-called liability classes, also allowing for 

phenocopies in a possibly age-dependent manner. 

 We learned in section 5.4 that a disease-predisposing genotype may not always lead to disease. For 

example, consider a simple dominant disease locus with two alleles, d and +, so that genotypes dd and d+ 

cause disease while individuals with genotype ++ are unaffected. With incomplete penetrace, the conditional 

probability of being affected is g = P(affected|dd) = P(affected|d+). Often, one also encounters patients with 

the ++ genotype; these are called phenocopies with respect to the disease locus under consideration 

(Goldschmidt coined the term “Phänokopie” in 1935 [12]). Thus, the penetrance for a phenocopy is the 

conditional probability, f = P(affected|++), with f < g. There are various potential reasons for phenocopies to 

occur. One possibility is that phenocopies are due to a second disease locus at a different genomic location 

(digenic inheritance [13-15]). A simple strategy to find such a second locus is as follows [16]: Mask all non-

phenocopy affecteds by making their phenotype “unknown” and then search for linkage of markers to a 

locus compatible with the phenocopies. 

9.1 AGE-DEPENDENT PENETRANCE 

One potential problem in a linkage 

analysis is the presence of incomplete 

penetrance. In chapter 5, we saw how to 

allow for constant reduced penetrance. 

However, in most cases, the penetrance 

reduction is not constant, but is rather 

dependent on age. Let us return to the 

pedigree EX1.PED, from chapter 2, and 

reanalyze it under the assumption of age 

dependent penetrance. In this case, we 

will assume that the penetrance is 0 for 

persons up to 10 years of age, and then 

age of onset is uniformly distributed, with 

a maximum penetrance of 1 at age 20. 

This age of onset function basically 

means that given the susceptible 

genotype, everyone will become affected 

at some point between age 10 and 20, with each age of onset being equally likely. Graphically, the density 

function and corresponding distribution function are shown in Figure 9-1. 

 To incorporate such an age of onset function in the LINKAGE programs, you will have to use what 

are known as liability classes in conjunction with the affection status locus type. In this case, we can have 

separate penetrance definitions for persons of each age from age ≤ 10 (penetrance = 0), through age ≥ 20 

(penetrance = 1) as follows: Read the file INC.DAT into the PREPLINK program. Then (k) See or modify 

loci description, and (a) SEE OR MODIFY A LOCUS, for Locus 1, the disease. Now, we want to define the 

age of onset penetrances by using liability classes, but how many liability classes do we need? Well, to 

figure this out, we will need to know the ages of the persons in the pedigree (current age, or age last seen). 

The ages are as follows: father = 50, mother = 45, dau1 = 8, dau2 = 13, son1 = 16, dau3 = 17, son2 = 22. 

The penetrances for each of them are easily computed, given our assumptions about age dependent 

penetrance. For simplicity, and since we have only information about current age, and not age of onset, we 

will use the distribution function of the age of onset as our penetrance function, i.e. penetrance = 

P(becoming affected at or before the current age │ Genotype). For persons aged 10 and under, the 

penetrance is 0; for persons 20 and over, the penetrance is 1; and for persons between 10 and 20, the 

penetrance is just 0.10 × (age - 10), which is the equation of the distribution function, i.e. the line between 

coordinates (age = 10, penetrance = 0) and (age = 20, penetrance = 1). Therefore, the penetrances for each 

person in the pedigree are as follows: father = 1, mother = 1, dau1 = 0, dau2 = 0.3, son1 = 0.6, dau3 = 0.7, 

son2 = 1. Since there are 5 different penetrance classes needed to specify the penetrances for all the persons 

in this pedigree, we will need to use PREPLINK now, to change (b) NUMBER OF LIABILITY CLASSES to 
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5. Then, you must modify the penetrances for each of the five liability classes as follows: Select (c) 

PENETRANCES:, and modify the penetrances as follows: Let liability class 1 be for persons aged less than 

10 years (dau1, for example). The new penetrances should be entered as follows: 

 
LIABILITY CLASS: 1  

GENOTYPE 1 1 OLD PEN 0.000000 

? 

0 

GENOTYPE 1 2 OLD PEN 1.000000 

? 

0 

GENOTYPE 2 2 OLD PEN 1.000000 

? 

0 

 

 This is because the probability of being affected is 0 for all genotypes in this age class. Next you will 

be asked to provide penetrances for liability class 2, which, for convenience sake, should be the next largest 

penetrance value, which would be for the 13 year old dau2, who has penetrance of 0.3. Since this disease is 

still assumed to be autosomal dominant with reduced penetrance, the value 0.3 should be given for both 

susceptible genotypes, 1 2, and 2 2 (2 being the disease allele). Continue as follows: 

 
LIABILITY CLASS : 2 

GENOTYPE 1 1 OLD PEN 0.000000 

? 

0 

GENOTYPE 1 2 OLD PEN 0.000000 

? 

0.3 

GENOTYPE 1 2 OLD PEN 0.000000 

? 

0.3 ... 

 

Continue to enter penetrances for the remaining liability classes as indicated in table 9-1. 

 
──────────────────────────────────────────────────────────────────── 

    Penetrances for Genotypes 

Liability   ───────────────────────────  Relevant   

Class  Age  1 1 1 2 2 2  Individuals   

──────────────────────────────────────────────────────────────────── 

  1  <10   0  0  0  dau1 

  2   13   0 0.3 0.3  dau2 

  3   16   0 0.6 0.6  son1 

  4   17   0 0.7 0.7  dau3 

  5  >20   0  1  1  father, mother, son2 

──────────────────────────────────────────────────────────────────── 

Table 9-1 : Penetrance class definitions for INC2.PED;INC2.DAT 

 

 After you have entered these penetrances, return to the main menu, and save this file as INC2.DAT. 

Next, copy the file EX1.PRE to INC2.PRE, and read it into your word processor. You must now modify the 

phenotypes given for the affection status locus, by adding an extra column, indicating the liability class for 

each individual. In this case, you can determine which liability class goes with each individual by consulting 

table 9-1. Please add an extra column after the affection status (1 = unaffected, 2 = affected), with the 

appropriate liability class number. One important thing to note, that is different from all other locus types, is 

that when an individual is unknown at an affection status locus with multiple liability classes, you must 

specify the individual as being 0 (Unknown), in any liability class. Which liability class you use is 

immaterial, but this second column MUST be non-zero. A safe way of coding this information would be to 

put the individual in the appropriate liability class, based on his age, in case you go back to add new 

phenotypic information later, although using 0 1 as the code for unknowns will give appropriate results for 

ALL unknowns as well! The final pedigree file (INC2.PRE) should look like the following: 
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ex1 father 0  0  1 2 5 1 2 

ex1 mother 0  0  2 1 5 1 1 

ex1 dau1  father mother 2 1 1 1 2 

ex1 dau2  father mother 2 2 2 1 2 

ex1 son1  father mother 1 2 3 1 2 

ex1 dau3  father mother 2 1 4 1 1 

ex1 son2  father mother 1 1 5 1 1 

 

 Now, process the file with MAKEPED, to produce pedigree file INC2.PED, and analyze the 

pedigree with MLINK and ILINK, through the LCP shell program, as you have been doing throughout the 

book. The output is presented in table 9-2. 

 
  θ        Log10 Likelihood Lod Score 

──────────────────────────────────────── 

 0.0    -8.152963  0.789145 

 0.1    -8.321516  0.620593 

 0.2    -8.505736  0.436372 

 0.3    -8.698514  0.243595 

 0.4    -8.868216  0.073893 

 0.5    -8.942108  0.000000 

ILINK: ̂ = 0.000, Z(̂ ) = 0.789145. 

Table 9-2 : Analysis results of INC2.PED; INC2.DAT 

 

 Can you understand why these results are so different from those we obtained when we allowed for 

complete penetrance in chapter 3, and from the simple incomplete penetrance model used in chapter 5? The 

individual dau1 was the individual who was a likely recombinant if penetrance was complete, but when one 

allows for the fact that at her young age, she had no possibility to be affected, regardless of her genotype, all 

the evidence for a recombination disappears.  

 If there is full penetrance in reality, though, and you model the disease as having reduced penetrance, 

you will tend to lose information, as you will see in the next example. Please go back to the known fully 

penetrant recessive disease example we analyzed in chapter 5 (files EX3.*). Let us model this disease as if it 

were autosomal recessive with constant reduced penetrance of 50%. Modify the penetrances for the 

affection status locus in the parameter file, EX3.DAT, by the same method as in the dominant disease above. 

This time, however, change the penetrances to fit an autosomal recessive trait with 50% penetrance. 

 Then, save this file as INCREC.DAT, and reanalyze the pedigree in EX3A.PED. The lod scores 

obtained (with constant penetrance of 50%) are shown in table 9-3. With age-dependent penetrance classes 

as in the dominant case above, the following six lod scores should be obtained: 0.699815, 0.523004, 

0.344353, 0.177339, 0.049606, and 0. 

 
  θ       Log10 Likelihood      Lod Score 

───────────────────────────────────────────────── 

 0.0   -16.020575   0.776033  

 0.1   -16.200742   0.595866 

 0.2   -16.391282   0.405326 

 0.3   -16.579914   0.216694 

 0.4   -16.733805   0.062803 

 0.5   -16.796608   0.000000 

ILINK: ̂ = 0.000, Z(̂ ) = 0.776033. 

Table 9-3 : Analysis results of EX3A.PED; INCREC.DAT 

 

 If you go back to the example in chapter 5 when we analyzed this pedigree under the model of 

complete penetrance, you will see that our maximum lod score was 0.976874. So, information was lost by 

specifying the reduced penetrance model. Whereas all unaffected persons were previously known not to be 

homozygous for the disease, under this model, it is possible for any of the affecteds to have the disease 

susceptibility genotype. Hence, it is not clear whether or not they represent recombinants. Here, there is a 

loss of information from allowing for reduced penetrance, while in our previous example, the lod score rose 

substantially from such allowances. There are situations where a wrong model may give a higher lod score 

than the true model, but under the true genetic model, your results will be better, in general. 
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 Instead of working with penetrance classes, the LIPED program (chapter 11) allow you to specify a 

straight-line onset curve such as the one shown in Figure 9-1 and enter current ages of individuals, where for 

an unaffected individual the age is given as a negative number. Working with the same data as those leading 

to the results shown in Table 9-2, we assume that the N/N genotype is not susceptible to disease. The input 

file to LIPED then looks as follows: 

 
1 0000 0.0          Straight-line age of onset 

           0   m   0   0 

 2 2   <- number of alleles 

 1 3   <- number of phenotypes 

 3 0   <- locus type 

 3     <- output option 

 dis   D   N 

    0010    9990 

   D   D  10  20   1  10  20   1 

   D   N  10  20   1  10  20   1 

   N   N   0   0   0   0   0   0 

 SNP   1   2 1/1 1/2 2/2 

    3000    7000 

   1   1   1   0   0 

   1   2   0   1   0 

   2   2   0   0   0 

   7   0Family EX1.PED, Handbook Figure 3-1 and section 9.1 

  FA   0   0   m  50 1/2 

  MO   0   0   f -45 1/1 

  D1  FA  MO   f  -8 1/2 

  D2  FA  MO   f  13 1/2 

  S1  FA  MO   m  16 1/2 

  D3  FA  MO   f -17 1/1 

  S2  FA  MO   m -22 1/1 

9000 

 

and furnishes the following results: 

 
  R MALE  R FEM.   LOG10[L(R)]   LOD-SCORE 

  0.5000 0.5000       -7.46284       0.000 

  0.4500 0.4500       -7.44322       0.020 

  0.4000 0.4000       -7.38894       0.074 

  0.3500 0.3500       -7.31063       0.152 

  0.3000 0.3000       -7.21924       0.244 

  0.2500 0.2500       -7.12289       0.340 

  0.2000 0.2000       -7.02646       0.436 

  0.1500 0.1500       -6.93253       0.530 

  0.1000 0.1000       -6.84224       0.621 

  0.0500 0.0500       -6.75597       0.707 

  0.0010 0.0010       -6.67530       0.788 

  0.0001 0.0001       -6.67385       0.789 

 

Clearly, there is excellent agreement between the results from LINKAGE and LIPED. 

9.2 DISTRIBUTION FUNCTIONS VS. DENSITY FUNCTIONS 

It is of importance to delineate exactly what age it is that you are reporting as part of a phenotype. If the 

individual concerned is affected with the disease, then there are two different types of age observation 

possible. If it is known at what age the person became affected with the disease, then one should report this 

age of onset for the disease. Sometimes, however, it is not known at what age an individual became affected, 

and is merely known that they are currently affected with the disease, in which case the current age (or age 

of last examination) should be reported in the phenotype. If the age of onset is only approximately known, it 

may still be useful to incorporate such information in the analysis. These two situations require very 

different penetrance definitions. If one is dealing with current age, then all that is known is that at some 

point before the current age, the person became affected. Hence, the probability we are interested in is 

P(affected before current age), which is a cumulative distribution function. This would be analogous to the 

age of onset distribution applied in the first example in this chapter. If the data is available on age of onset, 
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however, it is imperative to consider something a little bit different, P(affected at age of onset), which can be 

taken more accurately from the probability density function, not the distribution function. This difference is 

very subtle, but can be of major importance. For unaffected individuals, of course, there is no such thing as 

an age of onset, but merely the age of last exam (or current age). In this situation, we are interested in P(not 

affected before age of last exam) = 1 – P(affected before age of last exam). Therefore, this is also based on 

the distribution function described above. 

 Let us consider the simple case of a dominant disease. For any given individual, the penetrances, f, 

for the three genotypes are as follows: P(aff│DD) = P(aff│Dd) = f(age); P(aff│dd) = 0. For any affected 

individual, therefore, genotype dd would be impossible, and the other two genotypes would have equal 

penetrance, so the only discriminatory power comes from the elimination of genotype dd. In this case, you 

can see that the likelihood of any affected individual may be written as f(age)P(DD) + f(age)P(Dd) + 0 P(dd) 

= f(age)[P(DD)+P(Dd)]. If P(DD) is a function of θ, then the likelihood ratio would be 

0.5]=P(DD; + 0.5)=d;f(age)[P(D

)]P(DD; + )d;f(age)[P(D




.  

The numerical value of f(age) is unimportant, therefore, since it will only act as a constant multiplier of the 

likelihood in both numerator and denominator of the likelihood ratio, and will factor out of the lod score 

equation. So, in the absence of phenocopies, the numerical value of the penetrance is immaterial for affected 

individuals. However, for unaffected individuals, the corresponding penetrances are as follows: P(Not 

Aff.│DD) = P(Not Aff.│Dd) = 1 – f(age); P(Not Aff.│dd) = 1. In this case, the numerical value of f(age) 

plays an important role in discriminating between genotypes, since there is no longer this equal weighting 

factor. The likelihood of any unaffected individual is thus [1 – f(age)] × [P(Dd│θ) + P(DD│θ)] + P(dd│θ). 

There is no longer a common factor to cancel in numerator and denominator, and thus the numerical value 

of the penetrance is very crucial to the analysis. 

9.3 PHENOCOPIES 

The situation is much more complicated, however, when the presence of phenocopies is allowed for. If there 

are separate age distributions for phenocopies and genetic cases, then there can be rather complicated 

situations arising. For unaffecteds, the distribution function must be used for both penetrances, for the same 

reasons outlined above. However, for affecteds, the distinction between density and distribution function can 

be crucial. Consider that if f(age) is the penetrance for genetic cases, and fp(age) is the penetrance for 

phenocopies, then the likelihood of any affected individual is just f(age)[P(DD) + P(Dd)] + fp(age)P(dd). No 

longer is there a common factor which can factor out of numerator and denominator in the likelihood ratio. 

Therefore, one must pay special attention to the numerical value of the penetrances. Let us consider the 

extreme case of a genetic disease with age dependent penetrance according to a straight line age of onset 

distribution function, on the range of 10 years to 20 years, with the penetrance for individuals at age 20 or 

above being full. Similarly, let the phenocopies follow a similar straight line distribution function, starting 

from 0 up to age 15 and rising to 10% at age 30. It is significant to point out that in general a uniform 

distribution is far from ideal to use, since its density function is either 0 or a fixed larger value. In general, it 

is wiser to use a lognormal or normal age of onset density function, as it will allow age to be a greater 

discriminatory factor in terms of interpreting the genotypic background given phenotypes. The distribution 

functions and densities corresponding to our Uniform distributions are outlined in table 9-4. 

 
─────────────────────────────────────────────────────────────────── 

   Phenocopies    Genetic Cases 

  ───────────────────────── ───────────────────────── 

Age  Distribution Density Distribution Density 

─────────────────────────────────────────────────────────────────── 

 0-10  0   0  0   0 

10-15  0   0  0.1×(age-10) 0.1 

15-20  0.0067×(age-15) 0.0067 0.1×(age-10) 0.1 

20-30  0.0067×(age-15) 0.0067 1   0 

30-  0.1   0           1   0 

─────────────────────────────────────────────────────────────────── 

Table 9-4 : Uniform distribution and density functions shown for phenocopies and 

genetic cases. 
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 If we think of the likelihood of an individual, f(age)[P(DD) + P(Dd)] + fp(age)P(dd) as being a 

function of the ratio of phenocopies to genetic cases, then we can parametrize it as f(age)[P(DD) + P(Dd)] + 

kf(age)[P(dd) = f(age) [P(DD) + P(Dd) + kP(dd)]; where k = fp(age)/f(age). In this representation, f(age) is 

now equal in numerator and denominator, and will be factored out of the likelihood ratio. Therefore, the 

entire amount of information available from the penetrances comes from the ratio fp(age)/f(age). Values of 

fp(age)/f(age) are shown in table 9-5 for all age ranges. 

 
Age  Distribution  Density  

───────────────────────────────────────────── 

0-10  UNDEFINED   UNDEFINED 

10-15  0    0 

15-20  0.067×(age-15)/(age-10) 0.067 

20-30  0.0067×(age-15)  ∞ 
30-  0.1    UNDEFINED 

Table 9-5 : Values of fp(age)/f(age) for each age group. 

 

 These ratios are extremely different between the groups, as you can see. Consider an individual with 

age of onset at age 25. If we were to use the density functions, we would see that it was impossible for him 

to have been a genetic case, so he would definitely have been interpreted as a phenocopy. However, based 

on the distribution function, the ratio would be only 0.067. The interpretations are highly different, since the 

latter would not give much discriminatory power, and might favor the genetic causes, while the former 

would imply that it was definitely a phenocopy. These ratios are the most important factor in any penetrance 

model. Clearly, when the ratio is 1:1, there is no phenotypic basis for discriminating between the possible 

genotypes, and the situation is analogous to that in which the true phenotype is unknown. The more deviant 

from 1 this ratio is, the greater the power to discriminate between genotypes based on phenotype.  

 In selecting a model, it is important to select a phenocopy probability that makes sense on a 

population level. If the population prevalence 

of a disease, φ, is known, then it is 

imperative that the disease gene frequency, 

p, and penetrances, f, satisfy φ = fDDp
2
 + 

2fDdp(1 – p) + fdd(1 – p)
2
. Assuming a 

dominant disease, in the extreme case, for p 

= 0, clearly φ = fdd, since all cases are non-

genetic, so it is clear that  fdd  φ in all cases. 

Analogously, for a sex-linked recessive, the 

situation is that only males can be affected, 

so that effectively φ = pfD + (1 – p)f+., where 

φ is the prevalence in males. In this situation, 

again, f+  p, and all penetrances must be 

selected such that the prevalence equations 

are satisfied. 

 

EXERCISE 9 

Again, using the same family as in exercise 8 (files USEREX8.*), assume that there is now incomplete 

penetrance following a straight line age of onset curve starting from 0.1 at ages less than 10 up to 0.9 at ages 

60 and above, where the current ages are given in Figure 9-2 (for more information, consult Ott (1991), p. 

160). Please divide your pedigree members into appropriate age classes, and define liability classes 

containing the penetrances for individuals in each age class. For simplicity's sake, we recommend using age 

classes as follows (0-9), (10-19), (20-29),... Please use the midpoint of each age class as the basis of 

determining the penetrances for people in that class ,e.g. use age 15 to calculate penetrances for people in 

the age class (10-19). Please analyze the pedigree data starting from θ = 0 up through θ = 0.5 in steps of 0.1 

with MLINK, and also analyze the data with ILINK, as you have done throughout this chapter. Please 

consider both disease vs. marker 1, and disease vs. ABO.  
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10 Advanced Applications of the Affection Status Locus Type II: It's not just for diseases any more... 
In this chapter, you will be learning how to use the affection status locus type to allow for nonstandard 

situations. We will consider complicated dominance relationships, including allowing the identification of 

obligate carriers. Then, we see how to include data about loci at which there is only partial information 

available. Along the same lines as that, we will discuss elementary approaches to modelling errors in marker 

typings, and diagnostic uncertainty. 

10.1 GENERALIZED DEFINITION OF THE 2 PHENOTYPE 

The fact that a locus is coded as an "affection status" does not in any way imply that the locus must be a 

disease locus. It merely defines the way the data will be entered in the pedigree and parameter files for the 

analysis. Further, it is an unfortunate convention that people think of the phenotype 2 as affected, and of the 

phenotype 1 as unaffected at this type of locus. While this may typically be the case in any given analysis 

with a disease, in reality the phenotype 2 really means presence of a given phenotype defined by the 

penetrances given in the parameter file. Further, the phenotype 1 really means the absence of the phenotype 

defined by the penetrances given in the parameter file. This may sound confusing, but it really is only an 

unfortunate historical consequence. You see, this locus type was originally formulated with the idea that it 

would be used only for diseases. Its full potential was apparently not realized at that time. In the case of a 

disease, the 2 phenotype means presence of the phenotype "affected with the disease" defined by the 

penetrances in the parameter file, and the 1 phenotype means absence of that phenotype defined by the same 

penetrances. However, in no way does the program assume anything regarding the biological meaning of the 

2 phenotype. As an extreme case, in a recessive disease, the trait "unaffected" is dominant over the 

"affected" trait. One could use an affection status locus to code the trait normal, by defining penetrances 

corresponding to a fully penetrant dominant trait, with gene frequency of the trait allele being very high. 

Then, the phenotype 2 could correspond to presence of the "unaffected" phenotype, and 1 would mean 

absence of the "unaffected" phenotype (or, simply affected with the disease). As an additional example, 

reconsider the fully penetrant dominant disease data from files EX8.*. Please add a sixth locus to this 

pedigree. First read the parameter file, EX8.DAT into PREPLINK, and add an additional locus to the file, as 

you have already learned to do. At this additional locus, our goal is to set up the penetrances such that the 2 

phenotype will correspond to the absence of disease. In other words, our phenotype in this case is "absence 

of disease". We have already seen that recessivity and dominance are the same thing, in that when (1 > 2), 

clearly (2 < 1). So in our fully penetrant dominant disease, (disease > non-disease), so (non-disease < 

disease). Thus, we should set up this new locus to represent a fully penetrant recessive condition.  

 Change the newly added locus in the parameter file to an affection status locus type, and set up the 

penetrances to correspond to a fully penetrant recessive condition, with penetrances as follows: 

 
ENTER NEW PENETRANCES 

GENOTYPE 1 1 OLD PEN 0.00000E+00 

? 

0 

GENOTYPE 1 2 OLD PEN 0.00000E+00 

? 

0 

GENOTYPE 2 2 OLD PEN 1.00000E+00 

? 

1 

 

 The only thing we need to be careful about now is our gene frequency representation. Clearly, the 

recessive allele is the non-disease allele, so it must get the corresponding gene frequency of 0.99999. In this 

representation, the non-disease allele is allele number 2, so you must modify the gene frequencies, such that 

allele 1 has frequency of 0.00001, and allele 2 has frequency of 0.99999. Finally, save this new file as 

EX9.DAT.  

 Now, go back to the pedigree file, EX9.PRE, and add the new affection status phenotypes at the end 

of each line (after the 2 binary factors loci). Be sure to code all diseased individuals as 1, and all normal 

individuals as 2. This should be exactly the opposite of the first locus, in the sense that all individuals who 

were coded as 2 at locus 1, should now be coded as 1 at locus 6, and vice versa. Please analyze locus 6 vs 2, 

by setting up the MLINK and ILINK analyses in LCP in the same manner as you have been doing 

throughout the book. The results should be identical to the lod scores and likelihoods obtained in the original 
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analysis of this pedigree in chapter 3. Now, you should be able to clearly see that the 2 phenotype does not 

necessarily mean affected, but has a biological meaning only in accordance with how you defined the 

penetrances in the parameter file.  

10.2 CODOMINANT MARKER LOCI 

We continue this chapter by pointing out that you can code markers as affection status loci as well, if you 

wish to. Let us reconsider the same pedigree from files EX9.*, with the fully penetrant autosomal disease. 

We shall now add a sixth locus to this pedigree, in which we will recode the codominant allele numbers 

locus as an affection status locus type. For our example, we merely want to define a simple codominant 

marker as an affection status locus to show the potential equivalence of locus types, so for the marker we've 

been looking at in this example, the penetrances are presented in table 10-1. 

 
────────────────────────────────────────────────────────────── 

   Penetrances for Genotypes 

Liab.  Allele     ─────────────────────────   Affection Status 

Class  Numbers    1 1      1 2      2 2          Coded as 

────────────────────────────────────────────────────────────── 

  1     1 1        1        0        0              2 1 

  2     1 2        0        1        0              2 2 

  3     2 2        0        0        1              2 3 

───────────────────────────────────────────────────────────── 

Table 10-1: Affection status representation of 2-allele codominant system. 

 

 Now you see the penetrance relationship between genotypes and phenotypes, where penetrance is 

defined as P(phenotype│genotype) So, in row 1, you see the probability of phenotype 1 1 given genotype 1 

1 is 1, and the probability of phenotype 1 1 given genotype 1 2 or 2 2 is 0. This is just a straight codominant 

locus. The last column is the affection status notation by which you would define each phenotype. The first 

2 means presence of some phenotype for which penetrances are defined, while the second number indicates 

which liability class the appropriate penetrances are given in. If one has phenotype 2 in liability class 1, it 

just means that at the locus in question, the penetrances in liability class one are the probabilities of the 

observed phenotype (whatever that may be) given each of the possible genotypes. So you would know that 

the person had probability 1 of having this phenotype if he had marker type 1 1, and probability 0 of having 

this phenotype if he had genotype 1 2 or 2 2. Thus, you know this person has genotype 1 1. 

 However, you could also assign the phenotype 1 in liability class 1, in which case the penetrances for 

the individual's phenotype would be one minus the penetrances given in the liability class 1. In other words a 

person with phenotype 1 in liability class 1 would have the given phenotype with probability 0 for genotype 

1 1 , and with probability 1 for genotype 1 2 or 2 2. So all you would know about this individual is that he is 

definitely not a 1 1, but could be either 1 2 or 2 2. This is one way of coding a dominance relationship. But 

for our purposes, we just want to code a codominance relationship, so we will give everyone phenotype 2, 

with the appropriate liability class assigned to each phenotype. Now, following the scheme in the last 

column of table 10-1, please add a sixth column to EX9.PRE, corresponding to the marker type of each 

individual in affection status notation. Then save it as EX10.PRE, and process it with MAKEPED to make a 

file EX10.PED. Now, call up the PREPLINK program, read in EX9.DAT, and add a sixth locus, this time of 

affection status type. Then, make the screen, under see or modify locus 6, look like the following: 

 
********************** 

(a) NUMBER OF ALLELES   : 2 

(b) NUMBER OF LIABILITY CLASSES : 3 

(c) PENETRANCES: 

LIABILITY CLASS : 1 

GENOTYPE 1 1 1.00000E+00 

GENOTYPE 1 2 0.00000E+00 

GENOTYPE 2 2 0.00000E+00 

LIABILITY CLASS : 2 

GENOTYPE 1 1 0.00000E+00 

GENOTYPE 1 2 1.00000E+00 

GENOTYPE 2 2 0.00000E+00 

LIABILITY CLASS : 3 

GENOTYPE 1 1 0.00000E+00 

GENOTYPE 1 2 0.00000E+00 
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GENOTYPE 2 2 1.00000E+00 

(d) GENE FREQUENCIES : 

0.500000 0.500000 

(e) EXIT 

*************************** 

 

 Then, save the new file as EX10.DAT. Invoke LCP to use MLINK to analyze loci 1 and 6, and 

compare this with an analysis of loci 5 and 2, in the manner described above. Then compare the results 

again. Of course, they should again be completely identical, or else you should recheck your input files, and 

reconsider the logic of your model.  

10.3 CARRIER STATUS 

There are frequently recessive diseases for which some carriers of the disease allele (heterozygotes) do show 

some mild phenotypic effect that distinguishes them from homozygous normal individuals. In such cases, it 

may be useful to incorporate this information in the linkage analysis. However, it is very important to point 

out that if the only reason for calling an individual an obligate carrier is based on genetic reasons, (i.e. 

because he has affected children), it is NOT in principle a good idea to tell the program this individual is a 

carrier. If this person is an obligate carrier, the programs will determine that themselves, although at some 

minor expense in computing time. Further, when you add in this kind of information, it makes errors more 

likely, and occasionally can be based on unwarranted assumptions. So, this is only a valuable thing to do if 

one has a PHENOTYPIC reason to call an individual a carrier. If all carriers are recognizable, then the 

disease is essentially codominant, with each genotype corresponding to a unique phenotype (+/+ = 

Unaffected, +/d = Carrier, d/d = Affected). Then, one can code the disease in the same manner as the 

codominant marker system in the previous example. So, let us return to the recessive disease pedigree we 

analyzed in chapter 5 (files EX3.*, with EX3A.ped). This time, we will assume that we know that the 

following unaffected people are carriers: fgrandpa, mgrandma, father, mother. Similarly, fgrandma, 

mgrandpa, dau1, dau3, and son2 are phenotypically determined to be homozygous unaffecteds. Now, enter 

this new third locus at the end of each line of the datafile. You can use the same penetrance scheme as 

explained for codominant marker loci, assigning the 2 allele, for example, to be the disease causing allele. 

Please make the appropriate modifications to the pedigree and parameter files, and save them as EX11.*. 

Then analyze them as usual with MLINK and ILINK. The solutions are given in table 10-2. 

 
  θ         Log(Likelihood)     Lod Score 

──────────────────────────────────────────── 

0.0   -15.418534       3.010294 

0.1   -15.876108  2.552720 

0.2   -16.387632  2.041196 

0.3   -16.967550  1.461277  

0.4   -17.637017  0.791811 

0.5   -18.428828    0.000000 

ILINK: ̂ = 0.000    Z(̂ ) = 3.010294 

Table 10-2: Analysis results for EX11.PED; EX11.DAT 

 

 In this example, our lod score tripled from 0.98 to 3.01, due to the phenotypic information we used to 

distinguish carriers from homozygous normal individuals. Of course, if there were no linkage, one would 

expect that adding the additional information would likely make the lod scores significantly smaller. This 

example just shows how much more information one can get from a codominant locus versus a recessive 

locus in the same family. Now, every meiosis is phase known and informative, from mother and father to 

their children. These ten phase known non-recombinants give us a lod score of log10[(1 – θ)
10

/(0.5)
10

], 

which is maximized at θ = 0, to give us log10[2
10

] = 10 × log10[2] = 3.010. When the disease is recessive, 

with no phenotypic means to discriminate carriers from homozygous normal individuals, there is much less 

phase and genotype information available, causing the observed drastic reduction in information. 
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10.4 DIAGNOSTIC UNCERTAINTY 

Now, let us consider a situation in which you do not know whether or not someone is truly affected, but a 

clinician can assign a probability with which he believes the individual to be affected (BASED ON NON-

GENETIC REASONS!). How can we use the LINKAGE programs to allow for such diagnostic uncertainty? 

Well, it is possible to model such diagnostic uncertainty in the affection status locus type by using liability 

classes to define penetrances for each such degree of uncertainty. Ott (1991) described a method whereby 

one can generate the penetrances for individuals who have a 

given uncertainty of diagnosis by forming a weighted average 

of the penetrances for unaffected and affected phenotypes. 

Essentially if one has probability p of being affected with a 

disease, then one could compute the penetrance given 

genotype 1/1 as p[P(affected│1/1)] + (1 – 

p)[P(unaffected│1/1)], and so on for the other genotypes. The 

justification for such an ad hoc approach is discussed in detail 

in Ott (1991). 

 Let us assume, for example, that you have a disease 

that you wish to analyze that is inherited as an autosomal 

dominant disorder. The problem is that you have a certain 

degree of uncertainty in the diagnosis. Let us assume that you 

have four different observed phenotypes at the disease locus 

as follows: 1) Definitely affected; 2) Definitely unaffected; 3) 

Affected with 80% certainty; 4) Unaffected with 80% 

certainty. Assuming the disease to be fully penetrant, and 

using the affection status locus type, devise a method of using 

all of this information in your analysis. Please enter the data from Figure 10-1, in which the values under 

each person in the drawing correspond to the age of the individual, his diagnostic class (as defined above), 

and his ABO blood type.  

 Please enter all the necessary information about this pedigree in LINKAGE format (files EX12.PED; 

EX12.DAT), with gene frequency for the disease allele of 0.1, and at ABO, use binary factors notation, and 

gene frequencies of 0.26 for the A allele, 0.06 for the B allele, and 0.68 for the O allele (these allele 

frequencies are somewhat different from those used in exercise 8). Then run MLINK and ILINK on this 

family in the manner you have been doing throughout the book. (You will further develop this problem in 

exercise 10.) 

 For individuals in diagnostic class 3, the penetrance is, for AA or Aa individuals,   (0.8) × (1) + (0.2) 

× (0) = 0.8, and that for people with aa genotype is (0.8) × (0) + (0.2) × (1) = 0.2. In essence, we can code 

our four phenotypes with the following penetrance classes: 

 
  AA  Aa aa 

1)   1  1   0 

2)   0  0  1 

3)  0.8 0.8 0.2 

4)  0.2 0.2 0.8 

 

 In this simple case, the penetrances for phenotype 2 are equal to 1 minus the penetrance for 

phenotype 1, and the same relationship applies between phenotypes 3 and 4. Therefore, we need only two 

liability classes, corresponding to phenotypes 1 and 3. Then individuals in class 2 would be coded as 1 in the 

liability class for phenotype 1, and class 4 individuals would be coded as 1 in the liability class for 

phenotype 3. In essence we need the following two liability classes: 

 
CLASS 1)  1  1  0 

CLASS 2) 0.8 0.8 0.2 

 

And, the codes for the four phenotypic classes are as follows: Class 1) = 2 1, Class 2) = 1 1, Class 3) = 2 2, 

Class 4) = 1 2, Unknown ) = 0 1 or 0 2, with no difference. 

 

MLINK results are given in table 10-3. 
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 θ      Log(Likelihood)  Lod Score 

─────────────────────────────────────────────────── 

0.0   -17.663268   -0.208789 

0.1   -17.357955    0.096524 

0.2   -17.317604    0.136875 

0.3   -17.347853    0.106626 

0.4   -17.397023    0.057456 

0.5   -17.454479    0.000000 

ILINK: ̂ = 0.186  Z(̂ ) = 0.137380 

Table 10-3: Analysis results for EX12.PED; EX12.DAT 

10.5 ABO BLOOD GROUP REVISITED 

In chapter 8, we learned how to code the ABO blood group as a Binary Factors type of locus. Now that you 

have a basic idea about Binary Factors loci, we will discuss another important application of Affection 

Status loci. This is sometimes useful if there are complicated dominance relationships at your marker locus, 

as there are at the ABO blood group. All this means is that you must define the penetrances for each 

phenotype in separate "liability classes". The penetrances for the ABO blood group phenotypes are shown in 

table 10-4. 

 
───────────────────────────────────────────────────────── 

    Penetrances for Genotypes    Affection 

Liab.  Pheno- ───────────────────────────     Status 

Class   type AA   AB   AO   BB   BO   OO    Coded As 

───────────────────────────────────────────────────────── 

  1     A   1    0    1    0    0    0       2 1 

  2     B   0    0    0    1    1    0       2 2 

  3    AB   0    1    0    0    0    0       2 3 

  4     O   0    0    0    0    0    1       2 4 

───────────────────────────────────────────────────────── 

Table 10-4: Affection status representation of ABO blood group 

 

 In this example, you can see how the affection status locus type can be used to specify complicated 

dominance relationships.  

 In summary, in this chapter, we saw that the affection status locus type can be used to characterize 

any type of mendelian inheritance, and is not limited to disease traits. In fact, a more appropriate name for 

this locus type would be "dichotomous locus type". We earlier saw that the Allele Numbers locus type can 

handle a subset of all possible binary factors in a simpler notation. Similarly, in this chapter, we have seen 

that the binary factors locus type can code for a small subset of all possible modes of inheritance codable 

under an affection status locus type. Any phenotype:genotype equivalence that can be described with the 

allele numbers or binary factors notation can also be handled in an affection status. Plus, the affection status 

has the additional advantage of allowing for penetrance values other than 0 or 1, making it even more 

flexible than the other locus types. If one wanted to, one could do all linkage analyses with the LINKAGE 

programs without ever using any allele numbers or binary factors loci, but as we have seen, they provide 

convenient shorthand notations for simple fully penetrant genetic loci. 

EXERCISE 10 

Go back to the second part of exercise 8 (files USEREX8.*), and recode the ABO blood group as an 

affection status locus, in the manner described above. Then, perform the same analyses as you did in 

exercise 8 with ABO, replacing the binary factors representation of it with the new affection status 

representation. The results of the analysis must be identical, if you have made no errors. Also, recode the 

disease from that exercise as a recessive trait (In this case, the 2 phenotype represents “normal”!), that is, 

think of the "normal" trait as the trait of interest, which should be coded as “2” in the pedigree file. Finally, 

recode the codominant marker locus from this example as an affection status locus. Reanalyze the pedigree 

with these new affection status loci, and compare the results. They should be identical to the results obtained 

from the earlier allele numbers and binary factors representations. 

 Reconsider the example from this chapter's text (EX12.*), with the 80% diagnostic certainty. Please 

assume that that disease had constant 70% penetrance, instead of the full penetrance you had previously 

assumed. Analyze the pedigree with MLINK and ILINK. 
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 Next, go back, and insert the 0.5% phenocopy rate in the analysis, along with the diagnostic 

uncertainty and reduced penetrance models. Reanalyze the pedigree with MLINK and ILINK. 

 Next, let us assume that the disease is also inherited with reduced penetrance following a straight line 

age-of-onset curve. In this case the penetrances for the susceptible genotypes range from 10% for those 

under 10 up to 90% for those over 50, while the penetrance curve for those with non-susceptible genotypes 

(phenocopy rate) also follows a straight line age-of-onset curve with penetrances ranging from 0.2% under 

age 20, rising to 1% for those over age 60. Please now define a liability class notation for this locus by 

dividing the population into six age classes as follows [0,9], [10,19], [20,34], [35,49], [50,59], [60,100], 

calculating penetrance values for the median age of each group (e.g [0,9] : use age 5; [20,34] : use age 27). 

Note that you will now need many liability classes. Since not all of them are used in this specific pedigree, 

you can simply recode the locus to just include the liability classes you will need for this analysis, based on 

the diagnostic class/age combinations appearing in this pedigree. 

 Let us assume now, that it is possible for some individuals to be either 1) type A or AB, and others 

can be 2) type B or AB, others can be 3) A or O, and still others can be either 4) B or O. In other words, the 

blood types are not uniquely determined, but some information was obtained from a partial test. In this 

pedigree, let us now assume that the 56 year old mother of three in the third generation has type 1) above, 

the probably affected 15 year old girl in the fourth generation has type 2) above, the 57 year old probably 

affected female on the extreme right of the drawing in the third generation has type 3) above, and the 17 

year old probably unaffected female in the fourth generation on the extreme left of the drawing has type 4) 

above. Now recode your pedigree file, and reanalyze the family. 
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11 THE LIPED PROGRAM 
LIPED (for LIkelihoods in PEDigrees) was the first generally available program for linkage analysis (Ott, 

1974) [17]. It has changed little since it was extended to handle general pedigrees (Ott, 1976) except that 

age-of-onset functions were later incorporated. It contained one error relating to the likelihood of qualitative 

traits; fortunately, that bug was caught by Dr. Robert Elston soon after the program was distributed. The fact 

that is has been bug free ever since is probably the main reason why it was used for 20 years [18] and was 

by many people considered the gold standard against which other programs are compared. Below we will 

give you a general description of the LIPED program and provide an example of how to use it. 

11.1 Characteristics of LIPED 

LIPED is written in Fortran 77 and runs almost unmodified on most computers. Many researchers have 

adapted it to their computers and made various modifications to it. We support LIPED for Windows and 

Linux, compiled with GNU gfortran. It is distributed with various example input files and an extensive 

documentation. 

 Only two loci can be handled by LIPED at any one time, but the program is set up to carry out 

various two-point analyses in a single run. All preprocessing steps such as the ones carried out by the 

MAKEPED program are incorporated in a single program. Below, the main similarities and differences 

between LIPED and LINKAGE are pointed out. 

 As in the LINKAGE programs, the likelihood is calculated recursively by the use of the Elston-

Stewart algorithm, but no iterative parameter estimation is possible as in the ILINK program. In both, 

LIPED and LINKAGE, program constants are set for maximum numbers of alleles, loops, etc., and new 

values of these constants require recompilation of the programs. 

 LIPED calculates lod scores for a sequence of recombination fractions or a sequence of points of 

male (θm) and female (θf) recombination fractions, which are displayed in a rectangular coordinate system 

with axes of θm and θf. 

 Five locus types are distinguished in LIPED: 

 1) Qualitative phenotypes with penetrances of 0 or 1 

 2) Qualitative phenotypes with any penetrances 

 3) Quantitative phenotypes following a normal distribution 

 4) Disease phenotypes (affected/unaffected) with age of onset following a lognormal distribution 

 5) Disease phenotypes with age of onset following a straight-line “penetrance curve.” This and the 

last locus type make it very easy to handle age dependent penetrance because the different cases of age of 

onset known or unknown are allowed for through their appropriate density or distribution function. In the 

LINKAGE programs, properly allowing for age dependent penetrance can require the setting up of many 

liability classes. 

 LIPED cannot directly handle the situation that parents in a pedigree both have parents in the same 

pedigree. Such a situation must be accommodated by doubling one of the parents much in the same way as 

one breaks a loop (see example below). This requirement is a consequence of the fact that only Elston-

Stewart type peeling (going up through pedigrees) is incorporated in LIPED but not more general pedigree 

traversing algorithms. 

 For the analysis of a given two-locus problem, LIPED is generally somewhat slower than MLINK, 

particularly, of course, when upwards branching is present requiring the doubling of individuals in LIPED 

but not in MLINK. 

11.2 An example: monozygotic twins 

Several examples are provided in the LIPED 

documentation such that we do not give extensive 

details on how to use the program. Only one 

example is outlined here, which also demonstrates 

how monozygotic twins should be handled by 

LIPED. This example could be calculated in pretty 

much the same way by MLINK and is thus not 

specific to LIPED. 

Figure 11-1 shows a small three-generation 

pedigree in which a dominant disease is segregating together with a marker locus with three alleles. 

http://www.jurgott.org/linkage/liped.html
http://www.jurgott.org/linkage/liped.html
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Penetrance is incomplete (90%) but no phenocopies occur. Individuals 3.4 and 3.5 are monozygotic twins, 

that is, they represent two phenotypic expressions of the same genotype. Therefore, for linkage analysis 

purposes, these two individuals must be represented as a single individual (here denoted by 345). In 

addition, the penetrances for that single individual must be the squares of the penetrances appropriate for 

one of the two twins. For example, given the genotype D/D, the penetrance for affected is 0.90 and that for 

unaffected (phenotype of our two twins) is 0.10. Thus, the penetrance for the single individual representing 

the two monozygotic twins must be (0.10)
2
 = 0.01. To allow for this different set of penetrances, a separate 

phenotype (liability class) is introduced, here denoted by the symbol MT. Incidentally, no such extra liability 

class is required in the MENDEL program [19] because it directly provides for the presence of monozygotic 

twins. 

 Whereas the left side of Figure 11-1 shows the original pedigree, the pedigree manipulated for input 

to LIPED is displayed on the right side (note that one of the parents must be doubled). The input file 

appropriate for this problem is shown below. Comments to the right of <= are optional and are given here 

only for better clarity. Details on how to set up an input file may be found in the online LIPED manual. 

 
1 0000 0.0          MZ twin analysis 

           0   m   0 0/0  <= unknown parent (here 0), male (here m), unknown phenotypes 

 2 3    <= number of alleles at loci 1, 2, ... 

 3 6    <= number of phenotypes 

-1 0    <= locus types 

 2    <= output option 

 Dis   D   +  AF  NA  MT <= locus name, allele symbols, phenot. symbols 

   0.001   0.999   <= allele frequencies (D = recessive disease allele) 

   D   D  .9  .1 .01  <= genotype and penetrances 

   D   +  .9  .1 .01 

   +   +   0   1   1 

 S61   1   2   3 1/1 1/2 1/3 2/2 2/3 3/3 <= allele and phenotype symbols 

      .2      .5      .3 

   1   1   1 

   1   2   0   1 

   1   3   0   0   1 

   2   2   0   0   0   1 

   2   3   0   0   0   0   1 

   3   3   0   0   0   0   0   1 

  11   1Pedigree with monozygotic twins 

 1.1   0   0   f  NA 0/0 

 1.2   0   0   m  AF 0/0 

 21A 1.1 1.2   m  NA 1/3 

 1.3   0   0   m  NA 2/3 

 1.4   0   0   f  NA 3/3 

 2.2 1.3 1.4   f  NA 0/0 

 2.1   0   0   m  NA 1/3 

 3.1 2.1 2.2   m  NA 2/3 

 3.2 2.1 2.2   f  AF 1/3 

 3.3 2.1 2.2   m  NA 2/3 

 345 2.1 2.2   f  MT 2/3 

 2.1 21A   <= This line identifies the doubled individual 

9000 

 

 The five 1’s and 0’s on the first input line indicate (1) the presence of a single marker locus, (2) the 

LIPED should print to screen and an output file called liped.out, (3) no special measures to prevent 

underflow, (4) autosomal inheritance, and (5) allele frequencies (as opposed to haplotype frequencies); 0.0 

indicates absence of mutation. On the second input line, the four items define the symbols for “no parent” 

(here 0), male sex (here “m”), and unknown phenotypes at the two loci (here 0 and 0/0). Subsequent lines 

indicate numbers of alleles, numbers of phenotypes, and locus type for the different loci; and an output 

option (2 specifies equal male and female recombination fractions with values as shown in the output 

below). 

 Next, a group of input lines is reserved for each locus. In each group, the first line specifies the locus 

symbol, allele symbols for use in the few lines immediately below, and phenotype symbols used in the 

pedigree data. The next line furnishes the allele frequencies in eight spaces each. After that, as many lines as 

there are genotypes are expected, each line defining a genotype and the associated penetrances for each 

http://www.jurgott.org/linkage/liped.html
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phenotype (blank instead of a number is interpreted by FORTRAN as zero). Be aware that here the 

penetrances are the conditional probabilities with respect to the phenotypes listed on the first line in each 

group whereas in LINKAGE, penetrances refer to the “2” phenotype. Since the monozygotic twins are 

unaffected (phenotype MT), the penetrances for genotypes D/D and D/+ are small. 

 To beak a loop, or one of two inheritance lines ascending from two parents, a suitable individual 

must be doubled. The principle is the same as in the LINKAGE programs except that here it is the user who 

must carry out the doubling: One of the two doubles must be coded as an offspring and the other as a mate 

without parents. The two are later identified as representing the same individual. 

 On line 14 from the bottom, the first number (here m = 11, right justified in columns 1-4) specifies 

the number of family members to follow, and the second number (in columns 5-8) denotes the number of 

pairs of doubled individuals present. The comment (starting in column 9) following the two numbers is 

optional and will appear on the output. The next m lines describe the pedigree data: in each line one must 

have a unique individual id, parents' id's, sex, and phenotypes. After the m-th line, for each pair of doubled 

individuals, the id's of the two doubles are listed on one line. Finally, a code consisting of four digits directs 

the LIPED program to take further actions as indicated by input lines following that code. Here, a stop code 

(9000) is provided. 

 To run this input file, one invokes the program by typing LIPED. The output file, liped.out, looks as 

follows: 

 
      Program LIPED  Version for PC   June 1995/Jan 2015   J. Ott 

       Copyright (c) Jurg Ott 1988-2015. 

 ----------------------------------------------------------------- 

  Program started on Sun Jan 25 20:46:28 2015       

 

 PROBLEM  1   MZ twin analysis  

 ********** 

 (autosomal linkage) 

 

 Pedigree    1   Pedigree with monozygotic twins 

 ------------- 

                11 individuals 

 

 LOCUS  0    Dis     VS.     LOCUS  1    S61                      

 ------------------------------------------- 

 

 GENE FREQUENCIES FOR  0    Dis  0.0010  0.9990 

 GENE FREQUENCIES FOR  1    S61  0.2000  0.5000  0.3000 

 

  R MALE  R FEM.   LOG10[L(R)]   LOD-SCORE 

  0.5000 0.5000      -10.40960       0.000 

  0.4000 0.4000      -10.33163       0.078 

  0.3000 0.3000      -10.15452       0.255 

  0.2000 0.2000       -9.95545       0.454 

  0.1000 0.1000       -9.76631       0.643 

  0.0500 0.0500       -9.67790       0.732 

  0.0010 0.0010       -9.59526       0.814 

  0.0001 0.0001       -9.59378       0.816 

 

 As these results show, the maximum lod score (at̂ = 0) is equal to 0.816. If the two twins are 

replaced by a single person with unmodified penetrance (here of 0.10), the resulting lod score is 0.779, 

which is, in this case, smaller than the correct lod score of 0.816. On the other hand, if the two twins are 

handled like regular twins (each with penetrance of 0.10), a maximum lod score of 1.039 is obtained, which 

is clearly higher than the correct lod score. Generally, treating monozygotic twins like fraternal twins tends 

to have the same effect as duplicating an offspring, that is, “inventing” data for one additional individual. In 

the long run, this does not introduce a bias in the recombination fraction estimate but it consistently inflates 

the lod score although, in any specific case, the lod score may also be decreased (when the twins represent 

recombinants). 
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EXERCISE 11 

Modify the input to LIPED shown above to verify that falsely replacing the twins by a single individual with 

penetrance as for any unaffected phenotype results in a maximum lod score of 0.779. Why is the lod score 

now smaller? 

 Similarly, prepare the input such that the twins appear as fraternal sibs, leading to a lod score of 

1.039. You may have to consult the LIPED manual if you experience problems. Interpret the result. 
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12 Solutions to Part I Exercises 

EXERCISE 2 

The pre-MAKEPED file, USEREX2.PRE should be as follows: 

 
userex2 1 0 0 2 2 2 3 

userex2 2 0 0 1 1 0 0 

userex2 3 0 0 1 2 1 3 

userex2 4 0 0 2 1 0 0 

userex2 5 0 0 1 1 3 3 

userex2 6 0 0 2 1 2 3 

userex2 7 2 1 2 1 1 3 

userex2 8 3 4 1 2 1 2 

userex2 9 3 4 2 2 1 3 

userex2 10 5 6 1 1 0 0 

userex2 11 8 7 2 1 2 3 

userex2 12 0 0 1 1 1 4 

userex2 13 8 7 2 2 1 3 

userex2 14 0 0 1 1 1 1 

userex2 15 8 7 2 1 1 2 

userex2 16 10 9 2 1 2 3 

userex2 17 10 9 1 2 1 3 

userex2 18 10 9 2 2 1 3 

userex2 19 10 9 1 2 1 2 

userex2 20 12 11 2 1 2 4 

userex2 21 14 13 2 1 1 1 

userex2 22 14 13 2 2 1 1 

userex2 23 14 13 1 1 1 3 

userex2 24 14 13 1 2 1 1 

 

 This is not the only individual identifying scheme that is acceptable. One could just as easily have 

named individuals in the pedigree with character ID's, but in this case, we decided to identify each 

individual by a number. Upon processing this file with MAKEPED, the following USEREX2.PED file 

should result: 

 
1 1 0 0 7 0 0 2 0 2 2 3 Ped: userex2 Per: 1 

1 2 0 0 7 0 0 1 1 1 0 0 Ped: userex2 Per: 2 

1 3 0 0 8 0 0 1 0 2 1 3 Ped: userex2 Per: 3 

1 4 0 0 8 0 0 2 0 1 0 0 Ped: userex2 Per: 4 

1 5 0 0 10 0 0 1 0 1 3 3 Ped: userex2 Per: 5 

1 6 0 0 10 0 0 2 0 1 2 3 Ped: userex2 Per: 6 

1 7 2 1 11 0 0 2 0 1 1 3 Ped: userex2 Per: 7 

1 8 3 4 11 9 9 1 0 2 1 2 Ped: userex2 Per: 8 

1 9 3 4 16 0 0 2 0 2 1 3 Ped: userex2 Per: 9 

1 10 5 6 16 0 0 1 0 1 0 0 Ped: userex2 Per: 10 

1 11 8 7 20 13 13 2 0 1 2 3 Ped: userex2 Per: 11 

1 12 0 0 20 0 0 1 0 1 1 4 Ped: userex2 Per: 12 

1 13 8 7 21 15 15 2 0 2 1 3 Ped: userex2 Per: 13 

1 14 0 0 21 0 0 1 0 1 1 1 Ped: userex2 Per: 14 

1 15 8 7 0 0 0 2 0 1 1 2 Ped: userex2 Per: 15 

1 16 10 9 0 17 17 2 0 1 2 3 Ped: userex2 Per: 16 

1 17 10 9 0 18 18 1 0 2 1 3 Ped: userex2 Per: 17 

1 18 10 9 0 19 19 2 0 2 1 3 Ped: userex2 Per: 18 

1 19 10 9 0 0 0 1 0 2 1 2 Ped: userex2 Per: 19 

1 20 12 11 0 0 0 2 0 1 2 4 Ped: userex2 Per: 20 

1 21 14 13 0 22 22 2 0 1 1 1 Ped: userex2 Per: 21 

1 22 14 13 0 23 23 2 0 2 1 1 Ped: userex2 Per: 22 

1 23 14 13 0 24 24 1 0 1 1 3 Ped: userex2 Per: 23 

1 24 14 13 0 0 0 1 0 2 1 1 Ped: userex2 Per: 24 

 

 In this file, the additional pointers were added, as explained in chapter 2. The parameter file, 

USEREX2.DAT should look like the following (after PREPLINK): 
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 2 0 0 5 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1) PROGRAM 

 0 0.0 0.0 0 << MUT LOCUS, MUT RATE, HAPLOTYPE FREQUENCIES (IF 1) 

 1 2 

1 2 << AFFECTION, NO. OF ALLELES 

 0.999990 0.000010 << GENE FREQUENCIES 

 1 << NO. OF LIABILITY CLASSES 

 0.0000 1.0000 1.0000 << PENETRANCES 

3 3 << ALLELE NUMBERS, NO. OF ALLELES 

 0.333330 0.333330 0.333330 << GENE FREQUENCIES 

 0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

 0.10000 << RECOMBINATION VALUES 

 1 0.10000 0.45000 << REC VARIED, INCREMENT, FINISHING VALUE 

 

Depending on the version of PREPLINK you are using, there may be some differences in the number of 

decimal places in the output files, but the format should be the same as that indicated above, for this 

example. 

EXERCISE 3 

The analytic solution in this pedigree is extremely complicated, and involves a large number of complicated 

formulas. For this reason, most pedigrees need to be analyzed with computer programs like LINKAGE. In 

this case, however, we can get some idea of what the recombination fraction should be from examining the 

most likely situation in this pedigree. The disease appears to be segregating with the 1 allele in this pedigree. 

If the disease actually were segregating with the 1 allele, there would be one obligate recombinant, in the 

unaffected female in the bottom generation with marker genotype 1 1. Otherwise, there are 12 meioses 

informative for the disease in which there are no obligate recombination events. So, we would guess that the 

recombination fraction estimate should be somewhere around 1/13 = 0.077. Of course, the actual estimate 

will not be exactly equal to this, since the pedigree is phase unknown in the upper branches, and since there 

are a few untyped individuals. 

 When you call up the UNKNOWN program, it will give you the following message: 

 
ERROR: Incompatibility detected in this family for locus 2 

 

When a message like this comes out of the UNKNOWN program, it typically implies there is some error in 

the input files. First, you should look over the pedigree to make sure that there are no Mendelian 

inconsistencies (i.e. a 1/1 father and a 2/2 mother having a 2/2 child would be inconsistent with Mendelian 

inheritance). However, unless you made a typing error when entering the data, this should not be the case. 

The next thing to look at would be the description of the loci in the parameter file. It would seem that the 

parameter file created in exercise 2 is compatible with the description of the loci given in that exercise. 

However, upon closer scrutiny of the pedigree, it is clear that while the marker locus was entered as a three 

allele system, in the third generation, a man married into the pedigree with genotype 1/4, which would be 

impossible at a three-allele locus. Hence, we need to recode this locus in PREPLINK, to allow for four 

alleles instead of three. For now, let us assume the four alleles are equally frequent, with gene frequency 

0.25 for each allele. Later, in Part III, we will learn more appropriate ways of dealing with gene frequency 

estimation, but we will defer further discussion of it until then. Now, when you run the analysis you should 

get the results shown in Table 12-1. Notice how close the estimated recombination fraction of 0.079 was to 

our approximation of 1/13 = 0.077. Perhaps we should try and modify our DATAFILE.DAT file, such that 

we use a starting value of 0.079 for the recombination fraction (in the ILINK analysis), and see if we can 

further refine this estimate of θ. When you do this, your new estimate should be = 0.077, which is exactly 

1/13, with Z(̂ ) = 1.783275. Running the ILINK analysis at each recombination fraction (as can be easily 

done in MLINK) would be accomplished by modifying the bottom 3 lines of your datafile. Initially they 

should look like this: 

 
0.10000 << RECOMBINATION VALUES 

0 << THIS LOCUS MAY HAVE ITERATED PARS 

1 

 

This causes the ILINK program to start at θ = 0.10000, and then iterate (since the last line contains a 1) the 

recombination fraction until the MLE is found. In order to compute the likelihood at θ = 0.10000, you would 
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simply need to modify the bottom line of the parameter file, by replacing the 1 (iterate recombination 

fraction) to a 0 (fix the recombination fraction). Then, you would simply specify the desired recombination 

fraction on the third line from the bottom of the file. Every time you wish to compute the lod score for a 

different θ, simply alter the third line from the bottom, and run the ILINK program again. The results will be 

exactly the same as those shown in Table 12-1). 

 
 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -infinity   -infinity 

0.1  -26.896276   1.767576 

0.2  -27.187291   1.476561 

0.3  -27.650514   1.013338 

0.4  -28.180207   0.483646 

0.5  -28.663852   0.000000 

ILINK: ̂ = 0.079. Z(̂ ) = 1.783267 

Table 12-1: Analysis results from USEREX2.* with MLINK and ILINK 

EXERCISE 4 

Using LCP, you should specify on the first screen the values as follows: 

 
COMMAND file name [PEDIN.BAT] : PEDIN.BAT 

LOG file name [FINAL.OUT] : FINAL.OUT 

STREAM file name [STREAM.OUT] : STREAM.OUT 

PEDIGREE file name [PEDIN.DAT] : USEREX2.PED 

PARAMETER file name [DATAIN.DAT] : USEREX2.DAT 

Secondary PEDIGREE file name [] : 

Secondary PARAMETER file name [] : 

 

 Then, after selecting the MLINK program, with Specific Evaluations, and No sex difference options, 

you should complete the MLINK - Lod Score Specification screen as follows: 

 
 Locus order [] : 1 2 

 Recombination fractions [.1] : 0 

 Recombination varied [1] : 1 

 Increment varied [.1] : 0.1 

 Stop value [.5] : 0.4 

 

Then, go back and select the ILINK program, with Specific order, and No sex difference options, and set up 

the ILINK - Locus Order Specifications screen as follows: 

 Locus order [] : 1 2 

 Recombination fractions [.1] : 0.1 

Then, hit <Page Down> to save this analysis, and hit <Ctrl-Z> to exit. Type PEDIN at the DOS prompt, and 

then examine the FINAL.OUT file. The results contained within this file should be identical to those in table 

12-1. 

EXERCISE 5 

The results of the analysis of the USEREX2.PED pedigree under 75% penetrance (autosomal dominant) are 

presented in table 12-2. Note that in this analysis, the estimated recombination fraction was 0. This is 

because it was more likely that the "obligate recombinant" individual in the pedigree was more likely to be 

non-penetrant than to be a recombinant, when both options were allowed for. The lod score also jumped by 

about 0.4 units. This is largely due to the decreased estimate of θ. With the same amount of data, the smaller 

the estimated recombination fraction is, the stronger the evidence for linkage (this makes sense, since the 

fewer recombinants observed in a fixed sample, the greater the likelihood that the two loci are linked). 

 

 

 

 



67 

 

 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -27.197236   2.209401 

0.1  -27.583813    1.822823 

0.2  -28.029907   1.376729 

0.3  -28.519204   0.887432 

0.4  -29.006410   0.400227 

0.5  -29.406636   0.000000 

ILINK: ̂ = 0.001. Z(̂ ) = 2.206964 

Table 12-2: Analysis results from USEREX2.PED with autosomal dominant model with 75% 

penetrance 

 

 The analysis of this pedigree under the autosomal recessive model with 70% penetrance is presented 

in table 12-3. Note that now the lod scores are almost all uniformly negative. This makes sense, because 

now, all of the affected individuals are forced to be homozygous for the disease allele, and thus 

uninformative for linkage. The unaffecteds (who did not carry the disease allele under the dominant model) 

are now forced to be carriers of the disease allele in at least one copy, if they have affected children (who 

must also be homozygous for the disease allele). Thus, all of the information is coming from the individuals 

who were uninformative in the dominant analysis. If the disease truly were dominant, you would expect 

these (actual homozygous normal) individuals to transmit either allele to their affected children with equal 

probability, and therefore, the expected estimate of θ should be 0.5 in these situations. 

 
 θ  Log(Likelihood)  Lod Score 

────────────────────────────────────────────── 

0.0  -64.367120   -10.326114 

0.1  -54.633665    -0.592695 

0.2  -54.195452    -0.154446 

0.3  -54.031058     0.009948 

0.4  -53.993094     0.047912 

0.5  -54.041006     0.000000 

ILINK: ̂ = 0.389; Z(̂ ) = 0.0482982 

Table 12-3: Analysis results from USEREX2.PED with autosomal recessive model with 70% 

penetrance 

 

 The results of the same analyses when only 30% penetrance is allowed for are presented in table 12-

4 for the dominant case, and table 12-5 for the recessive case. From these results, you can see the general 

effect of lowering the penetrance is to flatten the lod score curve. The magnitudes (positive and negative) are 

reduced significantly when the penetrance is reduced, since the ability to discriminate genotypes among the 

unaffected individuals is severely limited. When there is 70% penetrance, the unaffecteds have penetrances 

1 for +/+ genotypes, and 0.3 for +/D or D/D genotypes (assuming a dominant disease. The ratio of 

penetrances is thus 10/3, or about 3.33:1. However, when the penetrance is reduced to 30%, the ratio of 

penetrances is reduced to 10/7, or about 1.4:1. When you consider that a penetrance ratio of 1:1 implies an 

inability to distinguish between genotypes based on a given phenotype, then you can see that a ratio of 1.4:1 

isn't much different from calling the unaffected individuals unknown in phenotype, and so you are losing 

information. Of course, when penetrance is complete, the penetrances for unaffecteds are 1 for +/+ 

genotypes, and 0 for +/D or D/D genotypes, for a penetrance ratio of 1:0 or infinity, since all unaffecteds 

must have had genotype +/+. This is the reason reducing the penetrance has such a major effect on the 

analysis, and it points out that the effect is due to increased uncertainty about the genotypes of unaffected 

individuals. Of course, for affected individuals, the penetrance ratio is always 0/f = 0, whatever the value of 

f (the penetrance) is. Hence, it does not alter the ability to discriminate the genotypes of affected individuals, 

unless you are allowing for phenocopies as you will see in chapter 9. 
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 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -30.608103   1.805107 

0.1  -30.984986   1.428225 

0.2  -31.384362   1.028849 

0.3  -31.790104   0.623107 

0.4  -32.155375   0.257836 

0.5  -32.413210   0.000000 

ILINK: ̂  = 0.001; Z(̂ ) = 1.802592 

Table 12-4: Analysis results from USEREX2.PED with autosomal dominant model with 30% 

penetrance 

 

 If the disease were actually recessive, and you analyzed it as a dominant disease, you would expect 

quite a different result. First of all, you would probably have to assume reduced penetrance for the disease, 

since parents (in a recessive disease) are typically unaffected. Since in a recessive disease, both parents 

contribute one disease allele to affected children, if you are looking at a linked marker, it would have to 

show linkage in both parental meioses. If you were to analyze the disease as if it were dominant, then you 

would only be considering segregation of the disease from one of the parents, with the other parent typically 

considered to be homozygous normal. Thus, you would be throwing away half of your truly informative 

meioses for the disease and marker. Still, you are retaining roughly half of the meioses, in which the marker 

is, of course, still cosegregating with the linked disease allele. Therefore, you would in general expect to still 

find positive lod scores, and reasonable estimates of the recombination fraction, although your power should 

be roughly chopped in half. 

EXERCISE 6 

If one looks closely at this pedigree, it is 

clear that the information for linkage 

can be collapsed into what is shown in 

Figure 12-1. Clearly, GMOTHER2 and 

GFATHER2 contribute no information 

about linkage, since they have only one 

son, and did not transmit the disease 

allele. Hence, they can be left out. 

Similarly, GSON1 and GSON2 merely 

serve to identify DAU1 as a carrier of 

the disease allele, but since she is a 

homozygote at the marker locus, they 

provide no other information about 

linkage. The same holds for GSON3 and 

GSON4, who only tell us that DAU2 is a carrier of the disease allele. On the other hand, GSON5 does 

provide evidence for linkage. Clearly, the fact that he is affected tells us that his mother, DAU3 is a carrier 

of the disease allele. Further, she is a heterozygote, who had to have receive both the disease and the 3 allele 

from GMOTHER1. Since she then transmitted the 2 allele with the disease allele to GSON5, there was an 

obligate recombination event. We also know the phase in each of the 6 children in this collapsed nuclear 

family, as indicated in Figure 12-1. However, we do not know the phase in GMOTHER1. Since each of the 

two phases have equal probability, we can compute the likelihood of this nuclear family from counting 

recombinants and non-recombinants under each phase as just ½[ θ
5
(1 – θ)] + ½[(1 – θ)

5
θ]. Since there is one 

additional obligate recombinant from DAU3 to GSON5, this whole likelihood should be multiplied by θ to 

get the likelihood for the entire pedigree. The likelihood ratio, therefore, is just (θ[θ
5
(1 – θ) + (1 – 

θ)
5
θ])/(0.5)

6
, and the lod score, accordingly is just 6 × log10(2) + log10(θ) + log10[θ

5
(1 – θ) + (1 – θ)

5
θ].  

 The results of the analysis of this example with MLINK and ILINK are shown in table 12-6. To 

confirm that your analytical result is compatible with the computer analysis, let us compute the numerical 

value of the lod score from the formula above at θ = 0.10. From the formula above, Z(0.10) = 6 × log10(2) + 

log10(0.10) + log10[(0.10)
5
(0.90) + (0.90)

5
(0.10)] = 1.80618 – 1 – 1.22872 = –0.42254, which is exactly what 

was found with the MLINK program. To further confirm that the reduction of the data into the genotypic 
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information contained in Figure 12-1, please enter the pedigree shown in that figure in LINKAGE pedigree 

and parameter files, coding the disease locus as an allele numbers locus with the + allele being coded as 1, 

and the disease allele coded as 2. Assume gene frequency of 0.01 for the 2 allele at this locus. Leave the 

second locus as a four allele allele numbers locus, and analyze this reduced pedigree (remember, the reason 

for using an allele numbers locus is to allow carriers [1 2] to be distinguished from homozygous normal 

individuals [1 1]). When you analyze this new pedigree, the lod scores should be identical to those in table 

12-6, although the likelihoods will be much larger, since the pedigree is much smaller. 

EXERCISE 7 

If you were to run the MAKEPED program without declaring any loops, the LOOPS program would report 

that "Loop(s) present in Family 1". The LOOPS.OUT file should look like the following: 

 
Program LOOPS version 1.17 

 

Programmed by Xiaoli Xie July 1992 

Design: Jurg Ott and Xiaoli Xie 

 

Loop(s) in family 1! 

Individuals in parentheses are married 

The individuals and/or marriages involved are: 

Loop 1: 3-(3,4)-7-8-(6,5)-5-(1,2)-3 

Loop 2: 7-8-(5,6)-10-9-(3,4)-7 

Loop 3: 8-(5,6)-10-(10,9)-13-12-(7,8)-8 

Note: ID numbers are as assigned by MAKEPED 

 

Thus, the program reports 

having found three loops in this 

pedigree, the first being a 

consanguinity loop connecting 

the first set of first cousins who 

married (the first two people in 

the third generation); the 

second being a marriage loop 

with the two brothers in the 

third generation marrying two 

sisters; and the third being a 

consanguinity loop between the 

two cousins who married in the 

fourth generation of the 

pedigree, with the three 

affected sons. Of course, it is 

possible to list other loops, like 

the consanguinity between the second couple who married in generation 2, etc. But the program is saying 

that if you were to break the three loops it outlined, then there would be no further loops in the pedigree. To 

see this, let us go through the pedigree, and break one loop at a time. It is important to remember that you 

need to break the loops by doubling the individuals about whom there is the least amount of genotypic 

ambiguity (including phase). 

 Let us begin by breaking the first loop discovered by the LOOPS program by doubling the 1/3 

unaffected male in the third generation. The resulting pedigree would look like that shown in Figure 12-2. 

Of course, there are still loops left in this pedigree, so we should next decide to break another loop in this 

pedigree. You could run the MAKEPED program, and break this one loop, and have the LOOPS program 

identify the remaining loops. In this case, after running the LOOPS program, the first loop detected would 

involve the two cousins who married in the fourth generation. By looking at the pedigree you can see that 

this loop is still present, even after breaking the first loop. Let us then proceed to break this loop at the 

unaffected mother of the three affected girls in the fourth generation (the 12th individual in the pedigree), as 

shown in Figure 12-3. By looking at this figure, however, you can see that there is still at least one loop 

remaining, since there is still a first cousin marriage in the second generation. If you run MAKEPED at 
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break the two loops as we did, the LOOPS program will again detect a 

loop, the loop being indicated 

in the LOOPS.OUT file as the 

first cousin marriage in the 

third generation. If we break 

this loop by doubling the 

unaffected male with 1/2 

genotype in the third generation 

(he has the most genotypic 

information, since his parents 

are typed, and he has to be a 

carrier of the disease), we will 

be left with the pedigree in 

Figure 12-4. From examination 

of this pedigree, there don't 

seem to be any loops 

remaining, as can be more 

clearly seen if we redraw the 

pedigree, separating the doubled individuals in such a way that the absence of loops is more apparent, as 

shown in Figure 12-5. Clearly when the pedigree is redrawn like this, the absence of remaining loops is 

apparent. If you now run the MAKEPED program, and break the loops in the places we did, the LOOPS 

program should report that "No loop detected in Family 1", confirming what we have seen in figure 12-5.  

 
───────────────────────────────────────────── 

 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -66.341955   -9.203737 

0.1  -57.732587   -0.594369 

0.2  -57.299879   -0.161660 

0.3  -57.133608    0.004611 

0.4  -57.091982    0.046237 

0.5  -57.138219    0.000000 

ILINK: ̂ = 0.394; Z(̂ ) = 0.046381 

Table 12-5 : Analysis results from USEREX2.PED with autosomal recessive model with 30% 

penetrance. 

 

 

───────────────────────────────────────────── 

 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -infinity   -infinity 

0.05  -12.566381   -0.907257 

0.10  -12.081665   -0.422540 

0.15  -11.853246   -0.194121 

0.20  -11.733741   -0.074617 

0.25  -11.676429   -0.017305 

0.30  -11.658802    0.000322 

0.35  -11.665186   -0.006062 

0.40  -11.679781   -0.020657 

0.45  -11.683900   -0.024775 

0.50  -11.659124    0.000000 

ILINK: ̂ = 0.857; Z(̂ ) = 0.559736 

Table 12-6 : Analysis results from USEREX6.* 

 

 Of course, we did not select the only possible individuals at which to break the loops. They could 

just as easily have been broken elsewhere, but it is important to remember that the best strategy (computing 

time-wise) is to break all loops at the individuals with the minimum amount of genotypic ambiguity 

(including phase), as the computing time increases exponentially with the number of possible genotypes for 

the doubled individual. 
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───────────────────────────────────────────── 

 θ Log(Likelihood)  Lod Score 

────────────────────────────────── 

0.00       -13.838789     4.210090 

0.05       -14.282988     3.765890 

0.10       -14.748045     3.300833 

0.15       -15.235013     2.813866 

0.20       -15.743824     2.305054 

0.25       -16.270839     1.778040 

0.30       -16.802341     1.246537 

0.35       -17.301193     0.747686 

0.40       -17.699404     0.349474 

0.45       -17.943024     0.105854 

0.50       -18.048878     0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 3.125729 

Table 12-7: Analysis results from USEREX7.* 

 

 The results of the linkage analysis with this pedigree are shown in table 12-7. In this one small 

pedigree, because of the intense level of consanguinity, there is enough evidence for linkage to have a 

significant test result, with Z(̂ ) > 3. Since we have a significant test result for linkage in this case, for the 

first time, it is meaningful to construct a 3-unit-of-lod-score support interval around this maximum, to give 

us some idea of the accuracy of our estimate of ̂ = 0. In this case, our support interval would cover all 

values of θ with Z(θ)  [1.21, 4.21], which in this example would mean our support interval for θ would 

extend throughout the interval [0, 0.30). So, while our test of linkage is significant, we have little power in 

this small dataset to accurately estimate the recombination fraction. Obviously, in a real life situation, the 

solution would be to collect more families, or to type more markers, and do a multipoint analysis, which will 

be discussed in part II. 

EXERCISE 8 

The results from the binary factors representations of all markers in all previous user exercises should be 

identical to the results obtained originally when the allele numbers representations of those loci were used, 

so they will not be repeated again here.  

 
───────────────────────────────────────────── 

 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.00  -25.714063   3.499118 

0.10  -26.276072   2.937108 

0.20  -26.890589   2.322592 

0.30  -27.569724   1.643457 

0.40  -28.332891   0.880289 

0.50  -29.213181   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 3.495397 

Table 12-8: Analysis of Disease vs. ABO in USEREX8.* 

 

 

 For the pedigree USEREX8.PED, with the four-allele marker and the ABO blood group markers, 

you were supposed to do linkage analyses between the two markers, and between ABO and the disease. If 

you remember, the analysis of disease vs. marker 1 was done in exercise 3, with the results shown in table 

12-1, with ̂ = 0.077 (Z(̂ ) = 1.78), after further refinement of the estimate in the table of 0.079. The results 

of disease vs. ABO are presented in table 12-8, and the results of the analysis of ABO vs marker 1 are given 

in table 12-9. The recombination fraction between the disease and marker 1 was estimated at 0.077, while 

the recombination fraction between the disease and ABO was estimated to be 0.  
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 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.00  -infinity   -infinity 

0.10  -30.341911   0.310354 

0.20  -29.883658   0.768607 

0.30  -29.974499   0.677766 

0.40  -30.289189   0.363077 

0.50  -30.652265   0.000000 

ILINK: ̂ = 0.220; Z(̂ ) = 0.778700 

Table 12-9 : Analysis of Marker 1 vs. ABO in USEREX8.* 

 

However, the recombination fraction between marker 1 and ABO was estimated to be 0.220. How can this 

be consistent, you ask? Well, if you examine the pedigree closely, it is clear that there are a large number of 

meioses in which the disease is not informative, but the ABO and marker 1 are informative. In these 

meioses, there appear to be a large number of obligate recombinants between ABO and the marker. If you 

remember, when the penetrance of the disease was lowered to 75%, the recombination fraction estimate 

between marker 1 and the disease was 0. Please analyze the disease versus ABO, assuming 75% penetrance 

for the disease. The results of this analysis are presented in table 12-10. Now, we have a situation in which 

both markers show 0% recombination with the disease in this pedigree, and yet the two markers show about 

22% recombination between themselves. This causes even more confusion. Consider the fate of the 

unaffected child in the last generation with marker type 1 1, and ABO type O. When the analysis is done 

with marker 1, the most likely scenario has this child carrying the disease allele, but being non-penetrant.. 

Yet, when the analysis is done with the ABO blood group, this child is most likely not carrying the disease 

allele, since there is estimated to be 0% recombination, and the disease allele is segregating with the A allele, 

yet this child received the O allele from his mother. This apparent discrepancy can only be dealt with by 

doing a multipoint analysis, which will be discussed in Part II. 

 
 Θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.00  -26.944701   3.011264 

0.10  -27.446887   2.509077 

0.20  -27.990525   1.965439 

0.30  -28.583064   1.372901 

0.40  -29.234883   0.721082 

0.50  -29.955965   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 3.007926 

Table 12-10: Analysis of Disease vs. ABO in USEREX8.* with 75% penetrance for the 

autosomal dominant disease 

EXERCISE 9 

 The formula for the penetrance for each age class would be obtained as follows: Clearly for 

individuals under age 10, the penetrance would be simply 0.1, and for individuals over age 60, the 

penetrance would be 0.9. For individuals in the middle, we would need to determine the formula for the line 

connecting the points (10,0.1) and (60,0.9), which is simply (age-10)[0.8/50] + 0.10. If we then divide our 

set into age classes, the appropriate penetrances are given in table 12-11. After making the appropriate 

modifications to the pedigree and parameter files, you should get the results shown in table 12-12 from the 

analysis of disease vs marker 1, and those in table 12-13 from the analysis of disease vs ABO. 

 
───────────────────────────────────────────────────── 

          Penetrances 

          ─────────────────────── 

Liability Class Age range +/+    +/D       D/D  

───────────────────────────────────────────────────── 

 1   < 10   0       0.10  0.10 

      2   10-19  0    0.18  0.18 

 3   20-29  0    0.34  0.34 

 4   30-39  0    0.50  0.50 

 5   40-49  0    0.66  0.66 
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 6   50-59  0    0.82  0.82 

 7   ≥ 60   0    0.90  0.90 

Table 12-11 : Penetrances for individuals in different age classes according to the age 

of onset function defined in exercise 9. 

 

 

───────────────────────────────────────────── 

 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -27.591976   1.982445 

0.1  -27.995795    1.578626 

0.2  -28.426063   1.148357 

0.3  -28.869965   0.704456 

0.4  -29.280893   0.293528 

0.5  -29.574421   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 1.979753 

Table 12-12 : Results of analysis of disease vs. marker 1 in files  USEREX8.* 

 

 

───────────────────────────────────────────── 

 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -27.912368   2.211381 

0.1  -28.308307   1.815443 

0.2  -28.727879   1.395871 

0.3  -29.171507   0.952243 

0.4  -29.638251   0.485498 

0.5  -30.123749   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 2.208726 

Table 12-13 : Result of analysis of disease vs. ABO in files USEREX8.* 

EXERCISE 10 

When you have a disease with 80% diagnostic certainty and 70% penetrance, to determine the penetrance 

values, you simply apply the formula given in chapter 10, p × P(affected │ genotype) + (1 – p) × 

P(unaffected│genotype), where p is the probability with which you believe the individual to be affected (the 

diagnostic certainty). In this case, then, for people who are affected with 80% certainty, the penetrances are 

for people with genotype AA or Aa (notation from chapter 10), (0.8)(0.7) + (0.2)(0.3) = 0.62, and for people 

with genotype aa, (0.8)(0) + (0.2)(1) = 0.2. Thus the penetrance classes with the disease being 70% 

penetrant are as follows: 

 
  AA Aa aa 

1)  0.7 0.7 0 

2)  0.62 0.62 0.20 

 

Thus, in this case, there is very little genotype discrimination possible for the affected with 80% certainty 

liability class, since the penetrance ratio is only 0.62/0.20 = 3.1:1, which is much smaller than 0.7/0 = ∞. 

The results of the analysis of the pedigree under this model are given in table 12-14.  

 
 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -17.296418   0.437915 

0.1  -17.399164   0.335169 

0.2  -17.505815   0.228518 

0.3  -17.600109   0.134224 

0.4  -17.674374   0.059959 

0.5  -17.734333   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 0.437261 

Table 12-14: Result of analysis of pedigree with diagnostic certainty of 80%, and 

penetrance of 70% 
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 Inserting the phenocopy penetrance of 0.005 is relatively straightforward. We simply go back to the 

formula above, and plug in the new values, so the new penetrance for AA and Aa individuals with 80% 

diagnostic uncertainty is now 0.8 × 0.7 + 0.2 × 0.3 = 0.62 (the same as above), and the penetrance for aa 

individuals is now 0.8 × 0.005 + 0.2 × 0.995 = 0.203. Using this information now defines our liability 

classes as follows: 

 
  AA Aa aa 

1)  0.7 0.7 0.005 

2)  0.62 0.62 0.203 

 

The results of the analysis under this model are given in table 12-15. 

 
 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -17.306317   0.431483 

0.1  -17.408201   0.329599 

0.2  -17.513479   0.224322 

0.3  -17.606208   0.131592 

0.4  -17.679049   0.058751 

0.5  -17.737800   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 0.430832 

Table 12-15: Result of analysis of pedigree with diagnostic uncertainty of 80%, 

penetrance of 70%, and penetrance for homozygous normal individuals of 0.5% 

 

 When we allow for the age-dependant penetrance, we can compute the penetrances as (age –

10)[0.8/40] + 0.10 for genotypes AA and Aa and for individuals between age 10 and 50. For genotype aa, 

the penetrance can be computed as (age – 20)[0.008/40] + 0.002 for individuals between age 20 and 60. 

Since we are only provided with information about current age, we are only able to use the distribution 

functions for the age-dependent penetrance calculations. The penetrances are given in table 12-16 for the age 

classes specified in the exercise. In this pedigree, however, three of these twelve possible age/diagnosis 

combinations are never used, 100% diagnostic certainty in classes (10 – 19) and (35 – 49), and 80% 

diagnostic certainty in class (< 10). In order to make the program run more efficiently, only allow for the 

necessary nine liability classes in your analysis. The results of your analysis should match up with those in 

table 12-17. 

 
───────────────────────────────────────────────────── 

      Penetrances 

  ───────────────────────────────────────── 

  Diagnostic Class 1     Diagnostic Class 3 

  ────────────────── ───────────────── 

Age Class AA Aa aa  AA Aa aa 

───────────────────────────────────────────────────── 

 < 10  0.1 0.1 0.002  0.26 0.26  0.201 

10-19  0.2   0.2   0.002  0.32 0.32  0.201 

20-34  0.44  0.44  0.0034 0.464 0.464 0.202 

35-49  0.74  0.74  0.0064 0.644 0.644 0.204 

50-59  0.90 0.90  0.009  0.74 0.74  0.205 

≥ 60  0.90 0.90 0.01  0.74 0.74  0.206 

─────────────────────────────────────────────────────────── 

Table 12-16: Age-dependent penetrance distribution with and without diagnostic 

uncertainty for exercise 10 

 

 

 

───────────────────────────────────────────── 

 θ  Log(Likelihood)  Lod Score 

───────────────────────────────────────────── 

0.0  -16.576215   0.656951 

0.1  -16.758859   0.474307 

0.2  -16.926905   0.306261 

0.3  -17.065199   0.167967 
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0.4  -17.165189   0.067976 

0.5  -17.233166   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 0.655672 

Table 12-17: Results of analysis using the age dependent scheme outlined in table 12-16 

 

 To allow for uncertainty of phenotype at the ABO blood group locus, we will first have to recode the 

ABO blood group phenotypes as an affection status locus. Then, we can allow for the ambiguity in genotype 

as shown in table 12-18. As you can see in this table, the phenotype A or AB is exactly complementary to the 

phenotype B or O, in terms of penetrance, so you could get away with one additional liability class to code 

for both of these options as shown in table 12-18. The same relation applies to B or AB and A or O. To make 

things most efficient, please use the minimum of six liability classes, instead of eight, as outlined in the 

table. The results of your analysis should match those in table 12-19. 

 
───────────────────────────────────────────────────────────────── 

     Penetrances 

                 ───────────────────────────────── 

Phenotype  AA AB AO BB BO OO Coded as: 

───────────────────────────────────────────────────────────────── 

A   1 0 1 0 0 0    2 1 

B   0 0 0 1 1 0       2 2 

AB        0 1 0 0 0 0       2 3 

O   0 0 0 0 0 1       2 4 

A or AB  1 1 1 0 0 0    2 5 

B or AB  0 1 0 1 1 0    2 6 

A or O  1 0 1 0 0 1 1 6 or 2 7 

B or O  0 0 0 1 1 1 1 5 or 2 8 

Table 12-18 : Penetrances for ABO Blood Group, including uncertain phenotype 

allocations. 

 

 

 θ  Log(Likelihood)  Lod Score 

────────────────────────────────────────── 

0.0  -15.742181   0.587896 

0.1  -15.910975   0.419103 

0.2  -16.065113   0.264965 

0.3  -16.189603   0.140475 

0.4  -16.275887   0.054190 

0.5  -16.330077   0.000000 

ILINK: ̂ = 0.001; Z(̂ ) = 0.586712 

Table 12-19 : Results of analysis with age dependent penetrance scheme outlined 

in table 12-16 and ABO Blood group uncertainty of phenotype scheme outlined in 

table 12-18. 

EXERCISE 11 

For the handling of monozygotic twins in a linkage analysis, a recommendation often given is that the two 

twins should be replaced by a single individual since the two individuals represent two identical copies of 

the same genetic material. This works fine with full penetrance because 1
2
 = 1. With incomplete penetrance, 

however, treating the two twins as a single individual with penetrance as for any individual with the same 

phenotype represents an error possibly resulting in a change of lod score. The direction of the lod score 

change depends on the phenotype and whether that phenotype is indicative of a recombinant or 

nonrecombinant. To represent the twin pair as a single individual with penetrance as for any unaffected 

sibling, in the input line for individual 345 (third line from the bottom), we simply replace MT by NA. This 

changes the penetrance from 0.01 to 0.10. Consequently, the penetrance ratio for genetic versus nongenetic 

cases changes from 0.01/1 = 0.01 to 0.10, that is, it is now (falsely) closer to 1 such that the phenotype of the 

single twin has less weight than the phenotypes of the two twins jointly. An unaffected individual with 

marker type 2/3 in the given sibship appears to be a nonrecombinant. Because nonrecombinants increase the 

lod score and recombinants decrease it, in this case bringing the penetrance ratio closer to 1 (giving the 
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phenotype less weight) decreases the lod score. 

 To make the monozygotic twins appear as fraternal sibs, we replace the single line for the 345 

individual by two lines corresponding to two offspring, 3.4 and 3.5. Each of these two individuals has 

phenotype NA. As outlined above, this deviation from the correct analysis amounts to adding nonexistent 

linkage information. Because the added information is in the direction of a nonrecombination, the resulting 

lod score turns out to be too high. 
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Part II Multipoint Linkage Analysis with the LINKAGE package 

13 Gene Mapping in CEPH families 
In this chapter, you will be introduced to the use of a specialized set of linkage analysis programs designed 

for use in 3-generational CEPH-type pedigrees. When trying to construct a genetic map of a given 

chromosomal region, one should always type his new markers in the CEPH pedigrees, and do the analysis 

with these programs, for reasons to be outlined in this chapter. 

 Since this book was originally written, marker mapping has progressed greatly and detailed maps 

have been published [20], so the material in chapter 13 is rather outdated. 

13.1 WHAT IS CEPH? 

CEPH (Centre d'Etude du Polymorphisme Humain) is a center for genetic studies in Paris. Researchers at 

CEPH and at the University of Utah in Salt Lake City have assembled a large homogeneous panel of 

families for use in making maps of genetic markers. These families all 

consist of nuclear pedigrees with many offspring, and in most cases, 

the grandparents. This basic three-generational pedigree structure has 

come to be known as “CEPH-type” pedigrees, and is illustrated in 

Figure 13-1. The standard family set comprises forty families, with an 

extended family set of 64 families (Dausset et al, 1990). 

 Blood from each member of this panel is stored at CEPH, and 

can be made available to researchers around the world when they wish 

to type a new marker against the panel. In this way, each time a new 

marker is generated, it will be typed throughout this panel, adding to 

the CEPH database. This database, consisting of all the markers typed 

in the panel, can then be accessed by linkage analysts, so that they can try to generate good genetic maps, 

and determine the map locations of all newly generated markers based on the information on other markers 

in the database. Whenever someone generates a new marker for use in a genetic analysis, he should always 

try and map its location using the CEPH panel, not the disease pedigrees he is working with. 

13.2 WHY USE THE CEPH PANEL? 

Investigators often ask why they should take the time, expense, and trouble to type a new marker throughout 

this dataset. Well, to generate fine marker maps requires enormous datasets, and the CEPH panel has enough 

markers typed through it, such that not only is it a large dataset, but there are usually lots of markers nearby 

that have already been well mapped. This makes the process of mapping a new marker much more efficient, 

simpler, and more accurate. Furthermore, it is not clear how the presence of various disease-inducing 

mutations may affect recombination rates in the immediate region surrounding them. For example, if the 

mutation causing the disease of interest is a chromosomal inversion, the frequency of recombination may be 

reduced, due to lack of homology. Similarly, if a large deletion exists, then it would appear to make more 

distantly spaced markers appear closer together. Other mutations could induce hot-spots of recombination, 

etc. So, for these regions, one would like to do all marker mapping in the same genetically-healthy pedigree 

set. One should, however, be cautioned that there have been rather large error rates in the marker typings 

seen in the CEPH pedigrees in the past (Brzustowicz et al, 1993), so if you want to generate a very high 

resolution map, it may be advisable to check the marker typings at neighboring loci, especially if you 

observe double recombinants over a very short region.  

13.3 CLINKAGE  

There is a set of specialized linkage analysis programs (CMLINK, CILINK, and so on; these special 

programs may not be included in your standard LINKAGE package) written especially to analyze the CEPH 

pedigrees. These programs make use of very efficient computational algorithms, specific to the analysis of 

pedigrees with the “CEPH structure”. As was mentioned above, CEPH-type pedigrees consist of a nuclear 

family with up to four grandparents. 

 In the normal LINKAGE programs, there are very strict limitations about the number of loci, and 

number of alleles per locus that can be analyzed, due to memory constraints. However, the CLINKAGE 

programs have many fewer of these constraints, and as such can analyze many loci at a time, with many 

alleles at each locus. Further, these analyses are incredibly rapid relative to very small analyses with the 

http://compgen.rutgers.edu/RutgersMap/DownloadMap.aspx
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more general LINKAGE programs. There are severe restrictions, however, in the applicability of these 

programs. First of all, they can only be used to analyze codominant marker loci of the allele numbers or 

binary factors type, so no trait loci or quantitative variables can be used. Secondly, the only parameters one 

can vary are the recombination fractions, and female to male map distance ratios; one cannot use these 

programs to estimate linkage disequilibrium, gene frequencies, or interference. So, while these programs are 

incredibly fast, and efficient for generating genetic maps of codominant loci, and ordering a set of loci 

relative to one another, they are limited to these applications. Of course, the pedigree structure limitations as 

well make these programs useful primarily just for analyzing large sets of loci typed against the CEPH 

panel. We will be investigating each of these programs, and doing some sample exercises with them in the 

next few chapters.  

13.4 General map construction strategies 

To order a number n of marker loci and estimate the lengths of the n-1 intervals between adjacent markers, 

one would ideally apply the maximum likelihood strategy. This would amount to computing the likelihood 

for each possible order, and that order with the highest associated likelihood would then be the best 

estimated order of loci. For numbers of loci as small as six or seven, depending on the amount of data, this 

approach is often feasible. However, to order a large number of loci, the sheer number of possible orders 

(n!/2) and the length of time it takes to calculate pedigree likelihoods prohibit considering all orders, and 

alternative methods of map construction must be employed. 

 One approach might be to evaluate all orders but to calculate a simple, approximate measure for the 

plausibility of the data under each order. Several such measures have been proposed, for example, the sum 

of adjacent recombination fractions (SARF, the smaller the better), which is obtained by adding the 

recombination fraction estimates in each interval. Another measure is the sum of two-point lod scores for all 

pairs of adjacent loci (SAL, large values are good). An overview of these methods may be found in Weeks 

(1991). In our limited experience with these methods, they do not work very well with real data, and as a 

matter of fact, hardly anyone in the gene mapping field uses them. 

 The most popular strategy in current use is to calculate exact (or almost exact) likelihoods for only a 

limited number of markers at a time. Therefore, rules are required by which one selects an initial set of 

markers for building a "trial map" and builds upon it by adding new markers. The MAPMAKER and CRI-

MAP programs have built-in rules for iterative map construction. Of course, the final map resulting from 

such a procedure is not guaranteed to be the overall best map (by the rigorous likelihood criterion), so one 

needs various ways of corroborating the proposed best map. Also, MAPMAKER and CRI-MAP make some 

approximations in the likelihood calculations although that does not seem to be crucial. For references to 

these programs, see Appendix B. Below, we sketch some basic steps in map construction. For more detailed 

information, you may want to consult some of the recent chromosome map reports (e.g., Mills et al., 1992; 

Petrukhin et al., 1993). 

 If one does not want to rely on automatic map building by one of these programs, another strategy is 

to use only the most informative markers to construct a "skeletal" map whose order can be established 

unequivocally. Informativeness of a marker in a particular set of data my be assessed by computing the lod 

score at θ = 0 of this marker against itself; those markers with the highest lod scores are most informative 

(Mills et al., 1992). Additional markers are then "dropped" into each interval of this map, where each time 

all map distances are recalculated. If likelihood calculation with all markers is not possible, than only a 

subset of markers in the vicinity of the position of the new markers are used. 

 The final five to ten best map orders should then be scrutinized carefully. A common strategy to 

corroborate a given map is to invert pairs of adjacent loci one at a time (or evaluate all orders for any triple 

of adjacent loci), each time recalculating the location score. Also, map building is usually carried out 

assuming equal male and female recombination rates. This restriction must be relaxed and map distances re-

estimated allowing for sex dependent recombination rates. Because the programs used in the map building 

phase generally calculate approximate likelihoods, it is recommended that the location scores for the best 

maps be recalculated by the CILINK program as it carries out exact likelihood calculations. For each of the 

best maps, three assumptions on the ratio of female-to-male map distance ratio, R = xf/xm, should be 

evaluated: 1) R = 1 throughout the map, 2) R  1 but constant in each interval, and 3) R  1 and possibly 

different in each interval. That hypothesis with a significant maximum location score is retained, where 

significance is assessed by chi-square tests as outlined in chapter 18. 
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 An important component of map construction is error detection. Apart from retyping everyone and 

applying specialized statistical methods to pinpoint pedigree errors (e.g., Ott 1993; Brzustowicz et al. 1993; 

Haines, 1992), marker errors are typically recognized by the occurrence of double crossovers over a short 

map distance. Since this strategy requires the assumption of a locus order, the following two steps are 

generally repeated as often as necessary: 1) Build a map using one of the techniques incorporated in the 

MAPMAKER or CRI-MAP programs, and 2) follow up on individuals in whom multiple crossovers occur 

within, say, 30 cM (the CHROMPICS option of CRI-MAP is most useful at this stage). Each occurrence of 

such multiple crossovers is followed up, perhaps by retyping individuals in the lab, to possibly correct any 

errors.  
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14 The locus ordering problem: CILINK  
In this chapter, you will learn how to use CILINK of the CLINKAGE package in locus ordering problems. 

Locus ordering problems are of critical importance in any multipoint linkage analysis. One requires an 

accurate map, for a multipoint linkage analysis of a disease to be meaningful. For this reason, the locus 

ordering problem is one of the most significant and troublesome topics in all of linkage analysis. 

14.1 HOW DOES ONE ORDER A SET OF LOCI? 

One of the most crucial problems in linkage analysis is to order sets of closely linked markers. Once 

someone achieves a positive test of linkage (i.e. Z > 3), the next step is to try and find the location of this 

linked gene. For example, we may have a known map of markers, and find that a new one is linked to this 

set of markers. Then, we would need to find out exactly where along this map the new marker falls. Another 

possible situation would be that you know that a set of three genes are linked to each other, but you have no 

idea of their relative orientation. One would then need to order the three loci in question. So, the question 

remains, how can we figure out the order of a series of loci from pedigree analysis? 

 Let us consider the case of three loci known to be linked to one another. Let us further assume that 

for each meiosis in our sample, we can determine whether alleles at any pair of the two loci were 

cosegregating or not. In other words, we could determine for any meiosis whether or not a recombination 

event occurred between any pair of the loci. Consider that we have loci A, B, and C. There are then four 

possible observed meioses, as indicated in table 14-1. 

 
──────────────────────────────── 

      Interval 

   ────────────── 

Meiosis  AB AC BC 

──────────────────────────────── 

Type I  R R N 

Type II  R N R 

Type III  N R R 

Type IV  N N N 

──────────────────────────────── 

Table 14-1: Four possible meiotic three-locus recombination events, irrespective of 

locus order. 

 

 Other combinations are not possible, since what happens between markers AB, and AC uniquely 

determines what happened between B and C, irrespective of true locus order. Now, we can reformulate the 

four meiosis types indicated above into a 2 × 2 table, for any particular locus order, as in Table 14-2. 

 
─────────────────────────── 

       Interval 1 

       ────────── 

Interval 2  R NR 

─────────────────────────── 

  R   W X 

  NR   Y Z 

─────────────────────────── 

Table 14-2: 2x2 table representation of the four possible three-locus recombination 

events. 

 

 If one were to consider the specific locus orders possible for this experiment, you would have ABC, 

ACB, and BAC. Then, the corresponding 2 × 2 tables would be as shown in table 14-3 (where roman 

numerals refer to meiosis type). 
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─────────────────────────────────────────────────────────────── 

          Interval 1 

   ───────────────────────────────────────────── 

   Order ABC  Order ACB  Order BAC 

   ─────────  ────────  ───────── 

Interval 2  R NR  R NR  R NR 

─────────────────────────────────────────────────────────────── 

     R  II III  III II  I III 

     NR  I IV  I IV  II IV 

─────────────────────────────────────────────────────────────── 

Table 14-3:  2x2 table representations under each possible locus order. 

 

 Clearly, one way to choose which order is best, is to pick the order which would require the fewest 

number of double recombinants, since these are necessarily rare events, with frequency θ1θ2, or less if there 

is interference. In this case, if we had collected 100 informative meioses, and found 90 Type IV meioses, 6 

Type III meioses, 3 Type II meioses, and 1 Type I meiosis, then our tables are shown in table 14-4. 

 
─────────────────────────────────────────────────────────────── 

          Interval 1 

   ───────────────────────────────────────────── 

   Order ABC  Order ACB  Order BAC 

   ─────────  ─────────  ───────── 

Interval 2  R NR  R NR  R NR 

─────────────────────────────────────────────────────────────── 

     R  3  6    6   3   1 6   

     NR  1 90  1 90  3  90 

─────────────────────────────────────────────────────────────── 

 

Table 14-4: Sample data placed in the three possible 2x2 tables 

 

 By inspection locus order BAC seems to be the best order, as it has the minimum number of double 

recombinants. Under the assumption of no interference, which is routinely made by the LINKAGE 

programs, the recombination fractions should be independent, so the rows and columns of the 2 × 2 tables in 

table 14-3 should be as close as possible to independent. One measure of the deviation from such 

independence is a simple chi-square test of independence on each of these tables. If you use the Linkage 

Utility Program, CONTING, you can calculate these chi-square values. Further information about the 

CONTING program will be given in Part III. For the data in table 14-4, the corresponding chi-square values 

are: ABC – 22.16, ACB – 54.09, BAC – 2.07 (Using a Yates correction, the corresponding values of χ
2
 

would be 14.56, 44.48, and 0.19 respectively). This seems to indicate that order BAC gives a substantially 

better fit to our model than any other locus order, however, the chi-square approximation is not really valid 

because the expected number of double recombinants in the upper left cell is less than 1. 

 There is a very good book chapter about different methods for ordering loci by Dan Weeks (Weeks, 

1991), which provides a comprehensive overview of the theory and practice of a number of approaches. The 

user is referred to this source for a detailed analysis of this very important problem in human genetics. For 

now, we will deal with what can be done with the LINKAGE programs as far as locus ordering is 

concerned. Typically, the analyst will be unable to perform the analysis described above, since in real 

pedigree data, one never has all meioses informative and phase known for all pairs of markers. To get 

around this problem, the LINKAGE programs can be used. The ILINK program can be used to maximize 

the likelihood under each possible order, by estimating each intermarker recombination fraction jointly. 

Thus, all the pedigree information is taken advantage of, including the partially informative meioses. As was 

mentioned in the previous chapter, however, the general LINKAGE programs are very slow, and quickly run 

out of memory as the number of loci, and number of alleles per locus increases. As mentioned in chapter 13, 

there is a special version of LINKAGE, called CLINKAGE that is optimized for likelihood calculations in 

CEPH type pedigrees. Using these programs, one can rapidly compute likelihoods for any given marker 

order, and any reasonable number of markers.  

14.2 CILINK 

For the remainder of this chapter we will concentrate on the practical usage of the CILINK program, which 

is the CEPH-pedigree-specific version of the ILINK program. Let us consider the case where we have five 
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CEPH-type pedigrees, each with the same, identical pedigree structure, as shown in Figure 14-1, with 

marker locus phenotypes as given in table 14-5: 

 

 
 

 
Pedigree Individual      Marker 1   Marker 2      Marker 3          Marker 4 

────────────────────────────────────────────────────────────────────────────────────────── 

    1                 1              1 1             1 1              1 1              1 2 

    1                 2              2 2             2 2              2 2              3 4   

    1                 3              3 3             3 3              3 3              5 6 

    1                 4              4 4             4 4              4 4              7 8 

    1                 5              1 2             1 2              1 2              2 3 

    1                 6              3 4             3 4              3 4              6 7 

    1                 7              1 3             1 4              1 3              2 6 

    1                 8              1 4             1 4              1 4              2 7 

    1                 9              1 3             1 3              1 3              2 6 

    1                10              1 3             1 4              1 3              2 7 

    1                11              1 3             1 3              1 3              2 6 

    1                12              2 4             2 4              2 4              3 7 

    1                13              2 3             2 3              2 3              3 6 

    1                14              2 4             2 3              2 4              3 7 

    1                15              2 4             2 4              2 4              3 7 

    1                16              2 4             2 4              2 4              3 7 

    2                 1              1 1             1 1              1 1              1 2 

    2                 2              2 2             2 2              2 2              3 4   

    2                 3              3 3             3 3              3 3              5 6 

    2                 4              4 4             4 4              4 4              7 8 

    2                 5              1 2             1 2              1 2              2 3 

    2                 6              3 4             3 4              3 4              6 7 

    2                 7              1 3             1 3              1 3              2 6 

    2                 8              2 3             2 3              2 3              3 6 

    2                 9              1 3             1 3              1 3              2 6 

    2                10              2 3             1 3              1 3              2 6 

    2                11              1 3             1 3              1 3              2 6 

    2                12              2 4             2 4              2 4              3 7 

    2                13              1 4             1 4              1 4              2 7 

    2                14              2 4             2 4              2 4              3 7 

    2                15              1 4             1 4              1 4              2 7 

    2                16              2 4             2 4              2 4              3 7 

    3                 1              1 1             1 1              1 1              1 2 

    3                 2              2 2             2 2              2 2              3 4   

    3                 3              3 3             3 3              3 3              5 6 

    3                 4              4 4             4 4              4 4              7 8 

    3                 5              1 2             1 2              1 2              2 3 

    3                 6              3 4             3 4              3 4              6 7 

    3                 7              1 3             1 3              2 3              2 6 

    3                 8              1 3             1 3              1 3              2 6 

    3                 9              2 4             2 4              2 4              3 7 

    3                10              1 4             1 4              1 4              2 7 

    3                11              2 3             2 3              2 3              3 6 

    3                12              2 4             2 4              1 4              3 7 

    3                13              1 3             1 3              1 3              2 6 

    3                14              1 4             1 4              2 4              2 7 

    3                15              2 3             2 3              2 3              3 6 

    3                16              2 4             2 4              2 4              3 7 

    4                 1              1 1             1 1              1 1              1 2 

    4                 2              2 2             2 2              2 2              3 4   

    4                 3              3 3             3 3              3 3              5 6 
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    4                 4              4 4             4 4              4 4              7 8 

    4                 5              1 2             1 2              1 2              2 3 

    4                 6              3 4             3 4              3 4              6 7 

    4                 7              1 3             1 3              1 3              2 6 

    4                 8              2 3             2 3              2 4              3 6 

    4                 9              1 4             1 4              1 4              2 7 

    4                10              2 4             2 4              2 4              3 7 

    4                11              2 3             2 3              2 3              3 6 

    4                12              1 4             1 4              1 4              2 7 

    4                13              1 3             1 3              1 3              2 6 

    4                14              1 4             1 4              1 3              2 7 

    4                15              1 3             1 3              1 3              2 6 

    4                16              1 4             1 4              1 4              2 7 

    5                 1              1 1             1 1              1 1              1 2 

    5                 2              2 2             2 2              2 2              3 4   

    5                 3              3 3             3 3              3 3              5 6 

    5                 4              4 4             4 4              4 4              7 8 

    5                 5              1 2             1 2              1 2              2 3 

    5                 6              3 4             3 4              3 4              6 7 

    5                 7              1 3             1 3              1 3              2 6 

    5                 8              1 3             1 3              1 3              2 6 

    5                 9              1 4             1 4              1 4              2 7 

    5                10              1 4             1 4              1 3              2 7 

    5                11              1 4             1 4              1 4              2 7 

    5                12              1 3             1 3              1 3              2 6 

    5                13              2 3             2 3              2 3              3 6 

    5                14              1 3             1 3              1 3              2 6 

    5                15              1 4             1 4              1 4              2 7 

    5                16              2 3             2 3              2 3              3 6 

Table 14-5 : Genotypes for each individual at four marker loci in five CEPH-type 

pedigrees of the structure shown in figure 14-1. 

 

 Note that in this case, all meioses are fully informative, and occur in the same proportions as in table 

14-4. Please make a standard LINKAGE format parameter file for this set of pedigrees, with the four allele 

numbers marker phenotypes as indicated below each individual, in file CEPH1.PRE. Then, process this file 

with MAKEPED to produce CEPH1.PED. Then, you should call up PREPLINK to create a parameter file 

(called CEPH1.DAT). You must specify that there are 4 loci, three of them with 4 equally frequent alleles, 

and one with 8 equally frequent alleles, with each locus being of the allele numbers type. Do not worry 

about the other options, like locus order, or any of the program specific parameters, as we will be using LCP 

shortly to set this up. 

 When you have finished, call up the LCP program, selecting the three-generational pedigrees option 

(these are the CLINKAGE programs). Choose the CILINK program, All orders option, with No sex 

difference in recombination fraction. Then you should set up the parameter screen as follows: 

 
    Locus Set [] : 1 2 3 

 Recombination Fractions [.1] : .1 .1 

 

 Note that there are two recombination fractions to indicate here. The program will then reorder these 

three loci in all possible orders, and maximize the likelihood (under the assumption of no interference) for 

each given order respectively. Please hit <Page Down> to save this analysis setup, then hit <Ctrl-Z> to exit, 

and type PEDIN to run the analysis. You will note that instead of calling the UNKNOWN program, the LCP 

now calls a program called CFACTOR, which does the CEPH-type pedigree factorization, making these 

programs so efficient. 

 When the programs have finished running, use the Linkage Report Program (LRP) to examine the 

output. To do this, type LRP at the DOS prompt. The first screen should specify the STREAM file name as 

STREAM.OUT. (Remember this stream file was produced by each of the LINKAGE programs, and now 

you will see how to use it). This name is correct, so just hit <Page Down> to continue. At the next screen, 

you should select Three-generation pedigree reports, and then the Multi-Point order report (CILINK) 

option. Select the table format, and request that the report be output to the screen. You should then see the 

following information on the screen: 
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Order -2LN Like Odds 

------------------------------------------- 

 .070 .040 

3----1----2   -1.9294E+02 1.00E+00 <== 

 

 .040 .090 

1----2----3   -1.8316E+02 1.33E+02 

 

 .070 .090 

1----3----2   -1.6602E+02 7.00E+05 

 

 Just as in our 2 × 2 analysis of this same dataset above, we note that locus order 3-1-2 (C-A-B = B-

A-C) is the best order. Note that the recombination fraction estimates for each locus order are the same as 

they would be if estimated from the marginals of the 2 × 2 tables in table 14-4. The main question here is 

how to interpret these results. Typically, for a locus order to be conclusive, it is required that one have 

1000:1 odds supporting the best order over the second best order, or a log10(likelihood) difference of at least 

3 between the top two orders (analogous to the lod score of 3 requirement in a linkage test). In this case, we 

only have 133:1 odds, as shown in the third column above. To compute the "lod scale" equivalent, we can 

look at the values of –2ln(Like) shown above. Subtracting the –2ln(Like) of the best order from each of the 

others would give us the results shown in table 14-6 (Lod scale equivalents are computed by dividing the 

differences in –2ln(like) by 2ln(10)  4.6; odds (likelihood ratio) computed as 10
Z
, where Z is the 

log10(Likelihood) difference): 

 
      Order   Δ2ln(Like)  Lod Scale   Odds 

 ───────────────────────────────────────── 

 3--1--2   -0-  -0-      1 

 1--2--3  9.78  2.13    133 

 1--3--2 26.92  5.85     700,000 

Table 14-6: CILINK analysis of loci 1, 2, and 3 in each possible order. 

 

 In this example, then, we can eliminate order 1-3-2, but cannot distinguish between orders 3-1-2 and 

1-2-3, at the level of 1000:1 odds. The final interpretation is that you need to analyze more data to make a 

framework map (a map with best order supported by a likelihood ratio of at least 1000:1 over the next best 

order), but it seems much more likely that the true order is 3-1-2, though on this small sample size, it cannot 

be said to have been established that this is the case. The only real answer is to collect more families, or type 

the remainder of the CEPH families for these markers. One thing important to realize is that this analysis 

was based on only five CEPH-type families. In reality there are many more families than this, so you will 

certainly have better power for locus ordering when the whole panel is typed. 

 As an exercise to show how much efficiency is gained by using the CILINK program over the 

ILINK program, please repeat the above analysis using the ILINK program instead of the CILINK program. 

When you look at the results in table 14-7, you will notice that the values of –2ln(Like) are very different 

from those found with CILINK, but that the differences and odds are the same as indicated below, showing 

that they are equally valid, but that you cannot compare likelihoods generated with these two programs 

separately. The differences are due to the factoring algorithms used by CILINK. 

 
        Order  -2ln(Like)  Δ2ln(Like)  Lod Scale    Odds 

 ───────────────────────────────────────────────────── 

 3--1--2    555.66        -0-      -0-      1 

      1--2--3    565.44   9.78     2.13    133 

 1--3--2    582.58    26.92     5.85     700,000 

Table 14-7: ILINK analysis of loci 1, 2, and 3 in each possible order. 

 

EXERCISE 14 

Please order the set of five loci given in the pre-MAKEPED file shown below. Also, try and draw out the 

pedigree structures. Are they all compatible with the CEPH pedigree structural requirements? Please enter 

this file as USEREX14.PRE, and process it with MAKEPED to produce USEREX14.PED.  
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 44 1 12 13 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 

 44 2 14 15 2 1 0 1 1 1 0 1 0 1 1 0 0 1 0 

 44 3 1 2 2 0 0 0 1 1 0 1 1 1 1 0 0 1 0 

 44 4 1 2 2 1 0 0 0 1 1 1 1 1 1 0 0 1 1 

 44 5 1 2 2 1 0 1 0 1 1 1 1 1 1 0 0 1 1 

 44 6 1 2 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 

 44 7 1 2 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 

 44 8 1 2 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 

 44 9 1 2 2 1 0 0 0 1 1 1 1 1 1 0 0 1 1 

 44 10 1 2 2 1 0 1 1 1 0 1 1 1 1 0 0 1 1 

 44 11 1 2 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 

 44 12 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 

 44 13 0 0 2 1 1 0 1 1 0 0 1 1 1 0 0 1 1 

 44 14 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 

 44 15 0 0 2 1 0 0 0 1 1 1 0 1 1 0 0 1 1 

 45 1 10 11 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 

 45 2 12 13 2 0 1 0 0 1 0 1 0 1 1 0 1 1 1 

 45 3 1 2 2 1 1 0 1 1 0 1 0 1 0 1 1 1 1 

 45 4 1 2 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 

 45 5 1 2 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 

 45 6 1 2 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 

 45 7 1 2 2 1 1 0 0 0 0 1 0 1 1 1 0 1 1 

 45 8 1 2 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 

 45 9 1 2 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 

 45 10 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 

 45 11 0 0 2 1 0 0 1 1 0 1 1 1 1 1 0 0 1 

 45 12 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 

 45 13 0 0 2 0 1 0 0 1 0 1 0 1 1 0 0 0 1 

 46 1 11 12 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 

 46 2 13 14 2 1 1 0 1 0 0 1 0 1 1 1 0 0 1 

 46 3 1 2 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 

 46 4 1 2 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 

 46 5 1 2 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 

 46 6 1 2 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 

 46 7 1 2 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 

 46 8 1 2 2 0 1 0 0 0 0 1 0 1 1 1 0 0 1 

 46 9 1 2 2 1 1 0 0 0 0 1 0 1 1 1 0 0 1 

 46 10 1 2 2 0 1 0 1 0 0 1 0 1 1 1 0 0 1 

 46 11 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 

 46 12 0 0 2 0 0 0 0 0 0 1 0 1 0 0 0 0 1 

 46 13 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 

 46 14 0 0 2 1 0 0 1 0 0 1 1 1 0 0 0 0 1 

 47 1 12 13 1 1 0 0 0 1 0 1 1 1 0 1 0 0 1 

 47 2 14 15 2 1 0 0 1 1 0 0 1 1 1 1 0 1 1 

 47 3 1 2 2 1 0 0 0 1 0 0 1 1 1 1 0 0 1 

 47 4 1 2 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 

 47 5 1 2 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 

 47 6 1 2 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 

 47 7 1 2 2 1 0 0 1 1 0 0 1 1 1 1 0 1 1 

 47 8 1 2 2 1 0 0 1 1 0 0 1 1 1 1 0 0 1 

 47 9 1 2 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 

 47 10 1 2 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 

 47 11 1 2 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 

 47 12 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 

 47 13 0 0 2 1 1 0 1 1 0 1 0 1 1 1 0 0 1 

 47 14 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 

 47 15 0 0 2 1 1 0 1 0 0 1 1 1 0 1 0 1 0 

 49 1 11 12 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 

 49 2 13 14 2 1 1 0 1 1 0 1 1 1 1 1 0 1 1 

 49 3 1 2 2 1 1 0 1 1 0 0 1 1 1 0 0 1 1 

 49 4 1 2 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 

 49 5 1 2 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 

 49 6 1 2 2 1 1 0 1 0 0 1 1 1 1 0 0 1 1 

 49 7 1 2 2 1 1 0 1 0 0 0 1 1 1 0 0 0 1 

 49 8 1 2 2 0 1 0 0 0 0 0 1 1 1 0 0 0 1 

 49 9 1 2 2 0 1 0 0 0 0 1 1 1 1 0 0 0 1 

 49 10 1 2 1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 
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 49 11 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 

 49 12 0 0 2 1 1 0 1 0 0 1 0 1 1 0 0 0 1 

 49 13 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 

 49 14 0 0 2 1 0 0 1 0 0 1 1 1 1 1 0 1 1 

 50 1 10 11 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 

 50 2 12 13 2 1 1 0 1 1 0 1 0 1 0 1 1 0 1 

 50 3 1 2 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 

 50 4 1 2 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 

 50 5 1 2 2 1 0 0 0 1 1 1 0 1 0 1 0 0 1 

 50 6 1 2 2 1 1 0 1 1 0 1 0 1 0 1 1 0 1 

 50 7 1 2 2 1 1 0 1 0 1 1 0 1 0 1 1 0 1 

 50 8 1 2 2 1 0 0 0 1 1 1 0 1 0 1 1 0 1 

 50 9 1 2 2 0 0 0 1 0 1 1 0 1 0 1 1 0 1 

 50 10 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 

 50 11 0 0 2 1 0 0 0 0 0 1 1 1 1 1 0 1 1 

 50 12 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 

 50 13 0 0 2 0 1 0 1 0 0 1 1 1 0 0 1 0 1 

 53 1 11 12 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 

 53 2 13 14 2 1 0 0 0 0 0 0 1 1 0 1 1 0 1 

 53 3 1 2 2 1 0 1 0 1 0 0 1 1 0 0 0 0 0 

 53 4 1 2 2 1 0 1 0 1 0 0 1 1 0 0 0 1 1 

 53 5 1 2 2 0 0 0 0 1 1 0 1 1 0 0 0 0 1 

 53 6 1 2 2 1 0 0 0 1 1 0 1 1 1 0 1 0 0 

 53 7 1 2 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 

 53 8 1 2 2 1 0 1 0 1 0 0 1 1 0 0 0 1 1 

 53 9 1 2 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 

 53 10 1 2 2 1 0 1 0 0 0 0 1 1 1 0 1 0 0 

 53 15 1 2 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 

 53 11 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 

 53 12 0 0 2 1 0 0 0 1 1 1 1 1 0 0 0 0 1 

 53 13 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 

 53 14 0 0 2 1 1 0 0 1 1 0 1 1 0 1 1 1 1 

 54 1 17 14 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 

 54 2 15 16 2 1 0 0 1 0 0 1 1 1 0 1 1 0 1 

 54 3 1 2 2 1 0 0 1 0 1 1 1 1 0 1 0 1 1 

 54 4 1 2 2 1 1 0 1 1 0 0 1 1 0 1 1 1 1 

 54 5 1 2 2 1 1 0 1 1 0 1 1 1 1 0 1 1 1 

 54 6 1 2 2 1 1 0 1 0 1 1 0 1 1 1 0 1 1 

 54 7 1 2 2 1 0 0 1 0 1 0 1 1 0 1 0 1 1 

 54 8 1 2 2 1 0 0 1 0 1 0 1 1 0 1 1 1 1 

 54 9 1 2 1 1 0 0 0 0 0 1 0 1 1 1 0 1 1 

 54 10 1 2 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 

 54 11 1 2 2 1 1 0 1 1 0 1 1 1 1 1 0 1 1 

 54 12 1 2 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 

 54 13 1 2 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 

 54 17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 54 14 0 0 2 1 1 0 1 0 1 1 1 1 1 1 0 1 1 

 54 15 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 

 54 16 0 0 2 1 1 0 1 1 0 1 0 1 0 1 0 0 1 

 55 1 15 16 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 

 55 2 0 0 2 1 0 0 0 1 0 1 0 1 0 1 1 0 0 

 55 3 1 2 2 1 0 0 0 1 1 1 0 1 0 1 1 1 1 

 55 4 1 2 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 

 55 5 1 2 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 

 55 6 1 2 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 

 55 7 1 2 2 1 0 0 0 0 0 1 0 1 0 1 1 0 1 

 55 8 1 2 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 

 55 9 1 2 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 

 55 10 1 2 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 

 55 11 1 2 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 

 55 12 1 2 2 1 0 0 0 1 1 1 0 1 0 1 1 1 1 

 55 13 1 2 2 1 0 0 0 1 1 1 0 1 0 1 0 1 1 

 55 14 1 2 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 

 55 17 1 2 2 1 0 0 0 1 0 1 0 1 0 1 0 0 1 

 55 15 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 

 55 16 0 0 2 1 0 0 0 1 0 1 0 1 1 0 1 0 1 

 56 1 18 13 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 
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 56 2 12 14 2 1 1 0 1 1 0 1 0 1 1 1 0 1 0 

 56 3 1 2 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 

 56 4 1 2 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 

 56 5 1 2 2 1 1 0 1 1 0 1 0 1 0 1 0 1 1 

 56 6 1 2 2 1 0 0 0 0 0 1 0 1 0 1 0 1 1 

 56 7 1 2 2 1 1 0 1 1 0 1 0 1 1 1 0 1 1 

 56 8 1 2 2 1 1 0 0 0 0 1 0 1 0 1 0 1 1 

 56 9 1 2 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 

 56 10 1 2 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 

 56 11 1 2 2 1 0 0 1 0 0 1 0 1 1 0 0 1 1 

 56 15 1 2 2 1 1 0 1 1 0 1 0 1 1 1 0 1 1 

 56 16 1 2 2 1 1 0 1 1 0 1 0 1 0 1 0 1 1 

 56 17 1 2 2 1 0 0 1 0 0 1 0 1 1 1 0 1 1 

 56 18 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 56 13 0 0 2 1 0 0 1 0 0 1 1 1 0 1 0 1 1 

 56 12 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 

 56 14 0 0 2 1 1 0 1 1 0 1 0 1 1 0 0 1 0 

 57 1 18 15 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 

 57 2 19 16 2 0 1 0 1 1 0 1 1 1 0 1 0 0 1 

 57 3 1 2 2 0 1 0 1 1 0 0 0 0 0 1 1 1 1 

 57 4 1 2 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 

 57 5 1 2 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 

 57 6 1 2 2 0 1 0 1 0 0 1 0 1 0 1 1 1 1 

 57 7 1 2 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 

 57 8 1 2 2 0 1 0 1 1 0 1 0 1 0 1 1 1 1 

 57 9 1 2 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 

 57 10 1 2 2 0 0 0 1 1 0 1 0 1 0 1 0 1 1 

 57 11 1 2 2 0 1 0 1 0 0 1 0 1 0 1 1 1 1 

 57 12 1 2 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 

 57 13 1 2 2 1 1 0 1 1 0 1 1 1 0 1 0 1 1 

 57 14 1 2 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 

 57 17 1 2 2 1 1 0 1 1 0 1 1 1 0 1 0 1 1 

 57 18 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 57 15 0 0 2 1 1 0 1 1 0 1 0 1 1 0 1 1 0 

 57 19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 57 16 0 0 2 1 1 0 0 1 0 1 0 1 0 1 0 0 1 

 58 1 11 12 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 

 58 2 13 14 2 1 1 0 1 1 0 1 1 1 0 1 0 0 1 

 58 3 1 2 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 

 58 4 1 2 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 

 58 5 1 2 2 1 1 0 1 1 0 0 1 1 0 1 0 0 1 

 58 6 1 2 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 

 58 7 1 2 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 

 58 8 1 2 2 0 1 0 1 0 0 0 1 1 0 1 0 0 1 

 58 9 1 2 2 0 1 0 1 0 0 1 1 1 0 1 1 0 1 

 58 10 1 2 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 

 58 15 1 2 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 

 58 11 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 

 58 12 0 0 2 1 1 0 1 0 0 1 1 1 0 0 0 0 1 

 58 13 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 

 58 14 0 0 2 1 0 0 0 1 0 1 1 1 0 1 1 1 1 

 59 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 

 59 2 0 0 2 1 1 0 0 1 1 1 0 1 1 1 0 1 1 

 59 3 1 2 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 

 59 4 1 2 2 0 1 0 0 1 1 1 1 1 1 1 0 1 0 

 59 5 1 2 2 0 0 0 1 0 1 1 1 1 0 1 0 0 1 

 59 6 1 2 2 1 1 0 0 1 0 1 0 1 1 1 0 1 1 

 59 7 1 2 2 0 1 0 0 1 0 1 1 1 1 1 0 1 0 

 59 8 1 2 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 

 59 9 1 2 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 

 59 10 1 2 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 

 59 11 1 2 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 

 59 12 1 2 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 

 59 13 1 2 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 

 59 14 1 2 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 

 59 15 1 2 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 

 59 16 1 2 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 
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 59 17 1 2 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 

 59 18 1 2 2 1 1 0 0 1 1 1 0 1 1 1 0 1 1 

 

The corresponding parameter file is shown below, and should be entered as USEREX14.DAT: 

 
5 0 0 3 

0 0.00000000 0.00000000 0 

 1 2 3 4 5 

 

2 3 

 0.53571430 0.41785710 0.04642857 

3 

 1 0 0 

 0 1 0 

 0 0 1 

 

2 3 

 0.34931510 0.54452060 0.10616440 

3 

 1 0 0 

 0 1 0 

 0 0 1 

 

2 2 

 0.74083770 0.25916230 

3 

 1 0 1 

 0 1 1 

 

2 3 

 0.24662160 0.62500000 0.12837840 

3 

 1 0 0 

 0 1 0 

 0 0 1 

 

2 2 

 0.33532940 0.66467060 

2 

 1 0 

 0 1 

 

0 0 

 0.10000000 0.10000000 0.10000000 0.10000000 

0 

 1 1 1 1 

 

 Please use CILINK to order these five loci, as was described above. Can you order these five loci 

conclusively? If not, how many orders could not be excluded? What conclusions would you draw from this 

analysis? Can you run this analysis with ILINK?  
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15 CMAP and adding a new locus 

15.1 MULTIPOINT LOD SCORES - THEORETICAL INTRODUCTION 

Often, one has some idea of the map of a certain region, and desires to add a specific additional marker to 

this already established map. In such circumstances, it may be beneficial to fix the map of known markers, 

and compute lod scores for each possible location of the new marker. In other words, you simply move the 

new marker across the map, computing the likelihood if this new marker was actually located at each 

possible point along the map. This may be done in one of two ways: 1) the interval lengths of the current 

map are kept fixed, and only the new locus is moved across the known map (using CMAP), or 2) the new 

locus is successively placed in each possible interval with reanalysis of each locus order (re-estimation of all 

recombination fractions, using CILINK). The second method is in general preferable, and was described in 

chapter 14. Here, we describe the first method. 

 Let us assume that we have a known map of markers with fixed intermarker recombination fractions 

as shown in table 15-1. 

 
Theta:         0.10 0.10  

Locus:  ------1----2----3---- 

Interval:     0    1    2    3   

Table 15-1: Known map of markers 1, 2, and 3. 

 

 Now, we have an additional marker to map against this known map. We would then compute the 

likelihood for each possible position of the new marker in each interval along the map. The CMAP (and 

LINKMAP) programs work by placing the new marker in each possible intermarker interval, and 

subdividing each interval into a certain number of equal segments, computing the likelihood at each step. If 

we divided each interval into two segments, we'd have likelihoods computed for the positions for the new 

locus, N, as shown in table 15-2. 

 
─────────────────────────────────────────── 

Position MAP (thetas) 

─────────────────────────────────────────── 

   A   N-(0.500)-1-(0.100)-2-(0.100)-3 

   B  N-(0.250)-1-(0.100)-2-(0.100)-3 

   C  N-(0.000)-1-(0.100)-2-(0.100)-3 

   D  1-(0.050)-N-(0.056)-2-(0.100)-3 

   E  1-(0.100)-N-(0.000)-2-(0.100)-3 

   F    1-(0.100)-2-(0.050)-N-(0.056)-3 

   G    1-(0.100)-2-(0.100)-N-(0.000)-3 

   H    1-(0.100)-2-(0.100)-3-(0.250)-N 

   I    1-(0.100)-2-(0.100)-3-(0.500)-N 

Table 15-2: List of map positions for the new locus (N) to be analyzed with CMAP 

against the fixed map of markers 1,2, and 3. 

 

 The program equally divides each interval into two (in this case) segments, by dividing the 

recombination fraction by 2 for the entire interval (i.e. θ1,2 = 0.100, so when the new locus is placed in this 

interval, this recombination fraction is divided by 2 to get θ1,N = 0.05. You will note that θN,2 is not equal, 

but is computed according to the Haldane mapping function to make the map distance from locus 1 to locus 

2 remain constant in Haldane centiMorgans. 

 Now that you have the log10 likelihoods computed for each of these points, how can you convert 

them into lod scores that can be interpreted easily? In this case, our null hypothesis is that the set of markers 

1, 2, and 3 are linked to each other at fixed recombination fractions, but that marker N is unlinked to the 

entire map of markers. Thus, we would compute multipoint lod scores for map position "D" as 

log10[L(D)/L(A)], where A and D are defined in table 15-2. Position A corresponds to the new marker 

unlinked to the fixed map of 1-(0.1)-2-(0.1)-3, and is thus characterized by our null hypothesis likelihood. 

Another measure that is often used is the so-called location score, which is based on 2 times the natural log 

likelihood of the same likelihood ratio, 2ln[L(D)/ L(A)]. This is often preferred, as it asymptotically follows 

a chi-square distribution with 1 degree of freedom. However, it has become traditional to express your 

results in terms of multipoint lod score for ease of comparison with the two-point situation.  
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 A significant test result is again signified by the magic number of 3, so a multipoint lod score of 

greater than 3 is considered "proof" of linkage to this set of markers. Estimation can be carried out as well 

by this approach, analogously to the two-point case, with the most likely location of the new marker being at 

the point of its maximum likelihood. One must be certain to use a 3-unit-of-lod-score support interval for the 

location of the new marker. While there have been recommendations (Conneally et al, 1985) that a 1-unit-

of-lod-score support interval may be acceptable in estimation of a two-point recombination fraction, in the 

multipoint case, one has the additional problem of needing to select one locus order over all other orders at 

1000:1 odds as explained in the previous chapter. For this reason, one can only develop a meaningful 

support interval based on 3-units-of-lod-score (10
3
 = 1000:1 odds). Even in the 2-point case, the 3-unit-of-

lod-score support interval may be more appropriate and meaningful, since one only excludes the hypothesis 

of θ = 0.5 when Z(̂ ) – Z(0.5)  3, which is the same as saying the value θ = 0.5 is outside a 3-unit support 

interval around the maximum lod score. For these reasons, we advocate the use of the 3-unit-of-lod-score 

support interval in all situations to avoid logical inconsistencies of the type described above. 

15.2 COMPUTING MULTIPOINT LOD SCORES WITH CMAP 

Let us try and map this new marker with the CMAP program in this family. For now, let us assume that we 

had actually found a significant result for ordering the first three markers as 3-(0.07)-1-(0.04)-2. Then, we 

would like to use marker 4 as our test locus, and compute the multipoint lod scores for this marker at a series 

of points across the fixed map. To do this, please call up the LCP program, entering the appropriate pedigree 

and parameter file names (CEPH1.*), and specifying the Three-generational pedigrees option, and then the 

CMAP program. Choose the All map intervals option, and No sex difference in recombination fractions. The 

next screen should be completed as follows: 

 
    Test loci [] : 4 

   Order of fixed loci [] : 3 1 2 

 Recombination fractions [.1] : 0.07 0.04 

Number of evaluations in interval [5] : 5 

 

 The test locus is the new locus (4) for which likelihoods are to be calculated at a series of points 

across the fixed map of loci (3 1 2), separated by fixed recombination fractions (0.07 0.04). The last line, for 

number of evaluations per interval determines at how fine of a grid of points you wish to compute the lod 

scores. In this case, each intermarker interval will be divided into five equal subintervals, as described 

above. Please enter this problem, and hit <Page Down> to create the batch file. After you have run the 

analysis, please call up the LRP program to examine the results. This time, be sure to select the Location 

score report (CMAP) option, instead of the CILINK option you used in the locus ordering chapter. You 

should see the results given in table 15-3. 

 
     Order          Loc. Score     -2LN Like       Odds         Lod     x 

───────────────────────────────────────────────────────────────────────────── 

4====3----1----2 

 .500 .070 .040    +0.0000E+00   -1.9294E+02   7.13E+28    0.00   -∞ 
 .400 .070 .040    +3.0788E+01   -2.2373E+02   1.47E+22    6.69  -0.8047 

 .300 .070 .040    +5.5433E+01   -2.4838E+02   6.54E+16   12.05  -0.4581 

 .200 .070 .040    +7.4593E+01   -2.6753E+02   4.52E+12   16.22  -0.2554 

 .100 .070 .040    +8.6796E+01   -2.7974E+02   1.01E+10   18.87  -0.1116 

 .000 .070 .040    -1.1368E+02   -7.9266E+01   3.45E+53  -20.61    0 

 

3====4====1----2 

 .000 .070 .040                   infinity                             0 

 .014 .058 .040    +1.0393E+02   -2.9687E+02   1.93E+06    22.59   0.0142 

 .028 .044 .040    +1.1265E+02   -3.0559E+02   2.46E+04   24.49   0.0288 

 .042 .031 .040    +1.1696E+02   -3.0990E+02   2.85E+03       25.43   0.0439 

 .056 .016 .040    +1.1857E+02   -3.1151E+02   1.27E+03       25.78   0.0594 

3----1====4====2 

 .070 .000 .040                   infinity             0.0754 

 .070 .008 .033    +1.3115E+02   -3.2409E+02   2.37E+00       28.51   0.0835 

 .070 .016 .025    +1.3281E+02   -3.2575E+02   1.03E+00       28.87   0.0917 

 .070 .024 .017    +1.3287E+02   -3.2581E+02   1.00E+00 <==   28.88   0.1000 

 .070 .032 .009    +1.3134E+02   -3.2429E+02   2.15E+00       28.55   0.1085 

 .070 .040 .000                   infinity                            0.1171 
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3----1----2====4 

 .070 .040 .000                   infinity                           0.1171 

 .070 .040 .100    +1.0877E+02   -3.0171E+02   1.71E+05       23.65  0.2287 

 .070 .040 .200    +8.8456E+01   -2.8140E+02   4.41E+09       19.23  0.3725 

 .070 .040 .300    +6.3906E+01   -2.5685E+02   9.46E+14       13.86  0.5752 

 .070 .040 .400    +3.4843E+01   -2.2778E+02   1.94E+21        7.57  0.9218 

 .070 .040 .500    +0.0000E+00   -1.9294E+02   7.13E+28    0.00    ∞ 

Table 15-3: Results of CMAP analysis of the new locus (4) against the fixed map of loci 1-2-3. 

 

 You will note that the first column here is the location score. To compute multipoint lod scores from 

these location scores, you should divide each of these location scores by 2ln(10)  4.6. These multipoint lod 

scores have been added to table 15-3, with their corresponding map locations. In this case, our 3-unit support 

interval is completely contained within the interval (1,2), so this locus has been uniquely placed into one 

interval, and we have significant evidence for this locus order (assuming that the fixed map was correct). 

 Note that the lod score for map N-(0.000)-3-(0.070)-1-(0.040)-2 was –20.61, while the lod score for 

map 3-(0.000)-N-(0.070)-1-(0.040)-2 was –∞. This happened because sometimes the recombination 

fractions shown are accurate to only three decimal places. The program divides the recombination fraction 

into equal segments, and computes lod scores for each subdivision of the intervals. However, sometimes the 

division isn't completely accurate, but is only to the level of machine precision. When dealing with 

recombination fractions of 0, the slightest deviation from 0 can have a quite major effect on the lod score, 

since only at 0 itself is the lod score equal to –∞. Therefore, whenever you have two different values for the 

lod score at θ = 0 from a given marker, and one of them = –∞, this is the correct value. In general, when the 

left-side recombination fraction is 0, this is the more accurate value. Similarly, it is not always the case that 

the likelihood when the new locus is unlinked to the set of markers on the left side equals that computed 

with the disease unlinked on the right side. Again, this is due to rounding error, and in every case, it is more 

accurate to use the left-side value. We therefore recommend that one always normalize the lod scores to the 

likelihood with the new marker unlinked to the set of known loci on the left hand side of the fixed map. 

15.3 MAP DISTANCE 

It is always useful to be able to represent the multipoint lod scores in graphical format. To do this, you 

would need to express each putative location of the new marker in terms of its map location in Morgans. For 

arguments' sake, we typically take the location of the leftmost marker to be at map position 0. All other map 

distances can be computed by the Haldane mapping function. The Haldane mapping function must, in 

principle, be used here, as the likelihood computations are all performed assuming absence of interference 

(although some researchers often erroneously use the Kosambi mapping function to give the illusion of a 

shorter map). For example, in interval 0 (to the left of marker 3), the map distances of each point from 

marker 3 can be computed by converting the recombination fractions θN,3 to map distance by the relationship 

) 2 - 1 (  - = )(x 2
1

HALD  ln , where xHALD is the distance in Haldane Morgans corresponding to recombination 

fraction θ. In this case, since these recombination fractions are to the left of locus 3, we should prefix them 

with a minus sign, since we are standardizing locus 3 to be map position 0, without loss of generality. Map 

positions between loci 3 and 1 can be computed similarly, by converting θ3,N to map distance by the same 

formula. However, after you get to the right of locus 1, things get more complicated. You no longer are 

given recombination fractions θ3,N, but instead have θ3,1, and θ1,N. At this point you should convert θ3,1 to 

map distance, and θ1,N to map distance, and add them together. Similarly, for points to the right of marker 2, 

you would have θ3,1, θ1,2, and θ2,N. Convert each of these to map distance using the above formula, and sum 

the map distances together. For example, for map position 3-(0.07)-1-(0.04)-2-(0.20)-N, the corresponding 

map position (distance from locus 3) would be XHALD(0.07) + XHALD(0.04) + XHALD(0.20) = 0.0754 + 0.0417 

+ 0.2554 = 0.3725. These θ  x conversions can be performed with the Linkage Utility Program MAPFUN. 

To do this, simply call up the MAPFUN program. The program will prompt you with the following: 
 
Calculate Map distance from given theta [M, or MS for summing ts] 

 or Theta from given map distance [T]? (-1 exits) 

 

 In this situation we want to compute map distances from given θ's, so you should select option M. 

You will then be asked: 

 



92 

 

Enter theta [+ mapping parameters] (-1 exits) 

 

 Just enter the appropriate value of θ, for example 0.07 (= θ3,1). Do not worry about other mapping 

parameters. These have to do with other mapping functions, which we do not need to deal with for now. The 

program should give you results as follows: 

 
 Theta  xHALD   xKOS xCaFal   xRAO  xFELS xSTURT xBINOM 

                    param => 0.350  0.000  2.000  4.000 

0.0700 0.0754 0.0705 0.0700 0.0701 0.0705 0.0751 0.0740 

 

The only map distance you need is the 

Haldane map distance. The other 

mapping functions are obtained from 

various models of interference, which 

will be discussed in a later chapter. In 

general, if you have computed 

multipoint lod scores with the 

LINKAGE or CLINKAGE programs, 

the programs are basing the likelihood 

calculations on the assumption of no 

interference, so the only valid and 

meaningful conversion is from θ to 

xHALD. Two-point θ's can validly be 

converted by any map function you 

choose to assume, since no multilocus 

gamete probabilities are involved 

therein. So, for our purposes, all the 

other output can safely be ignored. Our 

result is xHALD = 0.0754. Now enter –1 

twice to exit the program. Note that the reverse transformation (x  θ) can be performed by this program 

for a variety of mapping functions as well. The map distances for the example with CMAP are given in table 

15-3. A graphical display of the multipoint lod score curve is then possible, by plotting Z(x) vs. x, as shown 

in Figure 15-1. 

EXERCISE 15 

As an exercise, try using CMAP to map locus 4 against the second-best locus order determined with 

CILINK, 1 – (0.04) – 2 – (0.09) – 3, for the data in files CEPH1.*. Can the locus 4 be uniquely assigned to 

one of these map intervals by the 3-unit support interval criterion? Compute map distances and multipoint 

lod scores across this other map.  

 Let us also go back and try running CILINK on all four loci together. Note that this would be 

impossible with regular ILINK, just as this whole chapter's exercises would've been impossible with regular 

LINKMAP on a PC. Is one order preferred significantly above all others? Is there anything interesting about 

the two best orders? Does the addition of this new marker locus help us at all in ordering loci 1, 2, and 3? 

Why or why not? 

 Go back to the dataset from exercise 14, and use CILINK to make a map of loci 1, 2, and 3. Then, 

fixing this map, go back and try to add locus 4. Check and see if these results are compatible with 4-point 

CILINK results. Then try to add locus 5 to the same map of loci 1 2 and 3. Compute all multipoint lod 

scores and their corresponding map locations as in this chapter. Are the results compatible with the CILINK 

results from the last chapter? What differences, if any, are there in the results, and the significance levels of 

our test for locus order and why?  
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16 Mapping a disease locus against a fixed map of markers 

16.1 MULTIPOINT TESTING AND ESTIMATING LINKAGE WITH DISEASES 

There are two phases of any genetic linkage analysis, the testing phase, and the estimation phase. Clearly, 

one must have a significant test result before proceeding to the estimation step, in order to prevent logical 

inconsistencies. In the testing phase, there is no great advantage to using multipoint analysis, when you are 

analyzing highly polymorphic markers. You see, the maximum multipoint lod score possible would be equal 

to the maximum possible two-point lod score when all meioses were informative in both cases. The only 

time a benefit is obtained in the testing phase is when multipoint analysis allows us to increase the 

percentage of meioses informative for at least one marker and the disease. In general, however, when there 

are questions about the model parameters, or diagnostic criteria, as is common in complex disorders, it is 

advisable to rely on some kind of two-point analysis for the testing phase of any linkage analysis. Not only 

is two-point analysis more robust in testing situations, but it also can be done at a much lower cost in 

computer time. Because the mode of inheritance of complex traits is typically unknown and the analysis 

model presumably is different from the true model, estimates of θ tend to be inflated (Risch, 1990). In 

multipoint analysis, this inflation tends to "drive" the trait outside of a map even though the trait locus may 

be in the middle of the map of markers (Risch, 1990). Complex traits will be discussed in more detail in Part 

III. 

 The greatest utility of multilocus analysis comes in estimating the location of your linked disease 

gene, provided that the mode of inheritance is well known. As we have seen in the last few chapters, 

multipoint analysis can be a very powerful tool for ordering loci along a chromosome. The simplest way of 

seeing how to do this is by selecting the location for a new gene which would minimize the number of 

double (and to a lesser extent, single) recombinants. We saw how the CILINK and CMAP programs can be 

used to localize a new marker relative to other nearby markers. However, when the new locus to be mapped 

is a disease gene, the situation becomes 

somewhat different. No longer does one have 

the advantage of a 1:1 correspondence 

between phenotype and genotype. One now is 

dealing with this additional variable of 

penetrance. Since more complicated 

penetrance models are required for disease 

mapping than for marker mapping, one can 

no longer take advantage of the rapid and 

efficient algorithm used by the CLINKAGE 

programs. Instead, one must rely on the 

general LINKAGE programs, which are 

much more restrictive in terms of the number 

of loci that can be used, and the maximum 

number of permissible alleles at each locus. 

The fundamental concepts and usage of 

ILINK and LINKMAP are the same as those 

you have already seen for CILINK and 

CMAP, but just computing efficiency is 

lower, and the generality higher. 

16.2 DISEASE GENE MAPPING 

Please create pedigree and parameter files 

(MULTDIS1.*) for the two pedigrees shown 

in Figure 16-1 (with marker locus phenotypes 

indicated in table 16-1). 
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Pedigree Individual M1 M2 M3 M4 M5 M6 M7 M8 

───────────────────────────────────────────────────────────────────────────── 

   1                 1     2 2  2 2   2 2   2 2   2 2   2 2   2 2   2 2 

   1                 2     1 1  1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   1                 3     1 2  1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   1                 4     1 1  1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   1                 5     1 2  1 2   1 1   1 2   1 2   1 1   1 2   1 1 

   1                 6     1 1  1 2   1 2   1 1   1 2   1 2   1 1   1 2 

   1                 7     1 2  1 2   1 2   1 1   1 2   1 2   1 2   1 2 

   1                 8     1 2  1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   1                 9     1 2  1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   1                10     1 2  2 2   1 2   1 2   2 2   1 2   2 2   2 2 

   1                11     1 1  1 2   1 2   2 1   1 2   1 2   1 2   2 2 

   1                12     1 1  2 1   1 2   1 1   2 2   1 2   1 1   2 2 

   1                13     1 2  1 2   1 1   2 2   1 2   1 2   1 2   1 1 

   1                14     1 1  2 1   1 1   1 1   2 1   1 2   1 1   1 1 

   1                15     1 2  1 1   1 1   2 2   1 1   1 1   2 2   1 1 

   1                16     1 2  2 1   1 1   1 2   2 1   1 2   1 2   1 1 

   1                17     1 2  1 1   1 1   1 2   1 1   1 1   1 2   1 1 

   1                18     1 1  1 1   1 1   1 1   1 1   1 2   1 1   1 2 

   1                19     1 1  1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   1                20     1 2  1 1   1 1   1 2   1 1   1 2   1 2   1 1 

   1                21     1 2  1 1   1 1   1 1   1 1   1 1   1 2   1 1 

   1                22     1 2  1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   1                23     1 2  1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   1                24     1 1  2 2   2 2   1 1   2 2   2 2   2 2   2 2 

   1                25    1 2   1 2   1 2   1 2   1 2   1 1   1 2   1 1 

   1                26    1 2   1 2   1 1   1 2   1 1   1 1   1 2   1 1 

   2                 1    2 2   2 2   2 2   2 2   2 2   2 2   2 2   2 2 

   2                 2    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   2                 3    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                 4    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   2                 5    1 2   1 2   1 1   1 2   1 2   1 1   1 2   1 1 

   2                 6    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                 7    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                 8    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                 9    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   2                10    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                11    1 1   1 2   1 2   1 1   1 2   1 2   1 2   1 2 

   2                12    1 1   1 1   1 2   1 1   1 2   1 2   1 1   1 2 

   2                13    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                14    1 1   1 1   1 1   1 1   1 1   1 2   1 1   1 1 

   2                15    1 2   1 1   1 1   1 2   1 1   1 1   1 2   1 1 

   2                16    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   2                17    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   2                18    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   2                19    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

   2                20    1 2   1 1   1 1   1 2   1 1   1 1   1 2   1 1 

   2                21    1 2   1 1   1 1   1 1   1 1   1 1   1 2   1 1 

   2                22    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                23    1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

   2                24    2 2   2 2   2 2   2 2   2 2   2 2   2 2   2 2 

   2                25    1 2   1 2   1 2   1 2   1 2   1 1   1 2   1 1 

   2                26    1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1 

Table 16-1 : Marker locus phenotypes for pedigrees in figure 16-1. 

 

 The disease is assumed to be a fully penetrant dominant disorder, with gene frequency of 0.0001, and 

each of the eight markers is assumed to have two equally frequent codominant alleles. 

 Now that we have the pedigree and parameter files prepared, we must decide on a course of action 

for this analysis. Before going any further with a multipoint type of analysis, it is wise to perform two-point 

analysis with the disease versus each of the markers to see if there is any two-point evidence to support a 

linkage to this region. So what we would like you to do is use the LCP program to prepare a batch file which 

will perform two-point analyses with the disease vs. each of the markers. To do this, invoke LCP, specify 

the appropriate parameter file and pedigree file. Then, select the MLINK program, with specific evaluations 

option, and No sex difference. Then enter the appropriate analyses to be done as follows: First, to analyze 

locus 1 (Disease) vs. locus 2, enter the following options: 
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 Locus Order [] : 1 2 

 Recombination Fractions [.1]: 0 

 Recombination varied [1]: 1 

 Increment value [.1]: .1 

 Stop value [.5]: .5 

 

followed by <Page Down>. To analyze the disease vs. Locus 3, repeat the process, except instead of 

entering Locus Order [] : 1 2, enter 1 3. Normally, one would continue doing this until you have selected the 

disease to be analyzed vs.each of the loci, but in the interest of time, only go up to disease vs. 4. At this 

point, press <Ctrl-Z> to exit from LCP, and write the batch file. To perform these analyses, you would type 

PEDIN to invoke your newly created batch file, PEDIN.BAT. Another way to get similar results would be 

with the ILINK program which will iteratively find the maximum likelihood estimate of the recombination 

fraction. Please try this analysis again with ILINK to verify that your results are consistent - note that ILINK 

results will give you an estimate, while MLINK gives you a sense of the shape of the likelihood curve. To 

do this, again invoke the LCP program, select parameter and pedigree files as before, and then select the 

ILINK program, with Specific orders option, and No sex difference. Then enter your problems. The follow-

ing example is as above for the comparison of markers 1 and 2: 

 
 Locus Order [] : 1 2 

 Recombination Fractions [.1] : 0.1 

 

Then hit <Page Down>, and enter the next comparison, 1 vs. 3. Normally, one would continue in this 

manner until all possible 2 point comparisons involving the disease locus (i.e. 1 vs. 2,..., 1 vs. 9) had been 

specified, but again, for time reasons, only analyze the disease versus the first three loci (2, 3, and 4). Note 

that sometimes ILINK gives an estimate of theta, > 0.50. This is an artifact of the method the program uses 

to maximize the likelihood. All such estimates can be thought of as being = 0.5, as that is the maximum 

meaningful value for a recombination fraction. Lod scores at θ > 0.5 may serve as a check of data 

consistency; if Z( > ½) is large ( > 2, say), the data may contain errors, and should be checked. Table 16-2 is 

a table of two-point intermarker recombination fractions which should coincide with those estimates you 

obtained, though there may be some minor differences. 

 
        2       3       4       5       6       7       8       9  

──────────────────────────────────────────────────────────────────── 

̂ :    0.363   0.031   0.085   0.324   0.000   0.206   0.295   0.150 

Z(̂ ): 0.540   7.700   6.090   0.940  10.225   2.727   1.290   4.698 

 

Table 16-2: ILINK estimates of 2-point θ, and Z() for each marker locus vs. disease. 

 

 The most tightly linked marker appears to be locus 6. For this locus, please perform an MLINK 

analysis in steps of 0.01, in order to find the upper bound for the 3-unit of lod score support interval. In this 

case, the support interval should cover the interval [0,0.19), since the lod score at 0 is 10.225, and the lod 

score first falls below 7.225 (= 10.225 – 3) at θ = 0.19, where Z(0.19) = 7.12. So, we can see that in the 2-

point analysis, we have a support interval for the location of our disease gene covering 

cM 23.9 = M 0.239 = 2(0.19)) - (1 -
2
1 ln .  

 Further, the support interval could extend on either side (proximal or distal) of our marker, so 

actually the support interval is twice this long, or 47.8 cM. Now, we should try and use multipoint analysis 

to see what effect it will have on the length of our support interval, and the accuracy with which we can map 

our disease gene. 

 Let us assume we have obtained a fixed map of our markers from the CEPH pedigrees as follows: 

5-2-8-3-6-4-9-7, with intermarker θs as follows: 0.075  0.075  0.225  0.075  0.075  0.075  0.075. We must 

now find the location of our disease gene along this map of markers. To do this, we must use the LINKMAP 

program, and move the disease locus through each of the intervals along our fixed map of loci, as was done 

in the CMAP example. We will be unable to analyze all the loci jointly in a 9-point analysis with the general 

pedigrees version of LINKMAP, due to memory constraints. To circumvent this problem, we will use the 

technique of sliding our group of four loci down the map, and analyzing the disease only in the middle 

interval (i.e with 2 flanking markers on each side) of each set of markers. We will first analyze the disease 
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against markers 5, 2, 8, and 3, allowing the disease locus to move over the region from the left of locus 5 up 

to locus 8. At that point we will switch to looking at the set of loci 2-8-3-6, when we move the disease in the 

middle interval of this set of loci, 8-3. We proceed like this until we have covered the entire length of our 

map, as shown in table 16-3. 

 
 ====5====2====8----3 

          2----8====3----6 

               8----3====6----4 

                    3----6====4----9 

                         6----4====9====7==== 

 

Table 16-3: Demonstration of strategy for picking which markers to use in a multipoint 

LINKMAP analysis of disease (=) vs a map of 8 markers, when only 5-point analysis is 

possible. 

 

 In this way, we can compute multipoint lod scores across the map, using the nearest markers to each 

interval in which the disease will be placed. While these lod scores will not be the same as those obtained 

from a putative nine-point analysis, this type of analysis would be impossible on a PC with the LINKAGE 

programs. After computing all the multipoint lod scores across this map of markers, we can find our 

estimated map position for the disease, and a multipoint three-unit-of-lod-score support interval for the map 

position, as before.  

 To perform these multipoint analyses, invoke LCP, and this time choose the LINKMAP program. 

Since we are going to analyze the disease in each interval with a different set of markers, we need to specify 

the Specific intervals option, with No sex difference. Now, for our first few analyses we will be using the set 

of markers 5 2 8 and 3. Normally we only use a specific set of markers to analyze the disease in the middle 

interval, but in this case, we have no markers farther out, so we can get the best results from these four 

markers. Our test locus is the disease. This means that the disease will be moved throughout whatever 

interval we specify on the fixed map of loci 5-2-8-3. For the entry of recombination fractions, we must input 

the KNOWN, FIXED recombination fractions between each of the loci. In this case, they are 0.075 between 

5 and 2, 0.075 between 2 and 8, and 0.225 between 8 and 3. The test interval must be specified next. It is 

imperative to have one evaluation for each set of markers with the disease fixed at θ = 0.50 to the left of the 

leftmost marker. This value of the loglikelihood at this point will have to be subtracted from the 

loglikelihoods at all points analyzed with this specific marker set to calculate multipoint lod scores and 

location scores. So to do this we specify test interval = 0, meaning to the left of the fixed map, and we 

request 1 evaluation, so it only does calculations at θ = 0.5, and possibly also at θ = 0 from the leftmost 

marker. Otherwise, test interval refers to which intermarker interval you want the disease (test locus) to 

move through. In our example, test interval 1 would cause the disease to be moved between marker 5 and 2, 

interval 2 would refer to that between 2 and 8, etc. Note that the largest value possible would be interval 4, 

meaning to the right of the rightmost (4th) locus. You may specify any number of points at which the 

likelihood should be calculated, but in general 5 is sufficient, unless you want a finer map, in which case you 

can raise it. For our purposes, we'll use five evaluations per interval. In other words to analyze the disease to 

the left of our map enter the following: 

 
 Test loci [] : 1 

 Order of fixed loci [] : 5 2 8 3 

 Recombination fractions [.1] : 0.075 0.075 0.225 

 Test interval [0] : 0 

 Number of evaluations [5] : 5 

 

 To analyze the disease between 5 and 2, just change test interval to 1. Further, analogously, to 

analyze the disease between loci 2 and 8, change the test interval to 2. Note that in this case I didn't have to 

separately specify an analysis to the left of the map of markers with one evaluation to get the value of the 

log likelihood at θ = 0.5, as that will be calculated anyway when the disease was moved through all points to 

the left of our map of loci. However, in the next interval, between 8 and 3, we will need to change our set of 

marker loci to 2 8 3 and 6, so in this case we will need to do a separate entry to calculate the value at θ = 0.5 

to the left of this new set of markers as follows: 
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 Test loci [] : 1 

 Order of fixed loci [] : 2 8 3 6 

 Recombination fractions [.1] : 0.075 0.225 0.075 

 Test interval [0] : 0 

 Number of evaluations [5] : 1 

 

to get the value at θ = 0.5, and then  

 
 Test loci [] : 1 

 Order of fixed loci [] : 2 8 3 6 

 Recombination fractions [.1] : 0.075 0.225 0.075 

 Test interval [0] : 2 

 Number of evaluations [5] : 5 

to move the disease between loci 8 and 

3. Also note that as we changed the loci 

in the analysis, we also had to enter the 

correct recombination fractions for each 

interval, as this is crucial to the analysis. 

Please continue this process until you 

have prepared a batch file that will run 

the disease over every point on the map 

using this sliding window type of 

method. We would like you to calculate 

the location scores and lod scores across 

the map, using the output from LRP to 

help you if you wish. Everything is 

essentially the same as for the analysis 

of CMAP output in the previous 

chapter, and is presented in table 16-4, 

and the multipoint lod scores are 

illustrated graphically in Figure 16-2. 

The calculation of location scores is left 

as an exercise for the user.  

 
          Map 

                                             distance 

                                             from    Location    Lod 

 Intermarker Thetas      ln(like)  log(like) locus 5   Scores    Scores 

──────────────────────────────────────────────────────────────────────── 

LOCI:  1 5 2 8 3 

0.5   0.075 0.075 0.225  -192.690  -83.684     -∞        0        0 
0.4   0.075 0.075 0.225  -190.952  -82.929  -0.80471              0.755 

0.3   0.075 0.075 0.225  -190.572  -82.764  -0.45814              0.920 

0.2   0.075 0.075 0.225  -191.961  -83.367  -0.25541              0.317 

0.1   0.075 0.075 0.225  -196.877  -85.502  -0.11157             -1.819 

  0   0.075 0.075 0.225    -∞        -∞      0         -∞        -∞ 

LOCI: 5 1 2 8 3 

0.015 0.062 0.075 0.225  -236.121 -102.545  0.015229            -18.862  

 0.03 0.048 0.075 0.225  -231.712 -100.631  0.030937            -16.947 

0.045 0.033 0.075 0.225  -231.877 -100.702  0.047155            -17.018 

 0.06 0.017 0.075 0.225  -236.789 -102.836  0.063916            -19.152 

0.075     0 0.075 0.225    -∞        -∞     0.081259   -∞        -∞ 

LOCI: 5 2 1 8 3 

0.075     0 0.075 0.225    -∞        -∞     0.081259   -∞        -∞    
0.075 0.015 0.062 0.225  -237.803 -103.276  0.096489            -19.592 

0.075  0.03 0.048 0.225  -231.880 -100.704  0.112197            -17.020 

0.075 0.045 0.033 0.225  -230.579 -100.139  0.128414            -16.455 
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0.075  0.06 0.017 0.225  -233.556 -101.432  0.145176            -17.748 

0.075 0.075     0 0.225    -∞        -∞     0.162518   -∞        -∞    

LOCI: 1 2 8 3 6 

0.500 0.075 0.225 0.075  -185.8052 -80.694 

LOCI: 2 8 1 3 6 

0.075     0 0.225 0.075    -∞        -∞     0.162518   -∞        -∞    
0.075 0.045 0.198 0.075  -184.419  -80.092  0.209674              0.602 

0.075  0.09 0.165 0.075  -177.598  -77.130  0.261744              3.564 

0.075 0.135 0.123 0.075  -173.590  -75.389  0.319874              5.305 

0.075  0.18  0.07 0.075  -170.796  -74.176  0.385662              6.518 

0.075 0.225     0 0.075    -∞        -∞     0.461437   -∞        -∞    

LOCI: 1 8 3 6 4 

0.500 0.225 0.075 0.075  -183.599  -79.735 

LOCI: 8 3 1 6 4 

0.225     0 0.075 0.075    -∞        -∞     0.461437   -∞        -∞    
0.225 0.015 0.062 0.075  -165.297  -71.787  0.476667              7.948 

0.225  0.03 0.048 0.075  -164.244  -71.330  0.492375              8.405 

0.225 0.045 0.033 0.075  -163.575  -71.039  0.508592              8.696 

0.225  0.06 0.017 0.075  -163.117  -70.840  0.525354              8.895 

0.225 0.075     0 0.075  -162.850  -70.724  0.542696              9.011 

LOCI: 1 3 6 4 9 

0.500 0.075 0.075 0.075  -176.860  -76.809 

LOCI: 3 6 1 4 9 

0.075     0 0.075 0.075  -156.197  -67.835  0.5427                8.974 

0.075 0.015 0.062 0.075  -156.679  -68.044  0.5579                8.765 

0.075  0.03 0.048 0.075  -157.363  -68.342  0.5736                8.467 

0.075 0.045 0.033 0.075  -158.403  -68.793  0.5899                8.016 

0.075  0.06 0.017 0.075  -160.302  -69.618  0.6066                7.191 

0.075 0.075     0 0.075    -∞        -∞     0.6240     -∞        -∞    

LOCI: 1 6 4 9 7 

0.500 0.075 0.075 0.075  -178.324  -77.445 

LOCI: 6 4 1 9 7 

0.075     0 0.075 0.075    -∞        -∞     0.623956   -∞        -∞    
0.075 0.015 0.062 0.075  -173.943  -75.542  0.639185              1.903 

0.075  0.03 0.048 0.075  -173.317  -75.270  0.654894              2.174 

0.075 0.045 0.033 0.075  -174.253  -75.677  0.671111              1.768 

0.075  0.06 0.017 0.075  -177.254  -76.980  0.687873              0.465 

0.075 0.075     0 0.075    -∞        -∞     0.705215   -∞        -∞    

LOCI: 6 4 9 1 7 

0.075 0.075     0 0.075    -∞        -∞     0.705215   -∞        -∞    
0.075 0.075 0.015 0.062  -191.679  -83.245  0.720445             -5.800  

0.075 0.075  0.03 0.048  -189.469  -82.285  0.736153             -4.840 

0.075 0.075 0.045 0.033  -189.804  -82.430  0.752371             -4.986 

0.075 0.075  0.06 0.017  -192.860  -83.757  0.769132             -6.313 

0.075 0.075 0.075     0    -∞        -∞     0.786475   -∞        -∞    

LOCI: 6 4 9 7 1 

0.075 0.075 0.075     0    -∞        -∞     0.786475   -∞        -∞    
0.075 0.075 0.075   0.1  -172.369  -74.858  0.898047              2.586 

0.075 0.075 0.075   0.2  -170.619  -74.099  1.041888              3.346 

0.075 0.075 0.075   0.3  -171.654  -74.548  1.244620              2.897 

0.075 0.075 0.075   0.4  -174.283  -75.690  1.591194              1.755 

Table 16-4: Results of LINKMAP analysis with disease against the fixed map of 8 

markers. 

 



99 

 

 In this example, we can see that our maximum multipoint lod score is 9.011, which is actually lower 

than that achieved in the 2-point analysis with marker 6, though the MLE of the disease location is still at 

marker 6. In this analysis, the 3-unit of lod score support interval would encompass only those regions with 

lod scores of greater than 6.011, which would extend, in this example, within the region between markers 3 

and 4, and slightly to the left of marker 3, where a lod score of 6.518 was achieved at 0.07 to the left of 

marker 3. In this case, our support interval is disjoint, covering a range of 14.52 cM between the markers 3 

and 4, and up to 7.58 cM to the left of marker 3, though the region is disjoint, having absolute length less 

than the entire 22.1 cM range. Remember that in the two-point example, the support interval of 47.8 cM is 

more than twice this length. If we had more tightly linked markers in our map, the properties would be 

different, and we could potentially even further isolate the location of our disease gene. 

EXERCISE 16 

Assume for the moment that the map was actually the following: 

 
 5-(0.02)-2-(0.02)-8-(0.04)-3-(0.01)-6-(0.01)-4-(0.02)-9-(0.03)-7 

 

 Now, rerun the LINKMAP analysis. In this case, what is the effect on the maximum lod score, and 

the 3-unit-of-lod-score support interval? How long is the support interval now, and how many intervals are 

covered? This points out the importance of having a good accurate map of your markers before doing the 

LINKMAP analysis, as the results are highly dependent on the initial map distance estimates used, in terms 

of the length of the 3-unit-of-lod-score support intervals, and sometimes the lod score values themselves. 

Remember that irrespective of the specific map of markers, the two-point support interval is still 47.8 cM 

long for this example, so if this were the true map of markers, multipoint analysis would have reduced the 

length of our support interval to a small fraction of its original length.  
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17 Exclusion Mapping 
In this chapter, you will be introduced to the concept of exclusion mapping. Issues surrounding the usage of 

negative test results will be considered, including relative power of two-point and multipoint methods for 

excluding chromosomal regions, and various pitfalls in the interpretation of negative linkage test results. 

Two methods of exclusion mapping are in general use. The first is based on the log likelihood of a trait 

versus a marker or map of markers, whereas the second employs Bayesian arguments (prior/posterior 

probability of map position), and has been employed for two-point analysis in a program called EXCLUDE 

(Edwards, 1987). Here, only the likelihood-based approach is illustrated. 

17.1 USING NEGATIVE TEST RESULTS 

In linkage analysis, one is primarily interested in localizing putative disease genes relative to well-

characterized marker loci. As we have discussed throughout, the foci of such an analysis are trying to obtain 

a positive test result for linkage (lod score > 3), and then trying to fine map the precise chromosomal 

location of the disease gene, as a prelude to isolating the precise genetic effect by molecular methods. 

However, with any given marker, the probability of finding a positive test result is quite low, as the human 

genome is very large, and most randomly selected markers will not be liked to the putative disease gene. 

Further, even if the selected marker is linked to the disease gene, there is no guarantee of a positive test 

result in any finite pedigree sample. In light of this, there is a need for some way to deal with negative test 

results as well, to try and eliminate various chromosomal regions from consideration. In doing this, one 

could concentrate the remainder of his genomic search without repeating redundant work, in areas where the 

gene most likely is not. One way of doing this is so-called exclusion mapping. 

 The methodology of exclusion mapping is quite different from that of the test and estimate approach 

to positive "inclusion" mapping. Obviously, if the test statistic one is applying is 
) = L(

)L(
 = Z

2
110



̂
logmax , 

then Zmax  0 always. It is important to remember that the likelihood ratio test is a test of the hypothesis of 

no linkage, such that in the absence of a significant test result, you fail to reject H0, meaning that there is no 

significant evidence for linkage. However, this does not mean that you accept H0, and have proved by the 

failure to achieve a significant positive test result that there is no linkage. It is quite another thing to prove 

the absence of linkage, and can be statistically a very complicated problem. 

 It has been proposed (Morton, 1955) that one treat the test of linkage as a sequential likelihood ratio 

test (LRT) of a simple hypothesis, θ = θ1. He proposed that one continue sampling new families until either 

one fulfills the criterion Z(θ1) > 3, in which case you would accept the hypothesis of linkage, or until Z(θ1) < 

–2, in which case you would reject the hypothesis of linkage. As long as –2 < Z(θ1) < 3, then no conclusions 

could be made. This concept has been extended to the general case, as described by Chotai (1984), such that 

the positive test is considered significant whenever Zmax > 3, and the negative test is considered significant 

on (θ | Z(θ) < –2), and the disease gene is said to be excluded from this region of the genome, where the lod 

scores fall below –2. The same criteria are routinely accepted for multipoint lod scores as well, though the 

theory is less well characterized in this case.  

17.2 TWO POINT EXCLUSION MAPPING 

Let us consider an example of exclusion mapping to see how it can be applied in practice. Go back to the 

dataset from the previous chapter (files MULTDIS1.*), and compute lod scores for the disease vs. marker 2 

with MLINK, starting from θ = 0, in steps of 0.01 up to θ = 0.5. Then, examine the output using the LRP 

program. In this two-point analysis, there is clearly no significant positive test result, so one cannot do any 

estimation of the location of the putative disease gene. However, if you examine the lod scores, you will see 

that on the interval [0, 0.13), Z(θ) < –2, so the disease gene can be excluded from being in this region. This 

exclusion covers a range of 13% recombination on either side of marker 2, which is a total genetic distance 

of 30.1 cM excluded. 

 Now, repeat the same analysis using marker 9 and the disease. In this case, there is a positive test 

result for linkage between these two loci, with Zmax = 4.698 at θ = 0.15. However, we can also note that Z(θ 

= 0) = –∞, so we also have a negative test result with the same marker. These two results can be reconciled 

if you go back to the original formulation of the sequential test as a test of each simple hypothesis, θ = θ1. 

Thus, the hypothesis θ = 0 is rejected, while the hypothesis θ = 0.15 is accepted. The conclusion would be 

that there is linkage between the disease and marker 9, but that θ > 0. In this case, the 3-unit-of-lod-score 
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support interval for the estimate of θ would be θ  (0.02, 0.43)2, since Z(θ) > 1.698 (= 4.698 – 3) at all values 

of (θ│0.02 < θ < 0.43 ). In general, exclusion mapping is most useful when there is no positive test result, since 

when there is a positive test result, one can develop a support interval for the location of the disease gene. 

Further exclusion information would not be of use in this situation, since the gene has already been localized to 

some degree, and now fine mapping can begin. 

17.3 MULTIPOINT EXCLUSION MAPPING 

Exclusion mapping is also routinely performed using multipoint analysis as well, based on the same criteria. 

In general, one can get a much greater exclusion map from multipoint analysis than one can get from two-

point analysis, since under certain incorrect locus orders, obligate double recombinants can be quite 

prevalent, greatly lowering the multipoint lod score. Let us go back to the same example again, and look at 

the multipoint lod scores we generated in that analysis. If one were to look at all points with lod scores lower 

than –2, you would see that the regions from map positions [0, 0.162518] and [0.720445, 0.786475] could 

be excluded. Further, the disease gene has been mapped to the region (0.3856,0.6066), by the 3-unit-of-lod-

score support criterion. Hence, we have the ability to exclude regions of the genome that are only 12 cM 

away from the region to which the disease was mapped, with such region covering a 7 cM range. The total 

exclusion region in this analysis is 23 cM in an analysis with a positive lod score of 9. This is impossible 

with two-point analysis in this pedigree set. We saw that you could exclude a 30 cM region with one two-

point analysis, but when the two-point result contained a positive test result, the maximum exclusion was 

extremely small (< 1 cM). In fact, the two-point analysis with which the lod score of 10 was obtained allows 

for the exclusion of none of the genome. When there is no linkage, multipoint analysis can generally provide 

a much more complete exclusion map than two-point analysis. 

17.4 MODEL ERRORS AND EXCLUSION MAPPING 

It has been shown that using an incorrect model for your disease will not in general lead to an increased false 

positive rate (Clerget-Darpoux et al, 1986), although maximizing the lod score over models will (Weeks et 

al, 1990a). In other words, you will not spuriously obtain lod scores of 3 in the absence of linkage at a higher 

rate under the wrong model than the correct model. If there is linkage, however, there is lower power to 

detect it when the model parameters are misspecified. Further, the estimates of the recombination fraction 

are typically inflated.  

 Contrary to the lack of false positives, the false negative rate can be astronomical when an analysis is 

performed under an incorrect model. It is very simple to design cases where the disease can be "excluded" 

from its true location by the Z(θ) < –2 criterion, when the analysis is done under an incorrect model. For this 

reason, when doing a linkage analysis with a complex disease, for which the model is not accurately known, 

it is not wise to do exclusion analysis, as the exclusion results obtained apply only to that specific model. 

You can only say that a given region was excluded if the analysis model were correct. Thus, we do not 

advocate any kind of exclusion analysis when the model is not known with a high degree of accuracy. There 

is of course an additional problem with exclusion mapping when there is the possibility of genetic 

heterogeneity, or diagnostic instability (see Part III). If there is linkage in only 20% of families, then 

summing the lod scores across families can easily lead to spurious exclusions. Similarly, if there is a 

significant rate of diagnostic uncertainty or instability, then it is again easy to induce false recombinants, 

leading to mistaken exclusion of the true disease map location. 

EXERCISE 17 

Let us consider again the disease pedigrees from chapter 16 (Files MULTDIS1.*). This time, however, 

repeat the same analysis using an incorrect model, assuming the disease to be autosomal recessive with 80% 

penetrance.  

 Next try analyzing the disease under the fully penetrant dominant model with the assumption that all 

unaffecteds are actually unaffected with only 75% certainty (see chapter 10). How does altering the model 

change your conclusions from the linkage analysis, including both positive and negative results?  
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18 Sex difference in recombination rates: Multipoint case! 
In this chapter you will learn how to handle sex difference in recombination rates. You will be estimating 

them in CILINK, and then utilizing them in LINKMAP to help refine your estimates of gene location. 

 Gametes are produced in males and females by the extremely different processes of spermatogenesis 

and oogenesis. As a by-product of the different processes involved, the recombination rates in the two sexes 

are known to be quite different. In fact, with the exception of the telomeres, males tend to exhibit much 

lower rates of recombination than females. The precise biological reason for this is not important to the 

linkage analyst, but rather the quantification of the effect. If male and female recombination rates are really 

so different, then one should use this information in the linkage analysis to glean maximal information from 

the data at hand. One could obtain much finer recombination estimates, and gain higher power in multipoint 

analyses by using this information. The LINKAGE programs are equipped to estimate sex-specific 

recombination rates in ILINK and CILINK, and to utilize this information for fine mapping in LINKMAP 

and CMAP, as you will see below. 

18.1 ESTIMATING SEX-SPECIFIC RECOMBINATION RATES 

It is quite simple to estimate sex-specific rates of recombination in the ILINK or CILINK program. As an 

illustrative example, please reconsider the dataset from the locus ordering chapter. Call up the LCP program 

to analyze the appropriate pedigree and parameter files from chapter 14 (CEPH1.*). Then select the 

following options in order: Three-generation pedigrees, CILINK, All Orders, and Varying sex difference. 

The varying sex difference option means that separate male and female recombination fractions will be 

estimated for each interval. Then, set up the analysis exactly as you had done for the previous exercise, as 

follows: 

 
Locus set [] : 1 2 3 

Male recombination fractions [.1] : .1 .1 

Female recombination fractions [.1] : .1 .1 

 

Then, hit <Page Down> to save the analysis, and <Ctrl-Z> to exit the program. Run the analysis by typing 

PEDIN at the DOS prompt, and then examine the results in the LRP program, exactly as you did before. 

You should find the following results: 

 
Order   -2LN Like   Odds 

-------------------------------------------- 

 .060 .060 

3----1----2  -1.9418E+02  1.00E+00 <== 

 .080 .020 

 

 .060 .120 

1----2----3  -1.8537E+02  8.21E+01 

 .020 .060 

 

 .060 .119 

1----3----2  -1.6730E+02  6.90E+05 

 .080 .060 

 

 In this analysis, there was even less significance than there was when the sex-difference in 

recombination rates was not allowed for.  

18.2 CONSTANT FEMALE TO MALE MAP DISTANCE RATIO 

Also, you will notice that in each case, the male recombination fraction estimates are presented on top, and 

the female recombination fraction estimates on the bottom. Note that under order 3-1-2, in interval 1, the 

female recombination rate is higher than the male rate, while in interval 2, the male rate is higher than the 

female rate. The same applies to order 1-3-2 as well. This is highly unlikely in reality, since the region is so 

small that one could reasonably expect the difference in recombination rates to be somewhat comparable. 

The programs allow you to fix such a restriction in the form of a constant female to male map distance ratio. 

What this means is that xHALD(θf)/XHALD(θm) = R, where R is held constant over the entire set of markers to 

be analyzed together. Now, instead of independently estimating four recombination fractions (two male and 

two female) for each locus order, only three free parameters are estimated jointly, two male θ's, and the 
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constant female:male map distance ratio. In this way, the number of free parameters can be reduced, and the 

restriction is allowed for, that sex difference in recombination is held constant over the region under 

consideration, which is a reasonable thing to believe over a short map length. Further, in this way, you are 

using more data to estimate the constant ratio of recombination rates, making the estimated sex difference 

more precise. To do this, please repeat the above analysis, only choosing the Constant sex difference option, 

rather than the Varying sex difference option in LCP. Then, set up the following screen as follows: 

 
 Locus set [] : 1 2 3 

 Male recombination fractions [.1] : .1 .1 

 Female/male distance ratio [1] : 1 

 

Then, perform the analysis, and read the output into LRP. You should see the following results: 

 
Order    -2LN Like   Odds 

-------------------------------------------------- 

 .076 .044 

3----1----2   -1.9304E+02  1.00E+00 <== 

 .064 .036 

 

 .056 .124 

1----2----3   -1.8529E+02  4.81E+01 

 .024 .056 

 

 .079 .101 

1----3----2   -1.6630E+02  6.42E+05 

 .061 .079 

 

 So, we can see that allowing for a constant sex difference in recombination rates even further reduces 

our power to order these three loci. From looking at the estimated recombination rates, the value of the 

constant sex ratio is not at all clear. Let us compute the value of this ratio for the order 3-1-2. In interval 1, 

we have θm = 0.076, and θf = 0.064. Converting these into map distances by Haldane mapping function 

(which in this case is mandatory, as the distance ratio is set to a constant in the program under this mapping 

function only!), we have xm = –0.5 ln(1 – 2(0.076)) = 0.0824; xf = –0.5 ln[1 – 2(0.064)] = 0.0685. From this, 

we can compute R = xf/xm = 0.0685/0.0824 = 0.831. Similarly, for interval 2, we have R = x(0.036)/x(0.044) 

= 0.0374/0.0461 = 0.811. Likewise, in the outer interval, xm(3,2) = 0.0824 + 0.0461 = 0.1285; xf(3,2) = 

0.0685 + 0.0374 = 0.1059; R = xf/xm = 0.1059/0.1285 = 0.824. These are all very close to each other, and 

given the degree of rounding error present in these estimated θ's, and map distance conversions, they can be 

considered to be equal. In fact, a theoretical formulation of the female to male map distance can be written 

in one equation as R = ln(1 – 2θf)/ln(1 – 2θm). Plugging in our values, for interval one, we get ln(1 – 

2(0.064))/ln(1 – 2(0.076)) = 0.831, as above. Since we know that all these estimates of the female to male 

map distance ratio are approximate, subject to rounding error, let us use LRP to determine what value of R 

was really estimated by the program. To do this, call up LRP as before, only this time, select the Full format 

option. You should see the following screen for the constant sex ratio analysis: 
 
 Initial Male Recomb. : 0.076 0.044 

 Locus Order : 03-----01-----02 

 Female Recombination : 0.064 0.036 

 Constant Sex Ratio : 0.824 

 

 Generalized LOD Score : +4.191800E+01  

 

 Data : Valid 

 Data Type : Autosomal 

 

Maximum -2LN Likelihood : -1.930400E+02  

 PTG : -6.665120E-05  

 Number of Iterations : 8 

 Likelihood Validity : Valid 

 Gemini Exit Condition : Specified tolerance on normalized gradient met. 

Iterated Parameter List : 1 1 1 

 Final Parameter Values : +7.624180E-02 +4.373910E-02 +8.240760E-01 

 Final Gradient Values : +0.000000E+00 +4.419420E-01 +0.000000E+00 
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 This tells us that the estimated constant sex ratio was 0.824. Let us try and determine the female 

recombination fraction from the estimates of male recombination fraction and sex ratio. To do this (for 

interval one), one needs to first convert the male recombination fraction to map distance, according to xm = –

0.5ln(1 – 2(0.076)) = 0.0824. Then, we know that R = xf/xm; so xf = Rxm = (0.824)(0.0824) = 0.0679. 

Converting this back to recombination fraction, you get θf = 0.5(1 – e
-2(0.0679)

) = 0.0635. To three decimal 

places, this estimate is 0.064, exactly that which was given by the CILINK program. So, you see how the 

rounding error caused all the deviations we observed in calculating the ratio for each interval. To see this, 

please do the same calculations for the second interval. You should again get results corresponding to those 

in the CILINK output file. Internally, the program estimates two parameters, the male recombination 

fractions, and the female to male map distance ratio (Haldane). From these values, it computes the 

corresponding female recombination fractions at the end. Hence, when we replicated this procedure exactly, 

the estimates presented in CILINK's output file are completely consistent. 

 Now, we need to look at our data again, to see if we had significant evidence in favor of either model 

for sex difference in recombination. To do this, consider the fixed order 3-1-2, and look at the values of –

2LN Like under each of these three models of sex difference in recombination rate. You should have 

obtained the results summarized in table 18-1 in your analysis. 

 
MODEL          df -2LN Like Δ(-2 LN Like) 

──────────────────────────────────────────────────────────────────────── 

Varying sex difference:      4 -194.18    0.00 

Constant sex difference:     3 -193.04             1.14 

No sex difference:    2 -192.94    1.24 

Table 18-1: Results of analysis of sex difference in recombination rates with CILINK 

under locus order 3-1-2. 

 

 The difference in –2LN (Like) can be thought of as a chi-squared statistic with the number of 

degrees of freedom equal to the difference in degrees of freedom between the models being compared. Thus, 

in this study, a test of constant sex difference vs. no sex difference would have (3 – 2 = ) 1 degree of 

freedom, and the value of the statistic would be (–192.94 – (–193.04)) = 0.10. Clearly this is insignificant. 

Likewise, if we wanted to test varying sex difference against no sex difference, the statistic would have (4 – 

2 = ) 2 degrees of freedom, and would have a value of (–192.94 – (–194.18)) = 1.24, which is again 

insignificant. The exact p-value, as computed with the CHIPROB program is 0.537944, which is completely 

insignificant, so you cannot reject the null hypothesis of no sex difference in this sample. 

 Please repeat the above analysis using all four loci in this dataset. At the end, you should have the 

results shown in table 18-2. 

 
MODEL     df  -2LN Like Δ(-2 LN Like) 

─────────────────────────────────────────────────────────────────── 

Varying sex difference:       6  -328.91     0.00 

Constant sex difference:       4    -326.04     2.87 

No sex difference:       3  -325.94     2.97 

Table 18-2: Results of analysis of sex difference in recombination rates with CILINK 

using all four loci jointly. 

 

 In this case, it is clear that the hypothesis of constant sex difference is not significantly better than 

that of no sex difference (χ
2

(1) = 0.10), while that of varying sex difference is somewhat more supported (χ
2

(3) 

= 2.97), but the p-value is still only 0.396277, so no significant evidence exists for sex difference in 

recombination rates in this pedigree set. It is interesting to examine more closely the results of the analysis 

with varying sex difference. The estimated recombination rates in this analysis were: 

 
 .060 .020 .040 

3----1----4----2 

 .080 .021 .001 

 

 Computing the female to male map distance ratios for each intermarker region, we find R1 = 1.35, R2 

= 1.044, R3 = 0.016. In fact, the estimated recombination rate between loci 4 and 2 should have been 0, 

making this ratio 0. This shows that in this family set, every recombination event between markers 4 and 2 
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happened to have occurred in males. If you remember, this family had one hundred informative meioses, 

fifty in females, and fifty in males. Only four meioses showed a recombination between loci 4 and 2, and all 

of them seem to have occurred in males. Since this rate is so small anyway, it is not extremely rare to 

observe no recombinants by chance in a given sex. For this reason, it is often safer to estimate a constant sex 

ratio of map distances, to prevent having frequent estimates of θ = 0 in one sex, with a somewhat larger 

estimate in the other, since obviously if a recombination occurred in one sex between two markers, the 

recombination fraction must be greater than 0 in the other sex as well, since there is obviously some genetic 

distance between the markers. 

18.3 SEX DIFFERENCE IN GENERAL PEDIGREE DATA 

We now want to see how we can use information about sex difference in recombination rates in general 

pedigree data. Let us reconsider the autosomal dominant disease from before in two new pedigrees, 

structurally and phenotypically (at the trait locus) identical to those in figure 16-1, with different marker 

locus genotypes, as indicated in table 18-3, assuming the same markers have been typed here as well (make 

files MULTDIS2.* - Note that MULTDIS2.DAT should be identical to MULTDIS1.DAT as the markers 

and trait locus have the same parameters as before): 
 

Ped  Ind M1 M2 M3 M4 M5 M6 M7 M8 

───────────────────────────────────────────────────────── 

1  1   2 2   2 2   2 2   2 2   2 2   2 2   2 2   2 2 

1  2   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

1  3   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

1  4   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

1  5   1 2   1 2   1 1   1 2   1 2   1 1   1 2   1 1  

1  6   1 1   1 2   1 2   1 1   1 2   1 2   1 1   1 2  

1  7   1 2   1 2   1 2   1 1   1 2   1 2   1 2   1 2  

1  8   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

1  9   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

1 10   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

1 11   1 1   1 2   1 2   1 1   1 2   1 2   1 2   1 2  

1 12   1 1   1 1   1 2   1 1   1 2   1 2   1 1   1 2  

1 13   1 2   1 2   1 1   1 2   1 2   1 1   1 2   1 1  

1 14   1 1   1 1   1 1   1 1   1 1   1 2   1 1   1 1  

1 15   1 2   1 1   1 1   1 2   1 1   1 1   1 2   1 1  

1 16   1 2   1 1   1 1   1 2   1 1   1 1   1 2   1 1  

1 17   1 2   1 1   1 1   1 2   1 1   1 1   1 2   1 1  

1 18   1 1   1 1   1 1   1 1   1 1   1 2   1 1   1 2  

1 19   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

1 20   1 2   1 1   1 1   1 2   1 1   1 2   1 2   1 1  

1 21   1 2   1 1   1 1   1 1   1 1   1 1   1 2   1 1  

1 22   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

1 23   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

1 24   1 1   1 2   1 2   1 1   1 2   1 2   1 2   1 2  

1 25   1 2   1 2   1 2   1 2   1 2   1 1   1 2   1 1  

1 26   1 2   1 2   1 1   1 2   1 1   1 1   1 2   1 1  

2  1   2 2   2 2   2 2   2 2   2 2   2 2   2 2   2 2  

2  2   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

2  3   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2  4   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

2  5   1 2   1 2   1 1   1 2   1 2   1 1   1 2   1 1  

2  6   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2  7   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2  8   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2  9   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

2 10   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2 11   1 1   1 2   1 2   1 1   1 2   1 2   1 2   1 2  

2 12   1 1   1 1   1 2   1 1   1 2   1 2   1 1   1 2  

2 13   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2 14   1 1   1 1   1 1   1 1   1 1   1 2   1 1   1 1  

2 15   1 2   1 1   1 1   1 2   1 1   1 1   1 2   1 1  

2 16   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

2 17   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

2 18   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

2 19   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  
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2 20   1 2   1 1   1 1   1 2   1 1   1 1   1 2   1 1  

2 21   1 2   1 1   1 1   1 1   1 1   1 1   1 2   1 1  

2 22   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2 23   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

2 24   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2  

2 25   1 2   1 2   1 2   1 2   1 2   1 1   1 2   1 1  

2 26   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1  

Table 18-3: Genotypes for pedigrees with structure as shown in figure 16-1, to be 

entered in files MULTDIS2.* 

 

 Ignoring, for the moment, the disease, let us try and test whether there is a significant sex difference 

in recombination rates in these families. For the moment, let us only consider locus order 4-9-7, which we 

already know is the true order of these loci. Ideally, we would want to check for sex differences in 

recombination rates using the CEPH pedigrees, but in this case, it is not possible. Therefore, we will have to 

use the general pedigree version of ILINK, and a correspondingly reduced set of loci, in this case, three. 

Now, let us analyze these three loci in ILINK, using the Specific order, and each of the following options in 

turn: No sex difference, Constant sex difference, and Varying sex difference. Use starting values of 0.1 for all 

recombination fractions, and 1 for the female to male map distance ratio. When you finish running the 

analysis, you should examine the results in LRP, yielding the results shown in table 18-4. 

 
MODEL          n  -2LN Like  Δ(-2 LN Like) 

───────────────────────────────────────────────────────── 

Varying sex difference:  4 181.90  0.00 

Constant sex difference: 3 181.90  0.00 

No sex difference:  2 181.25 -0.75 

Table 18-4: Results (Incorrect) from first attempt at analysis of loci 4,9, and 7 on 

pedigrees from MULTDIS2.*; n = number of parameters estimated 

 

 Note that you have achieved an impossible result, in which the hypothesis of no sex difference has a 

higher likelihood than varying or constant sex difference, even though no sex difference is a nested 

hypothesis. This should tell you something is wrong. The other thing that should key you in to the fact that 

an error occurred is that the final estimates of the recombination fractions and female to male distance ratios 

are all the same as the starting values, meaning the program didn't do any maximization at all. ILINK has 

this peculiar property, that it does not always converge, depending on the initial values given to it. Whenever 

running this program, it is always advisable to examine the conditions under which the program finished the 

maximization of the likelihood. To examine the exiting conditions, call up the LRP program again, only this 

time select the option for Full format, rather than Table format. Look at the results there, and you will see 

the following message: 

 
 Likelihood Validity : Not completely converged 

 Gemini Exit Condition : Excessive cancellation in gradient 

 

 What this means is that the likelihood was not successfully maximized in this analysis, and that you 

should attempt the analysis again with different starting values. So, call up LCP, and set up another run with 

the starting values as follows: 

 

No sex difference: 
      Locus order [] : 4 9 7 

  Recombination fractions [.1] : 0.2 0.2 

 

Constant sex difference: 
      Locus order [] : 4 9 7 

  Male recombination fractions [.1] : 0.2 0.2 

     Female/Male distance ratio [1] : 2 
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Varying sex difference: 
         Locus order [] : 4 9 7 

   Male recombination fractions [.1] : 0.2 0.2 

 Female recombination fractions [.1] : 0.05 0.05 

 

 Then, run the analysis, and examine the output in LRP. This time, first check the exit conditions and 

likelihood validity with the Full format option. This time the message should say the following: 

 
 Likelihood validity : Valid 

 Gemini exit condition : Specified tolerance on normalized gradient met 

 

 This should be the case for each sex difference option. Then, examine the likelihoods and you will 

see the results given in table 18-5. 

 
  MODEL        df     -2LN Like   Δ(-2 LN Like) 

──────────────────────────────────────────────────────────────────────────── 

Varying sex difference:     4  180.52  0.00 

Constant sex difference:    3  180.52  0.00 

No sex difference:     2  181.25  0.63 

Table 18-5: Correct results from analysis of loci 4, 9, and 7 on pedigrees from 

MULTDIS2.* 

 

 None of these comparisons are significant. So, for the purposes of testing on this set of data, there is 

nothing significant at all. However, there is always the option of using more loci together. On the PC it 

should be possible to analyze five loci together. So, try looking jointly at loci 3-6-4-9-7. In this analysis, 

when it is finished, the results should look like those given in table 18-6. 

 
  MODEL        df      -2LN Like  Δ(-2 LN Like) 

───────────────────────────────────────────────────────────────────────────── 

Varying sex difference:      8  277.8569 0.0000 

Constant sex difference:      5  277.8570 0.0001 

No sex difference:     4  279.3242 1.4671 

Table 18-6: Analysis of loci 3,6,4,9,7 from pedigrees in MULTDIS2.* 

 

 So, in this case, our test for constant sex difference vs. no sex difference is again insignificant, but 

has a p-value of only 0.2257, as opposed to the three-locus case, where the p-value was 0.4273. It turns out 

that if you can use all the loci jointly, the statistic becomes marginally significant, with an estimated female 

to male map distance ratio of about 2.113:1.  

18.4 SEX DIFFERENCE IN RECOMBINATION FRACTION IN LINKMAP 

It is very simple to take advantage of the sex differences in recombination fraction using the LINKMAP 

program. Analyze loci 3,6, and 4 vs. the disease, moving the disease across the entire length of the map, 

with 5 evaluations per interval. The map of this region was 3-(0.075)-6-(0.075)-4, under no sex difference; 

3-(0.05)-6-(0.05)-4, with female to male map distance ratio of 2.113, and male thetas indicated for constant 

sex difference; 3-(0.05/0.10)-6-(0.05/0.10)-4, in format (θm/ θf), under varying sex difference. Let us 

reanalyze the data with LINKMAP now. First, call up LCP, and select the LINKMAP program, All intervals 

option, followed by No sex difference. Set up the next screen as: 

 
      Test loci [] : 1 

    Order of fixed loci [] : 3 6 4 

   Recombination fractions [.1] : 0.075 0.075 

 Number of evaluations in interval [5] : 5 

 

Then, do the same thing with the Constant sex difference option, setting up the screen as follows: 
      Test loci [] : 1 

    Order of fixed loci [] : 3 6 4 

   Male recombination fractions [.1] : 0.05 0.05 

 Female/Male distance ratio [1] : 2.113 

 Number of evaluations in interval [5] : 5 



108 

 

Finally, set up a third analysis with Varying sex difference, as follows: 

 
       Test loci [] : 1 

    Order of fixed loci [] : 3 6 4 

  Male recombination fractions [.1] : 0.05 0.05 

 Female recombination fractions [.1] : 0.10 0.10 

 Number of evaluations in interval [5] : 5 

 

Run these analyses, and when you have finished, you should obtain the results given in table 18-7.  

 
   ────────────────────────────────────────────────────────────── 

                (Sex Averaged) (No Sex Diff.)  (Sex Ratio=2.113) 

      Thetas     Map Distance Location  Lod    Location   Lod 

                 (in Morgans) Scores   Scores   Scores   Scores 

   ────────────────────────────────────────────────────────────── 

   0.5 0.075 0.075              0        0        0        0 

   0.4 0.075 0.075 -0.80471  12.15294 2.638971 7.527224 1.634513 

   0.3 0.075 0.075 -0.45814  21.83398 4.741182 15.99249 3.472719 

   0.2 0.075 0.075 -0.25541  29.28252 6.358606 24.89760 5.406436 

   0.1 0.075 0.075 -0.11157  33.83958 7.348158 32.66120 7.092278 

     0 0.075 0.075        0  -4.0E+20 -8.7E+19 -4.0E+20 -8.7E+19 

 0.015 0.062 0.075  0.015229 45.33776 9.844952 45.46628 9.872858 

  0.03 0.048 0.075  0.030934 49.54470 10.75847 49.63480 10.77804 

 0.045 0.033 0.075  0.047157 52.06690 11.30616 52.12358 11.31847 

  0.06 0.017 0.075  0.063916 53.92788 11.71027 53.95502 11.71616 

 0.075     0 0.075  0.081257 55.45176 12.04117 55.45176 12.04117 

 0.075 0.015 0.062  0.096486 54.13072 11.75431 54.08710 11.74484 

 0.075  0.03 0.048  0.112193 52.46032 11.39159 52.37892 11.37391 

 0.075 0.045 0.033  0.128414 50.12484 10.88445 50.01056 10.85963 

 0.075  0.06 0.017  0.145174 46.10902 10.01242 45.96564 9.981292 

 0.075 0.075     0  0.162518 -4.0E+20 -8.7E+19 -4.0E+20 -8.7E+19 

 0.075 0.075   0.1  0.274090 33.83958 7.348158 32.66120 7.092278 

 0.075 0.075   0.2  0.417931 29.28252 6.358606 24.89760 5.406435 

 0.075 0.075   0.3  0.620664 21.83398 4.741181 15.99249 3.472719 

 0.075 0.075   0.4  0.967237 12.15293 2.638971 7.527224 1.634513 

Table 18-7: LINKMAP results with and without allowing for sex difference in 

recombination rates. Disease vs. loci 3, 6, and 4. 

 

 In this example, the two situations, constant sex difference, and varying sex difference give identical 

results, since the recombination fractions are the same under both models in this case. However, you can see 

that there is a slight difference in the magnitude of some of the lod scores in the analyses with sex 

difference, and without, though in general, the differences are minimal. In general applications, however, 

one should always use the best supported model. If there is significant evidence for sex-difference in 

recombination fractions, then one should use this information when doing a LINKMAP analysis, as it will 

allow for a more accurate likelihood analysis. In any of the situations discussed thus far, the inclusion of sex 

specific recombination rates is quite simple and straightforward, so we will not go into specific details about 

how to include it in each possible application. Unless stated otherwise, all analyses to be discussed, using the 

LINKAGE programs can be adapted for sex-specific recombination rates with a minimum of additional 

effort. 

EXERCISE 18 

Go back to the set of CEPH pedigrees from exercise 14 (files USEREX14.*). Reanalyze the data allowing 

for sex difference in recombination under both the constant and varying sex difference options, using all five 

loci jointly. 

 Then, repeat the LINKMAP/ILINK analyses of sex difference in recombination fraction with our 

disease using the data in the pedigrees from chapter 16 (MULTDIS1.*). Is there strong evidence for sex 

difference in recombination fraction with loci 3-6-4-9-7? Which hypothesis is supported, constant or varying 

sex difference? What would happen if you were to combine the pedigrees in the two disease data sets with 

the dominant disease (MULTDIS1.* and MULTDIS2.*) and analyze them together? Is there more evidence 

for sex difference in recombination? Is there anything interesting about these two datasets?   
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19 Introduction to Interference 
In this chapter, the concept of genetic interference will be introduced. While there is currently no 

overwhelming support for any specific model of interference in humans, it is believed to be present. Clearly, 

if an accurate model for positive interference were available, it should greatly increase the power of 

multipoint linkage analysis. In this chapter, we will introduce how one can allow for interference in 3-point 

analysis with the ILINK program, and will briefly discuss preliminary versions of the CLINKAGE programs 

which allow for interference according to certain models. 

19.1 WHAT IS INTERFERENCE? 
Interference is the phenomenon whereby crossovers do not occur independently along a chromosome, and 

the presence of a crossover at any given location affects the probability of finding another crossover in a 

nearby chromosomal region. It is a well known phenomenon in many species, eg. mice, drosophila, etc. 

Typically, such interference is positive, meaning that a crossover at one location decreases the probability of 

another crossover in a nearby region, perhaps due to a stearic hindrance, or other biochemical reaction. 

Researchers often postulate that positive interference exists in humans, though it has not yet been 

demonstrated by rigorous statistical examination (Sturt, 1975). The presence and characterization of such 

interference will be of great utility in linkage mapping. Presently, the LINKAGE programs perform 

multipoint likelihood calculations assuming absence of interference. If positive interference is present in 

humans, double recombinants in a small region are then accorded too large of a probability of occurrence, so 

allowing for it in the analysis could potentially allow greatly increased power for locus ordering, and 

accuracy in fine scale linkage mapping. The first problem, however, is to try and prove its existence, and 

develop a quantification of the phenomenon.  

19.2 THREE-POINT ANALYSIS OF INTERFERENCE 

The most simple and straightforward manner is based on three point analysis, as described in Ott (1991). 

Assume three colinear markers, A-B-C, and then estimate θAB, θBC and θAC, without restricting that there be 

no interference. One could reparametrize the analysis in terms of three parameters, as shown in table 19-1. 

 
               Interval A-B 

     ───────────────────────────────── 

  Interval B-C   Recombinant  Non-Recombinant  Total 

────────────────────────────────────────────────────────────────────────────── 

  Recombinant           α    β   θBC 

  Non-Recombinant                   δ   1 - θBC 
────────────────────────────────────────────────────────────────────────────── 

  Total               θAB       1 - θAB 

────────────────────────────────────────────────────────────────────────────── 

Table 19-1: Reparametrization of probabilities of each meiosis type allowing for 

interference, where δ = 1 – α – β - γ 

 

 The ILINK program has an option to analyze three point data according to the above 

parametrization. Basically, the program estimates the probabilities α, β, and γ, with δ = 1 – α – β – γ. From 

these estimates, it determines the estimates of the three recombination fractions, θAB = α + γ; θBC = α + β; 

θAC = β + γ, as should be clear from table 19-1 (Remember from chapter 14 that the recombination events in 

two intervals uniquely determine the third interval's recombination status in a three-point analysis). A more 

common, and meaningful parametrization of the results of this analysis is to express the results as estimates 

of θAB, θBC, and c, the coefficient of coincidence, which is a measure of the type and strength of 

interference.  

 Interference can be quantified in three point analysis by the coefficient of coincidence, 

)  2 (/) -+ ( = c BCABACBCAB  . This quantity c can be interpreted as follows: if c = 0, then it is said that 

there is complete positive interference, meaning that a recombination in interval AB makes it impossible for a 

second recombination to occur in interval BC; if c = 1, there is no interference (and the Haldane mapping 

function applies), for then the recombination fractions are independent; if 0 < c < 1, there is some positive 

interference, and presence of a recombination decreases the probability of further recombination to some degree 

in that immediate area; and if c > 1, there is negative interference, meaning that one crossover increases the 

probability of a second crossover in adjacent chromosomal regions. We are thus dealing with the three 
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parameters, θAB, θBC, and c, and can perform a likelihood ratio test of the absence of interference, as 

 


 2

(1)

BCAB

BCAB

1)=c,,L(

)c,,L(
2 ~ 

ˆˆ

ˆˆˆ
ln , where the θ's should be estimated separately in numerator and denominator.  

 Please consider the set of pedigrees from exercise 14, and use the LSP program to extract loci 3, 1, 

and 2 from the pedigree and parameter files you created in that chapter (userex14.*), in a form readable by 

ILINK, to estimate the recombination fractions θ31, θ12, and θ32, allowing for the presence of interference. To 

do so, proceed as follows. First, call up the LSP program by typing LSP at the DOS prompt. Then, respond 

to its queries as follows: 

 
Command [ILINK] : ILINK 

Pedigree File [PEDIN.DAT] : USEREX14.PED 

Parameter File  [DATAIN.DAT] : USEREX14.DAT 

Number of Loci [] : 3 

Locus Order     [] : 3 1 2 

Interference [0] : 1 (To allow interference) 

Sex Difference   [0] : 0 (No sex difference) 

Male Recombination Fractions [0.1] : 0.1 0.1 0.1 

 

 The LSP program will then construct new pedigree and parameter files for this analysis, with only 

the three specified loci in the new files. This program is called by the PEDIN.BAT files created in LCP in 

the performance of every linkage analysis done with LCP. However, as in this case, you can see where the 

LSP program can be a useful tool on its own, to prepare files for such analyses as this one. Your LSP-

created parameter file (DATAFILE.DAT) and pedigree file (PEDFILE.DAT) are ready to be analyzed 

directly by the UNKNOWN and ILINK programs (YOU CANNOT USE LCP AT THIS POINT, since the 

files are named PEDFILE.DAT and DATAFILE.DAT!). The DATAFILE.DAT file should resemble the 

following: 

 
3 0 0 3 

0 0.00000000 0.00000000 0 

 3 1 2 

 

2 3 

 0.53571430 0.41785710 0.04642857 

3 

 1 0 0 

 0 1 0 

 0 0 1 

 

2 3 

 0.34931510 0.54452060 0.10616440 

3 

 1 0 0 

 0 1 0 

 0 0 1 

 

2 2 

 0.74083770 0.25916230 

3 

 1 0 1 

 0 1 1 

 

0 1 

 0.10000000 0.10000000 0.10000000 

0 

 1 1 1 

 

 The important features of this datafile relevant to the interference option are indicated on the last four 

lines. The fourth line from the bottom, 0 1, has a 0 for no sex difference, and a 1 for allow for interference. 

The third line from the bottom contains starting values for the three recombination fractions. The second 

line from the bottom contains a 0, since we do not wish to estimate other parameters for any of the loci, and 

the last line contains three 1's to tell the program to estimate all three recombination fractions in the manner 
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described above. To use the files created by LSP to test and estimate interference, please call up the 

UNKNOWN program, followed by the ILINK program. Then, look at the FINAL.DAT file in your word 

processor. The file should look like the following: 

 
CHROMOSOME ORDER OF LOCI :  

 3 1 2 

****************************************************** 

P VALUES: 

 0.194 0.120 0.077 

THETAS: 

 0.270 0.197 0.314 

****************************************************** 

-2 LN(LIKE) = 8.787537241097E+002 

OTTS GENERALIZED LOD SCORE = 5.573634329867E+000 

NUMBER OF ITERATIONS = 6 

NUMBER OF FUNCTION EVALUATIONS = 33 

PTG = -4.659531440578E-005 

****************************************************** 

****************************************************** 

 

 In this file, you are provided with estimates of P-VALUES and THETAS. First, the THETAS are 

respectively the estimates of θ31, θ12, and θ32. The P-VALUES are not p-values in the statistical sense. They 

are merely the estimates of the parameters γ, β, and α from table 19-1, and can be used to recreate the 

recombination fraction estimates as described above. The other important value to compute in this case is c, 

the coefficient of coincidence. Using the formula given above, for this example, c = [0.270 + 0.197 – 

0.314]/[2(.270)(.197)] = 1.44, indicating that in this example the estimated interference is negative, since 

1.44 > 1. The next thing to consider is testing whether or not the evidence for interference is significant. 

Sometimes, only those values of  1 are tested against c = 1 (one-sided test). On the other hand, significant 

evidence for negative interference might be indicative of errors in marker typing in your pedigree data, or it 

might provide evidence for gene conversion at the middle locus. If one wanted to test for any deviation from 

c = 1, one would proceed as follows. The likelihood ratio test is of the form 

)]ˆ,ˆ,ˆ(/)1,ˆ,ˆ(ln[2 cLcL BCABBCAB    ~ χ
2
(1). The value of )]ˆ,ˆ,ˆ(ln[2 cL BCAB  is 878.75 from the 

FINAL.DAT file above. The value of )]1,ˆ,ˆ(ln[2  cL BCAB  can be found by running ILINK on this locus 

order without allowing for interference. Perform this analysis, and you should find that 

)]1,ˆ,ˆ(ln[2  cL BCAB  = 878.94, making our likelihood ratio statistic = 878.94 – 878.75 = 0.19, for a 

clearly non-significant p-value of 0.66. Hence, there is no evidence for interference in this sample. 

Terwilliger et al (1993b) examined a large number of such triples of loci in the CEPH Chromosome 

consortium data, and never found any significant evidence for interference in that dataset. 

19.3 SEX-SPECIFIC INTERFERENCE ANALYSIS 

Terwilliger et al. (1993b) also showed that when there is a sex difference in recombination rates, one must 

allow for it to validly test interference, as follows. They showed that the sex pooled coefficient of 

coincidence, cT, is biased upward in general when there really is a sex-difference in recombination fractions. 

If we assume complete interference, c = 0 in both males and females, then they showed that cT is 

asymptotically unbiased, but when there is absence of interference in both males and females separately, 

)+)(+(

)-)(-(
+1=c

m2f2m1f1

m2f2m1f1
T




 and therefore cT is asymptotically biased, and inconsistent (as opposed to the 

consistent result when c = 0). Further, asymptotically 1))(c=c,,L(<1)=c,,L( T2121
ˆˆˆˆˆ   

so 
1)=c,,L(

)c,,L(

21

T21




ˆˆ

ˆˆˆ
 ∞ as n  ∞ and the chi-square test fails.  

 In general, cT is always greater than the sex specific coefficients of coincidence. For example, if one 

estimated cT = 1, we then know that cT > cm (likewise for cf). So when one estimates that there is no 

interference from sex-pooled data, and there is a sex difference in recombination fraction, this implies there 

is positive interference in each sex separately.  

 Since there is usually significant evidence for sex differences in recombination fraction, it is 
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imperative to allow for sex difference in the recombination fractions (and coefficient of coincidence) in your 

ILINK estimation and testing for the presence of interference in your data. Let us reconsider the same 

dataset as above, loci 3-1-2 in USEREX14.*. And let us use LSP to extract these loci and prepare the files 

for the interference analysis under the different sex difference options. Repeat everything exactly as before, 

only now when you are prompted with Sex Difference [0]:, enter a 1 to specify a constant sex difference in 

recombination. Then, analyze the data with ILINK as described before. The FINAL.DAT file should 

resemble the following: 

 
CHROMOSOME ORDER OF LOCI :  

 3 1 2 

****************************************************** 

P VALUES: 

 0.171 0.087 0.000 

FEMALE:  

 0.304 0.164 0.095 

THETAS: 

 0.171 0.087 0.258 

FEMALE: 

 0.399 0.259 0.469 

CONSTANT FEMALE/MALE DIST RATIO : 

3.821 

****************************************************** 

-2 LN(LIKE) = 8.730176055538E+002 

OTTS GENERALIZED LOD SCORE = 6.819214051328E+000 

NUMBER OF ITERATIONS = 14 

NUMBER OF FUNCTION EVALUATIONS = 88 

PTG = -6.854390155713E-004 

****************************************************** 

****************************************************** 

 

 In this situation, the estimated coefficient of coincidence is cm = [0.171 + 0.087 – 0.258] / 

[2(0.171)(0.087)] = 0, indicating complete positive interference in males, and cf = [0.399 + 0.259 – 0.469]/ 

[2(0.399)(0.259)] = 0.914, indicating very slight positive interference in females, assuming a constant sex 

ratio of 3.821. However, it is probably more appropriate to assume a varying sex ratio, since the sex ratio 

forces some constraints on the sex-specific coefficients of coincidence, so try analyzing the data with Sex 

difference [0] : set to 2 in LSP. Then, reanalyzing the data should yield the following FINAL.DAT file: 

 
CHROMOSOME ORDER OF LOCI :  

 3 1 2 

****************************************************** 

P VALUES: 

 0.146 0.107 0.000 

FEMALE:  

 0.348 0.115 0.130 

THETAS: 

 0.146 0.107 0.252 

FEMALE: 

 0.479 0.245 0.463 

FEMALE/MALE DIST RATIO : 

 9.161 2.802 3.701 

****************************************************** 

-2 LN(LIKE) = 8.726082665176E+002 

OTTS GENERALIZED LOD SCORE = 6.908100708333E+000 

NUMBER OF ITERATIONS = 14 

NUMBER OF FUNCTION EVALUATIONS = 117 

PTG = -7.623469083546E-004 

****************************************************** 

****************************************************** 

 

 In this example, the value of cm = [0.146 + 0.107 – 0.252]/[2(0.146)(0.107)] = 0.03, and cf = [0.479 + 

0.245 – 0.463]/[2(0.479)(0.245)] = 1.11. Again, there is almost complete positive interference in males, and 

slightly negative interference in females. We still must test the hypothesis of interference under each of 
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these models, as before. So, we will need to use ILINK to compute the –2ln(LIKE) for this locus order under 

the two different sex difference options. The results of this analysis should show that for Constant sex 

difference, –2ln(LIKE) = 873.45, and for Varying sex difference, –2ln(LIKE) = 873.15. Therefore, 

subtracting off the values obtained with interference, our chi-square statistic for Constant sex difference = 

873.45 – 873.02 = 0.43 (p = 0.51); Varying sex difference = 873.15 – 872.61 = 0.54 (p = 0.46). Thus we 

have still got no significant evidence for interference in this dataset, when sex difference in recombination 

fraction is properly allowed for. 

 In this chapter, the concept of interference was introduced on a basic level, and testing and 

estimating interference from three-point data was explained using the ILINK program of the LINKAGE 

package. To date, no conclusive evidence of interference has been found in man using this approach, and 

this can be due to either a lack of interference in humans, or simply that our sample sizes are too small to 

detect what interference may exist. Ott (1991) determined that for Kosambi level interference, with 3 

equally spaced markers (θ = 0.15), and fully informative phase known data, 847 meioses would be required 

to reject the null hypothesis of no interference at the 0.05 level with 80% power. With this in mind, it is not 

surprising that the results of the small analyses done in this chapter proved non-significant, whether or not 

interference is actually present. There are more sophisticated methods currently under development by 

Weeks et al (1991) to handle more than three loci at a time in a test for interference in humans. Their 

preliminary results suggest that the Sturt mapping function (Sturt, 1975) may be the best fitting model for 

interference in humans, and they have potentially significant evidence for interference of this nature in one 

six-point analysis, but further investigations will be necessary to prove that interference is a general 

phenomenon in human genetics. They are developing a modified version of the CILINK program, called 

CINTMAX (Weeks et al, 1991), which is capable of analyzing CEPH pedigree data under a variety of 

possible models of interference, which may become a useful tool in gene mapping in the future.  

EXERCISE 19 

Consider the data from MULTDIS2.*. Is there any evidence of interference in this dataset? Since Ott (1991) 

reported that the optimum intermarker spacing to detect interference would be approximately θ = 0.15 – 

0.20, assuming phase known data (which we have in this dataset for the most part). Choose all ordered 

triples of loci with 0.125  θ  0.225 ( to allow us to have more possible triples to consider that are nearly 

optimal ) for both adjacent θ's, assuming the sex-averaged map. 5-(0.075)-2-(0.075)-8-(0.225)-3-(0.075)-6-

(0.075)-4-(0.075)-9-(0.075)-7. Then, test for the presence of interference on each such triple of loci, and 

report the value of the appropriate χ
2
 statistic, and the coefficient of coincidence. Repeat this analysis under 

no sex difference, constant sex difference, and varying sex difference, providing the values of cm and cf 

separately, where applicable. What are your conclusions about interference in this dataset?  
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20 Solutions to Part II Problems 

EXERCISE 14 

The output from your CILINK analysis should resemble the results shown in Table 20-1. In order to order 

the loci conclusively, the best order must be at least 1000 times more likely than the second best order. In 

this case, you can see that the first four orders are all about equally well supported, and none of them can be 

excluded. Still, the remaining 56 possible orders can be excluded, as they are more than 1000 times less 

likely than the best order. Looking closely at the set of orders which cannot be excluded, you will notice that 

they all involve 3 basic groupings, as follows (3,4) – (5,1) – 2. Each order in the set of possible orders 

represents a simple inversion of the order of loci within one of the groups. All possible orders involving 

mere flips of 3 and 4 or 5 and 1 are approximately equally supported. Hence, the only firm conclusion is that 

the order is (3,4) – (5,1) – 2 with odds of over 1000:1. You will notice that LCP presents the user with an 

option Inversions of adjacent loci. This option would allow the user to see if flipping any pair of loci could 

increase the likelihood significantly, or to see if all inversions of adjacent loci are still excluded from being 

possible orders. If you wished to run this analysis with ILINK, instead of CILINK, it would be possible, 

only if your computer had the capacity to compile the program with the constant maxneed set to 782, and 

maxhap = 108 (See Appendix B for more information about program constants).  

 
    Locus Order         Intermarker Θ's      -2LN Like       Odds 

───────────────────────────────────────────────────────────────────── 

3----4----5----1----2  .049 .251 .049 .207  -1.0395E+02   1.00E+00 * 

4----3----5----1----2  .058 .234 .049 .207  -1.0380E+02   1.08E+00 * 

3----4----1----5----2  .052 .239 .036 .231  -1.0339E+02   1.33E+00 * 

4----3----1----5----2  .056 .224 .035 .231  -1.0292E+02   1.68E+00 * 

5----1----2----3----4  .049 .199 .350 .060  -8.9534E+01   1.35E+03 

5----1----2----4----3  .049 .200 .365 .050  -8.8096E+01   2.78E+03 

5----1----4----3----2  .046 .215 .055 .348  -8.7737E+01   3.32E+03 

1----5----2----3----4  .036 .212 .347 .061  -8.7002E+01   4.80E+03 

5----1----3----4----2  .045 .202 .051 .361  -8.5734E+01   9.05E+03 

1----5----2----4----3  .036 .213 .363 .051  -8.5543E+01   9.95E+03 

1----5----4----3----2  .044 .229 .054 .352  -8.4005E+01   2.15E+04 

1----5----3----4----2  .045 .215 .051 .365  -8.2188E+01   5.33E+04 

4----1----5----3----2  .221 .044 .122 .247  -8.0629E+01   1.16E+05 

4----5----3----1----2  .204 .041 .140 .211  -7.9706E+01   1.84E+05 

4----1----5----2----3  .249 .035 .214 .258  -7.7912E+01   4.52E+05 

4----5----1----2----3  .264 .047 .200 .263  -7.7315E+01   6.09E+05 

5----3----4----1----2  .207 .051 .240 .212  -7.7158E+01   6.59E+05 

5----4----3----1----2  .226 .052 .227 .212  -7.6256E+01   1.03E+06 

3----4----1----2----5  .049 .252 .188 .248  -7.4951E+01   1.99E+06 

4----3----1----2----5  .060 .237 .187 .248  -7.4873E+01   2.06E+06 

1----2----5----3----4  .182 .268 .231 .0581  7.2637E+01   6.32E+06 

1----2----5----4----3  .182 .268 .255 .049  -7.1152E+01   1.33E+07 

3----5----1----2----4  .166 .055 .190 .375  -7.0649E+01   1.71E+07 

3----5----1----4----2  .135 .051 .193 .342  -7.0533E+01   1.81E+07 

4----1----3----5----2  .213 .103 .044 .269  -6.8821E+01   4.26E+07 

3----5----4----1----2  .064 .177 .229 .209  -6.7046E+01   1.03E+08 

1----4----3----5----2  .204 .051 .201 .294  -6.4836E+01   3.12E+08 

1----2----3----4----5  .197 .369 .053 .241  -6.4442E+01   3.80E+08 

1----2----4----3----5  .197 .385 .053 .222  -6.3806E+01   5.22E+08 

3----1----5----2----4  .225 .034 .211 .375  -6.2956E+01   7.99E+08 

1----3----4----5----2  .194 .048 .223 .296  -6.2816E+01   8.57E+08 

3----1----5----4----2  .185 .040 .209 .345  -6.2414E+01   1.05E+09 

1----2----3----5----4  .186 .287 .065 .213  -6.1752E+01   1.46E+09 

5----1----4----2----3  .044 .212 .317 .254  -6.0779E+01   2.37E+09 

1----3----5----4----2  .125 .036 .183 .359  -5.9809E+01   3.85E+09 

1----5----3----2----4  .048 .142 .216 .357  -5.9713E+01   4.04E+09 

5----3----1----4----2  .051 .116 .189 .348  -5.8925E+01   6.00E+09 

5----1----3----2----4  .046 .169 .199 .348  -5.7962E+01   9.71E+09 

1----5----4----2----3  .042 .229 .320 .253  -5.6793E+01   1.74E+10 

5----3----1----2----4  .056 .145 .194 .376  -5.6600E+01   1.92E+10 

1----4----3----2----5  .213 .054 .333 .281  -5.4754E+01   4.83E+10 

1----4----5----3----2  .196 .175 .069 .304  -5.3920E+01   7.32E+10 

4----1----2----5----3  .271 .184 .259 .113  -5.3479E+01   9.13E+10 
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1----2----4----5----3  .198 .380 .196 .0651  5.3306E+01   9.96E+10 

4----1----2----3----5  .270 .186 .263 .101  -5.2910E+01   1.21E+11 

1----3----4----2----5  .202 .051 .345 .283  -5.2858E+01   1.25E+11 

5----4----1----3----2  .221 .196 .150 .245  -4.7971E+01   1.43E+12 

5----4----1----2----3  .228 .234 .201 .265  -4.7799E+01   1.56E+12 

3----1----2----5----4  .221 .171 .246 .279  -4.7184E+01   2.13E+12 

4----5----1----3----2  .100 .100 .100 .100  -4.6881E+01   2.47E+12 

1----3----5----2----4  .119 .043 .246 .362  -4.6853E+01   2.51E+12 

4----1----3----2----5  .224 .141 .218 .256  -4.5488E+01   4.96E+12 

3----1----4----5----2  .171 .174 .209 .285  -4.3895E+01   1.10E+13 

3----1----2----4----5  .220 .185 .363 .261  -3.7472E+01   2.73E+14 

1----4----5----2----3  .197 .209 .258 .251  -3.6318E+01   4.86E+14 

1----3----2----5----4  .175 .195 .246 .269  -3.6267E+01   4.99E+14 

3----1----4----2----5  .170 .187 .327 .281  -3.4021E+01   1.53E+15 

1----4----2----3----5  .218 .321 .275 .111  -3.2839E+01   2.77E+15 

1----4----2----5----3  .218 .323 .283 .102  -3.2614E+01   3.10E+15 

1----3----2----4----5  .181 .203 .335 .261  -2.9718E+01   1.32E+16 

───────────────────────────────────────────────────────────────────── 

Table 20-1: Solutions to Exercise 14 (Files USEREX14.*). Orders followed by * are 

within 3 lod units of the best order, and cannot be excluded. 

EXERCISE 15 

The results of the CMAP analysis are presented in table 20-2, including multipoint lod scores and map 

distance from marker 1. In this analysis, it is impossible to localize new locus 4 to any one map interval, 

since the three unit support interval extends throughout the region between loci 1 and 3, and therefore cannot 

be uniquely placed with the required odds of 1000:1. 

 
Locus Order        Loc. Score     -2LN Like       Odds Lod Score  Map Distance 

────────────────────────────────────────────────────────────────────────────────── 

4====1----2----3 

 .500 .040 .090    +0.0000E+00   -1.8316E+02   7.13E+28   0.00    -∞ 
 .400 .040 .090    +3.4842E+01   -2.1800E+02   1.94E+21   7.57  -0.805 

 .300 .040 .090    +6.3905E+01   -2.4707E+02   9.46E+14  13.88  -0.458 

 .200 .040 .090    +8.8455E+01   -2.7162E+02   4.42E+09  19.21  -0.255 

 .100 .040 .090    +1.0877E+02   -2.9193E+02   1.71E+05  23.62  -0.112 

 .000 .040 .090    +6.6542E+01   -2.4970E+02   2.53E+14  14.45   0 

1====4====2----3 

 .000 .040 .090    -∞   ∞   ∞   -∞   0 

 .008 .033 .090    +1.3115E+02   -3.1431E+02   2.37E+00  28.48   0.008 

 .016 .025 .090    +1.3281E+02   -3.1597E+02   1.03E+00  28.84   0.016 

 .024 .017 .090    +1.3287E+02   -3.1604E+02   1.00E+00 <==  28.85   0.025 

 .032 .009 .090    +1.3134E+02   -3.1451E+02   2.15E+00  28.52   0.033 

 .040 .000 .090    -∞   ∞   ∞   -∞   0.042 

1----2====4====3 

 .040 .000 .090    -∞   ∞   ∞   -∞   0.042 

 .040 .018 .075    +1.2875E+02   -3.1191E+02   7.87E+00  27.96   0.060 

 .040 .036 .058    +1.2769E+02   -3.1085E+02   1.34E+01  27.72   0.079 

 .040 .054 .040    +1.2398E+02   -3.0714E+02   8.53E+01  26.92   0.099 

 .040 .072 .021    +1.1595E+02   -2.9911E+02   4.73E+03  25.18   0.120 

 .040 .090 .000    -∞   ∞   ∞   -∞   0.141 

1----2----3====4 

 .040 .090 .000    -∞   ∞   ∞   -∞   0.141 

 .040 .090 .100    +8.6796E+01   -2.6996E+02   1.01E+10  18.85   0.253 

 .040 .090 .200    +7.4592E+01   -2.5775E+02   4.52E+12  16.20   0.396 

 .040 .090 .300    +5.5432E+01   -2.3859E+02   6.54E+16  12.04   0.599 

 .040 .090 .400    +3.0787E+01   -2.1395E+02   1.47E+22   6.69   0.946 

 .040 .090 .500    +0.0000E+00   -1.8316E+02   7.13E+28       0.00       ∞ 

 

Table 20-2 : Results of CMAP analysis of CEPH1.*; Assuming locus order 1-(0.04)-2-

(0.09)-3; adding new locus 4 to this map. 

 

 When you attempt to order the four loci with CILINK, the results should be similar to those in table 

20-3. In this case, the odds for order were relatively quite good. Order 3-1-4-2 is the best order (consistent 

with our CMAP results of chapter 15), but the second best order is only 133 times less likely, so it cannot be 
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excluded. That order is 1-4-2-3. All other orders can be excluded, leaving us with a definitive locus order of 

1-4-2, with 3 either proximal to 1 or distal to 2. Again, however, we are left with no additional power to 

order loci 1, 2, and 3. The odds for ordering are identical, at 133:1 in favor of 3-1-2. However, we were able 

to conclusively order loci 1-4-2 relative to each other. You may verify with a three-point CILINK run that 

this order would still have been uniquely determined without including locus 3 in the analysis. Since all 

markers are typed, phase known, and fully informative in these families, the addition of further markers will 

not help in ordering the original loci. The only situation in which the addition of further markers can help is 

when some markers are phase unknown in some meioses, or markers are informative in some meioses, but 

not in others. In this case, neither situation obtained, and thus no net change in odds for ordering was 

possible. 

 
Locus Order           Thetas        -2LN Like       Odds 

───────────────────────────────────────────────────────────── 

3----1----4----2   .070 .020 .020  -3.2594E+02   1.00E+00 <== 

1----4----2----3   .020 .020 .089  -3.1616E+02   1.33E+02 

1----2----4----3   .040 .020 .070  -3.1196E+02   1.09E+03 

3----1----2----4   .070 .040 .020  -3.1196E+02   1.09E+03 

3----4----1----2   .070 .020 .040  -3.1196E+02   1.09E+03 

4----1----2----3   .020 .040 .090  -3.0218E+02   1.44E+05 

1----3----4----2   .070 .070 .020  -2.9482E+02   5.73E+06 

4----1----3----2   .020 .070 .090  -2.8505E+02   7.61E+08 

1----4----3----2   .020 .070 .090  -2.8505E+02   7.61E+08 

1----3----2----4   .070 .090 .020  -2.8505E+02   7.61E+08 

4----3----1----2   .070 .070 .040  -2.8084E+02   6.22E+09 

1----2----3----4   .048 .093 .078  -2.7081E+02   9.37E+11 

 

Table 20-3 : CILINK results for files CEPH1.*; Loci 1, 2, 3, and 4. 

 

 For the data in files USEREX14.*, the results from the CILINK analysis of loci 1, 2, and 3 are given 

in table 20-4. In this case, using only the three loci, it is impossible to exclude any of the possible locus 

orders at the 1000:1 level. 

 
Locus Order    Thetas  -2LN Like      Odds 

──────────────────────────────────────────────────── 

1----2----3   .197 .294  -2.4795E+01   1.00E+00 <== 

3----1----2   .249 .191  -2.4725E+01   1.04E+00 

1----3----2   .187 .226  -1.5197E+01   1.21E+02 

Table 20-4 : CILINK results for files USEREX14.*; Loci 1, 2, and 3. 

 

So, let us try adding in locus 4 to the analysis, and see if it helps us order loci 1, 2, and 3. In this case, for the 

four loci jointly, the CILINK results are shown in table 20-5. When all four loci are analyzed together, we 

can see that the best 4-locus order has order 3-1-2 within it. The best order with 1-2-3 in it has odds of 145:1 

against it, and the best order with 1-3-2 in it has odds of 2220:1, and can thus be excluded. In contrast to the 

situation in files CEPH1.*, this example has a great deal more uncertainty in it, and therefore, we can gain 

locus ordering ability by adding an additional locus as a sort of nuisance parameter. 

 
Locus Order           Thetas        -2LN Like       Odds 

───────────────────────────────────────────────────────────── 

3----4----1----2   .049 .254 .210  -6.2575E+01   1.00E+00 <== 

4----3----1----2   .059 .239 .209  -6.2475E+01   1.05E+00 

1----2----3----4   .199 .379 .058  -5.2629E+01   1.45E+02 

1----2----4----3   .199 .400 .051  -5.1394E+01   2.68E+02 

1----4----3----2   .217 .053 .351  -4.7168E+01   2.22E+03 

1----3----4----2   .206 .051 .365  -4.5381E+01   5.42E+03 

4----1----2----3   .272 .197 .266  -3.5169E+01   8.94E+05 

4----1----3----2   .223 .147 .244  -3.4711E+01   1.12E+06 

3----1----2----4   .225 .188 .391  -2.7989E+01   3.24E+07 

3----1----4----2   .170 .191 .347  -2.6190E+01   7.96E+07 

1----3----2----4   .183 .206 .356  -2.0028E+01   1.73E+09 

1----4----2----3   .221 .321 .253  -1.8631E+01   3.49E+09 

Table 20-5 : CILINK results for files USEREX14.*; Loci 1, 2, 3, and 4. 
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There is still no conclusive ordering of the three loci, so we should go to analyzing all five together, which 

we did in chapter 14. The best order had 3-1-2 in it, the best order with order 1-2-3 in it had odds of 1350:1 

against it, and the best 5-locus order with 1-3-2 in it had odds of 3320:1 against it. Thus, we can establish the 

order 3-1-2 with the required 1000:1 odds criterion only by adding in the additional loci 4 and 5. Now, we 

need to compute the intermarker recombination fractions for this locus order from the 5-point ordering 

estimates, 3-(0.049)-4-(0.251)-5-(0.049)-1-(0.207)-2. We will need to find the recombination between loci 3 

and 1 under this scenario. To do this, call up the MAPFUN program, which was introduced in chapter 15, 

and select the MS (summing Θ's) option. Then, enter successively the values of θ3,4 = 0.049, θ4,5 = 0.251, 

and θ5,1 = 0.049. The program will then give the result that θ3,1 = 0.2974 assuming the Haldane mapping 

function. This could also have been done by hand, by converting all the recombination fractions into map 

distance by the Haldane function, x = –½ ln(1-2θ), adding the three map distances together, and then 

converting the total map distance back into a recombination fraction by the relation θ = ½(1 – e
-2x

). The 

result should come out the same, θ  0.297. Now, you can do the CMAP analysis requested with locus order 

3-(0.297)-1-(0.207)-2. Try adding locus 4 and 5 to this constant map of markers with the CMAP program as 

an exercise (in general, since we used them to order the loci 3-1-2, we wouldn't bother with CMAP analysis 

at this point, but do it anyway, as an exercise with CMAP. The results are shown in Table 20-6 for locus 4, 

and table 20-7 for locus 5.  

 

Locus Order/θ's     Loc. Score     -2LN Like       Odds Lod Score Map Distance 

─────────────────────────────────────────────────────────────────────────────────────── 

4====3----1----2 

 .500 .297 .207    +0.0000E+00   -2.4286E+01   1.88E+08   0.00   -∞ 

 .400 .297 .207    +9.9910E+00   -3.4277E+01   1.27E+06   2.17  -0.805 

 .300 .297 .207    +2.0518E+01   -4.4804E+01   6.58E+03   4.46  -0.458 

 .200 .297 .207    +2.9457E+01   -5.3743E+01   7.54E+01   6.40  -0.255 

 .100 .297 .207    +3.5852E+01   -6.0137E+01   3.08E+00   7.79  -0.112 

 .000 .297 .207    -1.9271E+01   -5.0145E+00   2.87E+12  -4.18   0.000 

3====4====1----2 

 .000 .297 .207    -∞   ∞   ∞    -∞    0.000 

 .059 .270 .207    +3.8103E+01   -6.2388E+01   1.00E+00 <==   8.27    0.063 

 .119 .234 .207    +3.5723E+01   -6.0008E+01   3.29E+00   7.76   0.136 

 .178 .185 .207    +2.9975E+01   -5.4261E+01   5.82E+01   6.51   0.220 

 .238 .113 .207    +1.6710E+01   -4.0996E+01   4.42E+04   3.63   0.323 

3----1====4====2 

 .297 .000 .207    -∞   ∞   ∞   -∞      0.450 

 .297 .041 .181    -3.8826E+01   +1.4540E+01   5.07E+16  -8.43     0.493 

 .297 .083 .149    -3.0996E+01   +6.7104E+00   1.01E+15  -6.73   0.541 

 .297 .124 .110    -3.7932E+01   +1.3646E+01   3.24E+16  -8.24   0.593 

 .297 .166 .062    -6.4530E+01   +4.0244E+01   1.93E+22 -14.01    0.652 

 .297 .207 .000    -∞   ∞   ∞    -∞    0.718 

3----1----2====4 

 .297 .207 .000    -∞   ∞   ∞    -∞   0.718 

 .297 .207 .100    -4.4800E+01   +2.0514E+01   1.00E+18  -9.72   0.830 

 .297 .207 .200    -1.2589E+01   -1.1697E+01   1.02E+11  -2.73   0.973 

 .297 .207 .300    -3.5960E-01   -2.3926E+01   2.25E+08  -0.08   1.176 

 .297 .207 .400    +2.6670E+00   -2.6953E+01   4.95E+07   0.58   1.523 

 .297 .207 .500    +6.6360E-01   -2.4949E+01   1.35E+08   0.14     ∞    

 

Table 20-6 : CMAP Results of locus 4 vs. map 3-(0.297)-1-(0.207)-2 
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Locus Order/θ's     Loc. Score     -2LN Like       Odds Lod Score    Map Distance 

──────────────────────────────────────────────────────────────────────────────────── 

5====3----1----2 

 .500 .297 .207    +0.0000E+00   -2.4285E+01   2.65E+08   0.00         -∞ 

 .400 .297 .207    +6.0046E+00   -3.0290E+01   1.32E+07   1.30        -0.805 

 .300 .297 .207    +1.2257E+01   -3.6542E+01   5.78E+05   2.66        -0.458 

 .200 .297 .207    +1.7746E+01   -4.2032E+01   3.71E+04   3.85        -0.255 

 .100 .297 .207    +2.1638E+01   -4.5923E+01   5.31E+03   4.70        -0.112 

 .000 .297 .207    -3.5068E+01   +1.0782E+01   1.09E+16  -0.76         0.000 

                                                                                                  

3====5====1----2                                                                  

 .000 .297 .207     -∞    ∞   ∞    -∞         0.000 

 .059 .270 .207    +2.8783E+01   -5.3069E+01   1.49E+02   6.25         0.063 

 .119 .234 .207    +3.2422E+01   -5.6707E+01   2.42E+01   7.04         0.136 

 .178 .185 .207    +3.5563E+01   -5.9849E+01   5.02E+00   7.72         0.220 

 .238 .113 .207    +3.8791E+01   -6.3077E+01   1.00E+00 <==   8.42         0.323 

                                                                                                  

3----1====5====2                                                                  

 .297 .000 .207     -∞    ∞   ∞    -∞         0.450   

 .297 .041 .181    +3.2667E+01   -5.6953E+01   2.14E+01   7.09         0.493 

 .297 .083 .149    +2.8794E+01   -5.3080E+01   1.48E+02   6.25         0.541 

 .297 .124 .110    +2.0955E+01   -4.5241E+01   7.47E+03   4.55         0.593 

 .297 .166 .062    +4.9642E+00   -2.9250E+01   2.22E+07   1.08         0.652 

 .297 .207 .000     -∞    ∞   ∞    -∞         0.718 

                                                                                                  

3----1----2====5                                                                         

 .297 .207 .000     -∞    ∞   ∞    -∞         0.718 

 .297 .207 .100    -5.1220E-01   -2.3773E+01   3.42E+08  -0.11         0.830 

 .297 .207 .200    +9.7451E+00   -3.4031E+01   2.03E+06   2.12         0.973 

 .297 .207 .300    +1.0337E+01   -3.4623E+01   1.51E+06   2.24         1.176 

 .297 .207 .400    +6.2507E+00   -3.0536E+01   1.16E+07   1.36         1.523 

 .297 .207 .500    +1.0000E-04   -2.4286E+01   2.65E+08   0.00           ∞    

 

Table 20-7 : CMAP Results of locus 5 vs. map 3-(0.297)-1-(0.207)-2 

 

The CMAP results for locus 4 are somewhat interesting. The entire region between loci 1 and 2 is excluded 

by the Z(x) < –2 criterion, as is much of the region to the right of locus 2. The maximum lod score of 8.27 

occurs between loci 3 and 1, very close to locus 3, but the 3-unit support interval extends for about 25 cM on 

either side of locus 3, giving us no power to place locus 4 uniquely in an interval of this map. It is interesting 

to note that when the disease is unlinked to the map of markers (Θ=0.500) on the right hand side, the lod 

score is not 0, but 0.14. This is due to the fact that there is often some rounding error in that direction, and 

the recombination fraction at which that lod score was computed was not exactly 0.500, but slightly smaller. 

This phenomenon is similar to that observed when 4-(0.000)-3-(0.297)-1-(0.207)-2 has a lod score of –4.18, 

and 3-(0.000)-4-(0.297)-1-(0.207)-2 has a lod score of –∞, even though they are ostensibly the same point. 

This is, as well due to the fact that the first lod score is computed at θ > 0.000, and the value of θ we see in 

the output is just rounded to 3 decimal places. For this reason, we always use the value with θ = 0.500 to the 

left as our normalizing value in computing lod or location scores. The analysis with locus 5 allows for no 

exclusion region, but does show evidence for linkage, with maximum lod score of 8.42 between loci 3 and 1, 

very close to locus 1, with 3 unit support interval extending between loci 3 and 2, again not allowing us to 

order the locus with 1000:1 odds. 

 If we look back at our 4-point CILINK analysis with loci 1, 2, 3, and 4, we will see that the order 3-

4-1-2 was the best order, 4-3-1-2 had odds of 1.05:1 against it (here as well, it was within the support 

interval), 3-1-2-4 had odds of 32,400,000:1 against it, and 3-1-4-2 had odds of 79,600,000:1 against it. This 

is compatible with the exclusion results we obtained in the CMAP analysis. Since the recombination 

fractions were estimated separately in each order with CILINK, the odds are naturally somewhat better than 

with CMAP, which gave odds against the same orders of 3.08:1, 49,500,000:1, and 1,010,000,000,000,000:1 

respectively. In general, unless the map is known with a high degree of certainty, it is more conservative and 

reliable to use CILINK, rather than CMAP for such ordering problems. Similar results would be found if 

you were to run CILINK to order loci 1, 2, 3, and 5, and compare those results with the output from CMAP. 
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EXERCISE 16 

Results from the LINKMAP analysis 

are given in Table 20-8, and shown 

graphically in Figure 20-1 (This graph 

is based on the erroneous lod scores in 

Table 20-8. Therefore, the two humps 

immediately to the right of map 

location 0, with heights of about –3 

each, should not be visible). First 

compare this graph with Figure 16-2, 

under the different intermarker 

recombination fractions. How much 

can you tell about the analysis from the 

picture alone? In this analysis, our 

maximum lod score is reduced to only 

7.16 from 9.011 in the example from 

chapter 16. Further, our 3-unit support 

interval is also reduced to only 3.5 cM, 

on the interval (0.066, 0.101). So, you 

can see that having a finer marker map 

can help you to narrow the support interval for the location of your putative disease gene. In general, this 

was shown to be true, that the finer the grid of markers analyzed against a disease, the smaller the support 

interval will be in expectation, almost independent of marker heterozygosity (Terwilliger et al, 1992). 

 
Locus Order/Θ's          Loc. Score     -2LN Like       Lod Score    Map Distance 

─────────────────────────────────────────────────────────────────────────────────────── 

1====5----2----8----3 

 .500 .020 .020 .040    +0.0000E+00   +4.2881E+02         0.00    -∞ 

 .400 .020 .020 .040    +3.4775E+00   +4.2533E+02    0.76  -0.805 

 .300 .020 .020 .040    +4.2394E+00   +4.2457E+02    0.92  -0.458 

 .200 .020 .020 .040    +1.4615E+00   +4.2735E+02    0.32  -0.255 

 .100 .020 .020 .040    -8.3698E+00   +4.3718E+02         -1.81  -0.112 

5====1====2----8----3 

 .000 .020 .020 .040       -∞  ∞     -∞    0.000 

 .004 .016 .020 .040    -1.3563E+02   +5.6444E+02   -2.94   0.004 

 .008 .012 .020 .040    -1.2733E+02   +5.5614E+02   -2.76   0.008 

 .012 .008 .020 .040    -1.2822E+02   +5.5703E+02   -2.78   0.012 

 .016 .004 .020 .040    -1.3865E+02   +5.6746E+02   -3.01   0.016 

 .020 .000 .020 .040       -∞  ∞     -∞   0.020 

5----2====1====8----3 

 .020 .000 .020 .040       -∞  ∞     -∞    0.020 

 .020 .004 .016 .040    -1.3883E+02   +5.6763E+02   -3.01   0.024 

 .020 .008 .012 .040    -1.2746E+02   +5.5627E+02   -2.77   0.028 

 .020 .012 .008 .040    -1.2539E+02   +5.5420E+02   -2.72   0.032 

 .020 .016 .004 .040    -1.3193E+02   +5.6074E+02   -2.86   0.037 

 .020 .020 .000 .040       -∞  ∞     -∞   0.041 

 

1====2----8----3----6 

 .500 .020 .040 .010    +0.0000E+00   +4.0999E+02 

2----8====1====3----6 

 .020 .000 .040 .010       -∞  ∞     -∞    0.041 

 .020 .008 .033 .010    -6.1661E-01   +4.1061E+02   -0.13   0.049 

 .020 .016 .025 .010    +1.2609E+01   +3.9738E+02    2.74   0.057 

 .020 .024 .017 .010    +1.9822E+01   +3.9017E+02    4.30   0.066 

 .020 .032 .009 .010    +2.4068E+01   +3.8592E+02    5.23   0.074 

 .020 .040 .000 .010       -∞  ∞     -∞   0.083 

 

1====8----3----6----4 

 .500 .040 .010 .010    +0.0000E+00   +4.0455E+02 

8----3====1====6----4 

 .040 .000 .010 .010       -∞  ∞     -∞       0.083 

 .040 .002 .008 .010    +2.8807E+01   +3.7574E+02    6.26   0.085 
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 .040 .004 .006 .010    +3.0757E+01   +3.7379E+02    6.68   0.087 

 .040 .006 .004 .010    +3.1931E+01   +3.7262E+02    6.93   0.089 

 .040 .008 .002 .010    +3.2653E+01   +3.7190E+02    7.09   0.091 

 .040 .010 .000 .010    +3.2952E+01   +3.7160E+02    7.16   0.093 

 

1====3----6----4----9 

 .500 .010 .010 .020    +0.0000E+00   +3.7942E+02 

3----6====1====4----9 

 .010 .000 .010 .020    +3.2911E+01   +3.4651E+02    7.15   0.093 

 .010 .002 .008 .020    +3.1948E+01   +3.4747E+02    6.94   0.095 

 .010 .004 .006 .020    +3.0542E+01   +3.4888E+02    6.63   0.097 

 .010 .006 .004 .020    +2.8388E+01   +3.5103E+02    6.16   0.099 

 .010 .008 .002 .020    +2.4478E+01   +3.5494E+02    5.32   0.101 

 .010 .010 .000 .020       -∞  ∞     -∞    0.103 

 

1====6----4----9----7 

 .500 .010 .020 .030    +0.0000E+00   +3.7765E+02 

6----4====1====9----7 

 .010 .000 .020 .030       -∞  ∞     -∞   0.103 

 .010 .004 .016 .030    -7.4645E+00   +3.8511E+02   -1.62    0.107 

 .010 .008 .012 .030    -6.3847E+00   +3.8403E+02   -1.38   0.111 

 .010 .012 .008 .030    -8.4791E+00   +3.8613E+02   -1.84   0.115 

 .010 .016 .004 .030    -1.4758E+01   +3.9241E+02   -3.20   0.119 

 .010 .020 .000 .030       -∞  ∞     -∞   0.124 

6----4----9====1====7 

 .010 .020 .000 .030       -∞  ∞     -∞   0.124 

 .010 .020 .006 .024    -4.9452E+01   +4.2710E+02  -10.74   0.130 

 .010 .020 .012 .018    -4.5242E+01   +4.2289E+02   -9.82   0.136 

 .010 .020 .018 .012    -4.6160E+01   +4.2381E+02  -10.02   0.142 

 .010 .020 .024 .006    -5.2556E+01   +4.3021E+02  -11.41   0.149 

6----4----9----7====1 

 .010 .020 .030 .000       -∞  ∞     -∞   0.155 

 .010 .020 .030 .100    +1.1874E+01   +3.6578E+02    2.58   0.267 

 .010 .020 .030 .200    +1.5418E+01   +3.6223E+02    3.35   0.410 

 .010 .020 .030 .300    +1.3358E+01   +3.6429E+02    2.90   0.613 

 .010 .020 .030 .400    +8.0961E+00   +3.6955E+02    1.76   0.960 

Table 20-8 : LINKMAP Results - Files MULTDIS1.*; remember: Lod score = location score 

divided by 4.6 (some of the lod scores in this table are too small by a factor of 10 

but the location scores are accurate). 

EXERCISE 17 

The results of the analysis under the 

assumption of a recessive disease with 

80% penetrance are presented in table 

20-9, and shown graphically in Figure 

20-2 for purposes of visual comparison 

with figure 16-2. In this analysis, the 

maximum lod score was obtained at the 

same location as in the dominant model, 

only the maximum lod score was only 

0.38 under this model. Similarly, there 

was much less exclusion power as well. 

Fortunately, in this case, due to the low 

penetrance for the disease, much 

ambiguity remained in terms of the 

genotypes for the unaffected 

individuals. Further, the analysis was 

using almost exactly the meioses which 

could not be used in the dominant 

analysis, since now all affected 

individuals were considered to be homozygous, so all the information about linkage comes from the 

heterozygous (at the disease locus) mothers. In light of this, it is clear that the fact that the maximum lod 
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score occurred at the same point primarily by chance, and not through a strong correlation in the data 

between the dominant and recessive analyses, given the f these pedigrees. 

 
Locus Order/θ's          Loc. Score     -2LN Like       Lod Score Map Distance 

────────────────────────────────────────────────────────────────────────────────── 

1====5----2----8----3 

 .500 .075 .075 .225    +0.0000E+00   +5.6631E+02    0.00     -∞    

 .400 .075 .075 .225    -6.4885E-02   +5.6637E+02   -0.01 -0.80471 

 .300 .075 .075 .225    -2.9353E-01   +5.6660E+02   -0.06 -0.45814 

 .200 .075 .075 .225    -8.1105E-01   +5.6712E+02   -0.18 -0.25541 

 .100 .075 .075 .225    -2.0020E+00   +5.6831E+02   -0.43 -0.11157 

5====1====2----8----3                                                  

 .000 .075 .075 .225    -2.3051E+01   +5.8936E+02   -5.01 0.000000 

 .015 .062 .075 .225    -3.0653E+00   +5.6937E+02   -0.67 0.015229 

 .030 .048 .075 .225    -1.5937E+00   +5.6790E+02   -0.34 0.030937 

 .045 .033 .075 .225    -7.4906E-01   +5.6706E+02   -0.16 0.047155 

 .060 .017 .075 .225    -1.9528E-01   +5.6650E+02   -0.04 0.063916 

 .075 .000 .075 .225    +1.6389E-01   +5.6614E+02       0.04 0.081259 

5----2====1====8----3                                                

 .075 .000 .075 .225    +1.6389E-01   +5.6614E+02       0.04 0.081259 

 .075 .015 .062 .225    -1.4129E-01   +5.6645E+02   -0.03 0.096489 

 .075 .030 .048 .225    -6.2496E-01   +5.6693E+02   -0.14 0.112197 

 .075 .045 .033 .225    -1.3942E+00   +5.6770E+02   -0.30 0.128414 

 .075 .060 .017 .225    -2.7949E+00   +5.6910E+02   -0.61 0.145176 

 .075 .075 .000 .225    -2.3051E+01   +5.8936E+02   -5.01 0.162518 

                                                                     

1====2----8----3----6                                                

 .500 .075 .225 .075    +0.0000E+00   +5.5254E+02            

2----8====1====3----6                                           

 .075 .000 .225 .075    -2.3129E+01   +5.7567E+02   -5.02 0.162518 

 .075 .045 .198 .075    -2.5648E+00   +5.5510E+02   -0.56 0.209674 

 .075 .090 .165 .075    -8.5232E-01   +5.5339E+02   -0.19  0.261744 

 .075 .135 .123 .075    +2.4066E-01   +5.5230E+02    0.05 0.319874 

 .075 .180 .070 .075    +1.0938E+00   +5.5144E+02       0.23  0.385662 

                                                                    

1====8----3----6----4                                                

 .500 .225 .075 .075    +0.0000E+00   +5.4812E+02                    

8----3====1====6----4                                                

 .225 .000 .075 .075    -2.2855E-01   +5.4835E+02   -0.05 0.461437 

 .225 .015 .062 .075    +1.8114E-01   +5.4794E+02    0.04  0.476667 

 .225 .030 .048 .075    +5.5754E-01   +5.4757E+02    0.12  0.492375 

 .225 .045 .033 .075    +9.0693E-01   +5.4722E+02    0.20 0.508592 

 .225 .060 .017 .075    +1.2339E+00   +5.4689E+02    0.27 0.525354 

 .225 .075 .000 .075    +1.5421E+00   +5.4658E+02    0.33 0.542696 

                                                                     

1====3----6----4----9                                                

 .500 .075 .075 .075    +0.0000E+00   +5.3465E+02             

3----6====1====4----9                                                  

 .075 .000 .075 .075    +1.7344E+00   +5.3291E+02       0.38  0.5427   

 .075 .015 .062 .075    +1.4036E+00   +5.3324E+02    0.30  0.5579  

 .075 .030 .048 .075    +9.9157E-01   +5.3366E+02    0.22  0.5736   

 .075 .045 .033 .075    +4.5373E-01   +5.3419E+02    0.10  0.5899   

 .075 .060 .017 .075    -3.0710E-01   +5.3496E+02   -0.07  0.6066   

 .075 .075 .000 .075    -1.5850E+00   +5.3623E+02   -0.34  0.6240   

                                                                     

1====6----4----9----7                                                 

 .500 .075 .075 .075    +0.0000E+00   +5.3758E+02                     

6----4====1====9----7                                                 

 .075 .000 .075 .075    -1.5850E+00   +5.3916E+02   -0.34 0.623956 

 .075 .015 .062 .075    -2.8257E+00   +5.4040E+02   -0.61  0.639185 

 .075 .030 .048 .075    -3.5801E+00   +5.4116E+02   -0.78  0.654894 

 .075 .045 .033 .075    -4.6283E+00   +5.4220E+02   -1.01  0.671111 

 .075 .060 .017 .075    -7.4094E+00   +5.4499E+02   -1.61  0.687873 

 .075 .075 .000 .075    -6.8973E+01   +6.0655E+02  -14.98  0.705215 

6----4----9====1====7                                                

 .075 .075 .000 .075    -6.8973E+01   +6.0655E+02  -14.98  0.705215 
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 .075 .075 .015 .062    -2.7083E+01   +5.6466E+02   -5.88  0.720445 

 .075 .075 .030 .048    -2.4572E+01   +5.6215E+02   -5.34  0.736153 

 .075 .075 .045 .033    -2.4399E+01   +5.6198E+02   -5.30  0.752371 

 .075 .075 .060 .017    -2.6332E+01   +5.6391E+02   -5.72  0.769132 

 .075 .075 .075 .000    -5.1009E+01   +5.8859E+02  -11.08 0.786475 

6----4----9----7====1                                               

 .075 .075 .075 .000    -5.1009E+01   +5.8859E+02  -11.08  0.786475 

 .075 .075 .075 .100    -4.9218E+00   +5.4250E+02   -1.06 0.898047 

 .075 .075 .075 .200    -1.8085E+00   +5.3938E+02   -0.39 1.041888 

 .075 .075 .075 .300    -5.6751E-01   +5.3814E+02   -0.12 1.244620 

 .075 .075 .075 .400    -1.0589E-01   +5.3768E+02   -0.02  1.591194 

Table 20-9: Analysis of MULTDIS1.PED under autosomal recessive model with 80% 

penetrance. 

 

 When the uncertainty of diagnosis is entered for the unaffected individuals in this pedigree, it is 

necessary to allow for an additional liability class, (since affected individuals are still affected with 100% 

certainty). So, we must go back into the parameter file, and add an additional liability class for the 

unaffected individuals. If you remember from chapter 10, to allow for uncertainty of diagnosis, the new 

penetrances should be computed as (p)P(affected│genotype) + (1 – p)P(unaffected│genotype); where in this 

case, p = the probability that the person really is affected. Thus in our situation, with a 75% chance that the 

people are unaffected, we have a 25% chance that they are affected, so p = 0.25. Then our penetrances 

should be f(+/+) = 0.25(0) + 0.75(1) = 0.75; f(D/+) = f(D/D) = 0.25(1) + 0.75(0) = 0.25. Thus our two 

liability classes would be as follows: 

 
GENOTYPE:  +/+  D/+  D/D 

Affecteds   0   1   1 

Unaffecteds  0.75  0.25  0.25 

 

Unaffecteds in the pedigree file would 

then have affection status phenotype 2 

2, and affecteds would have phenotype 

2 1. The resulting LINKMAP output is 

shown in table 20-10, and illustrated 

graphically in Figure 20-3. The 

maximum lod score in this example is 

only 6.80, with a support interval 

covering the range (0.3199,0.6066), for 

a 28.67 cM support interval. The 

exclusion regions are fairly similar to 

those obtained with 100% diagnostic 

certainty, though the magnitude of the 

lod scores is much smaller (i.e. the 

values are much less negative in this 

example, implying that many of the 

"obligate" recombination events 

occurred in unaffected individuals. 

 

 
Locus Order/Θ's          Loc. Score    -2LN Like    Lod Score Map Distance 

─────────────────────────────────────────────────────────────────────────────── 

1====5----2----8----3 

 .500 .075 .075 .225    +0.0000E+00   +3.8998E+02    0.00      -∞    

 .400 .075 .075 .225    +2.7396E+00   +3.8724E+02    0.59   -0.80471 

 .300 .075 .075 .225    +3.7225E+00   +3.8626E+02    0.81   -0.45814 

 .200 .075 .075 .225    +2.4881E+00   +3.8749E+02    0.54   -0.25541 

 .100 .075 .075 .225    -2.8903E+00   +3.9287E+02   -0.63   -0.11157 

5====1====2----8----3                                                   

 .000 .075 .075 .225    -2.4547E+01   +4.1453E+02   -5.33   0.000000 

 .015 .062 .075 .225    -2.4432E+01   +4.1441E+02   -5.31   0.015229 
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 .030 .048 .075 .225    -2.4383E+01   +4.1436E+02   -5.29   0.030937 

 .045 .033 .075 .225    -2.4731E+01   +4.1471E+02   -5.37   0.047155 

 .060 .017 .075 .225    -2.5559E+01   +4.1554E+02   -5.55   0.063916 

 .075 .000 .075 .225    -2.6670E+01   +4.1665E+02   -5.79   0.081259 

5----2====1====8----3                                                 

 .075 .000 .075 .225    -2.6670E+01   +4.1665E+02   -5.79   0.081259 

 .075 .015 .062 .225    -1.9969E+01   +4.0995E+02   -4.33   0.096489 

 .075 .030 .048 .225    -1.7256E+01   +4.0724E+02   -3.75   0.112197 

 .075 .045 .033 .225    -1.5866E+01   +4.0585E+02   -3.45   0.128414 

 .075 .060 .017 .225    -1.5848E+01   +4.0583E+02   -3.44   0.145176 

 .075 .075 .000 .225    -2.4010E+01   +4.1399E+02   -5.21   0.162518 

                                                                      

1====2----8----3----6                                                 

 .500 .075 .225 .075    +0.0000E+00   +3.7621E+02             

2----8====1====3----6                                                

 .075 .000 .225 .075    -2.3982E+01   +4.0019E+02   -5.21   0.162518 

 .075 .045 .198 .075    +7.7635E+00   +3.6845E+02    1.69   0.209674 

 .075 .090 .165 .075    +1.4509E+01   +3.6170E+02    3.15   0.261744 

 .075 .135 .123 .075    +1.9169E+01   +3.5704E+02    4.16   0.319874 

 .075 .180 .070 .075    +2.2689E+01   +3.5352E+02    4.93   0.385662 

                                                                     

1====8----3----6----4                                                 

 .500 .225 .075 .075    +0.0000E+00   +3.7180E+02             

8----3====1====6----4                                                 

 .225 .000 .075 .075    +6.2405E+00   +3.6556E+02    1.36   0.461437 

 .225 .015 .062 .075    +2.6736E+01   +3.4506E+02    5.81   0.476667 

 .225 .030 .048 .075    +2.8731E+01   +3.4307E+02    6.24   0.492375 

 .225 .045 .033 .075    +2.9977E+01   +3.4182E+02    6.51   0.508592 

 .225 .060 .017 .075    +3.0818E+01   +3.4098E+02    6.69   0.525354 

 .225 .075 .000 .075    +3.1299E+01   +3.4050E+02    6.80   0.542696 

                                                                      

1====3----6----4----9                                                 

 .500 .075 .075 .075    +0.0000E+00   +3.5832E+02                      

3----6====1====4----9                                                   

 .075 .000 .075 .075    +3.1178E+01   +3.2714E+02    6.77   0.5427   

 .075 .015 .062 .075    +3.0155E+01   +3.2817E+02    6.55   0.5579  

 .075 .030 .048 .075    +2.8738E+01   +3.2958E+02    6.24   0.5736   

 .075 .045 .033 .075    +2.6620E+01   +3.3170E+02    5.78   0.5899   

 .075 .060 .017 .075    +2.2791E+01   +3.3553E+02    4.95   0.6066   

 .075 .075 .000 .075    -1.7001E+01   +3.7532E+02   -3.69   0.6240   

                                                                      

1====6----4----9----7                                                  

 .500 .075 .075 .075    +0.0000E+00   +3.6125E+02                      

6----4====1====9----7                                                  

 .075 .000 .075 .075    -1.7001E+01   +3.7825E+02   -3.69   0.623956 

 .075 .015 .062 .075    -1.1794E+00   +3.6243E+02   -2.56   0.639185 

 .075 .030 .048 .075    +1.6468E-01   +3.6108E+02    0.04   0.654894 

 .075 .045 .033 .075    -1.3096E+00   +3.6256E+02   -0.28   0.671111 

 .075 .060 .017 .075    -6.2153E+00   +3.6746E+02   -1.34   0.687873 

 .075 .075 .000 .075    -2.2096E+01   +3.8335E+02   -4.79   0.705215 

6----4----9====1====7                                                 

 .075 .075 .000 .075    -2.2096E+01   +3.8335E+02   -4.79   0.705215 

 .075 .075 .015 .062    -1.9667E+01   +3.8092E+02   -4.27   0.720445 

 .075 .075 .030 .048    -1.8273E+01   +3.7952E+02   -3.97   0.736153 

 .075 .075 .045 .033    -1.8599E+01   +3.7985E+02   -4.04   0.752371 

 .075 .075 .060 .017    -2.0947E+01   +3.8220E+02   -4.55   0.769132 

 .075 .075 .075 .000    -2.5225E+01   +3.8647E+02   -5.48   0.786475 

6----4----9----7====1                                                

 .075 .075 .075 .000    -2.5225E+01   +3.8647E+02   -5.48   0.786475 

 .075 .075 .075 .100    +1.0971E+01   +3.5028E+02    2.38   0.898047 

 .075 .075 .075 .200    +1.2544E+01   +3.4871E+02    2.72   1.041888 

 .075 .075 .075 .300    +1.0447E+01   +3.5080E+02    2.27   1.244620 

 .075 .075 .075 .400    +6.1823E+00   +3.5507E+02       1.34   1.591194 

 

Table 20-10: Analysis of MULTDIS1.* with LINKMAP assuming 75% certainty of diagnosis of 

unaffected individuals. 
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EXERCISE 18 

The top 20 orders found with CILINK are presented in table 20-11 under the assumption of constant sex 

difference, and in table 20-12 under the assumption of varying sex difference. The same four orders are 

always the top four, under any of the three sex difference models. In order to test the significance of the 

evidence for sex difference in recombination, let us again consider the three hypotheses given the top ranked 

order, as outlined in table 20-13. From this table, we can see that the test of H1 vs H0 has a chi-squared value 

of 7.32 with (5 – 4) = 1df, with a corresponding p-value of 0.008. The test of H2 vs H1, however has a chi-

squared value of 2.63 with (8 – 5) = 3 df, for a p-value of only 0.45, which is not at all significant. In light of 

this analysis, our best conclusion is that there is a constant sex difference, with a female/male map distance 

ratio of 2.573. It is interesting to note that some of the map distance ratios are enormous under the varying 

sex difference option. Usually this occurs when θ = 0.001, meaning that no recombinants were seen in this 

data set in males, even though many recombinants were seen in females. This phenomenon can lead to 

estimates of the map distance ratio as high as 641.752 in the small sample in table 20-12. 

 

Locus Order               Male Thetas           xf/xm  -2LN Like       Odds 

──────────────────────────────────────────────────────────────────────────── 

3----4----5----1----2    .033 .173 .031 .131 2.573 -1.1127E+02   1.00E+00 

4----3----5----1----2    .034 .165 .031 .132 2.497 -1.1075E+02   1.29E+00 

3----4----1----5----2    .035 .162 .021 .156 2.459 -1.0981E+02   2.07E+00 

4----3----1----5----2    .035 .154 .022 .158 2.391 -1.0916E+02   2.87E+00 

5----1----2----3----4    .022 .091 .269 .029 3.983 -9.8521E+01   5.85E+02 

5----1----2----4----3    .022 .092 .274 .026 3.900 -9.7107E+01   1.19E+03 

1----5----2----3----4    .014 .099 .266 .028 4.388 -9.5537E+01   2.60E+03 

1----5----2----4----3    .015 .103 .271 .026 4.043 -9.4139E+01   5.24E+03 

5----1----4----3----2    .022 .123 .032 .290 3.175 -9.3867E+01   6.00E+03 

1----5----4----3----2    .022 .118 .028 .291 3.918 -9.1877E+01   1.62E+04 

5----1----3----4----2    .023 .118 .027 .295 3.020 -9.1621E+01   1.84E+04 

1----5----3----4----2    .022 .114 .023 .295 3.803 -8.9630E+01   4.99E+04 

5----3----4----1----2    .112 .027 .163 .118 3.109 -8.7881E+01   1.20E+05 

5----4----3----1----2    .118 .029 .156 .114 3.265 -8.7735E+01   1.29E+05 

4----5----3----1----2    .126 .029 .101 .140 2.436 -8.6845E+01   2.01E+05 

3----4----1----2----5    .028 .172 .097 .143 3.491 -8.6645E+01   2.22E+05 

4----3----1----2----5    .030 .165 .095 .142 3.537 -8.6459E+01   2.44E+05 

1----2----5----3----4    .083 .175 .132 .026 3.986 -8.4785E+01   5.63E+05 

1----2----5----4----3    .081 .177 .132 .026 4.165 -8.3896E+01   8.77E+05 

4----5----1----2----3    .179 .030 .125 .228 2.597 -8.3733E+01   9.52E+05 

Table 20-11: Top twenty orders of loci in USEREX14.* - constant sex difference 

 

 
 

 

     Locus Order             Male Thetas      Female / Male Map Distance Ratios -2LN Like       Odds 

───────────────────────────────────────────────────────────────────────────────────────────────────────── 

3----4----5----1----2    .001 .173 .001 .181   248.051   2.448 141.771   1.514 -1.1390E+02   1.00E+00 

3----4----1----5----2    .001 .161 .001 .152   309.807   2.236 135.184   2.563   -1.1224E+02   2.29E+00 

4----3----1----5----2    .001 .202 .001 .154   171.897   1.463  98.958   2.494 -1.1134E+02   3.60E+00 

4----3----5----1----2    .001 .208 .001 .167   324.302   2.979 383.886   2.369 -1.0749E+02   2.47E+01 

5----1----2----3----4    .001 .128 .262 .001   133.534   2.720   3.728 445.905 -9.9185E+01   1.57E+03 

1----5----2----3----4    .001 .111 .283 .001   106.745   3.648   2.355 236.959 -9.6968E+01   4.76E+03 

5----1----4----3----2    .001 .132 .001 .291   161.494   2.272 360.817   1.344 -9.5964E+01   7.86E+03 

1----5----2----4----3    .001 .101 .285 .001   105.075   4.047   2.460 244.922 -9.5814E+01   8.47E+03 

5----1----2----4----3    .001 .113 .355 .001   190.615   4.265  16.182 252.037 -9.5347E+01   1.07E+04 

5----1----3----4----2    .001 .144 .001 .322   134.152   2.026 167.749   1.757 -9.4186E+01   1.91E+04 

5----3----4----1----2    .047 .001 .166 .161    10.334 197.781   2.448   1.857 -9.1709E+01   6.60E+04 

5----4----3----1----2    .046 .001 .166 .161    11.813 193.495   2.368   1.842 -9.1464E+01   7.46E+04 

4----5----3----1----2    .001 .037 .131 .188   638.115   1.656   1.722   1.446 -9.1238E+01   8.35E+04 

3----4----1----2----5    .001 .193 .106 .069   259.719   1.956   2.806  10.297 -9.0782E+01   1.05E+05 

1----5----3----4----2    .001 .194 .001 .312   170.584   1.773 218.382   2.397 -9.0130E+01   1.45E+05 

4----3----1----2----5    .001 .204 .105 .075   195.450   1.881   3.010  11.845 -9.0002E+01   1.55E+05 

3----5----4----1----2    .029 .001 .169 .132     6.854 523.242   2.084   2.399 -8.8610E+01   3.11E+05 

1----5----4----3----2    .001 .088 .001 .394   130.390   8.277 641.752  12.875 -8.6367E+01   9.54E+05 

1----2----5----3----4    .074 .145 .187 .001     4.668   5.108   2.309 195.065 -8.5768E+01   1.29E+06 

1----2----5----4----3    .088 .177 .161 .001     4.362   3.951   2.977 243.203 -8.4972E+01   1.92E+06 

 

Table 20-12: Top twenty orders of loci in USEREX14.* - varying sex difference 
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 MODEL     df -2LN(Like) Δ-2LN(Like) 

───────────────────────────────────────────────────────────────── 

H2 Varying Sex Difference:  8   -113.90    0.00   

H1 Constant Sex Difference:    5   -111.27    2.63 

H0 No Sex Difference:          4   -103.95    9.95 

Table 20-13: Likelihoods of order 3-4-5-1-2 under different sex difference models 

 

 In the files MULTDIS1.*, the evidence for sex difference in recombination is outlined in table 20-14. 

As you can see, there is very little evidence for sex difference in recombination, with completely non-

significant chi-squared test results. However, it is interesting to notice the estimated constant sex ratio for 

this set of loci. The ratio in this example was estimated to be 0.599, meaning that there were higher rates of 

recombination in males than females by almost 2:1. If you remember back in the original analysis with the 

dataset in MULTDIS2.*, the estimated sex ratio was 2.113, meaning that in that dataset, females showed 

twice the recombination rate of males. In light of this information, it is not surprising that when the two 

datasets are combined, the estimated map distance ratio was only 1.23, implying that there is a negligible sex 

difference. This is caused by the two datasets canceling each other out, in terms of recombination sex 

differences. It is therefore also not surprising that the combined datasets provided a much less significant 

test than either of the two datasets separately did, as shown in table 20-15. 

 
 MODEL     df -2LN(Like) Δ-2LN(Like) 

──────────────────────────────────────────────────────────────── 

H2 Varying Sex Difference:  8    309.76    0.00   

H1 Constant Sex Difference:    5    310.34    0.58 

H0 No Sex Difference:          4    310.83    1.07 

 

Table 20-14: Likelihoods of order 3-6-4-9-7 under different sex difference models - 

files MULTDIS1.* 

 

 

 

 MODEL     df -2LN(Like) _-2LN(Like) 

───────────────────────────────────────────────────────────────── 

H2 Varying Sex Difference:     8    590.60     0.00   

H1 Constant Sex Difference:    5    590.61    0.01 

H0 No Sex Difference:          4    590.82    0.22 

 

Table 20-15: Likelihoods of order 3-6-4-9-7 under different sex difference models - 

files MULTDIS1.* and MULTDIS2.* together. 

 

EXERCISE 19 

In this exercise, the only triples of loci meeting the criterion that 0.125  θAB, θBC  0.225 are 5-(0.139)-8-

(0.225)-3, 8-(0.225)-3-(0.139)-4, and 3-(0.139)-4-(0.139)-7. The results of the analyses of these triples of 

loci are presented in table 20-16, with the values of cm, cf, and –2ln(Likelihood) given for each analysis (θ's 

not shown). Does the great disparity in the estimates of cm and cf under the assumption of constant sex 

difference make sense to you? The reason is quite simple. You see, the "constant sex difference" option 

forces the recombination fractions in males and females to fit the constant map distance ratio criterion, 

which assumes the Haldane mapping function. Since the Haldane mapping function is incompatible with 

interference, when doing such an analysis, you are mixing apples and oranges, and the analysis simply 

doesn't make any sense. The analysis with loci 8-3-4 points it out quite nicely, as while cm is essentially 0 (to 

fit the constant map distance criterion), the female θ's are computed such that θf = 0.60, when the variable 

sex difference and no sex difference options both yielded an estimate of cm = cf = 0. Clearly, it is impossible 

for this to hold under the constant sex difference option unless the sex ratio was 1. Try and prove this to 

yourself as an exercise. 

 

 

 

 

 



126 

 

Loci  Sex Difference c_ c_ -2ln L(c = 1) -2ln L(c = ) χ
2
 p-value 

──────────────────────────────────────────────────────────────────────────────── 

5-8-3    None  1.48 1.48    215.10   214.66      0.44  0.50 

    Constant  2.32 1.31    213.00   212.15 0.85  0.36 

    Varying  3.33 0.83    212.99   211.35 1.64  0.20 

 

8-3-4    None  0.00 0.00    215.10   211.75 3.35  0.07 

    Constant  0.03 0.60    213.00   211.16 1.84  0.17 

    Varying  0.00 0.00    212.99   209.04 3.95  0.05 

 

3-4-7    None  0.00 0.00    206.26   204.14 2.12  0.15 

    Constant  0.00 0.58    204.67   203.41 1.26  0.26 

    Varying  0.00 0.00    204.67   202.20 2.47  0.12 

 

Table 20-16 : Interference analysis of loci in MULTDIS2.* with ILINK 

 

To further demonstrate the poor fit of the constant sex difference model to the interference analysis, take a 

look at the likelihood ratio χ
2
 values shown in table 20-16. Notice that with the exception of the first triple of 

loci (for which no evidence of interference was found), the constant sex difference option performed the 

worst of all, due to its internal incompatibility. In the set of loci 8-3-4, we have our strongest evidence for 

interference, with a p-value of 0.05 for the test. This is pretty convincing evidence, given the small dataset 

we had to work with, and the fact that our estimated coefficients of coincidence were all 0 under the Varying 

sex difference model. Since we have already established that this dataset shows sex difference in 

recombination rates, and the Constant sex difference option is invalid for interference calculations in ILINK, 

the only valid test to consider is the Varying sex difference test. So, we would conclude that there is some 

evidence for positive interference in this dataset, although not very powerful evidence. Since we looked at 

three separate samples, we need to correct for multiple testing. Since the one triple of loci that gave a 

significant test result was only marginally significant, after applying a correction for the three tests we 

carried out, this value would no longer be significant, but combined with the reasonably powerful test result 

from locus order 3-4-7, and the fact that it also yielded estimates of ĉ = 0, you could safely say that there is 

suggestive evidence of positive interference in this dataset, but not conclusively so. 
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Part III: Advanced Topics in Linkage Analysis 

21 Mutation Rates and the LINKAGE programs 
In this chapter, you will be introduced to the concept of mutation, and the way in which it can be utilized in 

the LINKAGE programs. You will see why it is sometimes obligatory to use this option, especially when 

analyzing sexlinked recessive lethal diseases. 

21.1 MUTATIONS 

It is often possible for a child to inherit an allele from one of his parents which is not found in the parent in 

question. In other words, it is sometimes seen that a 1/1 father and a 2/2 mother might have a child with 

genotype 2/2. Clearly, this is inconsistent with normal Mendelian laws as introduced in chapter 1. However, 

the process of mutation can cause one parental allele to be mutated or changed into a different allele, and 

this mutant allele can then be transmitted to the offspring. Other mechanisms can lead to this situation, as 

discussed in Ott (1991, p.256, Malcolm et al, 1990), but in LINKAGE the only such phenomenon that can 

directly be dealt with is mutation. Many biochemical explanations can be given for the existence of such 

genetic mutations, and they are the primary source of the genetic variability and genetic diseases that exist. 

It is often essential to allow for the occurrence of mutations in performing a linkage analysis. A situation 

like the one described above would cause the LINKAGE programs to complain about a genetic 

inconsistency in the data if the mutation rate were not allowed for. However, if one were to perform the 

linkage analysis assuming some fixed rate of mutation, then the Mendelian inconsistency would be 

explained away as a newly mutated allele. 

 Frequently, when performing a linkage analysis with certain genetic diseases, one might want to 

assume a certain rate of mutation creating new disease alleles, and when one is analyzing a sex-linked 

recessive disease which is lethal, it is mandatory to allow for a certain fixed mutation rate, as you will see 

below. 

21.2 ALLOWING FOR MUTATION RATES IN LINKAGE 

In general, one could define separate mutation rates to and from each different allele at a locus. For example, 

if we had a locus with two alleles, there could be separate mutation rates μ12 and μ21, for the two types of 

mutation possible. In general, these will not likely be equal. Further, it is often the case that there are 

different rates of mutation in males and females, since the processes of spermatogenesis and oogenesis are 

very different.  

 In the LINKAGE programs, however, the use of mutation rates are extremely limited. The restriction 

is so severe that only one locus (of any locus type) is allowed to have mutations, and at one constant rate for 

males, and another for females. Further, the mutation can only be specified in a unidirectional manner, from 

any allele to the last allele. For this reason, one usually sets up an affection status locus with the disease 

allele as allele 2, so mutation can be allowed to the disease allele, but not from disease to normal. Typically, 

the disease allele frequency is so small that any such back-mutation would occur at a negligible frequency. 

 The primary use of this option will be when you are considering disease loci, with mutation 

occurring from the normal allele to the disease allele at the disease locus. This is the purpose with which this 

option was originated, and it remains a potentially major restriction in the applicability of LINKAGE with 

highly mutable CA repeat loci being used with more regularity. 

 Let us return to the phase known example from chapter 5. In this pedigree, we shall now assume that 

there is a mutation rate μ, where μ is the probability that any normal allele mutates to a disease allele in one 

meiosis. Please read the parameter file from that example into PREPLINK, and select the option (d) 

Mutation. You will then see a screen like the following: 

 
**********************************************  

(a) MUTATION LOCUS  : 0  

(b) MUTATION RATE MALES  : 0.00000E+00  

(c) MUTATION RATE FEMALES  : 0.00000E+00  

(d) MUTATION  : N  

(e) RETURN TO MAIN MENU  

**********************************************  

enter letter to modify values  
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At this point, you should select option (a) and respond to the questions as follows: 
 

 ENTER NEW MUTATION LOCUS  

1  (The disease locus)  

 ENTER NEW MUTATION RATE MALES  

.000001  (Here you could enter whatever the value is for μ) 

 ENTER NEW MUTATION RATE FEMALES  

.000001  (If we assume equal rates in males and females, type μ) 

 

 Then, write this datafile, and rerun the analysis of the pedigree in question. Please try varying values 

for the mutation rate, to visualize its effect on our analysis. The results should resemble the results given in 

table 21-1. 

   μ    ̂    Z(̂ ) 

─────────────────────────────── 

 < 10
-5
  0.798 0.4185 

  10-4  0.798 0.4183 

  10-3  0.799 0.4168 

  10-2  0.797 0.4015 

  10-1  0.775 0.2746 

  0.5  0.655 0.0456 

 

Table 21-1: Effects of mutation rate on the M.L.E. of θ, and the corresponding lod 
score on a phase known pedigree 

 

 In this example, it is clear that allowing for mutation has little effect on the likelihood, implying that 

there are most likely no new mutations in this pedigree. This does make sense, in light of the pedigree 

structure and phenotypes. Let us look at this analytically to see that this is so. 

 We know that the disease locus genotype of father is D/+, and that mother is +/+. Because of the low 

gene frequency, one can assume that fgrandma has genotype D/+, and we know that fgrandpa has genotype 

+/+. Because of the mutation rate, however, father could have gotten the D allele from either parent, since a 

mutation could have occurred coming from fgrandma. Hence, there are two possible phases for father. We 

must look at the likelihood of father having received genotype D/+ given the D allele came from fgrandma, 

as compared with the likelihood given the D allele came from fgrandpa. The likelihood of father receiving 

the D allele from fgrandma and the + allele from fgrandpa is just [(1/2) + (1/2)μ][1 – μ] = (1/2)(1 – μ)(1+μ), 

and the likelihood of him receiving the + allele from fgrandma and the D allele from fgrandpa is just μ(1-

μ)/2. Thus the probability that father received the D allele from fgrandpa is just [(1/2)(1 – μ)μ]/[(1/2)(1-

μ)(1+2μ)] = μ/(1+2μ). Clearly, for μ = 0, this probability is 0, and the phase is known with certainty, and we 

have the same situation as described in chapter 5. 

 The overall likelihood of this pedigree is now more analogous to the phase unknown situation in the 

lower generation of the pedigree. There are 2 possible phases for father, with Phase I = D 1/+ 2, with 

P(Phase I) = (1+μ)/(1+2μ); Phase II = D 2/+ 1, with P(Phase II) = μ/(1+2μ). Now, let us consider the bottom 

generation. First, dau1 has disease locus genotype +/+, having received the 2 allele from father. Under 

Phase I, this would happen with likelihood 1 – θ, and likelihood θ under Phase II. dau2 and son1 are 

identical, having either disease locus genotype D/+ or D/D. There are three possible scenarios to consider 

here. Either they received the D allele from father, and the + allele from mother, with likelihood [(1/2) θ + 

(1/2)μ(1 – θ)](1 – μ) under Phase I, and [(1/2)(1 – θ) + (1/2)μ θ](1 – μ) under phase II; or they received the + 

allele from father, and a mutated D allele from mother with likelihood (1/2)(1 – μ)(1 – θ)μ under Phase I, 

and (1/2)(1 – μ) θμ under Phase II; or they received the D allele from both parents with likelihood [(1/2) θ + 

(1/2)μ(1 – θ)]μ under Phase I, and [(1/2)(1 – θ) + (1/2)μθ]μ under Phase II. Finally, for dau3 and son2, the 

received genotype is just +/+. Clearly, they also received the 1 allele from father, making their likelihood 

just θ under Phase I, and 1 – θ under Phase II. Putting all of this together, we can get the overall likelihood 

of the pedigree to be P(Pedigree│Father is Phase I)P(Phase I) + P(Pedigree│Father is Phase II)P(Phase II). 

In this case, it works out to be 

]-[1])-(2 + )-[(1
2+1

 + ])-)(1-(2 + ][-[1
2+1

+1
 = L

2222

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 Again, if you set μ = 0, this likelihood is the same as the likelihood for the same pedigree obtained in 

section 3.1. The lod score is then log10[L(̂ , μ)/L(θ = ½, μ)]. To verify the calculations done by the 

LINKAGE programs above, please plug in the value of 0.01 for μ, and 0.797 for θ. The resulting lod score 

should turn out to be 0.4015, just as computed with LINKAGE. It is important to realize that 0.01 is an 

extremely high value to assume for μ; however, since the mutation rate must fit with certain conditions 

regarding mutation-selection equilibrium, μ must always be less than or equal to p, the frequency of the 

disease allele, as you will see in the following sections. 

21.3 MUTATION-SELECTION EQUILIBRIUM FOR AUTOSOMAL TRAITS 

In the previous example, we looked at the effect of various mutation rates on the lod score in our pedigree. 

However, we failed to consider whether they were meaningful estimates or not. In determining the mutation 

rate for a given disease, we need to select a value which is appropriate. If we assume that the disease allele 

frequency is stable, and equal to p, then the mutation rate and selection coefficient must balance out, such 

that the frequency of the disease gene remains constant from generation to generation. Most genetic diseases 

have negative effects on the fitness of an individual, and thus a certain proportion, s, of affected individuals 

will not reproduce in a given generation (s can also be interpreted as the relative reproductive fitness of any 

one individual). In order to have equilibrium of the allele frequency, these lost disease alleles must be 

replaced somehow. The only way to increase the frequency of the disease would be through new mutations. 

At equilibrium, therefore, the number of new mutations must equal the number of lost alleles in a given 

generation (Wright, 1968). For example, if we are dealing with an autosomal recessive disease, and a 

proportion s, of affected individuals will be lost due to selection, then sp
2
 genes will be lost in each 

generation, and the new gene frequency would be p2 = p1(1 – sp1). If there were no new mutations, then over 

time, the gene frequency would continually decrease. These alleles lost due to selection must be replaced 

continuously for the gene frequency to be maintained. Clearly, then, the mutation rate must replace all of the 

alleles lost from selection, so μ = sp
2
, whenever p is presumed to be small. Therefore, the general 

equilibrium condition can be specified by /s = p  , for a recessive disease. Similarly, it can be shown that for 

an autosomal dominant disease, p = μ/s. For more details about mutation-selection equilibrium, consult Cavalli-

Sforza and Bodmer (1971) and [21, 22]. 

21.4 SEX-LINKED LETHAL RECESSIVE DISEASE 

The most simple and important situation is that of sex-linked recessive diseases which are lethal, i.e. no 

affected people live to reproduce. This situation is complete selection against the disease phenotype. 

Unchecked, it will lead inexorably to the loss of the disease allele. However, many such diseases are known 

to exist with constant prevalence. The best explanation is that the alleles are maintained in mutation-

selection equilibrium (Haldane, 1935). In linkage analysis, the important allele frequency is that of the 

mating population. Clearly, since the disease is lethal at young age, and sex-linked recessive, all males will 

carry the normal allele, and the gene frequency in females will be p. Let us consider the distribution of 

genotypes in the next generation. Clearly, the possible matings (and offspring) will be (+/+♀ × +♂)  1/2 

+/+♀, 1/2 +♂ and (D/+♀ × +♂)  1/4 D/+♀, 1/4 +/+♀, 1/4 D♂, 1/4 +♂. In this generation, half of the 

disease alleles went to D/+ females, and the other half went to the D males. Since all of the D males are lost 

due to selection, half of the disease alleles are lost in this generation, and p2 = p1/2 in the mating population, 

where p1 is the gene frequency in the parental generation, and p2 in the offspring generation. In order to 

maintain a stable equilibrium, a mutation rate of p1/2 is required, to replace the lost alleles (Haldane, 1935). 

In practice, therefore, whenever analyzing a sex-linked recessive lethal disease, it is imperative to allow for 

μ = p1/2 in the linkage analysis, since it means that in a nuclear family with one affected child, there is 

therefore a 1/3 chance of his being a new mutation (the gene frequency in the parental generation being p, 

and the mutation rate being p/2). Then, the probability of any given disease allele in the next generation 

being a new mutation is just (p/2)/(p + p/2) = 1/3. This property can play a significant role in the linkage 

analysis. Consider the simple pedigree from chapter 6 with an X-linked recessive disease segregating. Please 

alter the marker locus genotype of son4 to be 1 instead of 2, remembering that in allele numbers format 

hemizygous male phenotypes must be entered as if they were homozygous with 2 copies of the allele (i.e. 1 

would be coded as 1 1). Now analyze this pedigree as in that chapter with this one marker typing change (no 

mutation rate). Then analyze the pedigree allowing for a mutation rate equal to p/2. The results should be as 
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shown in table 21-2. 

 
   θ  Z(θ,μ=0)    Z(θ,μ = p/2) 

──────────────────────────────────────────── 

   0  -infinity     -1.2365 

  0.1  -0.2289   -0.2094 

  0.2  -0.0602   -0.0549 

  0.3  -0.0113   -0.0097 

  0.4  -0.0007   -0.0004 

 

Table 21-2: Analysis of sex-linked disease with and without mutation rate (two affected 

sons). 

 

 In this example, there was little effect of allowing for the theoretical value for the mutation rate. 

However, if we were to make son3 unaffected, and redo the analysis, you would see a much more 

pronounced effect. Clearly in this example, since there are two affected sons, it is much more likely that 

there was one gene segregating in the family (likelihood p = 0.01), than two mutations (likelihood = μ
2
 = 

0.005
2
 = 0.000025), or one gene and one mutation (likelihood = pμ = (0.005)(0.01) = 0.00005). However, in 

the pedigree with only one affected son, the likelihood is of the order p = 0.01 for having the disease caused 

by a gene, and μ = 0.005 for having the disease caused by a new mutation. For this reason, μ has a much 

greater effect on the second one-affected child pedigree than in the two-affected child pedigree, as shown in 

table 21-3. 

 
   θ   Z(θ,μ=0)    Z(θ,μ = p/2) 

─────────────────────────────────────────────────────── 

   0   -infinity   -0.0980 

      0.1   -0.8874   -0.0837 

      0.2   -0.3876   -0.0549 

      0.3   -0.1514   -0.0265 

      0.4   -0.0355   -0.0069 

 

Table 21-3: Analysis of sex-linked disease with and without mutation rate (one affected 

son). 

 

 This demonstrates that the mutation rate is much more important in pedigrees with small numbers of 

affected individuals, as explained above. The take home message is simply that you must always allow for 

mutation when there is selection against the disease and in the case of sexlinked recessive lethal diseases, the 

mutation rate should be p/2. It is important to remember that for most disease, one should not try and 

estimate μ directly, but should use mutation-selection equilibrium conditions to select an appropriate value 

for μ. 

EXERCISE 21 

Reanalyze the pedigree from exercise 6, assuming the disease is fully lethal, and no affecteds live to 

reproduce. Then, try and work out the appropriate mutation rate for the pedigree in exercise 7, assuming that 

50% of all affected individuals do not live to reproduce. Compute the appropriate mutation rate to ensure a 

stable mutation-selection equilibrium, and then perform an appropriate linkage analysis on this pedigree. 

 Design a computer experiment to show which alleles are allowed to mutate into which other alleles 

given the implementation of mutation in the LINKAGE programs. 
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22 Gene frequencies and LINKAGE 
In the previous chapter, we discussed issues of mutation rates and population genetics. Now, we will discuss 

the relevance of gene frequency information in linkage analysis, methods for estimating them, and the 

consequences of using incorrect gene frequency models in a linkage analysis.  

22.1 HOW ARE GENE FREQUENCIES USED IN THE LINKAGE PROGRAMS? 

In the LINKAGE programs, the population frequency of each marker and disease allele is required for the 

computation of the likelihood. If every genotype at a locus in a pedigree is uniquely known, then the gene 

frequencies for that locus have no effect on the value of the lod score. However, as soon as there is one 

founder whose genotype cannot be uniquely determined, the gene frequencies begin to have an impact on 

the lod scores. This holds for both marker and disease loci - at disease loci, the gene frequencies are always 

important, since there rarely is a 1:1 correspondence between genotype and phenotype. The frequency of 

each allele can play a significant role in the analysis. For this reason, it is imperative to have good estimates 

for the gene frequencies of each allele at each locus, since in practice there is almost always some ambiguity 

in the genotypes of some individuals in most every pedigree. Further, it is imperative for investigators to 

uniquely identify each allele, such that for example, the 1 allele is the same allele in each pedigree, 

whenever some individuals are untyped at a locus, since otherwise the gene frequency isn't really 

appropriate. 

 Any deviations from the true gene frequencies can have major effects on the results and conclusions 

drawn from any given linkage analysis. To demonstrate this dependency, let us reconsider the example 

pedigree from chapter 7 about homozygosity mapping (Figure 7-2). In this pedigree there was a recessive 

disease with only one affected individual typed, with genotype 1 1 at the marker locus. Based on the 

information obtained from the consanguinity in this family, we were able to achieve a maximum lod score of 

1.14 at Θ = 0. However, this result was certainly heavily dependent on the gene frequencies we selected. 

Please reanalyze this pedigree with various gene frequencies for both disease and marker loci. Let the 

frequency of the disease allele, and the 1 allele at the marker locus be 0.9, 0.5, 0.1, 0.01, and 0.00001, 

considering all possible combinations of disease and marker allele frequencies. The resulting maximum lod 

scores should be as shown in table 22-1 (all with = 0). 

 
───────────────────────────────────────────────────────────────────────── 

       Frequency of Disease Allele 

Frequency of ─────────────────────────────────────────────────────── 

1 allele  0.9  0.5  0.1  0.01  0.00001 

───────────────────────────────────────────────────────────────────────── 

0.9   0.00012 0.00338 0.01945 0.03859 0.04274 

0.5   0.00102 0.02802 0.14323 0.25348 0.27468 

0.1   0.00622 0.14860 0.53034 0.76720 0.80614 

0.01   0.01473 0.29571 0.82723 1.10035 1.14338 

0.00001  0.01706 0.32902 0.88315 1.16052 1.20401 

───────────────────────────────────────────────────────────────────────── 

Table 22-1: Maximum lod scores obtained for homozygosity mapping problem with different 

disease and marker gene frequencies 

 

 It is obvious that when few individuals in a pedigree are typed, the gene frequency plays an 

important role. If one looks at table 22-1, when the gene frequency of the disease allele is less than 90%, the 

gene frequency of the 1 allele has more effect on the analysis than the frequency of the disease allele. This is 

true because the penetrances at the disease locus tell us more about the untyped individuals' disease locus 

genotypes than we know about their marker locus genotypes. We know that the parents of the affected boy 

are each heterozygous for the disease allele, and that one of each of their parents also must be heterozygous. 

However, at the marker locus, the parents could just as easily be homozygous for the 1 allele as they could 

be heterozygous for it. This fact that we have less information about the genotypes of the untyped 

individuals makes the relevance of the gene frequency maximal. This example is quite extreme, and in 

practice, if your families can show such drastically different lod scores when the gene frequencies alone are 

altered, then the significance of your results must be highly questionable. In such a situation, the only 

reasonable solution may be to go out and type additional pedigree members, to reduce the dependency on 

gene frequency. In situations where this is not possible, you should report the lod scores for all sets of pi 
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within their confidence intervals as done by Hsiao et al1 (1989), for example. As an illustration of the lack 

of dependency on gene frequency in fully known pedigrees, reconsider the pedigree from chapter 2, the 

phase unknown nuclear pedigree (figure 2-2). Analyze the pedigree with whatever gene frequencies you 

like, and the maximum lod score will always be 0.124929, at θ = 0.21. The absolute values of the log 

likelihoods themselves will change, but the value of the lod score will not. 

22.2 CONSEQUENCES OF USING INCORRECT GENE FREQUENCIES 

From the results of the analysis above, it is clear that the gene frequencies can play an important role in 

linkage analysis. Still, if one were to randomly select gene frequencies it is not clear if there would be a 

systematic effect on the lod score if one were to select the gene frequencies to be used in the analysis 

beforehand. Often investigators working with multiallelic CA repeat markers will just assume that all alleles 

have equal gene frequencies for the purposes of the linkage analysis. This is typically done because these 

markers have not been sufficiently well characterized, and accurate gene frequency estimates are 

unavailable. Also, it is often difficult to characterize the alleles on a population sense. For example allele 1 

in family 1 may not in general correspond to allele 1 in family 2. This type of situation will further 

complicate the gene frequency estimation problem, since allele 1 may have a different meaning, and a 

correspondingly different gene frequency in the different families. In general, the only good solution to this 

problem would be to characterize each allele uniquely. In this way, the 1 allele would always refer to a 

specific allele, which should be invariant in different pedigrees. Only in this manner can one appropriately 

deal with the problem of gene frequency estimation, and avoid the bias associated with incorrect gene 

frequency modelling. 

 The effects of arbitrarily choosing to use equal gene frequencies in a linkage analysis was shown to 

lead to a systematic bias in favor of linkage when some individuals in a pedigree are untyped, or genotypes 

cannot be uniquely determined (Ott, 1992). In other words, setting the gene frequencies to be equal for all 

alleles will tend to give false positive evidence of linkage, and even to positive expected lod scores when 

there really is no linkage. To see this, look at the results of the homozygosity mapping exercise above. In 

this example, let us assume the actual gene frequency of the 1 allele was 0.9, and the gene frequency of the 

disease allele was 0.01. The maximum lod score with the assumed actual gene frequencies would be only 

0.03859. However, if there were 10 alleles at this locus, and we assumed erroneously that their frequencies 

were equal, the lod score would have jumped to 0.76720. In general, there is a systematic bias, which has 

been extensively studied by Ott (1992), through simulations and analytical means. The take home message 

here is that it is always important to have accurate gene frequency estimates when there are untyped 

individuals in your pedigrees, or there is not a 1:1 correspondence between genotype and phenotype (i.e. 

dominance, recessivity, etc.). 

22.3 ESTIMATION OF GENE FREQUENCIES 

For many markers there are published estimates available for their gene frequencies, based on a random 

sample of unrelated individuals. As a first approximation one may use these values, which are readily 

available. However, the gene frequencies may differ strongly between populations at selectively neutral 

markers. Thus, it is advisable to estimate marker allele frequencies on your own from a cohort of unrelated 

individuals taken from the same genetic population as your disease pedigrees. If you were to consistently 

type 50-100 random individuals (depending on the number of alleles in your system) for each marker, and 

estimate the allele frequencies from these observations, you would have an accurate source of information 

about your specific population. This would be a very good approach to take to resolve this problem. Still, 

there are often situations in which this additional work is unfeasible, or in which an investigator wishes to 

estimate the gene frequencies based on his family data. Typically in a large pedigree there will be several 

founder individuals who are unrelated. These individuals are known to be from the appropriate genetic 

population, and can be used as a cohort for investigating the frequency of marker alleles (though certainly 

not for the disease allele due to ascertainment problems...). To do this, one can either simply treat them as an 

independent sample, and apply counting methods, as has been described elsewhere (e.g., in Hartl, 1988 or 

Weir, 1990). Another approach which is more powerful when some of the founders have not been typed is to 

use the ILINK program of the LINKAGE package to estimate the allele frequencies from the pedigree data 

(Boehnke, 1991). 
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 To estimate the gene frequencies with the ILINK program, it is essential to modify the parameter file 

manually, since PREPLINK is not equipped for this option. Let us start with a simple example. Consider the 

pedigree from exercise 2. In this pedigree, there are eight founders, two of whom are untyped. If you were to 

directly estimate the allele frequencies based on the six typed founders, you would have four copies of the 1 

allele, two copies of the 2 allele, five copies of the 3 allele, and one copy of the 4 allele, giving us gene 

frequency estimates of 0.3333, 0.1667, 0.4167, and 0.0833 for the four alleles respectively. However, there 

is some information in the pedigree about the genotypes of the two untyped founder individuals. To take 

advantage of it, we will use the ILINK program. Please prepare the parameter file for this example, 

assuming the disease locus to be fully penetrant autosomal dominant with gene frequency for the disease 

allele equal to 0.00001. At the marker locus, there are four alleles, and you can assume the above estimated 

values for their gene frequencies. Now make this parameter file in ILINK format, and write the file. It 

should resemble the following: 

 
 2 0 0 3 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1) PROGRAM 

 0 0.0 0.0 0 << MUT LOCUS, MUT MALE, MUT FEM, HAP FREQ (IF 1) 

 1 2 

1 2 << AFFECTION, NO. OF ALLELES 

 9.99990E-01 1.00000E-05 << GENE FREQUENCIES 

 1 << NO. OF LIABILITY CLASSES 

 0 1.0000 1.0000 << PENETRANCES 

3 4 << ALLELE NUMBERS, NO. OF ALLELES 

0.3333 0.1667 0.4167 0.0833 << GENE FREQUENCIES 

 0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

 0.1000 << RECOMBINATION VALUES 

 1 << THIS LOCUS MAY HAVE ITERATED PARS 

 0 

 

Now, you must make a few changes to this file. First, the next to last line reads : 

 
1 << THIS LOCUS MAY HAVE ITERATED PARS 

 

Since you wish to iterate the parameters (gene frequencies) for the second locus, change the 1 to a 2. Next 

consider the bottom line of this file, which now contains a 0. In general, the final line of this file tells the 

program which parameters to iterate, and which ones to keep fixed. 0 means you should keep that parameter 

fixed, and a 1 would mean you should estimate the corresponding parameter. If there are n loci in your 

parameter file, then the first n – 1 parameters will be the n – 1 recombination fractions. So, if you wished to 

estimate all recombination fractions, you would need to have n – 1 1's on the last line. If you only wanted to 

estimate the first recombination fraction, and keep the others fixed, you would have a 1 followed by n – 2 0's 

on the last line, etc. If you have specified a constant male/female map distance ratio, the next parameter 

would correspond to this ratio. If you want to estimate it, you must add an additional 1. Otherwise, add a 0 

to keep it fixed. Similarly, if you have specified variable male-female map distance ratios in each interval, 

then you must add an additional n – 1 1's to estimate (or 0's to fix) the n – 1 female recombination fractions 

for each interval as well. If there are m alleles at the locus specified on the next to last line of the file, the 

next m – 1 parameters are the gene frequencies of the first m – 1 alleles at that locus (the last gene frequency 

being set equal to 1 – Σpi; i < m).  

 So, for our problem, we would like to fix the recombination fraction between the two loci to be 

0.079, as found in exercise 2 (modify the third line from the bottom to be sure the recombination value is 

correct), and estimate the gene frequencies for the four alleles at the second locus. Thus the last line of the 

parameter file should be 0 1 1 1, since we want to fix the recombination fraction, there is no sex-difference 

parameter, and we wish to estimate the three free gene frequencies, with p4 = 1 – p1 – p2 – p3. When you have 

made these changes, please save this file as DATAFILE.DAT. It should look like this: 

 
 2 0 0 3 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1) PROGRAM 

 0 0.0 0.0 0 << MUT LOCUS, MUT MALE, MUT FEM, HAP FREQ (IF 1) 

 1 2 

1 2 << AFFECTION, NO. OF ALLELES 

 9.99990E-01 1.00000E-05 << GENE FREQUENCIES 
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 1 << NO. OF LIABILITY CLASSES 

 0 1.0000 1.0000 << PENETRANCES 

3 4 << ALLELE NUMBERS, NO. OF ALLELES 

0.3333 0.1667 0.4167 0.0833 << GENE FREQUENCIES 

 0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

 0.079 << RECOMBINATION VALUES 

 2 << THIS LOCUS MAY HAVE ITERATED PARS 

 0 1 1 1 

 

  Then, call up the UNKNOWN program. It is important that the version of UNKNOWN you use 

MUST be dated after July 1993 since there was a bug in earlier program versions which affected allele 

frequency estimation and all analyses with linkage disequilibrium (we modified the UNKNOWN program 

by setting the program variable makehomozygous = false). It is imperative to run the UNKNOWN program 

immediately before doing such an analysis. This is necessary for valid estimation of allele frequencies in 

general pedigree datasets.  

 Then call up the ILINK program to analyze the pedigree and estimate the allele frequencies for locus 

2. It is important to note again that LCP cannot be used, since it rewrites the bottom of the parameter file. 

The FINAL.DAT file should look like this: 

 
CHROMOSOME ORDER OF LOCI: 

 1 2 

****************** FINAL VALUES *************************** 

PROVIDED FOR LOCUS 2 (CHROMOSOME ORDER) 

*********************************************************** 

GENE FREQUENCIES : 

0.333383 0.199991 0.399935 0.066691 

*********************************************************** 

THETAS: 

0.079 

*********************************************************** 

-2 LN(LIKE) = 1.192555040143E+002 

LOD SCORE = 1.820979412697E+000 

NUMBER OF ITERATIONS = 6 

NUMBER OF FUNCTION EVALUATIONS = 37 

PTG = -1.875727167222E-006 

*********************************************************** 

*********************************************************** 

 

 So you can see that the gene frequency estimates were somewhat refined. Try and rerun the ILINK 

program using the newly refined estimates of gene frequency as starting values to see if they can be further 

refined. In this case, they cannot be further refined, and the program should return the same estimates again. 

At this point, two questions immediately pop into mind. First of all, we did this estimation conditional on 

there being linkage between marker and disease. What would happen to the estimates if we assumed that the 

recombination fraction between disease and marker was 50%? This would involve estimating marker allele 

frequencies ignoring all information about linkage. To do this, just alter the DATAFILE.DAT such that the 

recombination value is set to 0.5, and rerun the ILINK program. This time, the estimates have changed 

slightly, to 0.366901, 0.200645, 0.365811, and 0.066643 respectively, which can be further refined to be 

0.366830, 0.200045, 0.366430, and 0.066695. The final thing to be considered is the possibility of jointly 

estimating recombination fraction with the gene frequencies, which can be done by setting the bottom line of 

the parameter file to be 1 1 1 1, such that all four parameters be estimated. Using the original starting values, 

as shown in the parameter file above, the first estimates should be θ = 0.078, pi = 0.333419, 0.200082, 

0.399984, 0.066515, which can be further refined to be θ = 0.078, pi = 0.333366, 0.200032, 0.399933, and 

0.066669. To summarize the results of these analyses, consult table 22-2. 
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  θ = 0.079  θ = 0.500  θ = ̂   Counting 

──────────────────────────────────────────────────────────────────── 

p1  0.333383  0.366830  0.333666 0.333333 

p2  0.199991  0.200045  0.200032   0.166667 

p3  0.399935  0.366430  0.399933 0.416667 

p4  0.066691  0.066695  0.066669 0.083333 

 

Table 22-2: Gene frequency estimates under different hypotheses. 

 

 Here we can see that estimating the gene frequencies based solely on the marker genotypes can lead 

to slightly different estimates than when the gene frequencies are estimated jointly with linkage to a second 

locus (here the disease). Fortunately the difference is not huge, though it may have a significant influence on 

the lod scores in some situations. One way to correct for this difference would be to treat the marker allele 

frequencies as nuisance parameters in the analysis, and compute your lod score as 

 Z(̂ ) = log10[L(̂ , p̂ i)/L(θ = ½, p̂ i)], 

where the pi are estimated separately under linkage (in the numerator), and under no linkage (in the 

denominator). The numerator and denominator can be separately determined from the ILINK output. In this 

case, if you look at the FINAL.DAT files created by ILINK for the two appropriate analyses, you will see 

that –2ln[L(̂ , p̂ i)] = 119.255, so log10[L(̂ , p̂ i)] = –25.925. Similarly, –2ln[L(θ = ½, p̂ i)] = 127.559, so 

log10[L(θ = ½, p̂ i)] = –27.730. Therefore, Z[ ̂ ] = –25.925 – (–27.730) = 1.8052. This is not much different 

from the original lod score (assuming equal gene frequencies) of 1.78, or the lod score when gene 

frequencies were estimated assuming linkage (1.82), with said estimates used in both numerator and 

denominator of the lod score (of course, this statistic now has two degrees of freedom, since two parameters 

are estimated in the numerator, and none in the denominator). Since most pedigree members were typed in 

this example, the gene frequencies were not very crucial, while in other examples, the results may vary 

dramatically. If there is sufficient data, it is safest, and most conservative to estimate the gene frequencies 

separately in numerator and denominator of the likelihood ratio. This feature is implemented in the 

Pseudomarker program (section 24.7). 

 In conclusion, we have learned how to estimate gene frequency parameters in the LINKAGE 

programs, why it is important to do so, and we have examined the ramifications of using improper gene 

frequencies to do a linkage analysis in practical situations. 

EXERCISE 22 

Go back to exercise 8, and estimate gene frequencies for the ABO blood group in this same pedigree. Does 

the lod score change when these frequencies are estimated, instead of using population gene frequency 

estimates? Then, consider the incomplete penetrance model used in exercise 9 on this same family. Does 

incorporating this reduced penetrance affect your estimates of marker allele frequencies? How does the gene 

frequency information affect the lod score between ABO and the disease? 
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23 Linkage Disequilibrium Between Alleles at Marker Loci 
Linkage disequilibrium is another population genetic phenomenon which can be useful in gene mapping. 

When the frequencies of pairs of alleles at different loci occurring on the same haplotype are not 

independent, the deviation from independence has been termed linkage disequilibrium. In this chapter, we 

will introduce various methods for detecting and quantifying such linkage disequilibrium, and then we will 

demonstrate its use in linkage analysis with the LINKAGE programs. 

23.1 WHAT IS LINKAGE DISEQUILIBRIUM 

For now, we will restrict ourselves to the simplest case of linkage disequilibrium between alleles of two loci 

with two alleles each. In general, linkage disequilibrium is usually seen as an association between one 

specific allele at one locus and one other specific allele at the other, so this formulation is fairly general, 

quantifying the association between specific alleles at each locus. If you will look at table 23-1, you will see 

a 2 × 2 table with each cell in the table representing one of the four possible haplotypes created by the two 

marker loci. The rows refer to the first marker genotype, while the columns refer to the second marker 

genotype. X1, X2, X3, and X4 represent the number of observations in each cell, where X1+X2+X3+X4 = 

n. The probabilities given in each cell are the probabilities of any random individual having the haplotype 

indicated in that cell. D11 ( often denoted by δ ), the coefficient of gametic linkage disequilibrium between 

allele 1 at locus 1, and allele 1 at locus 2, therefore is defined as E[ X1X4-X2X3 │ n = 1 ]. 

 
───────────────────────────────────────────────────── 

         Marker 2    

   ─────────────────────────────────── 

Marker 1     Allele 1       Allele 2 

───────────────────────────────────────────────────── 

Allele 1        X1    X2 

     p1p2 + D11    p1(1-p2) - D11 

 

Allele 2        X3    X4 

   (1-p1)p2 - D11 (1-p1)(1-p2) + D11 

───────────────────────────────────────────────────── 

 

Table 23-1: Linkage disequilibrium coefficient definitions, where p1 = gene frequency 

of allele 1 at marker 1, and p2 = gene frequency of allele 1 at marker 2, D11 = 

coefficient of linkage disequilibrium between allele 1 at locus 1, and allele 1 at 

locus 2. 

 

 In general, one could extend this concept to multiple alleles, and estimate haplotype frequencies for 

the n1n2 possible haplotypes, but in general, this requires a much larger sample size than the two-marker 

two-allele case, and the corresponding analytical approaches are analogous. 

23.2 POPULATION BASED SAMPLING AND THE EH PROGRAM 

The first thing one needs to do is to select a random cohort of individuals from one genetic population. What 

is meant by this is that the individuals should be from one (hopefully) randomly mating interbreeding unit. 

For example, one could assume that all of the individuals on a given Pacific island with minimal 

immigration comprise one homogeneous interbreeding population. Likewise, one could consider French-

Canadians, or Bavarian Germans, or Transylvanian Magyars to be approximately homogeneous. Often 

people extend this concept with reasonable accuracy to larger groups which appear to be randomly mating. 
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──────────────────────────────────────────────────────── 

         Locus 1 

     ────────────────────────── 

Locus 2     AA  Aa  aa 

──────────────────────────────────────────────────────── 

BB      k1   k2   k3   

 

Bb      k4   k5   k6   

 

bb      k7   k8   k9   

──────────────────────────────────────────────────────── 

 

Table 23-2: Table of all possible two-locus genotypes. 

 

 Let us assume we wish to test the absence of disequilibrium between allele A at locus 1, and allele B 

at locus 2, ( DAB = 0). Our sample of individuals consists of genotypic data, however, making it typically 

impossible to fully distinguish all of the haplotypes in each individual. Each individual can be classified 

uniquely in terms of his two-locus genotype, and can be placed into one of the cells of table 23-2. If the 

individual falls into cell 1, then you know it is made up of two identical A B haplotypes. Similarly, a person 

in cell 4 has one A B haplotype, and one A b haplotype. In almost every cell, this haplotype determination 

can be done uniquely, with the notable exception of cell 5, in which case there can be either of two phases, 

A B/a b, or A b/a B. These individuals are then rather difficult to deal with. However, it can be shown that 

omitting these individuals from consideration in an analysis of this type can lead to a bias, and a loss of 

information for the test, despite what you might think. Methods have been developed, however, to allow for 

these individuals to be used in the analysis, by using likelihood methods. One can simply try and maximize 

the log likelihood of the data observed, where )p( k  = [L(data)] 
ii

aa

1 =i 

21

lnln  ; ki = number of observations of 

two-locus genotype i, pi = probability of observing two-locus genotype i. The only remaining question is 

how to compute the pi. For most cases this is quite straightforward. In cell 1, we know that there are two A B 

haplotypes, so p1 = [P(A B)]
2
. Similarly, in cell 4, there is one A B haplotype, and one A b haplotype, so the 

probability of being in this cell is just p4 = 2P(A B)P(A b). For cell 5, however, there is some ambiguity 

about the phase, so P(Aa,Bb) = P(A B/a b) + P(A b/a B) = 2P(A B)P(a b) + 2P(A b)P(a B). The computation 

of all cell probabilities is shown in table 23-3. 

 
─────────────────────────────────────────────────────────────────────── 

        Locus 1            

           ──────────────────────────────────────────────────────────── 

Locus 2  AA   Aa    aa 

─────────────────────────────────────────────────────────────────────── 

BB    p(A B)2      2p(A B)p(a B)         p(a B)2 

 

Bb  2p(A B)p(A b)  2p(A B)p(a b) + 2p(a B)p(a b)  2p(A b)p(a B) 

 

bb    p(A b)2      2p(A b)p(a b)         p(a b)2 

─────────────────────────────────────────────────────────────────────── 

 

Table 23-3: Table of probabilities of each cell in table 23-2, parametrized by 

haplotype frequency. 

 

 Then, one could maximize the likelihood above, over the possible haplotype frequencies, or 

equivalently over the three parameters, p(A), p(B), and DAB, which make up the haplotype frequencies in the 

two allele - two locus case. This likelihood can then be compared to the maximum likelihood when DAB is 

set equal to 0 (i.e. absence of linkage disequilibrium). This can form the basis of a test of linkage 

equilibrium, and has been implemented in the linkage utility program EH (for Estimate Haplotype 

frequencies). Similar programs are given in Weir (1990). 

 Let us assume the following dataset, in the notation of table 23-2, k1 = 10, k2 = 10, k3 = 3, k4 = 15, k5 

= 50, k6 = 13, k7 = 5, k8 = 13, and k9 = 10. In every case, except k5, all the haplotypes can be uniquely 
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determined, and if you were to just count, you would find 45 A B haplotypes, 29 a B haplotypes, 38 A b 

haplotypes, and 46 a b haplotypes. If we were to assume that this was an exhaustive population sample of 

haplotypes, we could perform a chi-square test of independence of the 2 × 2 table shown below: 

 
  A a 

B  45 29 

b  38 46 

 

In this case, 3.83  =  2

(1) , with a corresponding p-value of 0.05. The corresponding haplotype frequency 

estimates are as follows: 

 
  A      a  

B  0.284810 0.183544 

b  0.240506 0.291140 

 

 Parametrizing these haplotype frequencies in terms of p(A), p(B), and DAB, clearly p(A) = 0.284810 

+ 0.240506 = 0.525316; p(B) = 0.284810 + 0.183544 = 0.468354; DAB = p(A B)-p(A)p(B) = 0.284810 – 

(0.525316)(0.468354) = 0.038776. However, this sample was biased due to the elimination of the fifty 

observations in k5. The EH program can be used as described above to perform the appropriate analysis on 

all the data together. Let us set up our input file for EH as follows: 

 

Line 1: Number of alleles at each of the 2 loci 

Line 2: k1 k4 k7 

Line 3: k2 k5 k8 

Line 4: k3 k6 k9 

 

Create such a file, and name it EH.DAT. The file should look like this: 

 
2 2 

10 15 5 

10 50 13 

 3 13 10 

 

 Then, call the EH program by entering EH at the DOS prompt. Be sure to respond no when the 

program asks if you wish to use the case-control sampling option. Then, specify the input file to be 

EH.DAT, and the output file to be EH.OUT, as the defaults are already setup. Then, after the program runs, 

you should get an output file similar to the following: 
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Estimates of Gene Frequencies (Assuming Independence) 

----\---------------------------- 

locus \ allele 1 2  

--------\------------------------ 

 1 | 0.5155 0.4845 

 2 | 0.4806 0.5194 

--------------------------------- 

# of Typed Individuals: 129 

 

There are 4 Possible Haplotypes at These 2 Loci. 

They are Listed Below, with their Estimated Frequencies: 

 

------------------------------------------------- 

| Allele  Allele  |   Haplotype Frequency  | 

| at  at    |     | 

| Locus 1  Locus 2 | Independent w/Association | 

------------------------------------------------- 

 1   1   0.247762  0.327684 

 1   2   0.267742  0.187820 

 2   1   0.232859  0.152937 

 2   2   0.251638  0.331560 

------------------------------------------------- 

# of Iterations = 16 

 

       df  Ln(L)  Chi-square 

--------------------------------------------------–––––––––––––- 

H0: No Association    2  -252.68  0.00 

H1: Allelic Associations Allowed  3  -248.23  8.89 

 

 The statistic of interest here is the chi-square statistic, which is just the difference in 2ln(likelihood), 

which is 8.89. In this case, the chi-square statistic has 1 degree of freedom, because under the hypothesis of 

allelic association, there are three free parameters, the haplotype frequencies, while under the hypothesis of 

no allelic association, there are only two free parameters, the two gene frequencies. The difference in free 

parameters is one, so the distribution has one degree of freedom. The p-value associated with 

8.8928  =  2

(1)  is 0.002873. Further, in comparing the haplotype frequency and δ estimates from the two 

approaches, with and without censoring the k5 individuals, it is clear that they contribute significant 

information about disequilibrium, even though the phase cannot be uniquely determined a priori, as shown 

in table 23-4. 

 
───────────────────────────────────────────────────────────────── 

     Haplotype Frequencies 

      ───────────────────────────────────────────────── 

            Without k5      With k5 

    ──────────────────────   ───────────────────── 

Haplotype   Indep.  Assoc.   Indep.    Assoc. 

───────────────────────────────────────────────────────────────── 

A B    0.246034     0.284810   0.247762     0.327684 

A b           0.279282      0.240506        0.267742     0.187820 

a B           0.222320      0.183544        0.232859     0.152937 

a b           0.252364      0.291140        0.251638     0.331560 

 

p(A)     0.525316      0.515504 

p(B)     0.468354      0.480621 

δ     0.038776      0.079922 

 

Table 23-4: Table of haplotype frequency estimates based on both methods, first by 

censoring the individuals with ambiguous haplotypes, and secondly be using all the 

data, with the EH program. 
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 The EH program also is capable of estimating haplotype frequencies for loci with greater than two 

alleles, however the format for data entry is more complicated. In general, for two loci in the EH program, 

you must enter the data as follows: 

 

Line 1: Number of alleles at each locus 

Subsequent Lines: The number of observations of each genotype as per table 23-5 (just the numbers of 

observations, not the rest of the table. 

 
──────────────────────────────────────────────── 

     LOCUS 2 

  ──────────────────────────────────── 

LOCUS 1    1/1 1/2 2/2 1/3 2/3 3/3... 

──────────────────────────────────────────────── 

1/1  a1 b1 c1 d1 e1 f1 

1/2  a2 b2 c2 d2 e2 f2  

2/2  a3 b3 c3 d3 e3 f3 

1/3  a4 b4 c4 d4 e4 f4 

2/3  a5 b5 c5 d5 e5 f5 

3/3  a6 b6 c6 d6 e6 f6 

... 

 

Table 23-5 : Format for entering multiallelic genotype information in the EH program 

for two loci. 

 

The table, and column/row headers are given to indicate the format in which you should enter the numbers 

of observations, not as something to be entered as well). The EH program could also be used analogously for 

estimating haplotype frequencies at more than two loci. To do this, the appropriate genotype entry format for 

three loci is demonstrated in table 23-6 (Of course, on line 1 you would now have three numbers of alleles, 

instead of two, to tell the program there were three loci in the datafile). Additional loci would be added in an 

analogous manner. 

 
─────────────────────────────────────── 

          LOCUS 3 

    ─────────────── 

LOCUS 1 LOCUS 2    1/1 1/2 2/2 

─────────────────────────────────────── 

1/1  1/1  a1 b1 c1  

  1/2  a2 b2 c2  

  2/2  a3 b3 c3  

1/2  1/1  a4 b4 c4  

  1/2  a5 b5 c5  

  2/2  a6 b6 c6  

2/2  1/1  a7 b7 c7  

  1/2  a8 b8 c8  

  2/2  a9 b9 c9  

 

Table 23-6 : Format for entering multilocus genotypic data in the EH program (here 

assuming two alleles per locus. Additional alleles could be dealt with in the manner 

outlined in table 23-5). 

23.3 ESTIMATING DISEQUILIBRIUM FROM PEDIGREE DATA 

The EH program incorporates a powerful and robust way to test and estimate deviations from linkage 

equilibrium between alleles at marker loci, based on a random sample of unrelated individuals in a fixed 

homogeneous population. It allows the user to include those individuals with no phase information in a 

disequilibrium analysis. However, if one has collected family pedigree information, it is possible to 

incorporate the phase information obtained from using such data in your analysis. 
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 In the literature, some attempts have been made to look at family data, by using the founders and 

married-ins as the set of unrelated individuals for conducting the disequilibrium analysis (Kerem et al., 

1989). The advantage here is that one could determine the phase in the doubly heterozygous individuals, 

allowing one to directly count haplotypes without relying on the EH algorithm. However, in these cases, in 

determining the phase of the haplotypes, they generally "...have assumed that there were no recombinants in 

our family material."(Chakravarti et al, 1984). As pointed out by Chakravarti, this is going to lead to biased 

results, since there is no basis for making 

such an assumption in all circumstances. 

The probability of a recombination is equal 

to the recombination fraction between the 

two loci, which is usually not zero! 

However, the phase information available 

from using such family information could 

be taken advantage of by using the ILINK 

program to estimate haplotype frequencies 

from the pedigree data, which would still be 

using the founders, but would take into 

account the recombination fraction between 

the loci, and other factors. Let us consider 

the pedigree drawn in Figure 23-1. Note: 

An updated and expanded version of ILINK 

is the Pseudomarker program [23, 24]; 

section 24.7. 

Let us first consider the founders and 

married-in individuals as a cohort of unrelated individuals from this population, and analyze them with the 

EH program. The results should resemble the following: 

 
Estimates of Gene Frequencies (Assuming Independence) 

----\---------------------------- 

locus \ allele 1 2  

--------\------------------------ 

 1 | 0.5769 0.4231 

 2 | 0.6538 0.3462 

--------------------------------- 

# of Typed Individuals: 13 

 

There are 4 Possible Haplotypes of These 2 Loci. 

They are Listed Below, with their Estimated Frequencies: 

 

---------------------------------------------------- 

| Allele Allele | Haplotype Frequency | 

| at at | | 

| Locus 1 Locus 2 | Independent w/Association | 

---------------------------------------------------- 

 1 1 0.377219 0.576921 

 1 2 0.199704 0.000002 

 2 1 0.276627 0.076925 

 2 2 0.146450 0.346152 

---------------------------------------------------- 

# of Iterations = 8 

 df Ln(L) Chi-square 

----------------------------------------------------------------- 

H0: No Association 2 -22.01 0.00 

H1: Allelic Associations Allowed 3 -16.00 12.02 

 

 Clearly, there is overwhelming evidence for disequilibrium in this example ( 12.02  =  2

(1) , p = 

0.0005), with a strong association between the 1 and A alleles. Now, let us use the full amount of information at 

our disposal to estimate haplotype frequencies with the ILINK program. Please enter the pedigree above in a 
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LINKAGE format pedigree file (both markers in allele numbers format). Then, call up the PREPLINK 

program, and specify the two allele numbers loci (NO DISEASE LOCUS!) with the gene frequency estimates 

as obtained from the EH program above. Now, try and refine the gene frequency estimates using the ILINK 

program, as explained in chapter 22. Do this first for locus 1, and then for locus 2, updating the frequencies for 

locus 1, as per your ILINK estimates. In this case, since there are no untyped people at either locus, it may be 

advisable to estimate the gene frequencies independently of the recombination fraction, since Θ should have no 

effect on the gene frequency estimates. Then, compute the lod score for this pedigree. You should find that the 

gene frequency estimates do not change, and are already maximized by the EH program. The maximum lod 

score for this pedigree, then, occurs at θ = 0, with Z(θ = 0) = 1.2, with corresponding –2ln(like) value of 99.48. 

 Now, let us use ILINK to maximize the likelihood over haplotype frequencies, to see if there is 

significant evidence for disequilibrium when the entire pedigree is used to establish phase for the doubly 

heterozygous individuals. We can further see what the effect is on the haplotype frequency estimates. First, 

read the parameter file back into the PREPLINK program, and this time select option (e) Haplotype 

Frequencies. You will be prompted with the following screen: 

 
***************************************** 

(a) SEE HAPLOTYPE FREQUENCIES 

(b) CHANGE HAPLOTYPE FREQUENCIES 

(c) HAPLOTYPE FREQUENCIES DEFINED : N 

(d) RETURN TO MAIN MENU 

***************************************** 

 

Select option (c) to define haplotype frequencies, and for starting values, please give the haplotype 

frequencies estimated by the EH program (under independence, since under the hypothesis of allelic 

association, the frequency of the 1 B haplotype is too close to zero) as follows: 

 
ENTER NEW FREQUENCY AFTER EACH "?" 

NOTE THAT HAPLOTYPES ARE GIVEN USING CHROMOSOME ORDER OF LOCI 

LOCUS : 1 2 

ALLELES : 1 1 0.000000E+00 

 ? 

0.377219 

ALLELES : 1 2 0.000000E+00 

 ? 

0.199704 

ALLELES : 2 1 0.000000E+00 

 ? 

0.276627 

ALLELES : 2 2 0.000000E+00 

 ? 

0.146450 

ENTER c TO CONTINUE 

 

 Now, return to the main menu, and write the new parameter file. Then, bring the file into your word 

processor, and examine it. It should now resemble the following: 

 
 2 0 0 3 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1) PROGRAM 

 0 0.0 0.0 1 << MUT LOCUS, MUT MALE, MUT FEM, HAP FREQ (IF 1) 

 1 2 

3 2 << ALLELE NUMBERS, NO. OF ALLELES 

3 2 << ALLELE NUMBERS, NO. OF ALLELES 

 0.377219 0.199704 0.276627 0.146450 << HAP FREQ 

 0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

 0.5000 << RECOMBINATION VALUES 

 2 << THIS LOCUS MAY HAVE ITERATED PARS 

 0 

 

 Now, you should alter the bottom of the parameter file by adding three 1's after the 0 on the last line, 

to indicate that you wish to estimate the three haplotype frequencies (the fourth being equal to 1-p1-p2-p3), 
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while fixing the recombination fraction at θ = ½. Run UNKNOWN (again, you must have the version dated 

after July 1993, which sets the variable makehomozygous = false), and then run the ILINK program, and 

your FINAL.DAT file should resemble the following: 

 
CHROMOSOME ORDER OF LOCI: 

 1 2 

****************** FINAL VALUES *************************** 

PROVIDED FOR LOCUS 2 (CHROMOSOME ORDER) 

*********************************************************** 

HAPLOTYPE FREQUENCIES: 

 0.576458 0.000691 0.077266 0.345585 

*********************************************************** 

THETAS: 

 0.500 

*********************************************************** 

-2 LN(LIKE) = 9.302258802337E+001 

LOD SCORE = 0.00000000000E+000 

NUMBER OF ITERATIONS = 10 

NUMBER OF FUNCTION EVALUATIONS = 59 

PTG = -7.504932736675E-005 

*********************************************************** 

*********************************************************** 

 

 Naturally, these haplotype frequency estimates are almost identical to those obtained from the EH 

program, since no information about phase is available from the rest of the family when the markers are 

assumed to be unlinked. However, if we were to jointly estimate the recombination fraction with the 

haplotype frequencies, there may be additional phase information available. To do this, read the parameter 

file into your word processor, and modify the bottom three lines to look like the following: 

 
 0.1000 << RECOMBINATION VALUES 

 2 << THIS LOCUS MAY HAVE ITERATED PARS 

 1 1 1 1 

 

 In this way, the recombination fraction will be estimated along with the three haplotype frequencies. 

Now, rerun the ILINK program, and you should get the following quite different results: haplotype 

frequencies = 0.316321, 0.257770, 0.340819, 0.085091; θ = 0; –2ln(Like) = 97.994.  

 These results are very different, since upon looking at the family, it appears that in most of the 

heterozygous founders, the 1 allele is on the same haplotype as the B allele, while this is never seen in the 

individuals with unambiguous phase. To summarize the results of the haplotype frequency estimates, consult 

table 23-7. 

 
──────────────────────────────────────────────────────────────────────── 

       Haplotype 

    ─────────────────────────────────── 

Method of Estimation    1 A      1 B  2 A     2 B   D1A 

──────────────────────────────────────────────────────────────────────── 

1) EH: Independence 0.377219 0.199704 0.276627 0.146450   0 

2) EH: Association 0.576921 0.000002 0.076925 0.346152   0.200 

3) ILINK: θ = 0.5  0.576458 0.000691 0.077266 0.345585   0.199 

4) ILINK: θ = ̂  = 0 0.316321 0.257770 0.340819 0.085091  -0.06 

 

Table 23-7 : Haplotype frequency estimates obtained from EH and from ILINK based on 

figure 23-1. 

 

 Interestingly, the gene frequency estimates are almost constant in each example, and the differences 

in haplotype frequency can be explained entirely in terms of D1A, which is indicated in the last column 

below. It shows that while under the hypothesis of no linkage there is evidence for a strong association 

between the 1 and A alleles, when analyzed under the assumption of linkage, this association disappears, 

and in fact a slight association is noted between the 1 and B alleles. The question still remains as to how to 
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use this output to develop a test for the presence of linkage disequilibrium. We have four likelihoods to 

consider, as indicated in table 23-8. 

 
D1A   θ  -2ln(Likelihood) 

────────────────────────────────────── 

 0   0.5  105.01 

 0   ̂ = 0   99.48 

D̂ 1A = 0.199 0.5   93.02 

D̂ 1A = -0.06 ̂ = 0   97.99  

 

Table 23-8 : Table of -2ln(Likelihoods) under different hypotheses about θ and 

D1A. 

 

 Clearly, the bottom line should have a value of –2ln(Likelihood) that is less than or equal to the 

value on the second to last line, since these are nested hypotheses. It means that our maximization must have 

gotten stuck in some local maximum. Let us maximize the likelihood at various fixed values of the 

recombination fraction, θ. Please set up a series of ILINK analyses to compute the values of –

2ln(Likelihood) for values of θ between 0 and 0.5 in steps of 0.05. Please also record what the FINAL.DAT 

file indicates as the "LOD SCORE" for each point. The results you obtain should be approximately the same 

as those in table 23-9. 

 
Theta    D1A  -2ln(Likelihood) "LOD SCORE"   Lod Score 

───────────────────────────────────────────────────────────────── 

0  -0.060       97.98     1.98  -1.08 

0.05  -0.060   99.13    1.73  -1.33 

0.10  -0.061  100.15    1.52   -1.55 

0.15  -0.067  101.05    1.36  -1.74 

0.20  -0.072  101.86    1.21  -1.92 

0.25  -0.076  102.64    1.07  -2.05 

0.30  +0.200  101.61   -1.87  -1.87 

0.35  +0.200   99.09   -1.31  -1.32 

0.40  +0.200   96.88   -0.84  -0.84 

0.45  +0.200   94.88   -0.40  -0.40 

0.50  +0.200   93.02    0.00   0.00 

 

Table 23-9 : Table of likelihoods maximized over D1A for a set of fixed values of θ in 

the pedigree from figure 23-1. 

 

 This is a very interesting result, since it shows a dichotomy of sorts between two very different local 

maxima for the likelihood over D1A. For small θ, D1A=-0.07 is about optimal, while for large θ, D1A=0.200 is 

optimal. It stands to reason that at some point the two must give an approximately equal likelihood, and that 

point should be somewhere between θ = 0.25, and θ = 0.3. It turns out that at θ = 0.275, the value of –

2ln(Likelihood) with D1A = –0.07 is 103.05, and with D1A = 0.200, it equals 103.05, so at this point is where 

the global maximum over D1A switches over. This is a very interesting phenomenon, and is due to the fact 

that in the founder individuals of this pedigree, there are seven observed 1 A haplotypes, two 2 A 

haplotypes, and one 2 B haplotype. This provides some evidence for a population association between the 1 

and A alleles, as would be the case when D1A = 0.2. However, upon closer examination of the pedigree, we 

can find that in the eight doubly heterozygous individuals, under the hypothesis of tight linkage, the 1 allele 

occurs predominantly in association with the B allele. This apparent contradiction leads us to this dichotomy 

between two potential estimates of the disequilibrium coefficient. If one looks at the "LOD SCORES" in 

table 23-9, it is clear that they too follow a similar dichotomy, being very positive until θ = 0.275, and 

suddenly becoming very negative. This is because these "LOD SCORES" are computed with the estimated 

haplotype frequencies used in both numerator and denominator. The more appropriate way to compute lod 

scores in such a situation would be as log10[ L(̂ , D̂ 1A)/L(θ = ½, D̂ 1A)], the values of which are indicated in 

the last column of table 23-9 (with D1A estimated separately in numerator and denominator). In this analysis, 

then, while ILINK tells you there is a "LOD SCORE" of 1.98, when one correctly treats the haplotype 
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frequencies as nuisance parameters, the lod score at θ = 0 is actually –1.08, when the analysis is done 

properly. This exercise points out just how important it is to do the linkage analysis carefully, and when 

using haplotype frequency information, one MUST be careful about re-estimating the frequencies under the 

hypotheses of linkage and no linkage respectively. In this case, it is also interesting to consider the effect of 

using the haplotype frequency estimates obtained from the EH program, and computing lod scores based 

solely on these estimates. In this case, using those estimates will give you a lod score at θ = 0 of –∞, with an 

exclusion region extending through θ = 0.275, whereas in the appropriate ILINK analysis, the lod scores 

started increasing again from θ = 0.275 to θ = 0, indicating that in this analysis, you make false exclusions, 

while by following the "LOD SCORE" values given in the ILINK program, you make false assumptions of 

a positive linkage finding. 

EXERCISE 23 

Compute the genotype probabilities for all possible genotypes for use in the EH program, assuming one 4-

allele locus, and one 3-allele locus. Then, analyze the observations in table 23-10 with the EH program, and 

separately by censoring individuals with ambiguous haplotype phase. 

 
       Locus 2 

       ───────────────────────────────────────────────────────── 

Locus 1  1/1 1/2 1/3 1/4 2/2 2/3 2/4 3/3 3/4 4/4 

─────────────────────────────────────────────────────────────────────────── 

1/1   10 5 6 4 1 2 3 1 2 0  

1/2   6 3 3 3 1 2 1 1 2 1 

2/2   12 9 8 11 3 2 5 1 0 3 

1/3   1 2 2 1 1 1 1 0 4 2 

2/3   0 2 2 8 2 2 9 3 6 8 

3/3   8 6 4 10 3 3 8 5 9 13 

 

Table 23-10: Table of observations for analysis with the EH program in exercise 23. 

 

 Next, consider the pedigree from exercise 8, and look for linkage disequilibrium between alleles of 

the ABO blood group and the other marker locus. Analyze this pedigree with ILINK to estimate haplotype 

frequencies for each θ in steps of 0.1 from θ = 0.1 to θ = 0.5. (Hint: Be sure to eliminate the disease locus 

from the pedigree and parameter files before you commence this analysis). 
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24 Linkage Disequilibrium and Disease Loci 
When looking for linkage disequilibrium between a disease allele and a marker allele, one cannot apply the 

methods as explained in the previous chapter, due to ascertainment problems. The straight EH approach is 

not practical, since the population frequency of most genetic diseases is so small that in a random sample of 

individuals, you would not likely encounter a single affected person. It is therefore imperative to devise 

directed ascertainment schemes, in which your sample is enriched for the disease. In this chapter, we will 

introduce some basic approaches to this problem, and the ways such disequilibrium can be used in a linkage 

analysis with the MLINK and ILINK programs. 

24.1 CASE-CONTROL SAMPLING 

Perhaps the most obvious approach is to simply take a sample of unrelated individuals affected with a 

certain genetic disease, and compare the frequency of certain alleles with their frequency in a sample of 

unrelated normal individuals. If the mode of inheritance for the disease is known, then it would be possible 

to estimate haplotype frequencies from this type of data. However, the primary object of interest is the test 

of whether or not there is an allelic association. If one were to collect a sample of cases, and a sample of 

normal individuals from the same population, one could simply perform a chi-square test of the equality of 

the gene frequencies in the case and control samples. For example, consider the following set of 

observations: 

 
    Marker allele 

    1   2 

Case   60  40 

Control  40  60 

 

The test would be a simple chi-square test on this two by two table, and if you analyze it using the 

CONTING program, you will find that the value of the chi-square statistic is 8.00, with a corresponding 

two-sided p-value of 0.004. There is another useful linkage utility program, called 2BY2. It performs 

Fisher's exact test on a 2 × 2 table. In this case, you can call up the 2BY2 program, and enter the data as in 

the table above. You will find that the exact one-sided p-value in this case is 0.0035. Of course, this p-value 

is one sided, and the other is two-sided, so for a fair comparison, this p-value should be doubled, for an 

approximate comparison of the two approaches.  

 This is a simple approach, and if one was to assume that the disease were fully penetrant recessive, 

with very rare disease allele frequency, we can estimate haplotype frequencies for the disease-marker 

haplotypes as follows. Clearly, we know that everyone in the disease sample carries two copies of the 

disease allele, so we can say that P(allele 2 │ disease allele) = 0.4, and P(allele 1 │ disease allele) = 0.4. 

Assuming that we have a population-based estimate for the disease allele frequency (in this case, p = 0.001), 

we can compute the disease-marker haplotype frequencies as just P(1 D) = P(allele 2 │ disease 

allele)P(disease allele) = (0.4)(0.001) = 0.0004. Similarly, P(2 D) = 0.0006. Since the disease allele is so 

rare, we can safely assume that the control population consists solely of homozygous normal individuals. In 

this case, then, by the logic outlined above, P(1 +) = 0.5994 and P(2 +) = 0.3996.  

24.2 MORE COMPLICATED PENETRANCE MODELS 

If the disease were dominant, or there were phenocopies allowed for, the situation would be more 

complicated. To allow for these types of diseases, we will use the case-control option of the EH program, to 

more accurately compute haplotype frequencies, and to test linkage equilibrium given various specific 

disease models, when the data are sampled according to a case-control strategy, as above. The basic idea 

behind this program is that one would separately collect a sample of individuals with the disease and without 

the disease. Then, according to the penetrances and gene frequencies (which must be user specified for the 

disease locus only), each individual is assigned a probability of having each possible disease locus genotype. 

For example, if we had f1 = P(Aff│DD); f2 = P(Aff│Dd); f3 = P(Aff│dd); and p = P(D); then, in the 

population, we would have prevalence, φ = f1p
2
 + 2f2(1 – p)p + f3(1 – p)

2
. Then, for each affected individual, 

we could compute P(DD│Aff) = f1p
2
/φ, etc. Then, every affected individual observation among affecteds 

would be partitioned among the three possible genotypes according to these conditional probabilities. For 

example, if we had one affected individual with marker genotype 1/1, he would be partitioned into three 
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observations, P(DD│Aff) observations of disease locus genotype DD, marker locus genotype 1/1, 

P(Dd│Aff) observations of disease locus genotype Dd, marker locus genotype 1/1, and P(dd│Aff) 

observations of disease locus genotype dd, marker locus genotype 1/1. Similar decomposition is done with 

the unaffecteds (who have penetrances P(NA│DD) = 1 – P(Aff│DD), etc.), with the resulting data 

combined across disease locus phenotypes. Thus if we had m1 observations of affected with marker 

genotype 1/1, and m2 observations of unaffected with marker genotype 1/1, then we would have genotype-

decomposed observations of m1P(DD│Aff) + m2P(DD│NA) observations of disease locus genotype DD, 

marker locus genotype 1/1, and so on, for the other possible disease locus genotypes. Then, this genotype-

based data can be analyzed with the EH program, with the restriction that the disease allele frequency must 

remain equal to p throughout, since if we were to estimate it from the data, it would in general be vastly 

overestimated because of the case-control ascertainment scheme involved here.  

 To use this version of the EH program, you must prepare your data in exactly the same form as in the 

chapter 23, with the exception that you must have separate files for the case data (CASE.DAT), and the 

control data (CONTROL.DAT). In these files, you would indicate the numbers of observations of each 

genotype at the marker locus (or loci), in exactly the same format as shown in the previous chapter. The one 

difference is that you must now specify additionally the gene frequency of the disease allele, and penetrance 

values for each disease locus genotype (always assuming the disease-predisposing allele to be the first allele 

at the disease locus). As an example, let us consider the data shown in table 24-1.  

 
──────────────────────────────────────────────────────────── 

                          Marker locus genotype 

           ───────────────────────────────────────────────── 

Sample 1/1  1/2  1/3  1/4  2/2  2/3  2/4  3/3  3/4  4/4 

──────────────────────────────────────────────────────────── 

Case  13    5   11    4    0    3    2    8   10    9 

Control    2    4    5    7    2    6    5    5   18   14  

──────────────────────────────────────────────────────────── 

 

Table 24-1 : Dataset for Case-Control study of disequilibrium with EH. 

 

The CASE.DAT file, for example, should resemble the following: 

 
4 

13 5 0 11 3 8 4 2 10 9 

 

To run the program, just type EH at the DOS prompt, and when the program prompts you with  

 
Do you wish to use the case-control sampling option? [Y/N] 

 

Respond by entering Y, to invoke this option. Then, you will need to tell the program the names of the 

separate input files for the CONTROL sample genotypes and the CASE sample genotypes. Since we have 

created these two files with the appropriate default names, you need only hit the [Enter] key when prompted 

with 

 
Enter control data file [CONTROL.DAT], and 

Enter case data file [CASE.DAT]. 

 

 The output file can also be left at the default, EH.OUT. The next phase requires us to specify various 

parameters about the disease locus. In this case, you need to tell the program that the gene frequency of the 

disease allele is 0.01, and then you will need to specify the penetrances for each of the three possible 

disease-locus genotypes, in this case assuming a dominant disease with 80% penetrance, and 0.1% 

penetrance for phenocopies, as follows: +/+ (= 0.001), +/D (= 0.80), D/D (= 0.80). The output file, 

EH.OUT should resemble the following: 
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Estimates of Gene Frequencies (Assuming Independence) 

(Disease gene frequencies are user specified) 

----\------------------------------------------------------- 

locus \ allele 1  2  3  4  

--------\--------------------------------------------------- 

Disease |   0.9900 0.0100  

 1    |   0.2481 0.1090 0.2970 0.3459 

------------------------------------------------------------ 

# of Typed Individuals: 133 

 

There are 8 Possible Haplotypes of These 2 Loci. 

They are Listed Below, with their Estimated Frequencies: 

 

------------------------------------------------- 

| Allele  Allele | Haplotype Frequency  | 

|   at at |      | 

| Disease Marker1 | Independent w/Association | 

------------------------------------------------- 

 + 1   0.245602  0.189403 

 + 2   0.107895  0.138809 

 + 3   0.294060  0.286668 

 + 4   0.342443  0.375120 

 D 1   0.002481  0.004357 

 D 2   0.001090  0.000058 

 D 3   0.002970  0.003217 

 D 4   0.003459  0.002368 

------------------------------------------------- 

# of Iterations = 23 

 

       df  Ln(L)  Chi-square 

---------------------------------------------------------------- 

H0: No Association   3 -538.62  0.00 

H1: Markers and Disease Associated 6 -532.73 11.78 

 

 The likelihood ratio test of linkage equilibrium between the marker and disease would then be –

2ln[L(H0)/L(H1)] ~ χ
2
, with 6 – 3 = 3 degrees of freedom. In this case, this statistic has a value of 11.78, 

which has an associated p-value of 0.003, which is significant evidence for linkage disequilibrium between 

the disease and marker alleles, with estimated haplotype frequencies shown above. Apparently the strongest 

association is between the disease allele and allele 1 at the marker locus.  

 One additional point of interest is that contrary to the situation in which sampling is random with 

respect to both markers, in this case, the estimated frequencies of the marker alleles is different under the 

assumption of linkage disequilibrium. For example, under the hypothesis of no disequilibrium, the frequency 

of the 1 allele is estimated to be 0.2481, while under the hypothesis of linkage disequilibrium, its frequency 

is estimated to be P(1) = P(1 +) + P(1 D) = 0.189403 + 0.002368 = 0.191771, which is much smaller. This 

decrease is a result of the fact that the 1 allele is associated with the D allele which is overrepresented in the 

sample, due to the case-control sampling scheme, which overrepresents haplotypes which carry the D allele.  

 This approach can be used just as well to estimate haplotype frequencies with two or more marker 

loci, but it is important to be careful in what you consider to be a significant result. While linkage 

disequilibrium at more than two loci is beyond the scope of this book, it is important to point out a few 

minor things, so that the unwary user doesn't misuse this method in such situations. Consider the following 

simple example with two marker loci. Let us assume that we observe the genotypes shown in table 24-2. 
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─────────────────────────────────────────────────── 

           Marker 1  

     ─────────────────────────────────────── 

                 Case           Control 

            ───────────────  ─────────────── 

Marker 2    1/1 1/2 2/2   1/1 1/2   2/2 

─────────────────────────────────────────────────── 

    1/1  10    5    2  10   5  2 

    1/2       5  10   5     5 10  5 

    2/2   2  5  10           2  5    10 

─────────────────────────────────────────────────── 

Table 24-2: Dataset for Case-Control study of disequilibrium with a disease and two 

marker loci 

 

Clearly, there is no association between any of the marker alleles and the disease, yet there is a strong 

association between the alleles of the two markers. If you run the EH program on these data, you should find 

that there are now three likelihood values given at the bottom, χ
2
(H0) = 0.00; χ

2
(H1) = 29.67; and χ

2
(H2) = 

29.67. These values are just –2ln[L(H0)/L(Hi)] = 2ln[L(Hi)] – 2ln[L(H0)]. Thus, they provide the appropriate 

test statistic for comparing either hypothesis against the overall null hypothesis of no association between 

any alleles at any of the loci. Thus, there is highly significant (p < 0.000001) evidence for an association 

between alleles of the two markers, independent of the disease, and highly significant evidence for an 

overall association (p = 0.000006). However, the most appropriate test for association between disease and 

alleles at one or more of the markers would be to compare H2 with H1. The reader may question the use of 

H1 as the appropriate null hypothesis in general, especially if there were no significant evidence for rejecting 

H0 in favor of H1, but in fact, we are not interested in whether the markers are associated with each other 

(and typically in such a study, we would assume this to be the case), but are solely interested in whether the 

disease is associated with one or more of the markers. In this case the desired test is –2ln[L(H1)/L(H2)]. This 

is equivalent to χ
2
(H2) – χ

2
(H1) = [2ln L(H2) – 2ln L(H0)] – [2ln L(H1) – 2ln L(H0)] = 2ln L(H2) – 2ln L(H1) 

= –2ln[L(H1)/L(H2)], and can thus be easily determined. In this case, clearly, there is no significance, since 

χ
2
(H2) – χ

2
(H1) = 29.67 – 29.67 = 0, so there is absolutely no evidence for any association between the 

disease allele and any allele at any of the marker loci. 

24.3 THEORY BEHIND THE HAPLOTYPE RELATIVE RISK 

 In many studies of allelic association of the case control variety, people often question the meaning of the 

results, since it can be difficult to find well-matched case and control samples from the same genetic 

population. As a possible remedy to this problem, Rubinstein et al (1981) proposed their genotype-based 

Haplotype Relative Risk (GHRR) design to obtain matched case and control samples in an association study. 

The basic idea of their method is to collect a sample of random affected individuals, and their parents, and 

base the analysis solely on these small nuclear families. One would consider the affected child's marker 

genotype as the "case" sample, and the two parental alleles which were not transmitted to the affected child 

as an artificial "control" sample, obviously well matched from the same genetic population. For example, 

consider a family with parental genotypes G/H, and H/J, with affected son H/H, 

as shown in Figure 24-1. 

 In this family, the "case" genotype would be H/H, and the artificial 

"control" genotype would be G/J, the two alleles (one from each parent) that 

were not transmitted to the affected child. In the original Rubinstein et al 

formulation of this approach, they looked at whether or not a given allele was 

present or absent from each "genotype". For our case, let us look at the H allele. 

Clearly, there are two H alleles in the transmitted (case) sample, and no H alleles 

in the non-transmitted sample (control). Hence, this family would contribute one 

observation of H transmitted, and one observation of not-transmitted. One could 

then collect n such nuclear families, and obtain two such observations from each 

family (one transmitted, and one not-transmitted). 
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     H   H  Total 

───────────────────────────────────── 

Transmitted    W   X (W + X) 

Not-Transmitted   Y   Z (Y + Z) 

──────────────────────────────────────────────── 

   (W+Y) (X+Z)   2N 

──────────────────────────────────────────────── 

Table 24-3: Haplotype Relative Risk 2x2 table 

 

Filling in table 24-3 with these observations, one can test linkage equilibrium by a simple chi-square test of 

independence on this table, as +Z)+Z)(YY)(X+X)(W+(W

)XY-2N(WZ2 2

  =   . It is important to point out that the theory that 

has been developed for the HRR is based on the rather restrictive assumption that families are singly 

ascertained, and that the affected child in the analysis must be the proband in each family. It is unclear what the 

effect of violating these rather strict rules may be, so it is suggested that if you are planning to start an 

association study using this approach, that you collect families based solely on this criteria. It is granted that for 

many complex diseases with high rates of sporadic cases, you may have a large number of sporadic cases in 

your sample, but if some association exists, then if you collect a sufficiently large sample, you should hopefully 

be able to detect it anyway. Please refer to Terwilliger and Ott (1992b) for further details about sample size and 

power considerations. 

24.4 APPLICATION OF THE HRR AND THE CONTING PROGRAM 

This test of equilibrium is very simple to apply, as any fully typed family of this type can be uniquely 

classified according to whether or not a given allele (here denoted H) is transmitted and not-transmitted. 

This can easily be done by hand, and no complicated computer software is needed. Further, there is a 

Linkage Utility Program called CONTING which can be used to compute the chi-square statistic for any 

such 2 × 2 table. Let us assume that we have collected 50 such families, with W = 40, X = 10, Y = 20, Z = 

30. Now, call up the CONTING program. It will first prompt you with 

 
Interactive use? [Y/n] 

 

to which you should respond Y. Then it will ask 

 
NEW TABLE: 

Number of rows (0 to stop) =  

 

to which you should respond that there are 2 rows. Similarly, tell the program that there are 2 columns, since 

we have a 2 × 2 table. You will then be asked (Your responses are indicated in italics): 

 
Enter observed numbers rowwise 

Row 1- 40 10 

Row 2- 20 30 

 

 The program will then recreate the 2 × 2 table, to give you a chance to verify that you have entered 

the data correctly, as follows: 

 
The observed figures are: 

   1 2 

1  40.  10. 

2  20.  30. 

 

Use Yates' correction for continuity (y/N)? 

 

 If the sample size is large, as in this case, you do not need to corect for continuity, so just hit enter 

(the upper case N indicates that this is the default). You will then see the following screen: 
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Frequencies expected under independence: 

   1   2 

1  30.00  20.00 

2  30.00  20.00 

 

To continue, press return key... 

 

 These values are the expected counts in each cell, assuming independence of the two by two table. 

When you hit the enter key, the results of the chi-square calculation will appear as follows: 

 
The contributions to chi-square are: 

 1  2 

1 3.33  5.00  

2  3.33  5.00 

 

Chi-square = 16.67 1 degree of freedom 

2-sided p-value = 0.000045 

 

Collapse some rows or columns to form a new table (screen input)? 

  

to which you should respond N, followed by 

 
NEW TABLE: 

Number of rows (0 to stop) = 

 

You may now enter 0 to exit the program. As you can see, the null hypothesis of equilibrium is rejected by 

this test at the 0.000045 level, so we have very significant evidence for linkage disequilibrium. Just as an 

exercise, please use your calculator, and plug in the appropriate values of W, X, Y, and Z, in the chi-square 

formula above to verify that this result is correct. If you do this, you should get 

16.67 =   =  
30)+30)(20+20)(10+10)(40+(40

) [20][10] - [40][30] 2(50)(2 2

 , 

which matches the result obtained using the CONTING program. 

24.5 PAIRED SAMPLING AND THE CHIPROB PROGRAM 

It is also possible to consider each family as contributing one observation to table 24-4, in which each family 

is classified in terms of both its transmitted and non-transmitted genotypes. For the sample pedigree 

described above, the one observation would be in cell B (H transmitted, not-transmitted). If one looks 

further at this table, it can be seen that the marginals of table 24-4 provide the data on which the haplotype 

relative risk statistic is based.  

 
         Not Transmitted 

    ─────────────── 

    Transmitted   H  H   Total 

───────────────────────────────────────────────────── 

  H  A  B    W 

  H   C  D    X 

───────────────────────────────────────────────────── 

    Y  Z    N 

───────────────────────────────────────────────────── 

Table 24-4 : Paired Sampling HRR Table 

 

 One can base his tests of equilibrium on this table as well, by performing a McNemar test. Clearly, 

the null hypothesis of the HRR test, from the previous section, is that W = Y. But, if you look at the actual 

familial source of the data in the paired sampling case, you will see that this hypothesis is equivalent to (A + 

B) = (A + C), which implies B = C. A simple and straightforward test of this sort is a McNemar test on this 

paired sampling table. The McNemar test is simply C + B

)C - (B2 2

  =   , as described in Terwilliger and Ott (1992b). 
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While this test is easy to apply, and intuitively appealing, it can be shown to have uniformly lower power than 

tests of the HRR variety. However, as pointed out by Spielman et al. (1993), the McNemar test has the 

advantage that one needn't assume the presence of Hardy-Weinberg Equilibrium, which would not be present 

when there is population stratification. Further, the power of this test is minimally lower than the HRR tests in 

general, making it a useful option, when population stratification is likely. 

 Let us apply this test to our sample data from section 24.4. Let us fill in the missing data in Table 24-

4 as A = 15, B = 25, C = 5, D = 5 (Note that W = A+B = 40, etc). Applying the more simple McNemar test, 

we can simply use our calculators to obtain the value 13.33  =    =  
5 + 25

)5 - (252 2

 .  

 To determine the associated p-value, we must either consult a chi-square table, or use the Linkage 

Utility Program CHIPROB. Please call up this program now, and you will be prompted with: 

 
Enter x2 and df  

 

 At this point, you must merely enter 13.33  1, since the value of your statistic is 13.33, and there is 1 

degree of freedom. The program will then provide you with the appropriate two-sided p-value of 0.000263. 

To exit the CHIPROB program, just enter a 0 at the next prompt. This p-value is still highly significant, but 

less significant than the HRR statistic applied to the same data. 

24.6 HAPLOTYPE-BASED HAPLOTYPE RELATIVE RISK 

Terwilliger and Ott (1992b) developed a way to use this same HRR experimental design which would glean 

much additional information from the same dataset. In the case of the original genotype-based HRR 

(GHRR) statistic of Rubinstein et al (1981), they lumped together H/H homozygotes, and H/ H
heterozygotes as H genotypes. However, Terwilliger and Ott noticed that since under the null hypothesis, the 

two parental genotypes are independent, the transmitted and non-transmitted alleles from each parent can be 

treated as independent observations, and thus supply us with four observations per family, in what they 

termed the haplotype-based HRR (HHRR) statistic, as opposed to the two observations obtained in the 

GHRR approach. Returning to the sample pedigree above, we can see that it would now contribute two 

observations of H transmitted (H/H), and two observations of H not-transmitted (G/J). In this case, the same 

statistic can be applied, only now N refers to the total number of parents, as opposed to the total number of 

families, and is thus twice as large as it was under the GHRR method described above. Going back again to 

our sample dataset of 50 families, if we break it down into haplotypes, we might have found the following 

data (in form of Table 24-4 above): A = 19; B = 42; C = 10; D = 29. This would mean that W = 61; X = 39; 

Y = 29; Z = 71. If we then were to compute the chi-square statistic associated with this table (as described 

above for the GHRR), we would find that the HHRR was equal to 20.69  =    =  
71)+71)(29+29)(39+39)(61+(61

)[39][29] - ][71]2[100]([612 2

 . 

The p-value obtained from CONTING (or equivalently from CHIPROB) is 0.000005 which is much stronger 

than the result obtained from the GHRR approach. Analogously, one could apply the McNemar test to this data 

as well, and the haplotype-based McNemar test would give a result of 19.69  =    =  
10 + 42

)10 - (422 2

 . Again, this test 

gives somewhat lower significance than the HHRR statistic, but higher than the genotype-based McNemar test. 

In general, the HHRR approach has been shown by Terwilliger and Ott (1992b) to provide better power than the 

GHRR approach almost uniformly, and is thus more useful to apply in general, for both HRR and McNemar 

type statistics.  

 It is also important to be careful about multiple comparisons (cf. Ott (1991), sec. 4.7), in evaluating 

the significance of any given test result, since people often consider each marker allele separately against the 

disease allele. In these cases, one should divide the critical p-value by the number of comparisons done, to 

adequately allow for the multiple testing problem (Anderson and Sclove, 1986). 

24.7 USING ILINK TO ESTIMATE LD WITH DISEASE, Pseudomarker 

Of course, the ILINK program can be used to estimate haplotype frequencies, as we saw in chapter 23. 

However, there are problems with this estimation when one of the loci involved is the disease locus. The 

basic problem is that the disease allele will necessarily be overrepresented in the pedigree dataset. One could 

estimate haplotype frequencies, (D i), and then normalize them, a posteriori, to the known population 

disease allele frequency as P(D i) = pD[(D i)/Σi(D i)], for example. Still, the estimates may not be accurate, 
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since the constraint on disease allele frequency was made after the maximization process, and not before it. 

This limitation of the ILINK program makes this approach somewhat unreliable. Further, it is generally 

better to estimate your haplotype frequencies from one dataset, and then use this information in your 

subsequent pedigree analysis. The method for using the ILINK program to estimate haplotype frequencies in 

general was illustrated in chapter 23, and the normalization process is analogous to what was done in the EH 

program. 

 A specialized version of ILINK is the Pseudomarker program [23, 24]. It allows for the joint testing 

for linkage and/or disequilibrium, properly accounting for ascertainment of disease. See its online user 

manual. 

24.8 USING LINKAGE DISEQUILIBRIUM IN THE LINKAGE PROGRAMS 

It is possible to use information about linkage disequilibrium in the LINKAGE programs, to do a standard 

linkage analysis. The use of such haplotype frequency information can have a strong effect on the linkage 

analysis results, since it makes the prior probabilities of the possible parental phases unequal in an otherwise 

phase-unknown mating. Let us consider the two pedigrees shown in figure 7-3, from the section on marriage 

loops. If you remember correctly, these pedigrees were completely uninformative for linkage, since they are 

both phase-unknown matings with only one offspring each. What would happen to this analysis, if we were 

to allow for the presence of linkage disequilibrium?  

 In these pedigrees, we know the disease is recessive, and that each parent is heterozygous at the 

disease locus. So, let us first consider the first pedigree, with parents 2/3, and 1/1. In this pedigree, the only 

potentially informative meiosis is from father, the 2/3 individual. There are two possible phases for this 

parent, 2 D/3 +, and 2 +/3 D. The likelihood of these two phases are L1 = P(2 D)P(3 +) and L2 = P(2 +)P(3 

D) respectively. Under phase I, the affected daughter would be a recombinant, and under phase II, she would 

be a non-recombinant, so the likelihood of this pedigree is just L1θ + L2(1 – θ). Under the assumption of no 

linkage disequilibrium, L1 = L2 by definition, so the overall likelihood of this pedigree is just L1, which is 

independent of θ, and thus provides no information about linkage. However, whenever there is linkage 

disequilibrium, and L1  L2, this likelihood is a function of θ, and therefore provides information about 

linkage. For the second pedigree, by analogy, we have phases for father of 1 D/2 + or 1 +/2 D, with 

corresponding likelihoods L3 = P(1 D)P(2 +) and L4 = P(1 +)P(2 D), and overall pedigree likelihood of L3(1 

– θ) + L4θ. Our lod score, for the two pedigrees together, is therefore equal to Z(θ) = log10[L1θ + L2(1 – θ)] – 

log10[½(L1 + L2)] + log10[L3(1 – θ) + L4θ] – log10[½(L3 + L4)]. Let us consider the haplotype frequency 

information given in table 24-5. 

 
Haplotype Model 1  Model 2  Model 3  Model 4 

────────────────────────────────────────────────────────────────────────────── 

D 1  0.25p   0.01p   0.98p   0.01p 

D 2  0.40p   0.98p   0.01p   0.01p 

D 3  0.35p   0.01p   0.01p   0.98p 

+ 1  0.25(1-p)  0.25(1-p)  0.25(1-p)  0.25(1-p) 

+ 2  0.40(1-p)  0.40(1-p)  0.40(1-p)  0.40(1-p) 

+ 3  0.35(1-p)  0.35(1-p)  0.35(1-p)  0.35(1-p) 

 

L1  k(0.40)(0.35) k(0.98)(0.35) k(0.01)(0.35) k(0.01)(0.35) 

L2  k(0.40)(0.35) k(0.40)(0.01) k(0.40)(0.01) k(0.40)(0.98) 

L3  k(0.25)(0.40) k(0.01)(0.40) k(0.98)(0.40) k(0.01)(0.40) 

L4  k(0.25)(0.40) k(0.25)(0.98) k(0.25)(0.01) k(0.25)(0.01) 

Table 24-5 : Haplotype frequency models for analysis of pedigrees from figure 7-3, 

where k = p(1-p). 

 

Under these four models (the first of which represents the situation where there is no linkage disequilibrium, 

and the other models represent extremely strong associations between the disease allele and one of the 

marker alleles), the lod scores are very different, due to the incorporation of phase information. Let us 

compute the lod scores at various values of the recombination fraction. Note that the constant k can be 

dropped from each of the Li, since they are likelihoods, each divided by the same constant k = p(1 – p). 

Under model 1, the lod score is just log10[(0.40)(0.35) θ + (0.40)(0.35)(1 – θ)] – log10[½((0.40)(0.35) + 

(0.40)(0.35))] + log10[(0.25)(0.40) θ + (0.25)(0.40)(1 – θ)] – log10[½((0.25)(0.40) + (0.25)(0.40))] = 

http://www.jurgott.org/linkage/Pseudomarker2Tutorial.pdf
http://www.jurgott.org/linkage/Pseudomarker2Tutorial.pdf
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log10[(0.40)(0.35)] – log10[(0.40)(0.35)] + log10[(0.25)(0.40)] – log10[(0.25)(0.40)] = 0, for all θ. For the 

other models, the analytically computed lod scores are given in table 24-6. 

 
─────────────────────────────────────────────────────── 

                 Lod Scores 

  ─────────────────────────────────────────── 

 θ Model 1 Model 2 Model 3 Model 4 

─────────────────────────────────────────────────────── 

 0 0.000  -3.130 0.326  0.387 

 0.1 0.000  -1.307 0.275  0.325 

 0.2 0.000  -0.761 0.219  0.258 

 0.3 0.000  -0.428 0.156  0.182 

 0.4 0.000  -0.188 0.084  0.097 

Table 24-6 : Lod Scores computed for various values of θ, on pedigrees from figure 7-3, 

with haplotype frequency models given in table 24-5. 

 

To analyze the same pedigrees with the LINKAGE programs, it is necessary to specify haplotype 

frequencies in the parameter file. To do this, use the pedigree and parameter files used in chapter 7 to 

analyze these two pedigrees, files EX6A.*. Read the EX6.DAT file into PREPLINK, and select the (e) 

Haplotype frequencies option, followed by (c) HAPLOTYPE FREQUENCIES DEFINED. Then, you will be 

prompted with the following screen: 

 
ENTER NEW FREQUENCY AFTER EACH "?" 

NOTE THAT HAPLOTYPES ARE GIVEN USING CHROMOSOME ORDER OF LOCI 

LOCUS : 1 2 

ALLELES : 1 1 0.0000000000000E+00 

 ? 

 

Then, you will have to input the appropriate frequency for the haplotype containing allele 1 at locus 1, and 

allele 1 at locus 2. In this case, locus 1 is the disease locus, and at the disease locus, allele 2 is the disease 

allele, with frequency 0.00001. From table 24-5, you can see that this haplotype frequency 1 1 (under model 

1) is just (0.25)(0.99999) = 0.2499975. Then, enter the appropriate frequencies for each of the other 

haplotypes. It is imperative to realize that the order of loci (for haplotype frequency computation purposes) 

is not the order of loci in the parameter file, but is rather the user-specified locus order. For example, if we 

had specified locus order 2 1, then we would treat the marker as locus 1, and the disease as locus 2, even 

though the disease was still the first locus in the parameter file. When you have entered the appropriate 

haplotype frequencies, set up the file to analyze the pedigrees in MLINK format starting a recombination 

fraction of 0, in steps of 0.1, stopping at θ = 0.4, and then save this file as EX6A1.DAT. It is important to 

note that LCP cannot be used when you are using linkage disequilibrium in the analysis. Therefore, you 

must copy EX6A.PED to PEDFILE.DAT, and EX6A1.DAT to DATAFILE.DAT, and run the UNKNOWN 

and MLINK programs. Again, UNKNOWN versions from Columbia University dated after July 1993 must 

be used, especially when dealing with multipoint data, as homozygous 1 1 individuals would have different 

disease locus genotype probabilities than unknown individuals, based on the linkage disequilibrium 

information. If one is considering multipoint analysis, and the other loci are informative, making all 

individuals in a pedigree 1 1 will affect the results of the multipoint linkage analysis. Further, in risk 

calculations, the homozygosity at the marker locus can and will affect the genetic risk to the proband in the 

presence of linkage disequilibrium. All the lod scores, for each of the four models should be identical to 

those shown in table 24-6, with the analytical computations.  

 In this small example, you can see the potential effect of allowing for linkage disequilibrium in your 

linkage analyses. One example for which this has been applied with greatly increased power was in a recent 

investigation of myelin basic protein and multiple sclerosis (Tienari et al, 1992), in which case the lod score 

rose from 1.64 to 3.42, when linkage disequilibrium was allowed for. Of course they first had to prove that 

linkage disequilibrium existed, and then had to estimate the haplotype frequencies as well. 
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EXERCISE 24 

Let us consider the data from the HHRR analysis above. Suppose we wanted to estimate haplotype 

frequencies on this dataset. Let us assume the disease to be a fully penetrant recessive disorder, with gene 

frequency 0.01 for the disease allele. Try and design an experiment to use this parametric information to 

help you test linkage equilibrium, and to estimate the haplotype frequencies in this dataset.  
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25 Parametric Analysis of Complex Diseases 
In this chapter, we will be introducing the most basic approaches to linkage analysis of complex diseases. 

We will briefly consider how one could go about selecting a model to use in the analysis. Further, we will be 

discussing methods of affecteds-only analysis, and the benefits of doing same, and finally we will introduce 

the problem of inflation of the maximum lod score due to maximizing the lod score over different models 

for the disease. 

25.1 COMPLEX DISEASES 

Complex disease is a broad designation which basically covers any disease which we cannot accurately 

define or explain. This covers a large gamut of possible problems or complexities. One generally thinks of 

diseases with unknown mode of inheritance, especially polygenic models, or other modes of inheritance 

which cannot be simply fit to a reasonable single locus model. Another thing which can make a disease 

"complex" would be the case where one doesn't really know who is "affected" with the disease, or at least 

who would be potential carriers of a specific genetic defect. This is commonly the case with psychiatric 

disorders, where one cannot really distinguish one genetically relevant phenotype from another with any 

great accuracy. It is often hoped that discovery of the genetic cause(s) of these diseases will allow for better 

definition of the disease phenotypes, and allow researchers to better determine what affection really means. 

This is in a sense "reverse genetics" carried to an extreme. Other things which may make a disease 

"complex" are genetic heterogeneity (both allelic and non-allelic), which will be discussed specifically later, 

the possibility of large rates of sporadic non-genetic causes of the same (or similar) disease phenotypes. The 

list goes on and on, and all of these things have the basic effect of making fully parametrized likelihood 

analysis very difficult and error-prone. A large variety of possible methods of dealing with these problems 

has been proposed, but none of them is completely satisfactory, and much work will likely be required to 

develop more efficient approaches to these problems, but at least these approaches give us a starting point 

towards gross-scale localization of genes which play some sort of role in the etiology of these diseases. 

 In this chapter, we will consider some simple approaches to the problem. The analyses will be done 

on a well-known dataset, the schizophrenia pedigrees of Sherrington et al (1988), with two markers on 

chromosome 5, as shown in Figure 25-1, with disease and marker phenotypes indicated in table 25-1. We 

will use this example to explain various potential analysis techniques for linkage with complex diseases. We 

wish to point out that we have selected this dataset to illustrate some techniques for the analysis of complex 

diseases, and not to be critical of the analyses performed in the study in question. We will make a point of 

not trying to recreate the analyses that were performed by Sherrington et al, but rather to start from scratch, 

and illustrate some potential methods for the analysis of such a dataset. The authors feel that it is useful to 

demonstrate these techniques with a real dataset, and further, in this example, the disease is truly complex, 

in that we have no real knowledge about the mode of inheritance, or the correct diagnostic criteria, and thus 

it serves as a useful vehicle to illustrate the primitive approaches we will be considering in this chapter.  

 
     Diagnosis Under Scheme  Marker Phenotype 

     ──────────────────────  ──────────────── 

  Ped  Person   1        2        3      M 1     M 2 

─────────────────────────────────────────────────────── 

   1     A     Aff      Aff      Aff     1 2     1 3  

   1     B     N/A      N/A      N/A     1 2     3 3  

   1     C     N/A      N/A      Aff     2 2     3 3  

   1     D     Aff      Aff      Aff     2 2     3 3  

   1     E     Aff      Aff      Aff     2 2     3 3  

   1     F     Aff      Aff      Aff     2 2     3 3  

   1     G     ???      ???      ???     0 0     0 0  

   1     H     ???      ???      ???     0 0     0 0  

   1     I     N/A      N/A      N/A     1 2     1 3  

   1     J     N/A      N/A      N/A     1 2     3 3  

   1     K     N/A      N/A      N/A     1 2     3 3  

   1     L     Aff      Aff      Aff     1 2     3 3  

   1     M     Aff      Aff      Aff     1 2     3 3  

   1     N     N/A      N/A      N/A     2 2     1 3  

   1     O     N/A      N/A      N/A     1 2     1 3  

   1     P     Aff      Aff      Aff     2 2     1 3  
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   2     A     Aff      Aff      Aff     0 0     0 0  

   2     B     N/A      N/A      N/A     0 0     0 0  

   2     C     N/A      Aff      Aff     1 1     0 0  

   2     D     N/A      N/A      N/A     1 1     0 0  

   2     E     Aff      Aff      Aff     1 2     2 3  

   2     F     N/A      N/A      N/A     1 2     1 3  

   2     G     N/A      N/A      N/A     1 2     2 3  

   2     H     Aff      Aff      Aff     1 1     1 3  

   2     I     Aff      Aff      Aff     1 1     1 3  

   2     J     N/A      N/A      N/A     0 0     0 0  

   2     K     N/A      Aff      Aff     1 1     2 3  

   2     L     Aff      Aff      Aff     1 1     1 3  

   2     M     N/A      N/A      N/A     1 2     1 3  

   2     N     N/A      N/A      N/A     0 0     0 0  

   2     O     N/A      Aff      Aff     0 0     0 0  

   2     P     N/A      Aff      Aff     0 0     0 0  

   2     Q     N/A      N/A      N/A     0 0     0 0  

   3     A     N/A      N/A      N/A     1 1     1 3  

   3     B     N/A      N/A      N/A     0 0     0 0  

   3     C     Aff      Aff      Aff     1 1     1 3  

   3     D     N/A      Aff      Aff     1 1     1 3  

   3     E     N/A      N/A      N/A     1 2     1 3  

   3     F     Aff      Aff      Aff     1 1     1 1  

   3     G     N/A      N/A      N/A     1 2     1 1  

   3     H     N/A      N/A      Aff     1 1     1 3  

   3     I     N/A      N/A      N/A     1 1     3 3  

   3     J     N/A      Aff      Aff     1 1     1 3  

   3     K     N/A      N/A      N/A     1 1     1 2  

   3     L     N/A      Aff      Aff     1 1     1 3  

   3     M     N/A      N/A      N/A     1 1     1 3  

   3     N     N/A      N/A      N/A     1 1     1 3  

   3     O     N/A      N/A      Aff     1 1     3 3  

   3     P     N/A      N/A      Aff     1 1     1 3  

   3     Q     Aff      Aff      Aff     1 1     3 3  

   3     R     N/A      N/A      N/A     1 1     1 1  

   3     S     N/A      N/A      N/A     1 1     1 1  

   3     T     N/A      N/A      Aff     1 2     1 1  

   3     U     Aff      Aff      Aff     1 1     3 3  

   3     V     N/A      N/A      N/A     1 1     1 3  

   3     W     Aff      Aff      Aff     0 0     0 0  

   3     X     N/A      N/A      N/A     1 1     1 3  

   3     Y     Aff      Aff      Aff     0 0     0 0  

   3     Z     N/A      N/A      N/A     1 1     1 3  

   3    AA     Aff      Aff      Aff     1 1     3 3  

   3    BB     Aff      Aff      Aff     1 1     3 3  

   3    CC     N/A      Aff      Aff     1 1     3 3  

   3    DD     Aff      Aff      Aff     1 1     1 3  

   3    EE     N/A      N/A      N/A     1 1     2 3  

   3    FF     N/A      N/A      Aff     1 1     2 3  

   3    GG     N/A      N/A      N/A     1 1     1 3  

   3    HH     N/A      N/A      Aff     1 1     2 3  

   3    II     N/A      N/A      N/A     1 1     2 3  

   4     A     N/A      Aff      Aff     0 0     0 0  

   4     B     N/A      N/A      N/A     0 0     0 0  

   4     C     N/A      N/A      N/A     0 0     0 0  

   4     D     N/A      N/A      Aff     0 0     0 0  

   4     E     N/A      N/A      Aff     0 0     0 0  

   4     F     N/A      N/A      N/A     0 0     0 0  

   4     G     Aff      Aff      Aff     1 1     3 3  

   4     H     N/A      N/A      N/A     1 2     3 3  

   4     I     Aff      Aff      Aff     1 2     3 3  

   4     J     Aff      Aff      Aff     1 1     3 3  

   4     K     Aff      Aff      Aff     0 0     0 0  

   4     L     N/A      N/A      N/A     1 2     3 3  

   4     M     N/A      N/A      N/A     1 2     3 3  
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   4     N     N/A      N/A      N/A     1 2     3 3  

   4     O     N/A      N/A      N/A     2 2     3 3  

   4     P     Aff      Aff      Aff     1 2     1 3  

   4     Q     Aff      Aff      Aff     1 2     1 3  

   5     A     N/A      N/A      N/A     0 0     0 0  

   5     B     N/A      N/A      N/A     0 0     0 0  

   5     C     N/A      N/A      N/A     1 2     2 3  

   5     D     Aff      Aff      Aff     0 0     0 0  

   5     E     N/A      N/A      N/A     1 2     2 2  

   5     F     N/A      N/A      N/A     1 2     2 2  

   5     G     N/A      N/A      N/A     0 0     0 0  

   5     H     Aff      Aff      Aff     1 1     2 3  

   5     I     N/A      N/A      N/A     0 0     0 0  

   5     J     N/A      N/A      N/A     0 0     0 0  

   5     K     N/A      N/A      N/A     1 1     2 3  

   5     L     N/A      N/A      N/A     1 1     2 3  

   5     M     N/A      N/A      N/A     1 1     3 3  

   5     N     Aff      Aff      Aff     1 2     2 3  

   5     O     Aff      Aff      Aff     1 1     2 2  

   5     P     N/A      N/A      N/A     1 2     2 3  

   5     Q     N/A      N/A      N/A     1 2     2 3  

   5     R     Aff      Aff      Aff     1 1     2 3  

   6     A     N/A      N/A      N/A     0 0     0 0  

   6     B     N/A      N/A      N/A     0 0     0 0  

   6     C     N/A      N/A      N/A     0 0     0 0  

   6     D     Aff      Aff      Aff     1 1     1 3  

   6     E     Aff      Aff      Aff     1 1     1 3  

   6     F     N/A      N/A      N/A     1 1     1 3  

   6     G     N/A      N/A      N/A     0 0     0 0  

   6     H     N/A      N/A      N/A     1 1     1 1  

   6     I     N/A      N/A      N/A     1 1     1 3  

   6     J     N/A      N/A      N/A     1 2     3 3  

   6     K     N/A      N/A      N/A     1 2     1 2  

   6     L     Aff      Aff      Aff     1 2     2 3  

   6     M     Aff      Aff      Aff     1 2     2 3  

   6     N     Aff      Aff      Aff     1 2     3 3  

   6     O     N/A      N/A      N/A     1 2     1 3  

   6     P     Aff      Aff      Aff     1 2     1 3  

   6     Q     N/A      N/A      N/A     1 2     1 2  

   6     R     N/A      N/A      Aff     1 2     1 3  

   6     S     N/A      N/A      N/A     0 0     0 0  

   6     T     N/A      Aff      Aff     1 1     3 3  

   6     U     Aff      Aff      Aff     1 2     3 3  

   6     V     N/A      N/A      N/A     0 0     0 0  

   6     W     N/A      N/A      N/A     1 2     1 3  

   6     X     N/A      N/A      N/A     1 1     1 3  

   6     Y     N/A      N/A      N/A     1 2     1 3  

   6     Z     N/A      N/A      N/A     1 1     1 3  

 

Table 25-1: Disease and marker phenotypes for people in schizophrenia pedigrees from 

figure 25-1. At the disease locus, ??? = Unknown; N/A = Not affected; Aff = Affected. 

Marker locus phenotypes are given in allele numbers format. 

25.2 ENTERING DATA FOR MULTIPLE DIAGNOSTIC SCHEMES 

The first task that presents itself is to come up with a way to enter the data on these pedigrees in LINKAGE 

format. The problem is that in this dataset there are three possible diagnostic schemes to be considered. In 

order to make the analysis as simple as possible, we recommend entering the data in such a way that the 

different diagnostic schemes can be taken into account solely by making modifications to the parameter file, 

without modifying the pedigree file. (It may be useful for you to review the affection status locus type 

before continuing, to make sure you fully understand the definition of the 2 phenotype [see chapter 10]).  

 You must define the trait as an affection status locus in such a way that the same trait definition for 

each individual can be used under each model. This can be difficult, for example, when you wish to consider 

an individual to be affected under one diagnostic criteria, and unaffected under another. To this end, we 
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propose the following approach. In this case, we are dealing with three diagnostic schemes (and any number 

of penetrance models). We can set up an affection status locus with multiple liability classes to handle this 

situation. For example, consider the 8 possible cross-scheme phenotype vectors for each individual as shown 

in table 25-2. 

 
Scheme 1 Scheme 2 Scheme 3  Affection Liability Class 

─────────────────────────────────────────────────────────────── 

  Aff    N/A    N/A      2   1 

  Aff    Aff    N/A      2   2 

  Aff    N/A    Aff      2   3 

  Aff    Aff    Aff      2    4 

  N/A    Aff    N/A      2   5 

  N/A    Aff    Aff      2   6 

  N/A    N/A    Aff      2   7 

  N/A    N/A    N/A      2   8 

 

Table 25-2 : List of all possible diagnostic categories for a disease with three 

diagnostic schemes, and its liability class representation. 

 

 Under this classification scheme, if an individual was considered to be affected under diagnostic 

scheme 1, yet unaffected under diagnostic schemes 2 and 3, he would be coded as 2 1, or presence of the 

phenotype defined in liability class 1. Then, you would define the penetrances accordingly for each model, 

as you will see below. In general, it is not necessary to have liability classes corresponding to phenotypes 

that do not exist in your dataset. Since affected and not affected are complementary phenotypes (i.e. 

P(Aff│genotype) = 1 – P(NA│genotype), you can immediately cut the number of liability classes required 

in half. Consider the rearrangement of table 25-2 shown in table 25-3. 

 
       Original   New 

      ─────────────────  ─────────────── 

Scheme 1 Scheme 2 Scheme 3  Affection    L.C.  Affection  L.C. 

────────────────────────────────────────────────────────────────────── 

  Aff    N/A    N/A      2    1       2   1 

  N/A    Aff    Aff      2    6       1   1 

 

  Aff    Aff    N/A      2    2     2   2 

  N/A    N/A    Aff      2    7      1   2 

 

  Aff    N/A    Aff      2    3     2    3 

  N/A    Aff    N/A      2    5     1   3 

 

  Aff    Aff    Aff      2     4     2   4 

  N/A    N/A    N/A      2    8     1   4 

 

Table 25-3 : All possible diagnostic categories for three diagnostic schemes expressed 

in terms of four liability classes. 

 

 As you can see in that table, we have matched up pairs of complementary phenotype definitions, so 

we could define both of them with only one liability class. Consider liability class 1. The phenotype defined 

by this is (Aff, N/A, N/A) [The ordered triple refers to the diagnosis of an individual in this liability class 

under (diagnostic scheme 1, diagnostic scheme 2, diagnostic scheme 3)]. Therefore under each diagnostic 

class, the phenotype 2 would mean presence of the indicated phenotype (Aff or N/A) for each scheme. 

Similarly, the phenotype 1 would mean absence of the indicated phenotype (Aff, or N/A) for EACH scheme. 

Thus, since Aff is the indicated phenotype for diagnostic scheme 1, N/A would be the absence of the 

indicated phenotype in diagnostic scheme 1. This same rule must hold for ALL diagnostic schemes. In this 

case, the complementary phenotype to (Aff, N/A, N/A) would be (N/A, Aff, Aff) as indicated in table 25-3. 

Remember that the phenotype 2 DOES NOT, IN GENERAL, MEAN AFFECTED, but merely indicates that 

the phenotype is defined by the given penetrances, while 1 means the phenotype is defined by the 

complement of the given penetrances. 
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 Let us go back to figure 25-1. You will note that there are three diagnostic schemes to be considered, 

with the phenotypes given in separate columns for each individual for each diagnostic scheme, in table 25-1. 

In this case, the ONLY four categories to be considered (because only four occur) are (Aff, Aff, Aff), (NA, 

Aff, Aff), (NA, NA, Aff), and (NA, NA, NA). We must now determine the number of liability classes we 

will need to define these models. Since there are four categories present in the data, let us start out by 

allowing for the four classes as shown in table 25-3 (You may, of course, allow for eight liability classes, but 

it is more efficient to streamline the analysis and allow for the minimum required number). 

 At first glance, we can see that it is clear that diagnostic classes 1 and 4 are complementary, so we 

can eliminate liability class 4, and just code those individuals as 1 1. You should only have three diagnostic 

classes remaining, 1 = (Aff, Aff, Aff), 2 = (Aff, Aff, NA), and 3 = (Aff, NA, NA). Then (Aff, Aff, Aff) is 

the complement of (NA, NA, NA), which would be coded as phenotype 1 1, as shown in table 25-4. 

 
Scheme 1 Scheme 2 Scheme 3 Phenotype Liability Class 

─────────────────────────────────────────────────────────────── 

Aff  Aff     Aff       2  1 

NA     Aff     Aff       2  2 

NA     NA     Aff       2  3 

NA     NA     NA       2  4 (or 1 1) 

 

Table 25-4: All observed diagnostic categories for the Schizophrenia pedigrees of 

Sherrington et al, and their liability class representation. 

 

 Now, please create the required pedigree file for this pedigree, SCHIZO.PED. Remember that for 

each individual in figure 25-1, the following information is given in table 25-1: their diagnostic status under 

each diagnostic criterion, in order (first column = scheme 1 diagnosis, second column = scheme 2 diagnosis, 

third column = scheme 3 diagnosis, fourth column = marker 1 phenotype, fifth column = marker 2 

phenotype). Again, we are not trying to emulate the original analysis, and the diagnostic assignments in 

table 25-1 may not correspond exactly to what was used in the original study. 

 The next difficult task is the definition of the penetrances, since we have different meanings for our 

phenotypes under each diagnostic scheme. For the sake of illustration, let us consider a dominant disease 

with penetrance 0.6, and no phenocopies. The penetrances for such a trait would be as shown in table 25-5. 

 
────────────────────────────────────────────    

    Penetrances for Genotypes 

    ───────────────── 

     Phenotype  D/D  D/+   +/+ 

──────────────────────────────────────────── 

  Affected  0.6  0.6   0.0 

 Unaffected  0.4  0.4   1.0 

Table 25-5 : Penetrances for different phenotypes for a dominant disease with 60% 

penetrance. 

 

 As you can see, affected and unaffected are complementary phenotypes, with “unknown” being 

model-independent. Now, how do we combine penetrance models and diagnostic schemes to create an 

appropriate datafile? In diagnostic scheme 1, in liability classes 1, 2, and 3 the 2 phenotype defines the 

affected phenotype. Thus, our penetrances for the three liability classes would be as shown in table 25-6. 

Similarly, for diagnostic scheme 2, and a recessive disease with 40% penetrance for homozygous gene 

carriers, and 1% penetrance for everyone else, the liability class penetrance definitions are shown in table 

25-7. Finally, for diagnostic scheme 3, the penetrances for a dominant disease with 20% penetrance for gene 

carriers, and a 5% penetrance for non-gene carriers are shown in table 25-8. 

 
Liability Class  D/D D/+ +/+ 

 1   0.6 0.6 0.0 

 2   0.4 0.4 1.0 

 3   0.4 0.4 1.0 

Table 25-6 : Liability class definitions for the dominant disease with 60% penetrance 

in diagnostic scheme 1. 
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Liability Class  D/D   D/+  +/+ 

────────────────────────────────────────────── 

 1   0.4   0.01 0.01 

 2   0.4   0.01 0.01 

 3   0.6   0.99 0.99 

 

Table 25-7 : Liability class definitions for a recessive disease with 40% penetrance 

for genetic cases, and 1% penetrance for phenocopies in diagnostic scheme 2. 

 

 

Liability Class  D/D   D/+  +/+ 

────────────────────────────────────────────── 

 1   0.2   0.2  0.05 

 2   0.2   0.2  0.05 

 3   0.2   0.2  0.05 

 

Table 25-8: Liability class definitions for a dominant disease with 20% penetrance for 

genetic cases, and 5% penetrance for phenocopies in diagnostic scheme 3. 

25.3 CHOOSING AN APPROPRIATE ONE-LOCUS PARAMETRIC MODEL 
In general, the selection of model parameters is best left to the segregation analyst. We do not wish to 

discuss this complicated topic in this book about linkage analysis, but would rather refer you to other more 

appropriate sources for segregation analysis modelling. (Elston et al, 1986; Elandt-Johnson, 1971) We will 

assume that you have knowledge of some simple population parameters from other sources, including 

segregation analyses, etc, in our attempts to help you select analysis models in a primitive sense. It has been 

pointed out that if there is linkage, and your model is not completely out of whack, you should be able to 

detect the linkage, with somewhat reduced power, of course, and also, that there is no increase in type I error 

rates when an analysis is done under an incorrect model (Clerget-Darpoux et al, 1986), with few exceptions 

(Terwilliger et al, 1991). In general, with a complex disease, people usually want to try a dominant model, 

and a recessive model, since one is typically unclear about the overall mode of inheritance, and since there is 

always the possibility that multiple loci (some dominant, some recessive) are working epistatically to cause 

some disease phenotype, and you are interested in detecting any of the loci involved. Therefore, one 

typically tries at least one model of each variety. The selection of the penetrance values is the only 

remaining variable. To choose an appropriate penetrance model, the most important thing to know is the 

ratio of penetrances for phenocopies to genetic cases (k = fp/f from chapter 9). If the penetrance is assumed 

to be age dependent, then the penetrance ratio would most likely be variable with respect to age as well. 

(Typically, one assumes that those with later age of onset have a greater ratio than those with low age of 

onset, who are more likely to be genetic cases.) For the moment, let us assume that the ratio, k, is constant (if 

it is not, you should use some lifetime penetrance ratio for the remainder of the computations in this 

chapter). If this is the case, then our population prevalence, φ, of the disease should satisfy the equation φ = f 

[P(susceptible genotype) + kP(non-susceptible genotype)] (see chapter 10). If we were considering a 

dominant disease, φd = f[p(2 – p) + k(1 – p)
2
], and if the disease is recessive, φr = f[p

2
 + k(1 – p

2
)]. The gene 

frequency, p, and the overall penetrance for susceptible genotypes, f, are the only parameters to be specified. 

For any given value of p, f can be uniquely determined, and vice versa. Quantities like f can often be 

approximately obtained from segregation analysis, while p is typically more easily estimable from 

population data. The value of k can either be estimated through segregation analysis, or through some 

population based analysis. If one estimates, for example, that 50% of all cases of a disease are non-genetic, 

then one could use this information as well, since it would mean that kf[P(non-susceptible genotype)] / φ = R 

= 0.50, so kfP(non-susceptible genotype) = φR, and φ = fP(susceptible genotype) + φR, or φ = fP(susceptible 

genotype)/(1 – R), which can be another useful parametrization of the prevalence, in which fp = φR/P(Non-

susceptible genotype). In most cases, it is easier to obtain an estimate of R, the proportion of all cases in the 

population due to non-genetic causes (eg. Merette et al, 1992). Given this value, and the overall prevalence 

of the disease, one can either determine the gene frequency, p, from a given value of f, or the penetrance, f, 

from a given value of p, by the equations above. 

 We will assume certain values of p, and then determine f from them. Clearly, when the diagnostic 

criteria are changed, then the prevalence values, φ, and prevalence ratios, R, will change as well. In our 
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example, let us assume values of φ for each diagnostic level as follows: φ1 = 0.01, φ2 = 0.015, φ3 = 0.025, 

with prevalence ratios of R1 = 0.35, R2 = 0.5, and R3 = 0.65, and pdom = 0.01, and prec = 0.1. For each 

diagnostic model, please determine the appropriate penetrance values for the analysis from the equations 

above assuming the disease to be alternatively dominant (p = 0.01) and recessive (p = 0.1). The analysis 

parameters should match those in table 25-9. Then make parameter files, SCHIZO#.DAT, where # ranges 

from 1-6 for the six models to be considered from table 25-9. For the first marker, use gene frequencies of 

0.33 for the 1 allele, and 0.67 for the 2 allele, and at the second locus, use gene frequencies of 0.32 for the 1 

allele, 0.16 for the 2 allele, and 0.52 for the 3 allele. Then perform the appropriate two-point linkage 

analyses with the disease versus each of the two markers separately. The analysis results should match those 

in table 25-10. It is important to remember that one should NOT do multipoint analysis with a complex trait 

(see chapter 18), due to the increased propensity for false negative results when there are model 

misspecifications (as there always will be with analysis of a complex trait). 

 
Diagnostic Scheme  R  φ  p    k   fDD     fD+       f++ 

──────────────────────────────────────────────────────────────────────── 

Dominant 1 0.35 0.01  0.01 0.010909 0.33    0.33    0.0036 

  2 0.50 0.015 0.01 0.020263 0.38    0.38    0.0077 

  3 0.65 0.025 0.01 0.037727 0.44    0.44    0.0166 

 

Recessive 1 0.35 0.01 0.1 0.005385 0.65    0.0035  0.0035 

  2 0.50 0.015 0.1 0.010133 0.75    0.0076  0.0076 

  3 0.65 0.025 0.1 0.018636 0.88    0.0164  0.0164 

 

Table 25-9 : Penetrance models based on prevalence, and ratio of prevalences for 

genetic cases and non-genetic cases. 

 

─────────────────────────────────────────────────────────────────────────── 

  Diag. Scheme 1  Diag. Scheme 2  Diag. Scheme 3 

  ────────────────  ────────────────  ─────────────── 

Model  θ Lod Score  θ Lod Score  θ Lod Score 

─────────────────────────────────────────────────────────────────────────── 

Dominant    

Marker 1 0.0 1.640431  0.0 2.266583  0.0 2.652390 

       0.1 1.255017  0.1 1.831763  0.1 2.122298 

  0.2 0.815333  0.2 1.216497  0.2 1.433496 

  0.3 0.395659  0.3 0.609274  0.3 0.742590 

  0.4 0.098284  0.4 0.159752  0.4 0.203170 

ILINK: 0.001 1.638094  0.001 2.265304  0.001 2.650069 

 

Marker 2 0.0  -0.590675  0.0 0.942746  0.0 1.815745 

  0.1 0.633358  0.1 1.666246  0.1 2.197464 

  0.2 0.760761  0.2 1.422284  0.2 1.752781 

  0.3 0.506081  0.3 0.854349  0.3 1.008521 

  0.4 0.161641  0.4 0.255371  0.4 0.294816 

ILINK: 0.171 0.778730  0.104 1.666898  0.078 2.217621 

 

Recessive 

Marker 1 0.0 0.155426  0.0 0.812548  0.0 1.658007 

  0.1 0.940115  0.1 1.765145   0.1 2.124254 

  0.2 0.751805  0.2 1.371401  0.2 1.652050 

  0.3 0.393696  0.3 0.740799  0.3 0.923150 

  0.4 0.101407  0.4 0.205094  0.4 0.267005 

ILINK: 0.105 0.940433  0.090 1.770275  0.077 2.148463 

 

Marker 2 0.0  -3.638244  0.0  -2.800846  0.0  -3.993544 

  0.1  -1.409702  0.1  -0.843994  0.1  -1.311147 

  0.2  -0.540226  0.2  -0.255292  0.2  -0.494319 

  0.3  -0.171925  0.3  -0.067066  0.3  -0.164924 

  0.4  -0.033334  0.4  -0.013796  0.4  -0.035273 

ILINK: 0.5   0.000000  0.5   0.000000  0.5 0.000000 

Table 25-10: Results of analysis of schizophrenia pedigrees under six selected 

penetrance models. 
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25.4 INTERPRETING MAXIMIZED OVER MODELS LOD SCORES 

In this exercise, our "maximized-over-models" maximum lod score was 2.65 between marker 1 and disease 

(under dominant model with diagnostic scheme 3), and 2.22 between marker 2 and disease (with the same 

model). It has been repeatedly demonstrated that although analysis of a pedigree set under one fixed wrong 

model does not lead to an increased false positive rate (Clerget- Darpoux et al, 1986), maximizing the lod 

score over different models does lead to an "inflation" of the maximum lod score (Weeks et al, 1990a). It has 

been suggested that an appropriate correction factor for this maximization would be to no longer accept a 

lod score of 3 as a critical value for declaring a linkage result significant, but rather to use 3 + log(n), where 

n is the number of models tested (Kidd and Ott, 1984). Weeks et al (1990a) did a complex simulation study 

on this same set of pedigrees, and found that the inflation of the maximum lod score corresponded almost 

exactly to this theoretical approximation. In light of this, it seems prudent to adopt this criterion for the 

declaration of linkage in a complex disease. Thus, for our example, we would have needed a lod score 

greater than 3 + log(6) = 3.78. 

 An additional problem remains, however. In a normal, well-characterized Mendelian disease, the 

critical value of Zmax > 3 as a test for linkage is robust to multiple testing, since as one finds negative test 

results with more markers, the prior probability of linkage to the remaining markers is increased sufficiently 

to offset the increased probability of finding a significant result by chance. In other words, if one has 

eliminated 50% of the genome, the prior probability of linkage is twice as high for the remaining markers 

than it would have been before any of the genome had been excluded, since it is known with certainty that 

the gene is somewhere, and that the model is correct, so that the disease would be detected if you examined 

a truly linked marker. This increased prior probability of linkage offsets the effect of testing multiple 

markers. Of course if you test 20 markers, and each one of them has a probability of 0.001 of having a 

significant linkage result by chance, then the probability that at least one of the 20 markers has a significant 

result by chance would be approximately 0.02. However, while the prior probability of linkage of one 

marker is low, the probability that one of 20 markers is truly linked is somewhat larger, to such a degree that 

the phenomena of increased prior probability of linkage and multiple testing tend to offset each other. In a 

complex disease, in contrast to the situation above, there is no guarantee that there is truly a disease gene, 

nor is there truly a guarantee that it would be detected in our analysis, since we are knowingly using 

incorrect models in the analysis. As a matter of fact, linkage analyses of complex traits are often carried out 

with the stated purpose of showing the existence of major genes by virtue of significant evidence for linkage 

(how could one have linkage if there isn't really a gene...). In light of this, it may be prudent to allow for 

some correction for multiple testing. Given the past history of linkages with psychiatric diseases that have 

had very "significant" lod scores which disappeared under further scrutiny, it may be prudent to insist on 

such a correction for multiple markers. On average, 100 independent markers should be enough to cover 

most of the genome. If the genome is assumed to be approximately 4-5000 cM long (Weissenbach et al, 

1992), and markers which are 40-50 cM apart are presumed to be approximately independent, then 100 

independent markers would cover most of the genome. Of course more markers may be used in an analysis, 

but additional markers are no longer independent of one another. If one were to apply the correction for 100 

markers by the 3 + log(m) criterion, where m now refers to the number of markers, we would be starting out, 

for a genome wide search, with a critical value of 3 + log(100) = 5 (for current thinking on this see [25]). If 

we were to adequately allow for the multiple models as well, we would have a conservative critical value of 

5 + log(n), where n is the number of models tested. This may seem like a very strict criterion to declare a 

linkage test significant in these diseases where the power of the test is going to be reduced significantly to 

begin with because of the complexity of the diseases involved, but given the past history of psychiatric 

genetics, and the multiple sources of random error involved, it is arguable that this is a reasonable correction 

factor to apply in general for complex diseases, since when one starts a linkage study, they are typically 

planning to go until they find the gene, meaning that basically they would test all 100 markers, barring a 

significant finding. For example, for the Sherrington et al study, if we allow for the 18 models used in the 

analysis, and use a base line threshold of 5, the critical value for declaring a linkage significant would be 5 + 

log(18) = 6.25. The actual maximum lod score in that study was 6.49, which would still be marginally 

significant, but much less so than when it was compared with a critical value of 3. A better solution than 

using such stringent lod score criteria is to perform computer simulation under the null hypothesis of no 

linkage. 
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25.5 COMBINING DIAGNOSTIC CRITERIA IN A SINGLE MODEL 

It may be possible to combine the three diagnostic criteria in a single analysis model to reduce the number of 

models used in the analysis (it is very important to note that any analysis attempted must be included in the 

total number of models considered, even if its results are not reported in the publication!). Looking back to 

section 10.4, we can see how we modelled the penetrances for a disease with uncertainty of diagnosis. We 

could combine these three diagnostic schemes by saying that people in diagnostic class 1 are definitely 

affected, those in diagnostic class 2 have a certain certainty, p2, of being affected (this should be based on 

some prior belief about the true nature of these spectrum phenotypes), and those in diagnostic class 3 have 

another probability, p3, of being caused by the same genetic defect (cf. Ott, 1993b). In this way, we could 

construct a penetrance model for the disease giving greater weight to those in the first diagnostic level, and 

lower weight to the diagnoses for the remaining individuals. Let us assume that p2 = 0.85, and p3 = 0.70, and 

consider the dominant and recessive penetrance models obtained in table 25-9 under diagnostic scheme 2. In 

this case, for our three liability classes, we would have penetrances 

 

 f = piP(Aff│genotype) + (1 – pi)P(N/A│genotype) 

 

for each genotype. Our final liability class models are indicated in table 25-11. Note that the basic effect is 

to increase the penetrance ratios fp/f towards 1, as more diagnostic uncertainty is introduced. In these 

models, the results given in the text assumed that p3 = 0.6 under the dominant model, and p3 = 0.70 in the 

recessive model. Making this change should give you the penetrance values given in table 25-11 

 Clearly if there were a 50% chance that an individual were affected, the penetrance ratio would be 1. 

Can you show this mathematically? The results of this analysis are presented in table 25-12. In this analysis, 

our maximum lod score with marker 1 was only 2.16, and with marker 2 it was 1.43. This may seem to be a 

loss of information, but let us consider this value relative to the critical limit for declaring a linkage 

significant under each situation. In the first case, we had maximum lod scores of 2.65 and 2.22 respectively. 

If we assume the critical value to be 5 + log(n), the critical limit would have been 5 + log(6) = 5.78, while in 

the example with multiple diagnostic criteria combined in one analysis model, the critical limit would have 

been only 5 + log(2) = 5.30. Thus, with marker 1, we gained 0.49 units of lod score by trying three 

diagnostic models. However, the critical value when all three models were used was 0.48 units higher. 

Therefore, you can see that when the diagnoses are combined into one model, in this specific weighting of 

the different diagnostic models, there is no overall loss in significance, and yet the actual analysis is 

simplified substantially. 

 
──────────────────────────────────────────────────────────────────────── 

       Dominant Model       Recessive Model 

    ─────────────────────     ────────────────────── 

Liability Class  DD     D+     ++   DD       D+   ++ 

──────────────────────────────────────────────────────────────────────── 

 1   0.38   0.38   0.0077   0.75    0.0076  0.0076 

 2   0.416   0.416  0.1554   0.675   0.1553  0.1553 

 3   0.476   0.476  0.4015   0.55    0.4015  0.4015 

 

Table 25-11 : Penetrance model for multiple diagnostic schemes in one analysis based on 

probability (from prior belief) that people in a certain diagnostic class are truly 

affected by the same genetic disease. 
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────────────────────────────────────────────────────────── 

   Dominant Model    Recessive Model 

  ────────────────   ──────────────── 

Marker θ  Lod Score   θ Lod Score 

────────────────────────────────────────────────────────── 

   1  0.0  2.162044   0.0  1.095595 

  0.1  1.747951   0.1  1.807159 

  0.2  1.164273   0.2  1.365761 

  0.3  0.583685   0.3  0.730016 

  0.4  0.152360   0.4  0.200834 

 

ILINK: 0.001  2.160694   0.080  1.828390 

 

   2  0.0  0.743953   0.0 -3.568465 

  0.1  1.428744   0.1 -1.103271 

  0.2  1.221847   0.2 -0.428977 

  0.3  0.726209   0.3 -0.153162 

  0.4  0.218206   0.4 -0.033850 

 

ILINK: 0.108  1.430856   0.5  0.000000 

 

Table 25-12 : Analysis results of penetrance models in table 25-11. 

25.6 AFFECTEDS ONLY ANALYSIS 

It has been thought that many of these so-called complex diseases are actually produced by a combination of 

different genes working together to produce a phenotype. If this is the case, then many unaffected 

individuals may possess the disease-predisposing genotype at one of the loci, but lack the required second-

disease locus genotype necessary for development of the disease. For this reason, it is often advisable to do 

these linkage analyses considering all unaffected individuals to actually have "unknown" phenotype. In this 

way, one bases the linkage analysis solely on the marker status of the affected individuals in the pedigree, 

and doesn't apply any disease-locus genotypic information whatsoever to the unaffected individuals. There 

are two ways in which one could go about performing such a linkage analysis. The first way is obviously to 

go back and alter your pedigree file such that all unaffected individuals are given the unknown phenotype. In 

the parameter files, then, for phenotypes that would've corresponded to unaffected (i.e. in diagnostic scheme 

2, people with phenotype 2 3 would be unaffected), we replace the penetrances with those for unknown 

individuals (0.5 for all three genotypes, for example). To do this, you must do an astronomical amount of 

file manipulation, changing all 1 1 individuals in the pedigree file to 0 1, and changing the penetrances for 

liability classes 2 and 3, such that when these individuals are unaffected, the penetrances in the parameter 

files are equal for all three genotypes. There is a simpler way to do it, however, which is to simply reduce 

the maximum penetrance values for affection to 0.001, and keep the penetrance ratios the same as they were 

in the original files, as shown in table 25-13 for the penetrance values shown in table 25-9. 

 
Diagnostic Class k fDD    fD+      f++ (1-fDD)  (1-fD+)   (1-f++) (1-fp)/(1-f) 

───────────────────────────────────────────────────────────────────────────────────────── 

Dominant 1  0.010909   0.001  0.001   (0.001)k 0.999  0.999    0.99999 1.001 

  2  0.020263   0.001  0.001   (0.001)k 0.999  0.999    0.99998 1.001 

  3  0.037727   0.001  0.001   (0.001)k 0.999  0.999    0.99996 1.001 

  

Recessive 1  0.005385 0.001 (0.001)k (0.001)k  0.999  0.999995 0.999995 1.001 

  2  0.010133   0.001 (0.001)k (0.001)k 0.999  0.99999  0.99999 1.001 

  3  0.018636   0.001 (0.001)k (0.001)k 0.999  0.99998  0.99998  1.001 

 

Table 25-13 : Affecteds only penetrances (for affecteds,f, and unaffecteds, 1-f) for the models 

outlined in table 25-9, with penetrance ratios for affected and unaffected individuals 

indicated. 

 

In this way, for affected individuals, the likelihoods will remain the same, down to a constant multiplier, 

which will disappear in the likelihood ratio (see section 9.2) for each individual affected. However, for 

unaffected individuals, the penetrances are essentially equal for all three genotypes, with a penetrance ratio 

in each case of 1.001. If you remember, the penetrance ratio for unknown individuals is 1.000, so this 

parametrization is essentially equivalent to making all unaffected individuals unknown in the pedigree file, 
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as described above. To see this, please apply both of these methods to the analysis of the schizophrenia 

pedigrees under diagnostic scheme 3, with both the dominant and recessive models. The results of these 

analyses are shown in table 25-14. There are some differences in the lod scores between these two methods, 

but the change is only in the second or third decimal place, and as such has no important effect on the 

interpretation of the results. There are of course two possible sources of error here. The first is that our 

penetrance ratio in unaffecteds is 1.001, not 1.000. Similarly, we have rounded off our penetrances to five 

significant digits for the non-susceptible genotypes, making some alteration in this penetrance ratio as well. 

One potential method for making the two penetrance ratios even more accurate would be to just divide the 

penetrances by 1000, such that, for the dominant model in diagnostic scheme 3, our penetrances would be 

0.00044, 0.00044, and 0.0000166. In this case we would preserve the penetrance ratio among affecteds 

exactly, and reduce the penetrance ratio for unaffecteds to only 0.9999834/0.99956 = 1.0004. Dividing the 

penetrances by 1000 will provide more than sufficient accuracy in any realistic situation. 

 
───────────────────────────────────────────────────────────── 

  TRUE Affecteds Only  TABLE 25-13 Penetrances 

  ─────────────────── ───────────────────────── 

Model    θ  Lod Score     θ      Lod Score 

───────────────────────────────────────────────────────────── 

Dominant 

Marker 1 0.0  2.222397    0.0   2.223299 

  0.1  1.683718    0.1    1.684594   

  0.2  1.092772    0.2   1.093428 

  0.3  0.544293    0.3   0.545285 

  0.4  0.144506    0.4   0.144608 

 

ILINK: 0.001  2.219163    0.001  2.220066 

 

Marker 2 0.0  1.389189    0.0   1.389983 

  0.1  1.355322    0.1   1.356693 

  0.2  1.008209    0.2   1.009340 

  0.3  0.549278    0.3   0.549901 

  0.4  0.156570    0.4   0.156734 

 

ILINK: 0.039  1.431084    0.039  1.432282 

 

Recessive 

Marker 1 0.0  1.066889    0.0   1.068376 

  0.1  1.019994    0.1   1.021295 

  0.2  0.697922    0.2   0.698752 

  0.3  0.351886    0.3   0.352275 

  0.4  0.094701    0.4   0.094798 

 

ILINK: 0.036  1.115353    0.036  1.116852 

 

Marker 2 0.0      0.234950    0.0   0.233835 

  0.1  0.280799    0.1   0.280290 

  0.2  0.203024    0.2   0.202794 

  0.3  0.104595    0.3   0.104506 

  0.4  0.028112    0.4   0.028090 

 

ILINK: 0.064    0.290322    0.064  0.289653 

 

Table 25-14 : Comparison of results of the two methods of affecteds-only analysis using 

diagnostic scheme 3. 

EXERCISE 25 

Please consider these pedigrees again, using different starting information. Repeat the linkage analyses in 

this chapter assuming prevalences φ1 = 0.005, φ2 = 0.01, φ3 = 0.03, prevalence ratios of R1 = 0.10, R2 = 0.35, 

R3 = 0.50, and gene frequencies of pdom = 0.01, prec = 0.125. Please determine the appropriate penetrance 

models for an affecteds-only analysis with each model (divide the true penetrances by 1000), and perform 

the linkage analysis with it. 
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 Consider weighting the diagnostic criteria accordingly such that those in class 1 are considered to be 

affected with 99% certainty, those in diagnostic class 2 are affected with 80% certainty, and those in 

diagnostic class 3 are affected with 65% certainty. Then perform a regular linkage analysis, using as base-

line penetrances those derived from the population characteristics of the intermediate diagnostic model 2 

above, under both recessive and dominant models. Do whatever analyses are needed to compare these 

results with the results obtained when the lod score is maximized over models. 
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26 Non-parametric Methods of Linkage Analysis 
In this chapter you will be introduced to non-parametric approaches to linkage analysis, so-called affected 

sib-pair and affected pedigree member methods. These methods are based on the concepts of identity-by-

descent and identity-by-state. We will introduce the basic methods of sib-pair and affected pedigree member 

analysis, and then the extended sib-pair analysis (ESPA) computer program (no longer available). Further, 

power considerations will be discussed as well, in terms of study design. 

26.1 IDENTITY BY DESCENT vs. IDENTITY BY STATE 

Any two copies of allele 1 at a given locus are 

considered to be identical by state (IBS), but only 

copies of allele 1 that are inherited from a common 

ancestral source are said to be identical by descent 

(IBD). Of course, if two alleles are IBD, then they are 

definitely also IBS, but the inverse is not necessarily 

true. Consider pedigree I in Figure 26-1, with father 

1/2, and mother 1/3. If they had children with marker 

genotypes 1/2, and 1/1, then clearly there is one allele 

identical by descent, since the latter child had to receive a 1 allele from each parent, one of which is IBD 

with the 1 allele the first child received. However, if the children were 1/2, and 1/3, then there are zero 

alleles IBD, since the first child received the 1 allele from his mother, while the second child received the 3 

allele from his mother. Similarly, the first child had to have received the 2 allele from his father, while the 

second child received the 1 allele from his father. Thus, while the two children share a 1 allele IBS, the 1 

alleles in question came from different ancestral sources, and thus are not IBD. In pedigree II in figure 26-1, 

you see mother 1/2, and father 1/1, with sons 1/1, and 1/1. Clearly the sons share two alleles IBS. Also, they 

must both have received the same 1 allele from the mother, and therefore share one allele IBD. However, 

there is no information about IBD status of the paternally derived alleles, as there is no way to tell which 1 

allele is which. So, there is a 50% chance that the 1 alleles are IBD, and a 50% chance that they are not. One 

could either delete the paternal information (scoring the sib-pair as one IBD out of one opportunity), or give 

it a 50-50 weighting, calling the sib-pair as having 1.5 IBD alleles out of two opportunities. Clearly there are 

advantages to each approach. The former allows us to give the most accurate interpretation of what we 

know, but the latter allows us to use our full sample size. Even further complications can arise in situations 

where you have two parents, each with genotype 1/2. If the children are homozygous, then IBD counts can 

easily be determined accurately. However, if the children are BOTH heterozygous, then one cannot tell 

whether there are two alleles IBD, or none. As long as at least one sib in each pair is homozygous, there is 

no ambiguity, but when they are heterozygous, there is ambiguity, and effectively no information is 

available about the sib-pair's IBD status.  

26.2 AFFECTED SIB-PAIR ANALYSIS 

The concept of affected sib pair analysis is that if a given marker is co-segregating with a disease 

predisposing allele, then affected siblings of affected persons are more likely to have received the same 

allele identical by descent at a closely linked marker locus than if the marker locus was segregating 

independently (i.e. is unlinked) to the disease predisposing allele. While this may seem very similar to the 

parametric idea of counting recombinants and non-recombinants, the main difference is that in this type of 

analysis, no assumptions are required about the mode of inheritance (however, some mode of inheritance is 

implied [26]). In this sense, sib-pair type methods are more robust than parametric methods, since one does 

not have to rely on as many potentially erroneous model assumptions in the analysis. Further, the problem of 

trying multiple models, and correcting for inflation of the lod score as is often required in such cases, is 

avoided in sib-pair approaches, although multiple diagnostic schemes must still be corrected for in sib-pair 

analyses. The basic fundamental idea is that any two siblings are expected to have one allele identical by 

descent (IBD). However, when the sibs are both affected with a given disease, and the analysis is done with 

a marker tightly linked to the disease predisposing gene, then one would expect them to share more than one 

allele IBD. Let us consider the third example shown in figure 26-1. 
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 In this family, there are two parents with marker genotypes 1/2, and 3/4. They have two sons affected 

with a given disease, with the first son having marker genotype 1/3, and the second having genotype 1/4. 

Then, it is clear that they both got the 1 allele from their father, while one son got the 3, and the other got the 

4 from their mother. Hence, these two children share one allele IBD. If we consider all possible 

combinations, we can see the possible outcomes shown in table 26-1. 

 
SON1 SON2 IBD SON1 SON2 IBD SON1 SON2 IBD SON1 SON2 IBD 

───────────────────────────────────────────────────────────────────── 

1/3 1/3  2 1/4 1/4  2 2/3 2/3  2 2/4 2/4  2 

1/3 1/4  1 1/4 1/3  1 2/3 2/4  1 2/4 2/3  1 

1/3 2/3  1 1/4 2/4  1 2/3 1/3  1 2/4 1/4  1 

1/3 2/4  0 1/4 2/3  0 2/3 1/4  0 2/4 1/3  0 

 

Table 26-1 : Possible arrangements of marker genotypes of 2 affected sons with parents 

1/2 and 3/4 

 

 If there was no association between the disease and the marker locus, then each of these genotype 

combinations would be equally likely. There are four combinations with two alleles shared IBD, eight 

combinations with one allele shared IBD, and four combinations with no alleles shared IBD. If we compute 

the expected (average) number of alleles shared IBD, we would get (42 + 81) / 16 = 1. However, if there 

was complete linkage, at θ = 0, and the disease were dominant, then assuming, without loss of generality, 

that the disease came from the father, and was on the same haplotype with the 1 allele, we would have the 

only possibilities being cases in which both sons carry a 1 allele. So, we would have (1/3,1/3), (1/3,1/4), 

(1/4,1/3), and (1/4,1/4) as possible genotypes for the two sons. Each of these would be equally likely, and 

our expected number of alleles IBD would be (22 + 12 ) / 4 = 1.5. Clearly, this is greater than 1, and could 

be detected in a sib-pair analysis with a large enough sample size. Similarly, if the disease were recessive, 

with the maternal disease allele on the same haplotype with the 3 allele, and the paternal disease allele in 

coupling with the 1 allele, and θ = 0, we would only have the combination (1/3,1/3) possible. Thus we 

would expect to find two alleles IBD. This is a complete association which could be picked up in the 

analysis. Clearly most real situations are somewhere in the middle between these two extremes, and often 

we do not even know what the true disease model is. It can be demonstrated that when the model is known 

correctly, that parametric analysis is more powerful than sib-pair methods, but when the disease model is not 

known, and we have some complex disease, that sib-pair methods can perform as well as or better than 

linkage analysis with an incorrect model, though the power of a sib-pair test is always greatest when the 

disease is recessive. Simple sib-pair analysis can be done by hand, while more complicated variations of the 

technique can be analyzed with such programs as SAGE (Elston et al, 1986), for example. 

26.3 AFFECTED PEDIGREE MEMBER METHOD 

In the affected sib-pair method, we based our statistical analysis on how many alleles a given sib-pair shared 

IBD. Since each sib-pair shares either 0, 1, or 2, and this can often be determined with little difficulty, the 

statistical analysis was quite simple. This is true because regardless of the gene frequencies, or the mode of 

inheritance of the disease, under absence of linkage, you expect every sib-pair to share, on average, one 

allele IBD. In extended pedigrees, however, the situation is much more complicated, and it has been 

proposed that one look not at IBD relationships but rather at IBS relationships for distantly related 

individuals (Weeks and Lange, 1988). Again, they would tend to share alleles IBS at loci linked to disease-

predisposing loci, because of an increased probability that they inherit the marker locus IBD with the disease 

locus, or because the marker locus itself is contributing to the disease phenotype in some manner. Since 

some individuals are more distantly related, it is not typically possible to determine whether alleles are 

inherited IBD or not, so one must resort to comparing IBS status. This can be much more complicated, 

however, in a statistical sense.  

 The statistic proposed by Weeks and Lange (1988) is called the similarity statistic (Zij) for two 

affected relatives. Basically for any individual, you can order their alleles without loss of generality in either 

direction. Do this for both affected relatives, such that the genotype of the first affected relative would be 

(A1,A2), and the genotype of the second affected relative would be (B1,B2). Then, looking at pairs of alleles 

from the two relatives, there are 4 options, (A1,B1), (A1,B2), (A2,B1), and (A2,B2). One can then define a 



170 

 

function δ(x,y) such that if x and y represent the same allele IBS, then δ(x,y) = 1, otherwise δ(x,y) = 0. For 

example, if the first affected relative had ordered genotype (2,3) and the second relative had ordered 

genotype (1,3), then δ(A1,B1) = δ(2,1) = 0; δ(A1,B2) = δ(2,3) = 0; δ(A2,B1) = δ(3,1) = 0; and δ(A2,B2) = 

δ(3,3) = 1. The similarity statistic Zij is then defined as the average of these 4 possible δ functions for the 

two affected relatives in question; )B,A(     = Z ba

2

1=b

2

1=a

4
1

ij  . For our sample affected relative pair, the 

similarity statistic would be simply ¼(0 + 0 + 0 + 1) = ¼. One can then sum the similarity statistics for all 

possible affected relative pairs in an extended pedigree to compute an overall similarity statistic 

Z    = Z ij

s

1)+(i=j

1-s

1=i

 .  

 This statistic is simple and easy to compute for any given pedigree. However, it lacks one desirable 

property. Clearly, it is much more striking for two relatives (especially distant relatives) to share a very rare 

allele IBS than it is for them to share a very common allele IBS. Some allotment for this should be made, 

and it was proposed to consider using some sort of a weighted average to make this contrast possible within 

the APM method. Weeks and Lange (1988) proposed altering the statistic by adding in a weight term as 

follows: )Af( )B,A(    = Z aba

2

1=b

2

1=a

4
1

ij  , where f(Aa) is the weight, and is based on the gene frequency of 

allele a in person A. Three main weights have been proposed by Weeks and Lange, f1(Aa) = 1 (equal 

weights); p

1
a3p

1
a2

AaAa

 = )A(f ;  = )A(f . These latter two weights will give more strength to any 

observed sharing of rare alleles than sharing of common alleles, and will alleviate the intuitive problem of the 

sharing of common alleles being equally significant with the sharing of rare ones. In our sample statistic, 

assuming gene frequency of 0.3 for allele 3 (the only one shared IBS by our two affected relatives), our 

weighted similarity statistics would be Z1 = ¼(0 + 0 + 0 + 1) = 0.25; Z2 = ¼(0 + 0 + 0 + 1(1/0.3) ) = 0.833; Z3 

= ¼(0 + 0 + 0 + 0.31/ 3 ) = 0.456. 

 The similarity statistics are simple and easy to compute, as seen above. However, it is more difficult 

to determine the null hypothesis expected value of each of these similarity statistics. It is necessary to go 

through a complicated series of calculations, based on the theory of extended pedigree IBD relationships, to 

determine the null hypothesis mean and variance for each weighted similarity statistic. Then, one must 

convert these similarity statistics into standard normal random variables, so that they can be easily combined 

across pedigrees, and the results can be interpreted in a straightforward manner. The details of these 

transformations and calculations are beyond the scope of this book, and the reader is referred to Weeks and 

Lange (1988) for a more complete description of the mathematics of this non-parametric method of linkage 

analysis. The reliability and robustness of this method is unclear, since its dependency on good gene 

frequency estimates is much more significant than the dependency of standard linkage analysis on gene 

frequency, which has been shown to be of major concern in chapter 22. Given the strong dependency of this 

method on gene frequency, and the complexities involved in using the program, we will not go into its 

usage, but we felt the method should be introduced, since it is a popular approach to non-parametric analysis 

in pedigrees with structures not conducive to affected sib-pair analysis (i.e., not many affected sib pairs...). 

26.4 WHEN SHOULD ONE USE NONPARAMETRIC METHODS? 

Nonparametric methods can be very powerful tools in linkage analysis, especially when one is trying to 

localize a disease gene to a given region, and has little reliable information about the mode of inheritance. 

Further, they are very rapid, and affected sib-pair methods are simple to both apply and interpret. Although 

they have lower power than parametric analyses when the model is well characterized, they are not as 

susceptible to possible modelling errors. In general, if one is analyzing a complex disorder, it would be 

advisable to try using sib-pair or other non-parametric methods in the analysis of your data, either in lieu of 

or in addition to parametric analyses, to be more confident that an observed result is not spurious. 

26.5 HOW TO DO SIB-PAIR ANALYSIS 

In many cases, it is possible to do sib-pair analysis analytically, without the need for complicated computer 

programs. One needs merely to count the number of IBD alleles in all affected sibling pairs in your sample. 
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One interesting thing which needs to be pointed out is that all possible pairs of affected sibs in a large 

sibship can be treated separately, with no effect on the mean or variance of the statistic under the null 

hypothesis as was shown by Suarez and Van Eerdewegh (1984). Further, according to a result of 

Blackwelder and Elston (1984), this approach of forming all possible pairs from any given sibship is in most 

cases the most powerful approach, although they recommended that an appropriate weighting of the 

contribution of such large sibships might be obtained by dividing the contribution of such a large sibship by 

s(s-1)/2, although the relative power of such weighted vs. unweighted measures is dependent on the 

particular model for the disease in question. A good overview of the various test statistics for affected sib-

pair analyses is given in Blackwelder and Elston (1984). The ESPA program employs the mean test which is 

just a chi-square test comparing the number of observed alleles IBD with the number expected under the 

null hypothesis of no linkage. In this test, the number of shared alleles is compared with the number 

expected to be shared under the null hypothesis (50% shared, 50% unshared). The statistic, therefore is just a 

standard chi-square test, as 

 

 
NS + S

) - (S
4 = 

E[S]

)E[S]-(S
2 = 2

NS + S2

2
 , 

 

where S = number of observed alleles shared IBD, and NS = number of observed alleles not shared IBD. 

 

26.6 EXTENDED SIB-PAIR ANALYSIS AND THE ESPA PROGRAM 

This program was developed by Sandkuyl (1989) but is no longer available. 
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27 Genetic Heterogeneity 
In this chapter, you will be introduced to the most fundamental and basic approaches to linkage analysis 

under genetic heterogeneity. The two most important questions asked are 1) given a positive linkage test 

result, is there significant evidence for a proportion of the families segregating the linked gene, and another 

proportion segregating a putative unlinked gene for the same disease?; and 2) although I do not have 

significant evidence for linkage assuming homogeneity of the disease gene, if I allow for a certain 

percentage of my families to be segregating an unlinked gene, is there significant evidence for linkage of a 

disease gene in a proportion of my families? It is typically assumed that only one of the two disease genes 

segregates per family, which is a reasonable assumption for rare diseases. A general overview of some of the 

methods available to address these two questions will be presented, followed by an introduction to how to 

use the HOMOG program to do the simple analyses discussed above. 

27.1 WHAT IS GENETIC HETEROGENEITY? 

When people talk of genetic heterogeneity, they refer to a situation in which any of a number of genes can 

independently cause the identical disease phenotype. There are many different types of heterogeneity. The 

simplest type would be allelic heterogeneity, in which multiple separate disease alleles at the same locus can 

each cause the same disease phenotype. An example of this would be in cystic fibrosis, for which there have 

been a number of different mutated alleles each of which can contribute to the CF phenotype. In general, 

these do not provide any significant hardship for the linkage analyst, with the exception of analyses 

involving linkage disequilibrium or genetic risk calculations.  

 Another form of heterogeneity, which is of greater significance to the linkage analyst, is non-allelic 

(or locus) heterogeneity, in which disease alleles at two or more independently acting loci could each cause 

the same disease phenotype. For example, this could be a situation in which a biochemical pathway could be 

disrupted by a defect in any of the enzymes required for the pathway to be completed. Typically, either 

mutation would cause the phenotype that none of the end-product of that biochemical pathway can be 

synthesized, causing the disease. An example of this would be Charcot Marie-Tooth disease (Chance et al, 

1990). This non-allelic heterogeneity can be further subdivided into diseases with multiple genetic causes, 

each with the same mode of inheritance, and those with different modes of inheritance. For example, 

retinitis pigmentosa shows both forms of heterogeneity, with at least two separate loci for an X-linked 

recessive form of RP, an autosomal recessive form, and an autosomal dominant form (McKusick, 1990). 

Heterogeneity is much easier to detect when there is a different mode of inheritance in some families from 

others, since this can typically be seen without the need for linkage analysis. However, when two forms of 

the disease share a common mode of inheritance (i.e. autosomal dominant, etc.), the only way to determine 

that more than one genetic locus is involved would be through some special form of linkage analysis, which 

would treat the heterogeneity as an additional parameter to be dealt with in the analysis of the data. The 

remainder of this chapter will deal with the application of some of the methodology in current usage for 

linkage analysis under non-allelic heterogeneity. For a comprehensive discussion of various theoretical 

approaches to this problem, please consult Ott (1991). 

27.2 TEST FOR HOMOGENEITY GIVEN LINKAGE 

The simplest thing to test for is given a significant linkage test result (i.e. a lod score greater than 3), is there 

significant evidence to support the hypothesis that some of the families in our pedigree set might be 

segregating a different unlinked gene for the same disease, and not the gene that is linked to the marker in 

question in this analysis. The method we will be applying in this chapter is the so-called A-test (Smith, 

1961), or admixture test. In this test, the underlying assumption is that there are two categories of families in 

the data, some with θ = ½, and some with θ = θ1 < ½, with a proportion α of families segregating the linked 

gene (i.e. θ = θ1 in proportion α of the families, and θ = ½ in proportion (1 – α) of the families). The 

additional assumption is that unequivocal assignment of any family to one class or the other is impossible a 

priori. This is almost always the case, since we have no way other than through linkage analysis of assigning 

any given family to one category or the other. So, the likelihood for any given family can be written as L(α, 

θ) = αL(θ) + (1 – α)L(θ = ½), which could be rewritten as αL(θ)/L(θ = ½) + (1 – α), since L(θ = ½) is a 

constant. Thus, for n families, the total likelihood is just Π[αL(θ)/L(θ = ½) + (1 – α)] If one wanted to test 

the null hypothesis of linkage homogeneity (i.e. that all families are of the linked type), you could form a 
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likelihood ratio as L(α, θ)/L(α = 1, θ) = Π [α + (1 – α)L(θ = ½)/L(θ)]. Then, 2ln i [ α + (1 – α)Li(θ = 

½)/Li(θ)] ~ χ
2

(1) However, since the test is of the form, L(α < 1, θ)/L(α = 1, θ), i.e. H0: (α = 1) vs. H1: (α < 1), 

the test is carried out in a one-sided manner, and therefore one must adjust the p-values accordingly. In other 

words, one would find the p-value associated with the χ
2

(1) value computed from the likelihood ratio test, 

and divide the corresponding p-value in half to compute the appropriate p-value for this chi-squared test of 

homogeneity. This is true for reasons outlined in Ott (1985). 

27.3 TEST FOR LINKAGE GIVEN HETEROGENEITY 

It is possible to consider another null hypothesis for the likelihood ratio test of homogeneity described 

above. One could consider the situation where one had a null hypothesis of no linkage, against an alternative 

hypothesis of linkage and heterogeneity. Such a test would be parametrized as L(α, θ)/L(α = 1, θ = ½). 

However, when considering this test, there are two fundamental problems in interpretation. First of all, we 

need to realize that we are trying to declare a linkage significant while allowing for heterogeneity as a sort of 

nuisance parameter. Hence, one would need to have a significance at least equivalent to that of the lod score 

of three criterion in a straight linkage analysis. If one were to consider the maximum "lod score with 

heterogeneity" to be log10[L(̂ ,̂ )/L(α = 1, θ = ½)], and require that this value exceed three as a test of 

linkage, we would be slightly non-conservative, since there is an additional free parameter, α, in the 

numerator of this lod score. In order to allow for this, one could add approximately log10(2) = 0.30, to the 

critical value to allow for an additional degree of freedom. This would then make a critical value of 3.30 for 

declaring the linkage test significant (corresponding to a likelihood ratio of 2000:1).  

 However, there is another problem with this likelihood ratio test. Under the null hypothesis, θ = ½ in 

all families, the parameter α disappears. Notice that the likelihood of any given family is L(α, θ) = αL(θ) + 

(1 – α) L(θ = ½). This would make L(α, θ = ½) = αL(θ = ½) + (1 – α)L(θ = ½) = L(θ = ½). One could also 

parametrize this likelihood making α = 0, in which case θ would disappear as a parameter, since L(α = 0, θ) 

= 0L(θ) + (1 – 0) L(θ = ½) = L(θ = ½). Therefore, we have a completely degenerate situation under the null 

hypothesis, where L(α = 0, θ) = L(α, θ = ½) = L(θ = ½), and thus there is one parameter under H0, while 

under H1, there are two (α and θ). This leads to a problem with the asymptotic distribution of the likelihood 

ratio, and –2ln[L(θ = ½)/L(α, θ)] ~ χ
2
. Hence, we have even further troubles. Several people have considered 

the asymptotic distribution of this statistic (M. Shoukri, Personal communication; Davies, 1977; Faraway, 

1993), which can be extremely complicated. In light of all this, it seems that one should not in general apply 

any asymptotic theory to this test statistic, but use a criterion of a likelihood ratio > 2000:1 to declare 

significant evidence exists for linkage in some of the families in your dataset. This 2000:1 odds criterion 

being based on the normal 1000:1 odds required in a normal linkage test, and the allowance for the second 

free parameter (α) in the numerator of the odds ratio. 

27.4 USING THE HOMOG PROGRAM 

Both of these tests are incorporated in the HOMOG program (Ott, 1991). To use this program, you must first 

compute lod scores at a large number of recombination fractions in each pedigree separately. Let us consider 

the schizophrenia pedigrees from chapter 25, under the recessive model with diagnostic scheme 3. Compute 

two point lod scores between marker 2 and the disease, at Θ values ranging from 0 to 0.45 in steps of 0.05. 

Please use LCP, as you did earlier to perform this analysis on all the pedigrees together. Then examine the 

FINAL.OUT file obtained from this analysis. The log10(likelihood) for each pedigree at each recombination 

are shown in table 27-1. 

 
───────────────────────────────────────────────────────────────────────────── 

         Pedigree 

       ────────────────────────────────────────────────────────────────────── 

Theta      1      2           3      4           5       6 

───────────────────────────────────────────────────────────────────────────── 

0.00 -27.088124  -11.855281  -28.836341   -9.981559  -14.330920  -22.606300 

0.05 -26.760831  -11.849109  -28.469527  -10.008431  -14.209290  -21.585746 

0.10 -26.564485  -11.830223  -28.337708  -10.033840  -14.145533  -21.104337 

0.15 -26.431280  -11.795900  -28.292208  -10.057423  -14.112566  -20.823790 

0.20 -26.335704  -11.749105  -28.289131  -10.078831  -14.097507  -20.649023 

0.25 -26.265375  -11.696470  -28.307058  -10.097721  -14.093468  -20.538287 

0.30 -26.213481  -11.645108  -28.333387  -10.113758  -14.096308  -20.467862 
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0.35 -26.176015  -11.600649  -28.360206  -10.126625  -14.103046  -20.422618 

0.40 -26.150575  -11.566824  -28.382478  -10.136040  -14.111042  -20.393293 

0.45 -26.135765  -11.545810  -28.397042  -10.141784  -14.117674  -20.375567 

0.50 -26.130888  -11.538696  -28.402098  -10.143715  -14.120392  -20.369191 

 

Table 27-1 : log10 (Likelihood) for each pedigree at each value of Θ for schizophrenia 

pedigrees with recessive model, diagnostic scheme 3. 

 

For each pedigree separately, you should then compute the lod scores at each value of θ, by the formula Z(θ) 

= log10L(θ) – log10L(θ = ½). These lod scores are required for the input file for the HOMOG program. The 

format for the input file is as follows: 

 

Line 1 : Title of the problem 

Line 2 : N STEPSIZE LDIFF , where N = the number of values of θ at which the lod scores are given in the 

input file (note that values should not be given for θ = 0.5, where Z(θ = ½) = 0); STEPSIZE = the step size in 

which α should be incremented. By default this value should be set to 0.05, meaning that the likelihood 

would be evaluated for values of α = 0, 0.05, 0.1, 0.15,...; LDIFF is optional, and can be omitted without a 

problem. What it stands for is the difference in natural log likelihood to be used as the basis for the support 

interval for α around its MLE. In other words if this value is equal to 2, the program will give you a 2-unit 

support interval for all parameters (remember that these intervals are given in terms of natural log, not 

common log!). 

Line 3: OUT ALOW LL, where OUT refers to the output option. The program can give you, in the output 

file, a table of values of lnL(α, θ) over all α and θ combinations. It could also give you a list of lod scores for 

each family separately. The value of the variable OUT identifies what combination of these options you 

wish to have in your output file, as indicated in table 27-2; ALOW is the smallest value of α to be considered. 

For example, if you wished to only consider values of α  0.1, you would set ALOW = 0.1. In most 

situations, however, it is safest to set ALOW = 0, and maximize the likelihood over all possible values of α; 

LL denotes the line length of the output file, and is an optional variable. If it is omitted, then the line length 

is assumed to be set to 80 characters. In some situations, you may wish to allow for longer lines, especially 

if OUT = 2 or 3, since the table of values of lnl(α,Θ) can become very long as the number of values of α and 

θ considered increases. 

 
OUT  Table of lnL(α,Θ) Lod scores for families 

──────────────────────────────────────────────────────────── 

 0   no   no 

 1   no   yes 

 2   yes   no 

 3   yes   yes 

 

Table 27-2 : Table of definitions of output options for HOMOG programs in variable OUT. 

Line 4: θ1, θ2, ..., θN; where the θi are the values of θ for which the lod scores are going to be provided 

below. These should in general be in ascending order. Naturally, the finer the grid of points at which lod 

scores are computed, the more powerful the homogeneity test will be, since the maximization of the 

likelihood will be more accurate. (There is no need to provide the actual values of θ, since there is no 

interpolation scheme used. One could just as easily provide integer values or map distance measures, as long 

as there are N real numbers provided.) 

Line 5 : NFAM; where NFAM is the number of families for which lod scores will be provided. 

Line 6 : Z(θ1), Z(θ2),... ,Z(θN) in Family 1 

Line 7 : Z(θ1), Z(θ2),... ,Z(θN) in Family 2 

... 

Line (5 + NFAM) : Z(θ1), Z(θ2),... ,Z(θN) in Family NFAM 
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 It is important to note that any lod score less than –80 is assumed to represent a lod score of –∞, and 

in the output (and in the input files), log likelihoods of –∞ should be indicated as –99. The input file for this 

dataset should be as follows: 

 
Schizophrenia pedigrees - Recessive model - Diagnostic scheme 3 

10 0.05 

0 0 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

6 

-0.957236 -0.629943 -0.433597 -0.300392 -0.204816 -0.134487 -0.082593 -0.045127 -0.019687 -0.004877 

-0.316585 -0.310413 -0.291527 -0.257204 -0.210409 -0.157774 -0.106412 -0.061953 -0.028128 -0.007114 

-0.434243 -0.067429 0.064390 0.109890 0.112967 0.095040 0.068711 0.041892 0.019620 0.005056 

 0.162156 0.135284 0.109875 0.086292 0.064884 0.045994 0.029957 0.017090 0.007675 0.001931 

-0.210528 -0.088898 -0.025141 0.007826 0.022885 0.026924 0.024084 0.017346 0.009350 0.002718 

-2.237109 -1.216555 -0.735146 -0.454599 -0.279832 -0.169096 -0.098671 -0.053427 -0.024102 -0.006376 

 

 Save this file as HOMOG.DAT, the required input file name for the HOMOG programs, and type 

HOMOG at the DOS prompt to run the program and do the analysis. The output file should resemble the 

following:  

 
Program HOMOG version 3.33 J. Ott 

Heterogeneity: two family types, one with linkage, one without 

 alpha = proportion of families with linkage (θ < 1/2) 

 1-alpha= proportion of families without linkage (θ = 1/2) 

 

>> Schizophrenia pedigrees - Recessive model - Diagnostic scheme 3 << 

 

Table of conditional max. Ln(L) over α's, given θ or x 

 θ or x α max  Max.Ln(L) Lik. ratio 

 1 0.0000  1.0000  0.0000  1.0000 

 2 0.0500  1.0000  0.0000  1.0000 

 3 0.1000  1.0000  0.0000  1.0000 

 4 0.1500  1.0000  0.0000  1.0000 

 5 0.2000  1.0000  0.0000  1.0000 

 6 0.2500  1.0000  0.0000  1.0000 

 7 0.3000  1.0000  0.0000  1.0000 

 8 0.3500  1.0000  0.0000  1.0000 

 9 0.4000  1.0000  0.0000  1.0000 

 10 0.4500  1.0000  0.0000  1.0000 

 

The output above shows the maximum natural log likelihood for each value of θ, maximized over α, 

normalized such that ln L(θ = ½) = 0. In this case you note that for all α, when θ < ½, lnl(θ, α) < 0, implying 

that the M.L.E. of θ is 0.5 ( or equivalently that the M.L.E. of α is 1), meaning that all families would be 

considered to be unlinked.  

 
         Estimates of 

Hypotheses    Max.lnL  Alpha  Theta 

H2: Linkage, heterogeneity  0.0000  1.0000  99.0000 

H1: Linkage, homogeneity  0.0000  (1)   99.0000 

H0: No linkage    (0)   (0)   (0.5) 

 

Components of chi-square 

Source     df Chi-square  L ratio 

H2 vs. H1 Heterogeneity  1  0.000  1.0000 

H1 vs. H0 Linkage   1  0.000  1.0000 

H2 vs. H0 Total    2  0.000  1.0000 

 

The values in these tables are the crux of the analysis. The top table indicates the maximum natural log 

likelihood of the entire family set under each of the three hypotheses. The first line corresponds to             

lnL(̂ ,̂ ); the second to lnL(α = 1,̂ ); and the third to lnL(θ = ½). These three hypotheses are denoted H2, 

H1, and H0 respectively, with the meaning that in H2 there is linkage and heterogeneity, H1 has linkage and 

homogeneity, and under the true null hypothesis, H0, there is neither linkage nor heterogeneity. When an 
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estimate of θ  is given as 99.0000, it means the disease is unlinked (θ = ½). This value is used because when 

multipoint lod scores are used in a HOMOG analysis, the value of 0.5 may have some other meaning, since 

then map distances are used instead of recombination fractions. The bottom table summarizes the three 

possible likelihood ratio tests possible with these three hypotheses. The first is the test of heterogeneity 

given linkage (H2 vs. H1), and the second is the standard test of linkage assuming homogeneity (H1 vs H0), 

or just L(̂ )/L(θ = ½). The third is the joint test of linkage and heterogeneity, L(̂ ,̂ )/L(θ = ½), the 

properties of which are described above. Each of these values can be computed by finding the difference 

between the ln(Likelihood) values for each hypothesis, and multiplying it by two. This then provides the 

quantity found under the heading Chi-Square. The number of degrees of freedom is given in the first 

column, though the number of degrees of freedom in the test of H2 vs H0 is not really two, and this statistic 

is not really distributed as a χ
2
 random variable. The likelihood ratio in the last column provides the exact 

odds for the alternative hypothesis against the null hypothesis. By the criterion described above for 

considering the test of H2 vs H0 to be significant, this quantity would have to exceed 2000. In this example, 

there is absolutely no evidence for heterogeneity in the data, and as such the value of each likelihood ratio is 

1, with χ
2
 = 0.  

 
Family no. Conditional prob. of linked type 

 1   1.0000 

 2   1.0000 

 3   1.0000 

 4   1.0000 

 5   1.0000 

 6   1.0000 

 

Finally, the values in the table above are the conditional probabilities that each family is segregating the 

linked gene, assuming the values of α and θ estimated under H2, from our observed family data. This 

conditional probability is described in Ott (1991). In general, the values found here should be taken with a 

grain of salt, and they cannot ever be validly used to separate families for the remainder of a linkage study. It 

should be required that any further marker typings be done on all the families combined, and analyzed with 

these HOMOG programs, to compute the appropriate log likelihood ratio statistics on the entire data set, in 

order to preserve the validity of the results, and not to induce any potential bias which could lead to an 

increased false positive rate. If one were to selectively type further linked markers solely in those families 

with high posterior probabilities of segregating a linked gene, we would be selecting families for further 

linkage analysis conditional on there being few observed recombinants, which could easily lead to false 

positive evidence of linkage.  

 In general, all of the information required for a complete analysis of your dataset, allowing for the 

presence of heterogeneity, is available from this output file. One should as a matter of practice always 

perform such an analysis with any complex disease, since it is usually assumed that there is non-allelic 

heterogeneity involved in the etiology of these diseases, and performing homogeneity tests can allow you to 

more completely extract information from your dataset. Other programs are available, based on the same 

algorithm, to handle more complicated heterogeneity situations; HOMOG2, HOMOG3, HOMOG3R, etc., 

but discussion of them is beyond the scope of this book.  

EXERCISE 27 

 For the four pedigrees shown in Figure 27-1, please perform a complete linkage analysis, including 

homogeneity testing, assuming the disease to be inherited as an autosomal dominant disease with gene 

frequency of 0.00001 for the disease allele, and a marker with two alleles with gene frequencies of 0.65, and 

0.35 respectively. Note: In HANDDATA.ZIP, the HOMOG.DAT file is the datafile to these families, not to 

be confused with HOMOG.DAT as an input file to the HOMOG program. 
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28 Computer Simulation Methods 
In this chapter you will get a brief overview of computer simulation, and some of its many applications in 

human genetic linkage analysis. The various approaches to pedigree data simulation will be introduced, as 

well as the various types of statistical information one can obtain from a simulation. 

28.1 RANDOM NUMBERS AND SIMULATION 

It is possible to write a computer program that will generate so-called "pseudo-random" numbers, based on 

an initial seed provided by the user. These routines basically approximate randomness with any of a large 

number of complicated mathematical functions designed to generate a series of numbers on the interval (0,1) 

which are approximately uniformly distributed, but see [27]. What this means is that it is equally likely for 

any real number on the interval (0,1) to be chosen independent of the previously selected number. Then, let 

us assume that we wished to simulate one replicate of a coin toss. Since heads and tails have equal 

probability of 50%, we would divide the interval in half, and say that if a given random number is less than 

0.5, then it is heads, and if the number is greater than 0.5, it is tails. In this way, we can simulate the flipping 

of a fair coin by computer. If we think about it intuitively, flipping a coin can also be thought of as a 

primitive random number generator, and a sample simulation can be done solely by tossing a coin. As an 

illustration of this technique, we will start by considering the simple case of simulating a marker unlinked to 

the disease (θ = ½). 

28.2 PEDIGREE SIMULATION BY TOSSING A COIN 

Let us consider the pedigree shown in Figure 28-1. Assume the disease is dominant with full penetrance and 

two alleles, T (trait) and + (normal), such that the disease phenotypes uniquely determine the corresponding 

disease locus genotypes. Then, let us simulate a 2-allele marker with equal gene 

frequency for each allele, which is unlinked to the disease locus (θ = 0.5). In this 

simple situation, we can simulate this pedigree solely by flipping a coin. As an 

example of how this works, let us first simulate marker locus genotypes for the 

parents in this pedigree (with phase). Since the marker locus has two alleles with 

equal gene frequency of 50%, we can simulate the alleles by coin toss. Let us 

assume that on each flip, for the founder individuals, if the coin comes up heads, 

then we select allele 1, and if the coin comes up tails, we select allele 2. We first 

simulate the marker allele in phase with the disease allele in person A. The first 

flip of my coin came up tails, so allele 2 is selected. Next, we simulate a marker allele in phase with the + 

allele in person A. The coin came up heads, so this haplotype is now assigned to carry allele 1. Thus, this 

individual has genotype 1 2 at the marker locus. Similarly we must simulate the two marker alleles in 

individual B. Assume the coin came up heads the first time, and tails the second time, giving this individual 

genotype 1 2.  

 Next, we simulate the children of these parents. Let us first simulate the transmission of marker 

alleles from person A to her children. In this case, we know which disease locus allele was transmitted to 

each child. Thus we need only simulate the recombination process from mother 

to child. Clearly, if the marker is unlinked to the disease, the recombination 

probability is ½ by definition. When we flip our coin, let us assume that if the 

coin comes up heads, a recombination occurred, and if it comes up tails, no 

recombination event occurred. In this case, for individual C, the coin came up 

heads, so a recombination occurred in the meiosis from mother to child. Since 

this individual received the + allele from her mother, at the marker locus she 

must have received the 2 allele, which was in phase with the D allele in the 

mother, and a recombination event occurred. For individuals D, E, and F, 

assume the coin came up tails. Then, these individuals received marker alleles 

from their mother without recombination, meaning that they received alleles 2, 2, 

and 1 respectively. Finally, we need to simulate the alleles passed from individual B to his children. Since he 

is homozygous +/+ at the disease locus, we cannot simulate recombination events. However, we still must 

simulate the segregation of the alleles from father to children. According to Mendelian laws, there is a 50% 

chance that either allele was inherited at the marker locus from the father. Therefore, let us assign heads to 
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the inheritance of allele 1, and tails to the inheritance of allele 2 from father. Flipping our coin, we come up 

with heads, heads, tails, and heads, meaning the alleles transmitted to individuals C, D, E, and F will be 1, 1, 

2, and 1 respectively. Thus the final simulated replicate of our family would be that shown in Figure 28-2. 

The linkage analysis of this family would yield a maximum lod score of 0.301029 at θ = 0. Although we did 

simulate one recombinant in this family, because the analysis cannot make the phase assumption we made in 

our simulation, the recombination event goes unnoticed because of the marker alleles inherited from the 

unaffected parent. In fact, individuals C and D provide essentially no linkage information since they are 

heterozygous, and their parents are identical and heterozygous. It is equally likely that they received the 1 

allele from A, and the 2 allele from B as it is that they received the 1 allele from B, and the 2 allele from A. 

Hence, there is essentially no information from such a situation. Thus, the only individuals which provide 

unequivocal information about recombination are individuals E and F, who are homozygous at the marker, 

making it obvious which alleles were inherited from A with the disease. Since they were both non-

recombinants, we are left with a phase-unknown pedigree with two non-recombinants, which yields a 

maximum lod score of 0.301029 = log10(2). What do you suppose would have happened had the two 

individuals in question both have been recombinants? Since the family is phase unknown, the result of the 

analysis would be the same as in this situation, since the inheritance pattern would be completely consistent 

with no recombination. In any event, this is a primitive example of how a pedigree simulation is conducted 

with the computer software we will be introducing in this chapter. The only difference is that our computer 

software will allow us to simulate random numbers over the range of (0,1), such that probabilities other than 

0.5 can be accurately simulated, which is not so simple in the coin toss random number generator. 

28.3 THE SIMULATE PROGRAM 

It is a very simple matter to simulate pedigree data based only on pedigree structure, and not on any already-

known phenotypes, for in this case, one need not condition your simulation on anything other than the 

simple straightforward population genetics and Mendelian laws. When you are simulating a group of 

markers which are unlinked to your disease locus, it is equivalent to completely disregarding whatever 

information is known about the trait locus, and is therefore model-free simulation. 

 Basically, the simulation is performed in a very straightforward way, using the concept of pseudo-

random number generation introduced in the opening section of this chapter. One must first simulate 

genotypes with phase at each marker independently in all founders (i.e. people without parents in the 

pedigree) according to the laws of population genetics, assuming Hardy-Weinberg Equilibrium (HWE). The 

next step is to simulate marker segregation from the already simulated parents to their children. For the first 

locus to be simulated, there is a 50-50 chance of receiving either allele from each parent to each child 

independently, according to the law of independent segregation. However, if you are simulating multiple 

linked loci, the next locus no longer segregates independently, so you must simulate it according to the 

recombination fraction between itself and the first locus. If the recombination fraction (θ) is 0.1, then if the 

random-number generator selects a number below 0.1, a recombination is simulated, and the allele to be 

inherited from the parent in question must be selected from the other parental haplotype (this is why we 

must insist on simulating all genotypes with phase in the first step). We continue like this, switching parental 

haplotypes whenever a recombination is simulated across the chromosome, until we reach the final marker 

to be simulated. This process is repeated for each individual, from each of his parents. When all individuals 

have been simulated, it constitutes one simulated replicate of your linear set of multiple linked markers 

segregating through your pedigree (or set of pedigrees) independent of your predetermined trait locus (if one 

exists). These pedigree replicates are then saved in a form ready for analysis with the MSIM, LSIM, or ISIM 

programs of the SLINK package, as will be described below. The technical details of using SIMULATE will 

be outlined in section 28.5. 

28.4 POSSIBLE APPLICATIONS OF SIMULATION UNDER H0 

This simulation method can be useful in determining the p-value associated with a given observed maximum 

lod score in a pedigree (set). In other words, let us say that you found a lod score of 2.5 in your pedigree set 

with a given marker vs. disease. In and of itself, this is an insignificant result according to the traditional lod-

score-of-three criterion. However, it may be very unusual to observe such an extreme lod score in your 

particular family set. You could, for example, simulate the marker(s) in question in a large number of 

replicates of your family set, and see how often the observed lod score is reached or exceeded by chance. If 
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this is very, very rare, then you might want to report the simulated p-value associated with this result. 

However, it may also be very easy to get such a high lod score in your pedigree set, in which case the 

significance should also be reported, and used to guide your future plans. Knowing the p-value associated 

with given lod scores has many uses and applications. For the molecular biologist it is useful to know the 

null hypothesis distributions of maximum lod scores, as this can serve as a useful guide in their search for a 

new gene. If a certain pedigree almost never (1/1000 replicates, for example) gives a lod score as high as 1, 

yet you observe such a high lod score, this lod score would be much more significant than finding the same 

result in a pedigree that exceeds this threshold 10% of the time by chance. This kind of information can help 

the investigator decide whether to invest further energy in typing additional markers in a given region or not 

to try and find the gene causing the disease in question. So, knowing these null hypothesis lod score 

distributions can be a very useful tool for the linkage analyst throughout a given investigation. Further, in 

the case of maximizing the lod score over many different sets of genetic model parameters, one needs to 

compute the probability of exceeding a given lod score given no linkage, and the exact number of models 

investigated, as will be described in a later section. To compute these p-values, one needs to simulate marker 

data independent of the disease, and then analyze it under various models to compute the p-values needed. 

This unconditional method is ideally suited to these types of investigations. 

 Further, if you are interested in ordering a new marker against a map of markers in a given pedigree 

set, you can use this rapid simulation approach to simulate the genotypes of any given set of markers 

segregating in your families to determine the power of your collection of pedigrees to order the markers. 

This is a very useful thing to do if you are trying to decide how many families you would need to type a 

given new marker in order to accurately order it with the required 1000:1 odds. If for a given marker set you 

find that you have 80% power to accurately order the markers with 1000:1 odds using half of your total 

available pedigrees, and you have 90% power if you type them all, it may be advisable to only type half of 

your families to begin with, and then type the remaining families later only if no significant result is 

obtained from the first half. You might also find that you have no chance to order the markers with 1000:1 

odds in your pedigree set, in which case, it might not be advisable to bother trying until you have collected 

more or better families.  

 For the statistical geneticist, testing the properties of new statistical methods is perhaps the most 

common application of simulation. Whenever a new method is derived, and one desires to compute its 

power and other properties, one often needs to rely on simulation, since theoretical computations involving 

pedigrees can often be prohibitive in realistic situations. Therefore, one often needs a rapid way of 

generating data to do a particular study. This SIMULATE program can simulate any type of locus 

describable in LINKAGE format, so one could simulate a trait locus linked to a number of markers, and by 

modifying the source code slightly, could incorporate whatever ascertainment restrictions the investigator 

desires. In this way, one can test out the properties of new methods, and novel statistics in situations where 

theoretical analysis cannot be easily done. 

28.5 HOW TO USE THE SIMULATE PROGRAM 

Let us consider the set of schizophrenia pedigrees from chapter 25, and simulate an unlinked marker with 

the properties of markers 1 and 2 from that dataset, with the dominant model for the disease in diagnostic 

scheme 3. Our goal in this case is to determine the probability (when there really is no linkage) of getting a 

lod score at least as large as the 2.65 we observed, assuming we analyzed the pedigree under only this one 

model. Similarly, we want to test the linkage of disease to marker 2 and determine the probability of getting 

a lod score at least as large as the 2.22 we observed in our example for that comparison. To do this we must 

simulate the two markers linked to each other at recombination fraction 0.12 (Sherrington et al, 1988), and 

unlinked to the putative disease locus.  

 Three input files are required for the SIMULATE program, they are called SIMPED.DAT (a 

pedigree file), SIMDATA.DAT (a locus parameter file), and PROBLEM.DAT (a file containing simulation 

parameters). The basic format for each file will now be introduced in the context of the schizophrenia 

pedigrees. 

 The SIMPED.DAT file is a linkage format pedigree file (processed by MAKEPED), with some 

slight alterations. The first locus should be the disease, (if there is one). If no affection status locus is 

present, the program will simulate just a set of linked markers, but if there is a disease present, it will 

simulate the remaining loci, and keep the disease locus phenotype as given in this file. The only restriction is 
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that the disease must be the first locus in the file, and it must be an affection status locus. Instead of 

providing marker locus phenotypes for the remaining loci, one has to enter a 1 if the first marker locus is to 

be simulated, and a 0 if it is to be left unknown. The next column would then contain a 1 or a 0 to tell the 

program whether the second marker is to be simulated, or left untyped, etc. Thus, each line of the 

SIMPED.DAT file would contain an affection status locus for the disease, followed by a series of 0's and 1's 

to tell whether each marker locus is to be simulated or left untyped. If an individual was untyped for a given 

marker in the original dataset, please assume that he is unavailable for the simulation as well (for the same 

marker), to make sure the simulation results are consistent with our real dataset. For the schizophrenia 

pedigree set, the SIMPED.PRE file should resemble the following (information shown for pedigree 1 only, 

to save space, but you should complete the file for all pedigrees): 

 
1 A 0 0 2 2 1 1 1 

1 B 0 0 1 1 1 1 1 

1 C B A 2 2 3 1 1 

1 D B A 1 2 1 1 1 

1 E B A 1 2 1 1 1 

1 F B A 1 2 1 1 1 

1 G 0 0 1 0 1 0 0 

1 H 0 0 2 0 1 0 0 

1 I G H 2 1 1 1 1 

1 J B A 2 2 1 1 1 

1 K G H 1 1 1 1 1 

1 L F I 1 1 1 1 1 

1 M F I 1 1 1 1 1 

1 N F I 1 2 1 1 1 

1 O K J 1 1 1 1 1 

1 P K J 1 2 1 1 1 

 

 Process this file with MAKEPED, to make the SIMPED.DAT file needed for the analysis. Further, 

there needs to be a header in the first two lines of this file. The first line must indicate the number of 

pedigrees in the SIMPED.DAT file (in this case, there are six); and the second line must contain the number 

of individuals in each pedigree (including doubled individuals). In this case, the first two lines should be as 

follows: 

 
6 

17 17 35 17 18 26 

 

 Further, there is one more important alteration that must be made to this input file. It is imperative 

that the individuals be numbered consecutively from 1 through n, where n is the number of individuals in the 

pedigree. They must also be presented in numerical order in the file. In pedigree 1, however, there is a 

marriage loop, and when individual 6 is doubled, a new individual with id number 17 is added directly after 

individual 6. You must move this individual to the end of the first pedigree, directly following individual 16, 

such that the SIMPED.DAT would look like the following (pedigree 1 only shown). 

 
6 

17 17 35 17 18 26 

 

1 1 0 0 3 0 0 2 0 2 1 1 1 

1 2 0 0 3 0 0 1 0 1 1 1 1 

1 3 2 1 0 4 4 2 0 2 3 1 1 

1 4 2 1 0 5 5 1 0 2 1 1 1 

1 5 2 1 0 6 6 1 0 2 1 1 1 

1 6 2 1 0 10 10 1 2 2 1 1 1 

1 7 0 0 9 0 0 1 1 0 1 0 0 

1 8 0 0 9 0 0 2 0 0 1 0 0 

1 9 7 8 12 11 11 2 0 1 1 1 1 

1 10 2 1 15 0 0 2 0 2 1 1 1 

1 11 7 8 15 0 0 1 0 1 1 1 1 

1 12 17 9 0 13 13 1 0 1 1 1 1 
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1 13 17 9 0 14 14 1 0 1 1 1 1 

1 14 17 9 0 0 0 1 0 2 1 1 1 

1 15 11 10 0 16 16 1 0 1 1 1 1 

1 16 11 10 0 0 0 1 0 2 1 1 1 

1 17 0 0 12 0 0 1 2 2 1 1 1 

 

 The second required file is called SIMDATA.DAT, and provides the locus parameters for the 

simulation, including penetrance, gene frequencies, locus types and definitions, and intermarker 

recombination fractions. This file should be in standard MLINK format. For the schizophrenia pedigrees, in 

diagnostic scheme 3, with the dominant model, the file should be as follows: 

 
 3 0 0 5 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1) PROGRAM 

 0 0.0 0.0 0 << MUT LOCUS, MUT RATE, HAPLOTYPE FREQUENCIES (IF 1) 

 1 2 3 

1 2 << AFFECTION, NO. OF ALLELES 

 0.010000 0.990000 << GENE FREQUENCIES 

 3 << NO. OF LIABILITY CLASSES 

 0.4400 0.4400 0.0166 

 0.4400 0.4400 0.0166 

 0.4400 0.4400 0.0166 << PENETRANCES 

3 2 << ALLELE NUMBERS, NO. OF ALLELES 

 0.330000 0.670000 << GENE FREQUENCIES 

3 3 << ALLELE NUMBERS, NO. OF ALLELES 

 0.320000 0.160000 0.520000 << GENE FREQUENCIES 

 0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

 0.50000 0.12000 << RECOMBINATION VALUES 

 1 0.10000 0.45000 << REC VARIED, INCREMENT, FINISHING VALUE 

 

 This is basically the same as the LINKAGE parameter file we used in chapter 25, with the 

recombination fractions correctly specified on the next-to-last line of the file, to indicate the recombination 

fractions required for the simulation to work. Since this program assumes the disease is unlinked to the 

markers, if a number other than 0.5 is given for the first recombination fraction, the program will ignore it, 

and still set this θ to 0.5. 

 The final input file required is called PROBLEM.DAT, and should contain two lines. The first line 

should contain three seeds for the random number generator (these should be numbers between 1 and 30000, 

with higher numbers providing better (i.e. more random) results). The second line should contain the number 

of replicates of the set of pedigrees desired. In general, this number should be very large, when you are 

attempting to compute p-values. The normal p-value associated with a lod score of three, for example, is 

always less than 0.001, so you would need a large number of replicates to get an accurate estimate of such 

small p-values. For our purposes, however, let us simulate only 50 replicates, in the interest of saving time. 

It is important to remember that the larger the number of replicates, the greater the accuracy. In general, 50 

replicates is way too few to obtain reliable estimates of small p-values, but in the interests of time, we will 

limit our study to this level for this instructional example. For our purposes, please use seeds of 24553, 

29773, and 20142. In practice, whenever you use the same seeds, the results will be identical, since the 

sequence of pseudo-random numbers will be the same for the same starting values. Whenever these values 

change, however, the entire sequence will be altered as well. The PROBLEM.DAT file should look like the 

following: 

 
24553 29773 20142 

50 

 

 Next, please run the SIMULATE program by typing SIMULATE at the DOS prompt (assuming the 

SIMULATE program is accessible to DOS either by being in the same directory where you are working, or 

being in the path). The program will then simulate 50 replicates of the pedigree with both linked markers 

segregating in it.  
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28.6 ANALYZING THE SIMULATED REPLICATES WITH MLINK AND ILINK 

The file containing the simulated replicates is called PEDFILE.DAT. However, we will be only interested in 

the two-point lod scores, so we will need to use LCP (which calls LSP) to extract two loci at a time from this 

file. Hence, we must change the name of the output file. Let us call the new file SCHIZSIM.PED, by typing 

RENAME PEDFILE.DAT SCHIZSIM.PED. Then, you may also rename the SIMDATA.DAT file to 

SCHIZSIM.DAT.  

 First, let us confirm that the two markers which were simulated are actually separated by 

approximately θ = 0.12, by evaluating the lod score over the entire set of 50 × 6 = 300 pedigrees simulated. 

To do this, use LCP as you have done throughout the book, selecting loci 2 and 3 with the MLINK program, 

starting from θ = 0.1, in steps of 0.01, stopping at θ = 0.15. The resulting maximum lod score should be 

found at θ = 0.13, with Z(0.13) = 121.01. The lod score at θ = 0.12 is only 0.04 lower, which is highly 

insignificant on such a large dataset. So, we have verified that the two markers were simulated at the 

appropriate recombination fraction. The remaining thing to verify is that the disease locus is, in fact, 

simulated unlinked to both marker loci. To do this, please use MLINK to compute lod scores for the disease 

vs. each marker at recombination fractions 0.45 through 0.5, in steps of 0.01, to verify that the maximum lod 

score occurs at the true value of θ = 0.5. For disease vs. each of the markers, the maximum lod score is 0 at θ 

= 0.5, as expected. When the ILINK program is used, the estimated recombination fractions are as follows: 

̂ D,M1 = 0.526, ̂ D,M2 = 0.516 ,̂ M1,M2 = 0.125. So, we have produced a set of pedigrees consistent with our 

simulation parameters. Further, one can compute the expected lod score for the original set of six pedigrees 

quite simply from this data. The formula for approximating the expected lod score at a given value of the 

recombination fraction is just E[Z(θ)]  (1/n)  Zi(θ); where n is the total number of replicates simulated, 

and the sum goes from i=1 to n, where Zi(θ) is the lod score at recombination fraction θ in replicate i. 

Clearly, then, we have computed the lod score for the entire family set, and since the lod score is additive 

over families, the results we have obtained from MLINK are just Zi(θ). If we then divide by the number of 

replicates (50), we would get, for markers 2 vs 3, E[Z(θ = 0.12)] = 119.97/50 = 2.40. Since 0.12 was the 

simulated recombination fraction, this quantity is of particular interest, and is denoted the ELOD. Another 

statistic of particular interest which can be computed from this data is the maximum expected lod score, or 

MELOD. This is the lod score at the value of Θ for which the expected lod score is maximized, or 

maxΘ(E[Z(θ)]). Asymptotically, the maximum will always occur at the true value of θ (at which the 

simulation was carried out), but in small samples (like 50 replicates), there will likely be some deviation. In 

our case, the maximum occurs at θ = 0.125, as determined by ILINK. The corresponding MELOD is just 

121.07/50 = 2.42, which is slightly larger than the ELOD. In general, MELOD  ELOD, and asymptotically, 

they are equal. The ELOD is a very important measure, as it tells you what lod score on average you can 

expect to get from your dataset at the true recombination fraction (if it were 0.12, in this case). The MELOD 

has much less utility, since it is larger than the ELOD solely due to random fluctuations. For this reason, 

when simulating all the marker information in a pedigree set, we discourage the use of MELOD as it is not a 

very meaningful measure. 

28.7 ANALYZING THE SIMULATED REPLICATES WITH MSIM  

To analyze the entire set of pedigrees at once takes an enormous amount of computer power, and the 

programs must be compiled to handle enormous numbers of pedigrees, etc, which can rapidly eat up your 

memory. Further, it is not a trivial thing to manipulate the output from MLINK such that you can determine 

the properties of each pedigree (from the original pedigree set) individually, to see the relative contributions 

of each to the ELOD. Further, there are reasons for which you might like to compute some other statistical 

measures on your dataset before starting a linkage study. For the purposes of analyzing simulated data, 

Weeks et al developed modified versions of ILINK, MLINK, and LINKMAP, called ISIM, MSIM, and 

LSIM respectively. These programs will compute the lod scores one replicate at a time, and keep track of 

various pieces of information about each replicate of each family in the original pedigree set. To use these 

programs, you will need to have the simulated replicates in a file called PEDFILE.DAT (the same name as 

the output file from SIMULATE or LSP), and a parameter file called DATAFILE.DAT, specifying the 

analysis parameters. Keeping in mind that we still need to extract only two loci at a time from our original 

pedigree and parameter files (SCHIZSIM.*), use the LSP program to extract the disease and marker 1, with 

the parameter file set up for MLINK (for use in our MSIM analysis), with starting recombination fraction of 
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0, in steps of 0.10, stopping at θ = 0.5, with no sex difference in recombination rates. The MSIM program 

will also read the file SIMOUT.DAT, which was created by the SIMULATE program, to identify the 

number of replicates simulated, etc. One additional file, LIMIT.DAT, is required. The MSIM program will 

compute the probability of exceeding a given lod score in any replicate of the pedigree set, P(Z(θ) > x), 

where the user can select three values of x. These three lod score thresholds must be entered in a file called 

LIMIT.DAT. By default, one often chooses 1, 2, and 3. But, if you were trying to evaluate the significance 

level of a given observed maximum lod score, you would input that value as one of the three thresholds. So, 

for the analysis of disease vs. marker 1, in our original analysis, we found a lod score of 2.65, so we might 

want to use thresholds of 1, 2.65, and 3, for this analysis. In this way, we can find the p-value associated 

with our lod score of 2.65 in this pedigree set. The LIMIT.DAT file should then look like the following: 

 
1 2.65 3 

 

To run the analysis, you must first run the UNKNOWN program, and then the MSIM program by simply 

typing MSIM at the DOS prompt after UNKNOWN has completed. Then, examine the MSIM.DAT file, 

which contains the results of the analysis. Below is shown the segment of the output corresponding to θ = 

0.10: 

 
-------------------------------------------------------- 

THETAS 0.100 

-------------------------------------------------------- 

Pedigree  Average  StdDev  Min   Max 

 1   -0.165047  0.283531  -0.781806  0.428780 

 2   -0.027733  0.223751  -0.361404  0.977586 

 3   -0.099215  0.264000  -0.609994  0.753716 

 4   -0.094414  0.197641  -0.458361  0.438553 

 5   -0.048003  0.241983  -0.643913  0.561918 

 6   -0.130423  0.281867  -0.770454  0.536066 

Study  -0.564834  0.695094  -2.409748  1.274584 

-------------------------------------------------------- 

 

The column headed Average contains the average lod score in each family, averaged over all replicates. In 

practice, this average lod score is usually just referred to as the expected lod score, which it approximates as 

shown above. The rows correspond to each of the pedigrees in the initial pedigree set, and the row headed 

Study provides the information on the entire set of pedigrees taken together. So, in this case, our overall 

expected lod score at Θ = 0.10 is –0.564834. The next column provides the standard deviation of the 

expected lod score, which gives you some idea of the variability of the lod scores across replicates. The last 

two columns indicate the smallest and largest lod scores found over all replicates in the study. These values 

are indicated to provide an additional measure of the variability of the lod score across replicates. It is 

important for you to consider that the value under maximum has no easily interpretable statistical 

importance. If you found a lod score of 1.2 in the original pedigrees, it would not have any increased 

significance because the largest observed lod score in the set of simulated replicates of 1.27. You must still 

obtain a lod score of three to declare a linkage significant.  

 The next segment of the MSIM.DAT file contains the following information: 

 
------------------------------------------------------------ 

 Average Maximum Lod Scores based on quadratic interpolation  

------------------------------------------------------------ 

Pedigree  Average  StdDev  Min   Max 

 1   0.046081  0.127706  0.000000  0.523855 

 2   0.072394  0.221885  0.000000  1.254722 

 3   0.082413  0.198594  0.000000  0.995219 

 4   0.058039  0.143175  0.000000  0.586752 

 5   0.098635  0.172257  0.000000  0.758645 

 6   0.064638  0.137281  0.000000  0.557189 

Study  0.125075  0.297165  0.000000  1.339499 

----------------------------------------------------------- 
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 This table contains a somewhat different piece of information, the average maximum lod score based 

on quadratic interpolation. The average maximum lod score is an approximation to the expected maximum 

lod score, E[maxZ(θ)] = (1/n)maxZi(θ), where the lod score is maximized over θ separately in each 

replicate. To remain consistent with the notation ELOD, and MELOD, this might appropriately be called the 

EMLOD, for Expected Maximum LOD score. The minimum for this value is always 0, since maxZi(θ)  0, 

since Z(θ = 0.5) = 0 by definition. Further, in any given replicate, maxZi(θ)  Z(θ0), by definition, so 

EMLOD  MELOD  ELOD. For this reason, many people like this number better, since it is always larger 

than the ELOD. This measure is an indicator of what maximum lod score you can expect to find in your 

dataset on average, without respect for where it occurs. In some sense, this quantity provides some measure 

of power, in that it provides the average value of the test statistic across the set of replicates. However, one 

nice property of the ELOD is that it is additive across pedigrees, while the EMLOD is not. If your pedigree 

gives you an ELOD of 1, then you will know that if you had two additional pedigrees of equivalent size and 

structure, you would have an overall ELOD of 3. However, if you had an EMLOD of 1, there is no direct 

way of knowing how many additional pedigrees would be required for an EMLOD of 3.  

 In this case, our unlinked marker still gives an EMLOD of 0.125 (it will not typically be zero, as 

there is usually some variability in the value of the maximum lod score even under no linkage - hence the 

possibility of false positives...), while the ELOD is 0.000 (at θ = 0.5). It is intuitively clear that if you had 60 

pedigrees in your set, you would not have an EMLOD of 10  0.125 = 12.5, and yet the ELOD would be 10  

0.000 = 0.000. In this case, the EMLOD's had to be determined by quadratic interpolation. With the MSIM 

program, the lod scores were only computed at a predefined set of recombination fractions. However, by a 

technique called quadratic interpolation, the maximum of any lod score curve can be approximated. (Ott, 

1991, p.183) To avoid the approximation element, the ISIM program can be applied, as you will see below. 

 Finally, the remainder of the file contains information about the probability of finding a lod score 

greater than the constants you specified in the LIMIT.DAT file. In this example, there were only two 

replicates with maxZ(θ) > 1, and none with maxZ(θ) > 2.65. Since 2.65 was the observed lod score, the 

estimated p-value associated with that lod score would be 0/50 = 0, but to determine a confidence interval 

for the p-value, you can use the linkage utility program BINOM. To do this, select the CONFIDENCE 

INTERVALS (2) option. Then the program will ask you to  

 
Enter observed k and n [+no. of decimal places] (-1 exits, ENTER repeats k,n) 

 

In this case, you should enter 0 50, since there were 0 observation of Z(θ) > 2.65, out of 50 opportunities. 

Next, the program will ask you for the upper error probability. Since the estimate is p̂ = 0, you need only 

enter the significance level here. If you want a 95% confidence interval, enter (1 – 0.95) = 0.05. The 

confidence interval would be [0, 0.0582]. The 99% confidence interval would be [0, 0.0880]. The basic 

message is that from a simulation of only 50 replicates, all we can conclude is that P(maxZ(θ) > 2.65)  

0.0582. 

28.8 ISIM 

There is an additional analysis program of use here, the ISIM program, which accurately computes the 

EMLOD, as described above. To use this program, you need to modify the DATAFILE.DAT file, such that 

it is in ILINK format. To do this, just read the DATAFILE.DAT into PREPLINK, and put the file in ILINK 

format, specifying that the recombination fraction should be iterated. Then, first run the UNKNOWN 

program, and then the ISIM program by just typing ISIM at the DOS prompt. The ISIM program is much 

slower than the MSIM program, so in many cases, it may be advisable to use MSIM, computing the lod 

scores at a minimum of three recombination fractions, and allowing it to approximate the EMLOD by 

quadratic interpolation, although it can be a good bit less accurate, as you can see from the following excerpt 

from the ISIM.DAT output file. 

 
-------------------------------------------------- 

 Average Maximum StdDev Min  Max 

 0.148284  0.307969 -0.000478 1.339499 

-------------------------------------------------- 
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Comparing these results with those obtained from MSIM, you can see that the EMLOD rose from 0.125075 

to 0.148284 when the appropriate analysis was done with ISIM. The other quantities are comparable. Note 

that the Min column gives a value that is less than zero. This is the same situation that we observed with the 

ILINK program, where the lod score is not 100% maximized, but only to a specified tolerance. Clearly -

0.0005 is almost the same as zero, so there is nothing to worry about from such results. 

28.9 SLINK 

The SIMULATE program is a very fast way of simulating pedigree data in a completely random fashion, but 

it does not allow the user to simulate marker loci conditional on previously known information, like disease 

locus phenotypes, or partially known marker information. To do a simulation under these more general 

conditions requires the use of far more sophisticated computer algorithms. The most versatile such program, 

available to date is the SLINK program of Weeks et al (1990b). This program employs an algorithm of Ott 

(1989), to simulate marker data, by the use of complicated likelihood methods. The basic approach is that 

the SLINK program uses the MLINK program to compute the conditional probabilities of each multilocus 

genotype (genotype risk) for any individual in a pedigree, given the known genotypes and phenotypes of the 

other pedigree members, 

 

 P(gi │ x1,...,xn) = P(x1,..., xi, gi, xi+1,..., xn)/P(x1,..., xn), 

 

where the denominator is the likelihood of the entire set of pedigree data, and the numerator is the likelihood 

of the pedigree data given that individual i has genotype gi. Both of these values can be computed easily 

with the MLINK program. The SLINK program uses the algorithm from the MLINK program to compute 

these probabilities for each multilocus genotype to be simulated in each individual, based on the model 

specified for each locus (including the disease and markers), and the recombination fractions between 

adjacent pairs of loci. Then, based on these conditional probabilities, the SLINK program selects 

pseudorandom numbers to simulate multilocus genotypes for each pedigree member, one at a time, each 

time conditioning the results on everything that has already been simulated; i.e. for the second individual, 

the appropriate conditional probability would be P(gj │ x1,...,xi,gi,xi + 1,...,xn). This conditioning procedure 

would then be continued iteratively for each successive individual, until the last individual was simulated 

according to the distribution of P(gn│x1,g1, x2,g2,...,xn-1,gn-1,xn). In this way, the SLINK program can 

simulate multilocus genotypes conditional on all previously simulated or previously known genotypic 

information in a pedigree. Unfortunately, as a consequence of this repeated conditioning algorithm, the 

program can be very slow, as you will see later. Other approaches to simulating marker genotypes 

conditional on disease phenotypes have been implemented in the SIMLINK program (Boehnke, 1986), and 

the CHRSIM program (Terwilliger et al, 1993; Speer et al, 1992). These programs are much faster than 

SLINK, but are not as general, since SLINK allows for the presence of partial marker typing, and the other 

methods do not. However, the CHRSIM program allows the user to perform simulations assuming map 

functions other than the Haldane function (i.e. allowing for interference), which is not possible with 

SIMLINK or SLINK. Further, CHRSIM, SIMULATE, and SLINK allow the user to simulate the data under 

one model, and analyze it under a different model, while the SIMLINK program does not. 

 The SLINK program is easy to use, and follows the same basic file format as the SIMULATE 

program with a couple of small differences. Since the SLINK program performs a simulation conditional on 

known phenotypes at any of the loci (including disease and/or marker loci, the pedigree file requires that you 

specify a genotype for each locus in each individual (specifying the unknown phenotype for all individuals 

to be simulated, and the known marker or disease phenotype for individuals whom you wish to predetermine 

the phenotypes). Then, at the end of each line in the pedigree file, you must input a so-called availability 

code. This is an integer between 0 and 4, the meanings of which are indicated in table 28-1. 

 
Code  Trait   Markers 

─────────────────────────────────────────────────────────────────── 

 0  As indicated Unknown (even if phenotypes are given) 

 1     Simulate  Simulate or use given phenotypes 

 2  As indicated Simulate or use given phenotypes 

 3  Simulate  Unknown (even if phenotypes are given) 

Table 28-1 Table of definitions of availability codes for SLINK 
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When the trait is selected to be as indicated, the trait phenotypes will be fixed as they are indicated in the 

SIMPED.DAT file. Otherwise, they will be simulated according to the parameters in the SIMDATA.DAT 

file. Typically, the trait is assumed to be as indicated, since you want to examine properties of the pedigrees 

as they have been collected assuming linkage to a trait locus with known phenotypes. At the marker locus, 

there are two options as well. Either an individual will be considered unknown at ALL marker loci, including 

those for which phenotypes are given in SIMPED.DAT, or the individual will be assigned a phenotype at all 

marker loci. If a phenotype other than unknown is indicated in the SIMPED.DAT file for a given locus, that 

phenotype will be used. Otherwise, the phenotype will be simulated for that locus. These codes should be 

indicated after the last locus in the SIMPED.DAT file. For the schizophrenia data, if we wished to simulate 

the disease being between the two marker loci, we could make the disease locus the second locus in our 

SIMPED.DAT and SIMDATA.DAT files. Let us assume that the locus order is Marker 1-(0.08)-Disease-

(0.057)-Marker 2, and that we wish to simulate conditional on known disease locus phenotypes, and to 

simulate marker genotypes for individuals who had both markers typed in the original dataset, and to make 

leave all the markers unknown for individuals with zero or one marker typed in the original pedigrees. It is a 

limitation of SLINK that either all markers must be known or all markers unknown for a given individual, as 

opposed to SIMULATE, in which each marker can be specified independently. The individuals should have 

genotype 0 0 at each of the marker loci (such that all genotypes would be simulated by SLINK). The 

SIMPED.DAT file also should not have the header lines required by the SIMULATE program, as they are 

not needed by SLINK. The SIMPED.DAT file should resemble the following (for pedigree 1): 

 
1 1 0 0 3 0 0 2 0 0 0 2 1 0 0 2 

1 2 0 0 3 0 0 1 0 0 0 1 1 0 0 2 

1 3 2 1 0 4 4 2 0 0 0 2 3 0 0 2 

1 4 2 1 0 5 5 1 0 0 0 2 1 0 0 2 

1 5 2 1 0 6 6 1 0 0 0 2 1 0 0 2 

1 6 2 1 0 10 10 1 2 0 0 2 1 0 0 2 

1 7 0 0 9 0 0 1 1 0 0 0 1 0 0 0 

1 8 0 0 9 0 0 2 0 0 0 0 1 0 0 0 

1 9 7 8 12 11 11 2 0 0 0 1 1 0 0 2 

1 10 2 1 15 0 0 2 0 0 0 2 1 0 0 2 

1 11 7 8 15 0 0 1 0 0 0 1 1 0 0 2 

1 12 17 9 0 13 13 1 0 0 0 1 1 0 0 2 

1 13 17 9 0 14 14 1 0 0 0 1 1 0 0 2 

1 14 17 9 0 0 0 1 0 0 0 2 1 0 0 2 

1 15 11 10 0 16 16 1 0 0 0 1 1 0 0 2 

1 16 11 10 0 0 0 1 0 0 0 2 1 0 0 2 

1 17 0 0 12 0 0 1 2 0 0 2 1 0 0 2 

 

Similarly, the SIMDATA.DAT file should be in standard MLINK format as shown below: 

 
 3 0 0 5 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1) PROGRAM 

 0 0.0 0.0 0 << MUT LOCUS, MUT MALE, MUT FEM, HAP FREQ (IF 1) 

 1 2 3 

3 2 << ALLELE NUMBERS, NO. OF ALLELES 

 0.33 0.67 

1 2 << AFFECTION, NO. OF ALLELES 

 0.010000 0.990000 << GENE FREQUENCIES 

 3 << NO. OF LIABILITY CLASSES 

0.44 0.44 0.0166 

0.44 0.44 0.0166 

0.44 0.44 0.0166 

3 3 << ALLELE NUMBERS, NO. OF ALLELES 

 0.32 0.16 0.52 

 0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

0.08 0.057 

 1 0.10000 0.45000 << REC VARIED, INCREMENT, FINISHING VALUE 
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 There is one final input file required for the SLINK program, called SLINKIN.DAT, which contains 

the analysis parameters (note that SLINK does not require the PROBLEM.DAT file of SIMULATE, but 

rather this SLINKIN.DAT file). The file should consist of four lines as follows: 

 

Line 1 -  Three seeds for the random number generator between 1 and 30323. 

  As in SIMULATE, numbers over 25000 perform better. 

Line 2 -  The number of replicates to be simulated 

Line 3 -  The locus number of the trait locus (in our example, the trait locus is locus 2. 

  You would input a 0 if there were no trait locus.) 

Line 4 - The proportion of unlinked families (if you want to allow for heterogeneity, 

  you should input the value of (1 – α) here, where α is the proportion of linked 

  families as defined in section 6.3). Typically, this value is set to be  0, to assume 

  homogeneity in the simulation. (The properties of simulation under heterogeneity 

  are beyond the scope of this book and will not be discussed here.) 

 

 For our sample data set, let us again simulate 50 replicates of our pedigree set (though in practice, 

you would typically want to simulate a much larger set of replicates to get more reliable results). The 

SLINKIN.DAT file should look like the following: 

 
 28733 

 50 

 2 

 0 

 

 To perform the simulation, just type SLINK at the DOS prompt. Note that SLINK is incredibly slow, 

taking 33 hours of CPU time on a 486, due to the amount of computation required, as can be seen in the 

algorithm described above, since each time a new individual has to be simulated, the MLINK program must 

compute the conditional probability of each possible multilocus genotype for the individual to be simulated. 

In fact, it is precisely because of the incredibly lengthy amounts of computer time required to do an SLINK 

analysis that the SIMULATE program was developed. If you remember, to simulate 50 replicates of the two 

linked markers (unlinked to the disease), it took a matter of only several seconds, while to do the identical 

simulation with SLINK would again take on the order of 33 hours on a 486. As a tradeoff for the increased 

computing time, however, much additional flexibility is available, allowing for both simulation conditional 

on the disease phenotypes, and on previously typed marker data. For practice, you may want to try 

simulating only five replicates for now. We will present the analysis results for both five and fifty replicates.  

 The file produced by SLINK is also called PEDFILE.DAT, as was the case with SIMULATE. 

Again, we have three loci in our simulated data, this time with the disease being locus 2, and the markers 

being loci 1 and 3. Since we initially want to perform two-point analysis of the data, you should rename the 

PEDFILE.DAT to SIM.PED. To analyze the data under the model we simulated for the disease and markers, 

copy the SIMDATA.DAT file to SIM.DAT. Then, use LSP to extract loci 1 and 2 from these files, setting 

up the parameter file for MLINK, with θ ranging from 0 through 0.5 in steps of 0.05. Then, run 

UNKNOWN, followed by MSIM, as you did in the previous section. Then, alter the DATAFILE.DAT file 

to put it in the proper format for ISIM, with starting value of θ = 0.1. The results should match those found 

in table 28-2 (results given for both cases, five replicates and fifty replicates). Next, repeat the process for 

marker 2 (extract loci 2 and 3 from the SIM.PED file with LSP), the results for which are indicated in table 

28-3. 

 
θ E[Z(θ)]50 StdDev50 E[Z(θ)]5 StdDev5 

────────────────────────────────────────────────── 

0 0.735496 1.166530 0.414042 1.062897 

0.05 0.836342 0.977525 0.622942 0.863761 

0.10 0.816879 0.820165 0.655215 0.738885 

0.15 0.742267 0.675951 0.617683 0.622972 

0.20 0.634117 0.540453 0.540525 0.508303 

0.25 0.505767 0.412221 0.439205 0.394128 

0.30 0.368617 0.292287 0.324957 0.282457 
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0.35 0.234871 0.184363 0.208760 0.177726 

0.40 0.118823 0.094987 0.103985 0.087554 

0.45 0.036177 0.032759 0.028154 0.023666 

0.50 0.000000 0.000000 0.000000 0.000000 

 

 E[maxZ(θ)]50 StdDev50 E[maxZ(θ)]5 StdDev5 

────────────────────────────────────────────────── 

MSIM 1.045271 0.822056 0.819046 0.582468 

ISIM 1.059299 0.808330 0.818405 0.584770 

────────────────────────────────────────────────── 
  Observed Lod Scores Greater Than a Given Constant 

  ─────────────────────────────────────── 

Constant Number50   Percent50      Number5     Percent5 

─────────────────────────────────────────────────── 

   1  20  40%   1  20% 

  2.65   2   4%   0   0% 

   3   0   0%   0   0% 

─────────────────────────────────────────────────── 

Table 28-2: Results of MSIM and ISIM analyses of disease vs. marker 1 based on both 50 

and 5 replicates (all pedigrees) 

 

 

 

 

──────────────────────────────────────────────────────────── 

θ E[Z(θ)]50 StdDev50 E[Z(θ)]5 StdDev5 

──────────────────────────────────────────────────────────── 

0.00 1.344803 1.477235 0.926615 1.352813 

0.05 1.578782 1.267425 1.276471 1.165699 

0.10 1.555690 1.103191 1.351794 0.985503 

0.15 1.428120 0.944638 1.299463 0.822139 

0.20 1.236861 0.784552 1.165164 0.670369 

0.25 1.004403 0.621787 0.974942 0.525907 

0.30 0.749474 0.458352 0.749062 0.386712 

0.35 0.493028 0.299932 0.508250 0.253790 

0.40 0.261602 0.158164 0.278780 0.133944 

0.45 0.087424 0.052783 0.096245 0.044466 

0.50 0.000000 0.000000 0.000000 0.000000 

 

 E[maxZ(θ)]50 StdDev50 E[maxZ(θ)]5 StdDev5 

────────────────────────────────────────────────── 

MSIM 1.751465 1.171508 1.471560 1.028230 

ISIM 1.750680 1.169886 1.467988 1.031358 

────────────────────────────────────────────────── 
     Observed Lod Scores Greater Than a Given Constant 

     ──────────────────────────────────────── 

Constant  Number50  Percent50   Number5 Percent5 

────────────────────────────────────────────────── 

   1  36    72%  2   40% 

  2.65  11    22%  1   20% 

   3   7    14%  1   20% 

────────────────────────────────────────────────── 

Table 28-3: Results of MSIM and ISIM analyses of disease vs. marker 2 based on both 50 

and 5 replicates. 

28.10 LSIM 

There is also a version of the LINKMAP program designed to analyze simulated data from SLINK or 

SIMULATE. In both cases, we simulated multilocus data, so it may be of value to see the properties of the 

multipoint analysis, in terms of expected multipoint lod score, etc. To do this, you must use the original 

SIM.PED file (containing the disease and both markers), by copying it to PEDFILE.DAT. Then, you should 

modify the SIMDATA.DAT file, such that it is in LINKMAP format. The file should specify that the locus 

order is 2 1 3, meaning that the disease will start outside the set of linked marker loci on the right, as is 

usually the case in a LINKMAP analysis. Then, the recombination fractions should be set to 0.5 (since the 

disease should start out unlinked to the markers), and 0.128 (the recombination fraction between the two 
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markers). Finally, you should specify that the trait locus is locus 2, with 5 evaluations per interval, and 

finishing value of 0 (this number is irrelevant to the analysis, but is required in the parameter file). The final 

version of this parameter file should look like this: 

 
 3 0 0 5 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1) PROGRAM 

 0 0.0 0.0 0 << MUT LOCUS, MUT MALE, MUT FEM, HAP FREQ (IF 1) 

 2 1 3 

3 2 << ALLELE NUMBERS, NO. OF ALLELES 

 0.33 0.67 

1 2 << AFFECTION, NO. OF ALLELES 

 0.010000 0.990000 << GENE FREQUENCIES 

 3 << NO. OF LIABILITY CLASSES 

0.44 0.44 0.0166 

0.44 0.44 0.0166 

0.44 0.44 0.0166 

3 3 << ALLELE NUMBERS, NO. OF ALLELES 

 0.32 0.16 0.52 

 0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2) 

0.50 0.128 

 2 0 5 << LOCUS VARIED, FINISHING VALUE, NU OF EVALUATIONS 

 

 At this point, you can save this file as DATAFILE.DAT and run the UNKNOWN program, followed 

by the LSIM program. The resulting expected lod scores are given in table 28-4. If there is linkage, then the 

multipoint lod scores are typically much higher than the two-point lod scores from the same dataset. In this 

situation, our ELOD is 2.25, which is substantially higher than the ELOD from either two-point linkage 

analysis. This is because there are many more informative meioses for linkage when both markers are typed. 

It is perhaps more striking to look at the power of these pedigrees. If we examine the probability of finding a 

lod score greater than 3, we will note that with the more informative marker, marker 2, the probability of 

exceeding a lod score of 3 in two-point analysis was 0.14, and with marker one, the probability was 

approximately 0. However, in the three-point LSIM analysis, the probability of getting a multipoint lod 

score greater than 3 was raised to 0.36. While this would still not be considered to be enough power to 

encourage one to invest in linkage analysis with these pedigrees and these markers alone, it is substantially 

better than the power of 0.14 with just marker 2. This increase in information can also be taken advantage of 

through the polylocus method of Terwilliger and Ott (1993), in the case of complex disease analysis, without 

the need to rely on the non-robust and time consuming process of multipoint analysis.  

 
   Locus Order E[Z(x)]50 StdDev50  E[Z(x)]5  StdDev5 

2-0.500-1-0.128-3 0.000000 0.000000  0.000000 0.000000 

2-0.400-1-0.128-3 0.254666 0.133885  0.236215 0.106462 

2-0.300-1-0.128-3 0.767525 0.405632  0.674440 0.293006 

2-0.200-1-0.128-3 1.330319 0.719721  1.109016 0.484413 

2-0.100-1-0.128-3 1.783796 1.039690  1.378166 0.694069 

2-0.000-1-0.128-3 1.888853 1.399177  1.175593 1.087273 

1-0.000-2-0.128-3 1.888853 1.399177  1.175593 1.087273 

1-0.026-2-0.108-3 2.104250 1.369755  1.422980 0.997804 

1-0.051-2-0.086-3 2.208696 1.376830  1.530529 1.034229 

1-0.077-2-0.060-3 2.249394 1.405504  1.561322 1.107357 

1-0.102-2-0.032-3 2.211023 1.457537  1.502997 1.208236 

1-0.128-2-0.000-3 1.961298 1.549443  1.251705 1.329041 

1-0.128-3-0.000-2 1.961298 1.549443  1.251705 1.329041 

1-0.128-3-0.100-2 2.047632 1.148514  1.630032 1.027003 

1-0.128-3-0.200-2 1.574862 0.817627  1.356377 0.700748 

1-0.128-3-0.300-2 0.932305 0.477947  0.848989 0.405352 

1-0.128-3-0.400-2 0.316440 0.164488  0.305904 0.143177 

1-0.128-3-0.500-2 0.000000 0.000000  0.000000 0.000000 
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──────────────────────────────────────────────────────────────────── 

   Observed Lod Scores Greater Than a Given Constant 

Constant  Number50 Percent50  Number5 Percent5 

──────────────────────────────────────────────────────────────────── 

   1      46     92%     4     80%  

  2.65      21     42%     1     20%  

   3      18     36%      1     20% 

────────────────────────────────────────────────────────────────────  

Table 28-4:  Results of LSIM analysis of disease versus fixed map of two linked markers 

in replicates simulated with SLINK in file SIM.PED. 

 

 It is also the case that when there is no linkage in reality, the multipoint lod scores tend to be lower 

than the two-point lod scores, and one's ability to do exclusion mapping is enhanced by multipoint analysis, 

but only if the model is known with accuracy. In this case, we have been doing simulation on a dataset that 

is segregating a complex disorder, for which the model is not accurately known. For that reason, we will not 

be considering multipoint results for the simulation with the disease unlinked to the markers, since it would 

be of little meaning with a truly complex disease (cf. section 25.3).  

EXERCISE 28  

Use SLINK to simulate marker 1 from the schizophrenia dataset under the recessive model, diagnostic 

scheme 3, linked to the disease at θ 

= 0.05. Then, analyze it under the 

dominant model for diagnostic 

scheme 3. Next, simulate the same 

marker, again at θ = 0.05 from the 

disease, under the dominant model 

for diagnostic scheme 3, and analyze 

the data assuming the recessive 

model for the same diagnostic class. 

Do the results of this experiment 

confirm what was discussed in 

chapter 17 about analysis under the incorrect model? 

 Finally, to demonstrate the effect of gene frequencies on a linkage analysis, please use the 

SIMULATE program to simulate 100 replicates of an unlinked marker to the fully penetrant dominant 

disease (p = 0.00001) in the family in Figure 28-3. Simulate the marker under the assumption that there are 5 

alleles, with gene frequencies 0.05, 0.05, 0.05, 0.05, and 0.80. All persons with a "/" through them are dead, 

and therefore should not be simulated (i.e. they should all be assigned genotype 0 0 at the marker locus). 

Then, analyze the pedigree assuming equal gene frequencies for all five alleles. Is there false positive 

evidence for linkage in this example? 
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29 Solutions to Part III Problems 

EXERCISE 21 

Under the assumption that the disease in the pedigree from exercise 6 is a fully penetrant sex-linked 

recessive lethal disorder, the mutation rate would have to be p/2 = 0.01/2 = 0.005 in this example. 

Reanalyzing this pedigree allowing for μ = 0.005 should yield the results shown in table 29-1. Compare 

these results with those obtained when mutation was not allowed for (see table 12-6), and in this instance, 

you will see that there is negligible difference between the two situations. This is due primarily to the large 

density of affecteds in this pedigree, which makes it much more likely that the disease allele is segregating 

than that a new mutation occurred at some point in the pedigree. Hence, allowing for mutation has little 

effect on the analysis, as explained in chapter 21. 

 
─────────────────────────────── 

  θ     Lod Score 

─────────────────────────────── 

 0.0  -0.234382 

 0.1  -0.170833 

 0.2  -0.021145 

 0.3   0.010842 

 0.4  -0.019488 

 0.5   0.000000 

ILINK:̂ = 0.862; Z(̂ ) = 0.554451 

─────────────────────────────── 

 

Table 29-1: Results of analysis of sex-linked recessive disease pedigree from exercise 

6, allowing for μ = 0.005. 

 

 In the pedigree from exercise 7, there is a fully penetrant recessive disease with p = 0.001. As 

explained in this chapter, at equilibrium, μ = sp
2
, so in this case, μ = sp

2
 = (0.5)(0.001)

2
 = 0.0000005. 

Incorporating this information in the linkage analysis leads to the results shown in table 29-2. Again, due to 

the high density of affecteds in this pedigree, there is little effect of allowing for the possibility of mutation, 

with extremely slight reductions in lod score. Further, in this case, the mutation rate is 2000 times smaller 

than the gene frequency, which is minute, as is typically the case with autosomal recessive disorders, in 

contrast to the sex-linked case, when the mutation rate is as large as half the gene frequency. 

 
──────────────────────────────── 

 Theta  Lod Score 

──────────────────────────────── 

 0.0   4.210082 

 0.1   3.300826 

 0.2   2.305048 

 0.3   1.246533 

 0.4   0.349473 

 0.5   0.000000 

 

ILINK: ̂  = 0.0; Z(̂ ) = 4.210082 

──────────────────────────────── 

 

Table 29-2 : Results of analysis of autosomal recessive disease 

pedigree from exercise 7, assuming μ = 0.0000005. 

 

 To design an experiment to determine the types of mutation allowed for in the LINKAGE programs, 

we could do the following: Set up a pedigree with an internal inconsistency, as shown in Figure 29-1. Now, 

let us assume that the disease is autosomal recessive with full penetrance and gene frequency of 0.01; the 

marker locus has four alleles, with equal frequencies. In figure 29-1, the mother has marker genotype x/x, 

and her daughter has genotype 1/y, meaning that she had to have received the y allele from her mother (since 

her father was homozygous 1/1. Clearly, whenever x  y, there is an inconsistency, and our lod scores will 

all be –∞. However, if we allow for mutation rate μ at the marker locus, then we should get lod scores of 0 



193 

 

everywhere (since there is obviously no information for linkage in this little pedigree, yet the inconsistency 

would be eliminated), whenever allele x is allowed to mutate into allele y with probability μ. If mutation 

were allowed in all directions, then we would always get lod scores of 0 in this pedigree, and never get lod 

scores of –∞. To determine which types of mutation are allowed, please try analyzing this pedigree, 

allowing for mutation rate μ = 0.001 at the marker locus (locus 2 in this example), and assuming all possible 

combinations of x and y  (1, 2, 3, 4). Then compute the lod score at recombination fraction θ = 0.1 (without 

loss of generality). The results should match those shown in table 29-3. This shows us that the only types of 

mutation allowed in the LINKAGE programs is from any allele to the last allele at the locus. You can try 

and verify this for other locus types, and other numbers of alleles, but it is the general solution that 

mutations to the last (i.e. highest numbered) allele at any locus are the only ones permitted in this 

implementation of mutation. It is primarily for this reason that we always specify the second allele to be the 

disease predisposing allele at an affection status locus, so we could allow for mutations to the disease allele, 

and not away from it. 

 
────────────────────────────────── 

      y 

     ──────────────────────── 

x  1 2 3 4 

────────────────────────────────── 

1  0.0 -∞ -∞ 0.0 

2  -∞ 0.0 -∞ 0.0 

3  -∞ -∞ 0.0 0.0 

4  -∞ -∞ -∞ 0.0 

 

Table 29-3 : Lod Scores, Z(θ = 0.1), for pedigree in figure 29-1, assuming that μ = 

0.001 at the marker locus. 

EXERCISE 22 

In this pedigree, the first thing you will need to do is to extract the disease locus and the ABO blood group 

locus from the files USEREX8.* with LSP. Then, you must modify the DATAFILE.DAT file as explained 

in chapter 22, to estimate allele frequencies for the ABO locus. There are two separate ways to do this. The 

first would be to set the recombination fraction between disease and ABO to 0.5, and estimate allele 

frequencies, in which case, you should get estimates of 0.288, 0.343, and 0.369 for the A, B, and O alleles 

respectively. When estimated jointly with the recombination fraction, the estimates are revised slightly to be 

0.277, 0.341, and 0.382 respectively, with recombination fraction = 0.001. Now, there are three possible 

ways to compute lod scores, given these gene frequency estimates. The first approach would be to simply 

consider Z(̂ ) = log10[ L(̂ , p̂ i)/L(θ = ½,i)], where the p̂ i are estimated jointly with the recombination 

fraction in the numerator, and kept the same in the denominator. In this case, the lod score (at θ = 0), is equal 

to 3.459960. Another possible approach would be to compute lod scores using the gene frequency estimates 

obtained when the disease was considered to be unlinked to the marker (i.e. do the estimation of allele 

frequencies in the denominator and use these same estimates in the numerator), in which case the lod score 

is Z(θ = 0) = 3.454484. The best way to compute this lod score, however, would be to treat the gene 

frequency estimates as nuisance parameters, and compute the lod score with separate estimates of the pi in 

numerator and denominator, as log10[L(̂ , p̂ i)] – log10[L(θ = ½, p̂ i)], where the p̂ i are separately estimated 

in each term. In this case, the resulting lod score is (–23.299604) – (–26.756902) = 3.457298. In this 

example, the lod scores are not greatly affected by the changes in gene frequency estimates at ABO, but in 

some cases they can be quite significant, so this procedure is usually advisable, when accurate allele 

frequency estimates are unavailable. 

 If we consider the example from exercise 9, when a reduced penetrance model is applied to the same 

pedigree, and re-estimate the allele frequencies, we obtain identical gene frequency estimates of 0.288, 

0.343, and 0.369 for the A, B, and O alleles respectively, when the disease and marker are assumed to be 

unlinked. This is true because the estimation of allele frequency is done essentially independently of the 

disease phenotypes in the pedigree. However, when we estimate the allele frequencies jointly with 

recombination fraction, we obtain estimates of 0.277, 0.341, and 0.382, which are again identical to those 

estimated with the full penetrance model. However, this is not typically going to be the case unless there is 
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little ambiguity as to the disease locus genotypes of the founder individuals, which is clearly the case in this 

pedigree. The three lod scores, as computed above, are now as follows: using the gene frequency estimates 

obtained when θ =̂ , we get Z(θ = 0) = 2.172223; using the gene frequency estimates obtained under θ = ½, 

we get Z(θ = 0) = 2.166747; and finally, separately estimating the gene frequencies in each term, we get Z(θ 

= 0) = (–25.497910) – (–27.667471) = 2.169561, which is again right between the two lod scores computed 

with fixed gene frequency estimates. 

EXERCISE 23 

The first problem is to compute the genotype probabilities in terms of haplotype probabilities for use in the 

EH program, under the assumption of one four-allele locus, and one three-allele locus. These frequencies are 

given in table 29-4. 

 
 1/1  1/2  2/2  1/3   2/3  3/3 

1/1 P1 1
2
  2P1 1P1 2  P1 2

2
  2P1 1P1 3   2P1 2P1 3  P1 3

2
 

1/2 2P1 1P2 1    2[P1 1P2 2 + P1 2P2 1] 2P1 2P2 2    2[P1 1P2 3 + P1 3P2 1]    2[P1 2P2 3 + P1 3P2 2] 2P1 3P2 3 

2/2 P2 1
2
  2P2 1P2 2  P2 2

2
  2P2 1P2 3   2P2 2P2 3  P2 3

2
 

1/3 2P1 1P3 1    2[P1 1P3 2 + P1 2P3 1] 2P1 2P3 2    2[P1 1P3 3 + P1 3P3 1]    2[P1 2P3 3 + P1 3P3 2] 2P1 3P3 3 

2/3 2P2 1P3 1    2[P2 1P3 2 + P2 2P3 1] 2P2 2P3 2    2[P2 1P3 3 + P2 3P3 1]    2[P2 2P3 3 + P2 3P3 2] 2P2 3P3 3 

3/3 P3 1
2
  2P3 1P3 2  P3 2

2
  2P3 1P3 3   2P3 2P3 3  P3 3

2
 

1/4 2P1 1P4 1    2[P1 1P4 2 + P1 2P4 1] 2P1 2P4 2    2[P1 1P4 3 + P1 3P4 1]    2[P1 2P4 3 + P1 3P4 2] 2P1 3P4 3 

2/4 2P2 1P4 1    2[P2 1P4 2 + P2 2P4 1] 2P2 2P4 2    2[P2 1P4 3 + P2 3P4 1]    2[P2 2P4 3 + P2 3P4 2] 2P2 3P4 3 

3/4 2P3 1P4 1    2[P3 1P4 2 + P3 2P4 1] 2P3 2P4 2    2[P3 1P4 3 + P3 3P4 1]    2[P3 2P4 3 + P3 3P4 2] 2P3 3P4 3 

4/4 P4 1
2
  2P4 1P4 2  P4 2

2
  2P4 1P4 3   2P4 2P4 3  P4 3

2
 

Table 29-4 : Table of genotype probabilities for one three-allele marker and one four-allele 

marker. Pi j is the haplotype frequency for allele i at the four-allele marker and allele j at 

the three-allele marker. 

 

 The dataset from table 23-10 should yield the following results from the EH program:  

 
Estimates of Gene Frequencies (Assuming Independence) 

----\------------------------------------------------------- 

locus \ allele  1  2  3  4  

--------\--------------------------------------------------- 

 1    |   0.2236 0.3650 0.4114  

 2    |   0.3439 0.1857 0.1730 0.2975 

------------------------------------------------------------ 

# of Typed Individuals: 237 

 

There are 12 Possible Haplotypes of These 2 Loci. 

They are Listed Below, with their Estimated Frequencies: 

 

------------------------------------------------- 

| Allele Allele  |   Haplotype Frequency  | 

|   at      at  |      | 

| Locus 1 Locus 2 | Independent w/Association | 

------------------------------------------------- 

    1  1   0.076902  0.106861 

    1  2   0.041518  0.038783 

    1  3   0.038687  0.045654 

    1  4   0.066522  0.032331 

    2  1   0.125510  0.149313 

    2  2   0.067760  0.077541 

    2  3   0.063140  0.048721 

    2  4   0.108570  0.089404 

    3  1   0.141470  0.087708 

    3  2   0.076377  0.069330 

    3  3   0.071169  0.078621 

    3  4   0.122376  0.175734 

------------------------------------------------- 

# of Iterations = 7 
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       df  Ln(L) Chi-square 

----------------------------------------------------------- 

H0: No Association     5  -983.22   0.00 

H1: Allelic Associations Allowed 11  -965.53  35.37 

 

 In this case, there were 5 free parameters under the assumption of linkage equilibrium, and 11 under 

the assumption of allelic association. Therefore, our chi-square statistic, 35.37, has (11 – 5) = 6 df, and is 

significant at the 0.000004 level, indicating that there is some association between the alleles of these two 

loci. If we were to consider only the unambiguous haplotypes, and simply count them up, we would fill a 4 

× 3 table like that shown in table 29-5. When one does a chi-square test of independence on this table, the 

chi-square statistic with 6 df is 30.07, corresponding to a p-value of 0.000038, which is still highly 

significant. However, our new haplotype frequency estimates (computed as ki/n for each cell) are given in 

table 29-6. These estimates are somewhat different from those obtained using the EH program, but not 

dramatically so. 

 
             Allele at Locus 2 

         ───────────────────── 

Allele at Locus 1  1 2 3 4 

───────────────────────────────────────────── 

 1   42 14 13 12 

 2   58  25 16 31 

 3   37 26 29 63 

 

Table 29-5 : Haplotypes unequivocally determinable from genotype data given in table 

23-10. 

 

 

 

             Allele at Locus 2 

         ─────────────────────── 

Allele at Locus 1  1 2 3 4 

─────────────────────────────────────────────── 

 1   0.115 0.038 0.036 0.033 

 2   0.158 0.068 0.044 0.085 

 3   0.101 0.071 0.079 0.172 

 

Table 29-6 : Haplotype frequencies estimated from data in table 29-5. 

 

 In the pedigree from exercise 8, there are only six founder individuals, two of whom are untyped at 

the marker locus. Therefore, there is not likely to be much power to estimate haplotype frequencies. For 

simplicity, assume that all twelve haplotype frequencies are 0.08, as starting values (with the last frequency 

set to 0.12, such that they sum up to 1). The estimated haplotype frequencies and corresponding lod scores 

are given in table 29-7, with lod scores provided both assuming the haplotype frequencies are estimated only 

in the numerator (then fixed in the denominator) of the likelihood ratio, and again with the frequencies 

estimated separately in numerator and denominator. 

 
    Haplotype Frequency 

       ───────────────────────────────────── 

Haplotype θ=0.5 θ=0.4 θ=0.3 θ=0.2 θ=0.1 ̂ =0.22 

───────────────────────────────────────────────── 

1 A  0.090 0.090 0.090 0.090 0.091 0.090 

1 B  0.094 0.094 0.094 0.093 0.092 0.094 

1 O  0.095 0.095 0.095 0.095 0.093 0.095 

2 A  0.090 0.090 0.088 0.090 0.091 0.090 

2 B  0.095 0.095 0.094 0.094 0.093 0.094 

2 O  0.082 0.082 0.084 0.082 0.081 0.082 

3 A  0.092 0.092 0.094 0.092 0.093 0.092 

3 B  0.087 0.087 0.088 0.087 0.088 0.087 

3 O  0.102 0.102 0.102 0.101 0.102 0.102 

4 A  0.089 0.089 0.087 0.089 0.091 0.089 
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4 B  0.084 0.084 0.085 0.084 0.084 0.084 

4 O  0.000 0.000 0.000 0.002 0.001 0.000 

 

Z(θ)  0.000 0.416 0.760 0.886 0.459 0.898 

-2lnL(θ) 126.9 125.0 123.3 123.0 125.0 122.8 

Z(Θ,δ) 0.000 0.413 0.782 0.848 0.413 0.891 

 

Table 29-7 : Haplotype frequency estimates from pedigree in exercise 8, for marker 1 

vs. ABO blood group. Lod scores are provided both given the estimated haplotype 

frequencies and given haplotype frequencies are estimated separately in numerator and 

denominator. 

EXERCISE 24 

With the simplifying assumption that all parents are unaffected, and the disease is fully penetrant recessive, 

we know that every parent is heterozygous for the disease allele, and we can therefore attempt to estimate 

the haplotype frequencies with the EH program. To do this, do not use the case-control option, but merely 

enter every parent as if he was heterozygous (1/2) at the first locus, and treat the H allele and the allele as 

alleles 1 and 2 respectively at the second locus. Then, we would have A 1/1 haplotypes, (B + C) 1/2 

haplotypes, and D 2/2 haplotypes in our parental sample. When we run the EH program using the data from 

section 24.6, we have A = 19, (B + C) = 52, and D = 29. Our output should tell us that there is no evidence 

for any allelic association whatsoever. This is because everyone is heterozygous 1/2 at the disease locus, so 

it is not possible to discern the phase at all. However, if we were to try and construct pedigrees which match 

the data, and analyze the data with the ILINK program, we might be able to use the offspring genotypes to 

reconstruct the phases in the parents. Remember that we showed in chapter 24 that nuclear pedigrees with 

one offspring do contain linkage information when there is disequilibrium, but we haven't discussed the 

reverse situation. Let us try it now. Although we had separate information for the GHRR and HHRR tests, 

collected from the same pedigree set, since the disease is fully penetrant recessive, and the parents are 

unaffected, we only need to be sure we have the data in our pedigrees match that provided for the HHRR 

test. For simplicity's sake, let us assume that there are nine pedigrees of the structure HH × HH  HH, one 

pedigree of the form HH × H  HH, twenty pedigrees of the form H × H  HH, one pedigree of the form 

H x  H, five pedigrees of the form H × H  , and fourteen pedigrees of the form x  . Then you can run 

this analysis with ILINK, estimating haplotype frequencies and recombination fraction jointly. First assume 

starting values of 0.4, 0.1, 0.1, and 0.4 for the four haplotype frequencies, and 0.1 for the recombination 

fraction. Then, use the new estimates as starting values to refine them. Repeat this process two additional 

times, and the resulting haplotype frequency estimates should be 0.1448, 0.3548, 0.3055, and 0.1949, with Θ 

= 0.001, and a lod score of 4.58, and –2ln(Like) = 531.44. This lod score, however, is not meaningful to us, 

as it assumes the same haplotype frequencies under the null hypothesis as well. To be fully accurate, we 

should re-estimate them when Θ = 0.5. When this is done, the corresponding haplotype frequency estimates 

should be 0.2807, 0.2192, 0.1692, and 0.3308, with –2ln(Like) = 552.26. The overall lod score should 

therefore be (552.26 – 531.44)/4.6 = 4.53, which is actually almost the same as with the other haplotype 

frequency estimates. This is true, because under the null hypothesis of free recombination, the haplotype 

frequencies have much less influence on the pedigree likelihood. So far, we have determined a lod score, 

evaluating our evidence for linkage, but we have yet to test the significance of our disequilibrium. To do 

this, we would need to maximize the likelihood over allele frequencies for each locus, assuming absence of 

allelic association. When you do this, you should find that the best estimate for the disease allele frequency 

is 0.5 (which makes sense, since we know that every founder is heterozygous for the disease allele), and 

0.45 for the H allele at the marker locus (coded as the 1 allele in the datafiles). The likelihood is now going 

to be independent of the recombination fraction, since phase unknown pedigrees with only one offspring are 

uninformative for linkage in the absence of linkage disequilibrium. Therefore, we can just calculate the 

appropriate likelihood with the ILINK program, fixing θ = 0.1, without loss of generality, to get –2ln(Like) 

= 552.51. Now, we know that the difference in –2ln(Like) is distributed as a chi-square statistic, in this case 

with 1 degree of freedom. We have 552.51 – 531.44 = 21.07, which is significant at the 0.000004 level, so 

there is highly significant evidence for linkage disequilibrium in this parametric analysis. One problem 

remains, however, which is that we have drastically overestimated the disease allele frequency in every case. 

Let us consider the haplotype frequencies estimated with ILINK, as summarized in table 29-8. 
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     θ = ̂   θ = 0.5 
  ────────────────────── ────────────────────── 

Haplotype Estimated Normalized Estimated Normalized 

─────────  ─────────  ────────── ───────── ──────────  

d H  0.3055 0.006105 0.1692 0.003384 

d H   0.1949 0.003985 0.3308 0.006616 

+ H  0.1448 0.2869 0.2807 0.5558 

+ H   0.3548 0.7031 0.2193 0.4342 

 

Table 29-8 : Haplotype frequency estimates from HHRR pedigrees computed with ILINK, and 

normalized to fit the known population gene frequency of the disease allele, p = 0.01. 

 

In this table, the "normalized" haplotype frequencies are also provided. These are computed as explained in 

section 24.7, given the known disease allele frequency of 0.01. It is always required to then reevaluate the 

likelihoods, and significance level of your test given this constraint, which you have applied a posteriori. In 

this case, when you reanalyze the data, it should have no effect on the significance level of either test, since 

all genotypes are known with certainty, but to demonstrate this, the lod score at θ = 0.001 is still 4.58, with –

2ln(Like) = 1177.23. At θ = 0.5, –2ln(Like) = 1198.04. The difference is just 20.81, corresponding to a lod 

score of 4.5, as before. The test for linkage disequilibrium as well maintains its significance. To test this, 

compute the likelihood assuming the disease allele frequency to be 0.01, and the H allele frequency to be 

0.45, again at θ = 0.1, without loss of generality. In this case, –2ln(Like) = 1198.30, for a chi-square statistic 

of 1198.30 – 1177.23 = 21.07, exactly as before. In general pedigrees, however, the significance of your 

statistics may change dramatically after normalization of the haplotype frequencies, and they may no longer 

be optimal either, given the additional constraint on the disease allele frequency. 

EXERCISE 25 

The analysis parameters for the six models to be considered are computed as shown in table 29-9. The 

results of the linkage analysis of the schizophrenia pedigrees under these six models are shown in table 29-

10. As you can see, the maximized over models maximum lod score is quite a lot larger, at 2.937, which 

would be almost significant in a single-model analysis with a simple Mendelian disorder. However, we have 

to use a cutoff point of 5 + log10(m), where m is the number of models tested (this is too stringent). Here, 

again, m = 6, so our cutoff point is 5.78, and we are only halfway to a significant lod score in this analysis. 

 
Model  Diagnosis φ R p f fp  k 

────────────────────────────────────────────────────────────────── 

Dominant Narrow 0.005 0.1 0.01 0.23 0.0005 0.0023 

  Medium 0.01 0.35 0.01 0.33 0.0036 0.0109 

  Broad  0.03 0.50 0.01 0.75 0.015  0.0203 

 

Recessive Narrow 0.005 0.1 0.125 0.288 0.0005 0.0018 

  Medium 0.01 0.35 0.125 0.416 0.0036 0.0085 

  Broad  0.03 0.50 0.125 0.96 0.0152 0.0158 

 

Table 29-9: Penetrance models used in exercise 25. 

 

 
   Dominant Lod Scores  Recessive Lod Scores 

   ────────────────────  ──────────────────── 

Diagnosis θ Marker 1 Marker 2  Marker 1 Marker 2 

──────────────────────────────────────────────────────────────────── 

Narrow 0 1.649  -0.580   0.584  -1.503   

  0.1 1.266   0.630   0.751  -0.639 

  0.2 0.819   0.720   0.546  -0.269 

  0.3 0.395   0.469   0.275  -0.093 

  0.4 0.098   0.147   0.072  -0.020 

 

ILINK: 0.001 1.646 0.164  0.743   0.071 0.765 0.500  0.000   
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Medium 0 2.239   0.770  0.945  -0.993 

  0.1 1.818   1.613  1.200  -0.351 

  0.2 1.206   1.389  0.874  -0.117 

  0.3 0.603   0.835  0.447  -0.034 

  0.4 0.158   0.249  0.119  -0.008 

 

ILINK: 0.001 2.238 0.109  1.615   0.072 1.227 0.500  0.000 

 

Broad  0 2.937   1.143  0.970  -5.767 

  0.1 2.518   2.584  2.066  -1.800 

  0.2 1.776   2.234  1.746  -0.666 

  0.3 0.963   1.406  1.016  -0.222 

  0.4 0.276   0.462  0.301  -0.048 

 

ILINK: 0.003 2.937 0.107  2.586  0.108 2.069 0.500  0.000 

 

Table 29-10: Results of linkage analysis of schizophrenia pedigrees using the 

penetrance models in table 29-9. 

 

 The affecteds-only analysis was done assuming the penetrances, P(Aff│Genotype), were all divided 

by 1000, making "unaffected" individuals essentially unknown in the analysis, as the penetrance ratio for 

unaffecteds fp/f, would be approximately equal to 1. The results of this analysis are shown in table 29-11, 

and are typically less significant than the regular analysis done before (table 29-10). The most striking 

change occurs under the recessive model, with marker 2, in which highly negative lod scores, and estimates 

of = 0.5, were changed to slightly positive lod scores in the affecteds only analysis, with corresponding 

reductions in the estimate of . This is especially noticeable under the broad diagnostic class, which had a 

penetrance of 0.96 for susceptible genotypes in the regular analysis. This translated into a penetrance ratio in 

unaffecteds of k = 24.5, which made unaffecteds particularly informative for linkage. Eliminating this 

information led to slightly positive lod scores, and̂ = 0.05. Thus you can see the potential perils of putting 

too much emphasis on unaffected individuals, when you are dealing with a disease of uncertain diagnosis 

and mode of inheritance. 

 
    Dominant Lod Scores  Recessive Lod Scores 

   ────────────────────  ──────────────────── 

Diagnosis θ Marker 1 Marker 2  Marker 1 Marker 2 

──────────────────────────────────────────────────────────────────── 

Narrow 0 1.625   0.095   0.675  -0.651   

  0.1 1.231   0.693   0.625  -0.280 

  0.2 0.782   0.632   0.421  -0.119 

  0.3 0.372   0.377   0.208  -0.041 

  0.4 0.092   0.112   0.055  -0.009 

 

ILINK: 0.001 1.623  0.127 0.709   0.029 0.693 0.500  0.000   

 

Medium 0 2.003   0.951  0.909  -0.168 

  0.1 1.530   1.212  0.763  -0.017 

  0.2 0.982   0.954  0.494   0.016 

  0.3 0.476   0.529  0.239   0.013 

  0.4 0.121   0.146  0.062   0.003 

 

ILINK: 0.001 2.000 0.079  1.118   0.003 0.909 0.238  0.017 

 

Broad  0 2.249   1.335  0.996   0.268 

  0.1 1.721   1.360  0.924   0.279 

  0.2 1.124   1.025  0.625   0.195 

  0.3 0.563   0.564  0.312   0.099 

  0.4 0.150   0.162  0.083   0.026 

 

ILINK: 0.003 2.246 0.050  1.415   0.030 1.025 0.050  0.297 

 

Table 29-11 : Results of affecteds-only linkage analysis of schizophrenia pedigrees 

based on the penetrance models in table 29-9. 
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 The analysis parameters for the diagnostic uncertainty model are presented in table 29-12, and the 

output from that linkage analysis is given in table 29-13. In this case, our maximum lod score dropped to 

2.054 ( a loss of 0.883), while the number of models was reduced by two, causing our critical value to drop 

to 5 + log10(2) = 5.3, which is a drop of 0.4 units. While more information was lost in this example from the 

combining of the diagnostic criteria, there is still a great reduction in computing time, and roughly the same 

degree of significance in the results. 

 
         Dominant      Recessive 

    ───────────────  ───────────────── 

Diagnostic Class pi   f   fp   k    f   fp   k 

───────────────────────────────────────────────────────────────── 

 1  0.99 .333 .0135 .0405  .418 .0135 .0323 

 2  0.80 .398 .2022 .5080  .450 .2022 .4493 

 3  0.65 .449 .3511 .7820  .475 .3511 .7392 

 

Table 29-12 : Penetrance models for dominant and recessive analysis with certainty of 

diagnosis parameters, pi, from exercise 25. 

 

 

 

   Dominant Lod Scores  Recessive Lod Scores 

   ────────────────────  ──────────────────── 

  θ Marker 1 Marker 2  Marker 1 Marker 2 

  ──────────────────────────────────────────────────────── 

  0 2.057   0.948   1.338  -0.950   

  0.1 1.606   1.327   1.217  -0.433 

  0.2 1.051   1.088   0.823  -0.185 

  0.3 0.518   0.629   0.406  -0.068 

  0.4 0.133   0.185   0.106  -0.015 

 

ILINK:  0.001 2.054 0.093  1.328   0.025 1.360 0.500  0.000   

 

Table 29-13 : Results of linkage analysis of schizophrenia pedigrees with penetrance 

models outlined in table 29-12. 

EXERCISE 27 

When you run the linkage analysis on these fully penetrant dominant disease pedigrees, you should get the 

lod scores shown in table 29-16. The best estimate of θ in the entire family set together is obviously̂  = 0.5, 

yet it appears that in families 1 and 3 there are no recombinants, which might be indicative of some 

heterogeneity. There is the problem, however, that we have no evidence for linkage, so we must try to use 

the techniques outlined in section 27.3, and test for linkage and heterogeneity jointly (since proving one 

exists obligates the other to exist). 

 
     Lod Scores 

   ────────────────────────────────────────────────────────── 

  θ   Family 1    Family 2   Family 3     Family 4  Total 

────────────────────────────────────────────────────────────────── 

0  2.41    -∞  3.01    -∞    -∞ 

0.05  2.23  -8.00  2.79  -10.00 -12.98 

0.10  2.04  -5.59  2.55   -6.99  -7.99 

0.15  1.84  -4.18  2.30   -5.23  -5.26 

0.20  1.63  -3.18  2.04   -3.98  -3.49 

0.25  1.41  -2.41  1.76   -3.01  -2.25 

0.30  1.17  -1.77  1.46   -2.22  -1.36 

0.35  0.91  -1.24  1.14   -1.55  -0.74 

0.40  0.63  -0.78  0.79   -0.97  -0.32 

0.45  0.33  -0.37  0.41   -0.46  -0.08 

Table 29-16: Results, by family, of linkage analysis with pedigrees in Figure 27-1. 
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After running these lod scores through the HOMOG program (assuming STEPSIZE = 0.05, and ALOW = 

0), the output should resemble the following: 
               Estimates of 

Hypotheses     Max.lnL Alpha  Theta 

H2: Linkage, heterogeneity 9.7077 0.5000  0.0000 

H1: Linkage, homogeneity 0.0000  (1)  99.0000 

H0: No linkage    (0)    (0)  (0.5) 

 

Source   df  Chi-square  L Ratio 

H2 vs. H1 Heterogeneity  1 19.415   16440 

H1 vs. H0 Linkage   1  0.000       1 

H2 vs. H0 Total   2  19.415   16440 

 

 Since there is absolutely no evidence for linkage (H1), the test of H2 vs. H1 is not meaningful, since 

the null hypothesis is not a valid null hypothesis. Instead, we must consider the comparison of H2 vs H0 (the 

correct null hypothesis of no linkage). If you remember, we suggested that this likelihood ratio test must 

exceed 2000 for there to be significant evidence for linkage and heterogeneity. In this case, we have a 

likelihood ratio of 16520, which is highly significant evidence for linkage and heterogeneity, so in this case, 

while there is no evidence for linkage whatsoever under the assumption of locus homogeneity, as soon as we 

allow for heterogeneity, we have significant evidence for linkage (in at least some of the families), with      

Z(̂ ,̂ ) > 4. 

EXERCISE 28 

For the first problem, we simulated 50 replicates of the pedigree set using a seed of 27801 for the random 

number generator. If you used a different seed, or a different number of replicates, your results will be 

somewhat different, but similar in their interpretation, if everything was done correctly. The results of the 

analyses are presented in table 29-17. 

 
   Expected Lod Scores 

 ────────────────────────────────────────────────────── 

 Simulated Recessive Simulated Dominant 

θ Analyzed Dominant  Analyzed Recessive 

─────────────────────────────────────────────────────────────── 

0  0.172    -1.704 

0.1  0.436    -0.119 

0.2  0.374     0.245 

0.3  0.220     0.239 

0.4  0.066     0.092 

 

EMLOD  0.740     0.466 

P(Zmax > 3) 0.02     0.000 

 

Table 29-17: Expected lod scores in the schizophrenia pedigrees when simulated under 

one model, and analyzed under the wrong model. 

 

As was explained earlier, in part I of the book, if you analyze something as a dominant disease, when it is 

truly a recessive disease, you are basically throwing away information, yet you should still see positive lod 

scores. This is demonstrated in this instance, where the EMLOD is about 0.74, and the probability of getting 

a lod score over three is about 0.02, which is not bad, considering the model is wrong, and roughly half of 

the meioses are being thrown away by treating the recessive condition as if it were dominant. On the other 

hand, when something is really dominant, and mis-analyzed as a recessive condition, then you are going to 

upwardly bias your recombination fraction estimates dramatically. In this case, while one meiosis to each 

affected offspring truly does contain the disease allele, the other one doesn't, so from one parent, the disease 

and marker would appear to be linked (in this case, at θ = 0.05), and from the other parent, they would 

appear to segregate independently (since there really is no disease allele there). So, the overall 

recombination fraction estimate should be somewhere around the average of 0.05 and 0.5, which is 0.275. In 

this example, the MELOD occurs somewhere between 0.2 and 0.3, consistent with this theoretical 

prediction. Thus, you can see the importance of having an accurate model, and also why it is that analyzing 
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under a dominant model is typically more robust than a recessive model, when it is actually an incorrect 

model. 
θ  θ0 = 0.5 θ0 = 0.05 

───────────────────────────────── 

0  -∞  -∞ 

0.1  0.894  1.013 

0.2  0.541  0.594 

0.3  0.246  0.265 

0.4  0.061  0.065 

 

EMLOD  1.370  1.517 

P(Zmax > 1) 0.800  0.900 

 

Table 29-18: Expected lod scores for the pedigree in figure 28-3, when simulated 

assuming a marker with one common allele, and four rare ones, and analyzed under the 

assumption of five equally frequent alleles, simulated both under absence of linkage 

(θ0 = 0.5), and under tight linkage (θ0 = 0.05). 

 

 For the example with the SIMULATE program, the results are presented in table 29-18, given seeds 

for the random number generator of 27801, 29721, and 24562. In this case, you can see that even though the 

disease and marker are truly unlinked, by using equal gene frequencies for the marker alleles, when this is 

not the true state of nature, you get positive expected lod scores, with an EMLOD of 1.37! This, you 

remember is in a pedigree where the marker is actually unlinked to the disease. In this example, you can see 

just how important it is to have good gene frequency estimates for your markers, since the false positive rate 

can easily lead an investigator chasing a lot of wild gooses unnecessarily. Some people have remarked that 

they don't mind a few false positives, if it means they will have increased power to detect a true linkage. The 

problem is that in these situations, the expected lod scores are not much different with or without linkage. To 

illustrate this, try simulating 50 replicates of this pedigree with the SLINK program, at θ = 0.05 between 

disease and marker (again with frequencies 0.05, 0.05, 0.05, 0.05, and 0.20 for the five marker alleles), and 

analyzing them assuming equal gene frequencies at the marker locus. The results of this should be 

approximately the same as those shown in table 29-18, in the right-hand column. As you can see, the 

expected lod scores are almost identical, whether or not there really is linkage, when the analysis is done 

under such an incorrect model for the marker allele frequencies. The expected lod scores are thus essentially 

independent of the true recombination fraction, when these data are analyzed assuming equal gene 

frequencies. Further, if one analyzes the simulated replicates under the correct model, the expected lod 

scores are naturally lower (the MELOD for the unlinked replicates is 0.00), yet the power is somewhat 

increased, as now there is a 6% chance that Zmax > 2, where it was 0 when the data were analyzed under the 

equal gene frequencies model. All of this together should dissuade people from using erroneous gene 

frequency information, and it should point out the importance of getting accurate estimates of the gene 

frequencies, in terms of saving much time and effort tracking down false positive findings. 
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Appendix A: The Linkage Utility Programs 
The Linkage Utility Programs (http://www.jurgott.org/linkage/util.htm) are a collection of small programs 

that often prove useful in a linkage analyst's everyday life. For example, there is a program (CHIPROB) that 

computes the p-value associated with an observed chi-square with n degrees of freedom (df), NORPROB 

carries out analogous calculations for the standard normal distribution, and NORINV does the reverse, i.e. 

computes standard normal deviates from given p-values, etc. Some of these programs have already been 

used in this book. Please read through the documentation of these programs; you may find useful hints. 

Below, a few selected programs will be applied to examples one might find in practical applications. These 

programs make use of published formulas [28]. 

A.1 The BINOM program 
Conventionally, linkage is declared significant when the lod score attains or exceeds the value 3, which is 

associated with a p-value of at most 0.001. If your data consists of counts of recombinants and 

nonrecombinants you may compute the p-value directly and declare linkage significant if p  0.001. The p-

value is defined as the probability, given the null hypothesis (of no linkage, in this case), of finding a 

maximum lod score as large or larger than the one actually observed. 

 Assume that in an experiment, k = 4 recombinants are observed in a total of n = 20 opportunities for 

recombination (phase-known meioses). Does this result represent significant evidence for linkage? What 

about k = 2 recombinants in n = 20 meioses? To find out, we compute the p-value as the probability, given a 

(true) recombination fraction of r = ½, of observing four or fewer recombinants because decreasing the 

number of recombinants leads to an increase in the maximum lod score. Call up the BINOM program and 

choose the binomial probabilities option. Then, select n = 20 and p = 0.5 and have the program calculate the 

binomial probabilities of k = 0...4 (choose k1 = 0 and k2 = 4). What do you get?  Repeat this analysis 

assuming k = 2 recombinants were observed. Which of the two outcomes is significant?  You should find 

that for k = 4, the p-value is equal to 0.006 (not significant), and for k = 2 it is 0.0002 (significant). 

 A result of k = 4 or k = 2 recombinants in 20 phase known meioses leads to recombination fraction 

estimates of̂ =0.20 and̂ =0.10, respectively. To assess the accuracy of such point estimates one constructs 

support intervals or confidence intervals for the (true) parameter for which an estimate was obtained. 

Support intervals are generally easy to obtain (see below for an example). However, calculating a 

confidence interval can be difficult. One usually works with the normal approximation to the binomial 

distribution but this has the disadvantage that the confidence intervals are forced to be symmetric about the 

estimate of the recombination fraction (the lower bound may become negative). Using the BINOM program 

we can calculate proper confidence intervals (it does the calculations numerically using an iterative 

procedure to solve the relevant equations). For further explanations on confidence intervals, please consult 

section 3.6 in Ott (1991). Before proceeding, take a guess at the 95% confidence intervals for r based on k = 

4 and k = 2. What are its lower and upper bounds? 

 For each of the two observations, k = 4 and k = 2, calculate the 95% confidence interval for r. Call 

up the BINOM program, choose the confidence interval option and, for each of k = 4 and k = 2, have it 

compute the two-sided confidence interval using 0.025 each for the lower and upper error probabilities. 

Write down the resulting 95% confidence intervals with three decimal places. You should find [0.057, 

0.437] for k = 4 and [0.012, 0.317] for k = 2. 

 It is unclear which is more appropriate, support or confidence intervals. Statisticians are divided 

about this issue, and different schools of thought have different preferences. In linkage analysis, it is 

customary to compute support intervals rather than confidence intervals for r. The support interval often 

applied is the 1-lod-unit support interval, which is constructed by finding the maximum lod score, Zmax, and 

determining those points of θ for which the lod score is at least Zmax – 1. these θ points form the desired 

support interval. As outlined in section 1.3.5, however, 3-lod-unit support intervals are more appropriate in 

linkage analysis. Compute the 3-lod-unit support interval for the observation k = 2 recombinants in n = 20 

meioses. One way to achieve this task is to use a spreadsheet program, fill one column with values of θ from 

0.001 through 0.5 in steps of 0.001, and fill another column with the formula for the lod score corresponding 

to k = 2 and n = 20. Then, simply find the maximum lod score, subtract 3 from it, and find the θ values with 

associated lod scores closest to Zmax – 3. You may also proceed as follows. Create a family with 20 offspring, 

two parents, and the parents of one of the parents. Of the grandparents, one has genotype 1/1 at each of two 

http://www.jurgott.org/linkage/util.htm
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loci, and the other is 2/2 at each locus. Their offspring (a parent) is 1/2 at each locus, and this parent's mate 

is 1/1 at each locus. Then, one assumes two types of offspring, 1 2/1 1 (recombinants) and 1 1/1 1 

(nonrecombinants). This way one can create a family with exactly 2 recombinants and 18 nonrecombinants. 

Now, run the MLINK program and have it compute lod scores at θ between 0 and 0.40 in steps of 0.001. 

You should find a 3-lod-unit support interval of [0.002, 0.485], which is similar to the 99.9% confidence 

interval found above. 

A.2 The PIC and HET programs 
Genetic marker loci may be more or less polymorphic depending on the number of alleles and their 

population frequencies. The degree of polymorphism of a marker may be assessed by the proportion of 

individuals in the population who are heterozygous for that marker. In other words, the probability that a 

random individual is heterozygous is used as a measure of the degree of polymorphism. This probability 

may be estimated in two principal ways, each based on a random sample of unrelated individuals. 

 The first measure is the amount of heterozygosity observed, ĥ , and is simply the proportion of 

heterozygous individuals observed in the sample (Weir, 1990). It is an unbiased estimate of the proportion h 

of heterozygous individuals in the population. 

 In human genetics, a more precise estimate is usually used. It rests on the assumption that the 

genotypes are in Hardy-Weinberg equilibrium (HWE), which is the reason for its increased precision. This 

expected heterozygosity (or, in human genetics, just heterozygosity) is defined as H = 1 – Σpi
2
, where the 

sum is taken over all alleles, with pi denoting the frequency of the i-th allele. The maximum likelihood 

estimate of H is given by Ĥ M = 1 – Σ( p̂ i)
2
 and is slightly biased. An unbiased estimate is Ĥ U = Ĥ M n/(n-1), 

where n is the number of alleles observed in a sample (Ott, 1992). Ĥ U is preferable over Ĥ M because it is 

unbiased and has smaller mean squared error than Ĥ M. 

 An older measure of heterozygosity is the PIC value (Botstein et al. 1980), which is defined as 

 .p p 2p - 1 = PIC j

2

i

2
a

1+i=j

1-a

1=i

i

2
a

1=i

 -   

where a is the number of alleles at the given locus. In the PIC value, a quantity is subtracted from the 

heterozygosity that corresponds to the probability that offspring are uninformative, because if both parents 

are identically heterozygous, on average, half of their children (the homozygotes) will be informative and 

half (the heterozygotes) will be uninformative. For family data, PIC may be somewhat more appropriate, 

whereas the heterozygosity is more general. The maximum likelihood estimate of the PIC value is obtained 

by replacing the gene frequencies by their estimates. 

 
 Genotype            1/1  1/2  1/3  2/2  2/3  3/3 

 ──────────────────────────────────────────────── 

 No. of individuals    2   23    2   13    9    1 

 

 As an application, assume that you find a new DNA polymorphism. You type 50 unrelated 

individuals to estimate the number of alleles, their population frequencies, and the heterozygosity of the 

system. The genotyping results are summarized in the table above. We easily estimate the observed 

heterozygosity (h) by the proportion of heterozygous individuals, that is, as ĥ = (23 + 2 + 9)/50 = 0.68. Also, 

we easily find the 95% confidence interval for the proportion of heterozygous individuals in the population. 

Call up the BINOM program and select the confidence intervals option. Enter 34 (for k) and 50 (for n) and 

choose 0.025 each for the lower and upper error probabilities. You should find a confidence interval of 

[0.533, 0.805]. 

 The expected heterozygosity (H) is more difficult to calculate by hand. Thus we make use of the PIC 

program to compute it. In addition to the biased (maximum likelihood) estimate, it will also furnish the 

unbiased heterozygosity estimate and the PIC value. Since these quantities are based on allele counts rather 

than genotype counts, we first make a list of the different alleles and how often they occur. For our alleles 1, 

2, and 3, we find 29, 58, and 13 copies in the 50 individuals, respectively (the number of alleles must sum to 

250 = 100). Now call up the PIC program and choose the Count alleles option. You should find the 
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following estimates: Ĥ M = 0.5626 (maximum likelihood, biased), Ĥ U = 0.5683 (unbiased), and PIC = 

0.4918. These values happen to be quite a bit lower than ĥ =0.68. 

 As the observed proportion of heterozygous individuals is an estimate for the corresponding 

proportion in the total population, so are the expected heterozygosities, Ĥ U and Ĥ M, estimates for the 

population value, H. A support interval for H can be found with the help of the HET program (Shugart and 

Ott 1992). HET works in terms of m-unit support intervals, where m refers to the number of units of natural 

log likelihood. Thus, m = 2 corresponds to a likelihood ratio of 7.4. Asymptotically, it is equivalent to a 95% 

confidence interval. 

 Call up the HET program and follow the directions to calculate a 2-unit support interval for H. You 

should find [0.492, 0.622], which is less than half as long as the 95% confidence interval for h computed 

above. This difference clearly demonstrates the gain in precision when one can rely on HWE, which is 

generally reliable for a stable population. 

A.3 The CHIPROB program and testing HWE 
In the previous section, the observed heterozygosity of 0.68 deviates quite a bit from the value of 0.57 

expected under HWE, and we wonder whether the assumption of HWE might not be violated here. To 

investigate this, we carry out a test of HWE, that is, we test whether the genotype frequencies are compatible 

with HWE. Before proceeding, we take a hint from the confidence interval for the population heterozygosity 

- it includes the point estimate under the assumption of HWE, Ĥ U = 0.57, so we suspect that the genotype 

frequencies will be compatible with HWE. 

 We test the assumption of HWE for the observed genotype frequencies given in section A.2 using a 

chi-square test. We first calculate expected genotype frequencies assuming HWE and do this on the basis of 

the allele frequencies already obtained, that is, with p̂ 1=0.29, p̂ 2=0.58, and p̂ 3=0.13. Our expected 

genotype frequencies are then estimated, for example, as P(1/1) = ( p̂ 1)
2
 and P(1/2) = 2 p̂ 1 p̂ 2. These 

estimates are biased. Unbiased or less biased genotype frequency estimates have been derived but are not 

generally used in practice. For our chi-square test, we will use the (biased) maximum likelihood estimates. 

We multiply each of the expected genotype frequencies by 50 to obtain the expected number of individuals 

with the respective genotypes. Please carry out these calculations for all genotypes. You should find, in the 

order of genotypes given in the table in section A.2, 4.205, 16.82, 3.77, 16.82, 7.54, and 0.845. As a check, 

the sum of these figures should be equal to 50. Then, for each of the genotypes we calculate its contribution 

to chi-square in the usual manner as (O – E)
2
/E where O stands for the observed number and E for the 

expected number of individuals. For example, the contribution from the 1/1 genotype is (2 – 4.205)
2
/4.205 = 

1.156. Please calculate all six contributions and sum them up. You should obtain a chi-square value of 5.44. 

The number of df associated with this chi-square is given by 6 – 1 – 2 = 3, where 6 is the number of classes 

in which observed and expected number of observations are contrasted. We subtract 1 from the number of 

classes because the total number of observations is fixed and the numbers in the sixth class are given once 

we know the numbers in the first five classes. We estimated three gene frequencies but only two of them 

represent independent estimates. the third is again given once we know the first two. Thus, we subtract 2 to 

arrive at a number of 3 df. 

 Is the chi-square of 5.44 on 3 df significant?  Instead of looking up critical values for chi-square in a 

table, we calculate the empirical significance level p associated with this result, that is, the probability that, 

under the null hypothesis (HWE in this case), the observed chi-square value is exceeded by chance, and 

declare the result significant if p  0.05, and highly significant if p  0.01. Call up the CHIPROB program 

and simply enter the two values, 5.44 and 3. You'll quickly find that p = 0.14, which is larger than 0.05, so 

there is no significant evidence for a deviation from HWE. 

 In addition to the application of CHIPROB shown above, this program also allows combining p-

values from different independent investigations into one overall p-value, where the individual p-values may 

result from any statistical test furnishing a p-value. The approach, based on a method by R.A. Fisher [29], 

specifies that one should transform each value of p, which has a uniform distribution under the null 

hypothesis, into c = –2 × LN(p), which has a chi-square distribution on 2 df. Assume that n independent p-

values should be  combined. The corresponding n c-values are then added together. Their sum, Σ(c), 

represents a chi-squared variable with 2n df. So, if Σ(c) is entered in the CHIPROB program with 2n df, the 
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p-value returned is the desired overall empirical significance level. As an example, assume that three 

independent tests (not necessarily chi-square tests) have furnished the respective p-values 0.011, 0.047 and 

0.35. The corresponding c-values are 9.02, 6.12 and 2.10. Their sum, 17.24, with 6 df, yields a combined p-

value of 0.008. This procedure is implemented in the PVALUES program. 

Appendix B: Practical considerations 

B.1 Overview of linkage programs 
Below is the original text of this book. For an up to date list of programs, see our review on linkage in the 

age of sequencing [30]. 

 Linkage programs may be divided into two groups. The major programs belonging to the first group 

are LIPED (Ott, 1974), PAP (Hasstedt and Cartwright, 1981), LINKAGE (MLINK, LINKMAP, ILINK, etc. 

(Lathrop et al., 1984), MENDEL (Lange et al., 1988) [19], and GRONLOD (te Meerman, 1993) (see section 

B.4 and appendix C for ordering information). They are able to carry out linkage analyses for families of an 

arbitrary structure, with possibly incomplete penetrance and other complicating factors. The second group of 

programs, comprising MAPMAKER (Lander et al., 1987), CRI-MAP (P. Green, personal communication), 

and the CEPH version of LINKAGE (CLINKAGE), is applicable only to special loci and/or pedigree types. 

For example, a version of MAPMAKER and the CEPH version of LINKAGE work with codominant 

markers in three-generation pedigrees with a nuclear family and up to four grandparents (figure 13-1). The 

CRI-MAP program originally was also written for this type of application but has been extended to some 

other pedigree structures and loci. Also, other programs (for example, special versions of MAPMAKER and 

LINKAGE) work with quantitative traits observed on experimental crosses. MAPMAKER is very user 

friendly and has many options for automated linkage analysis and map building. 

 The LINKAGE package, like most of the other linkage analysis programs, are available for a variety 

of computer systems. They were developed by Mark Lathrop with contributions by Jean-Marc Lalouel, 

Cécile Julier, and Jurg Ott. Peter Cartwright has made major contributions to the development of the shell 

programs, which have greatly increased the usefulness of LINKAGE. Mark Lathrop regularly updates these 

programs. 

 The LINKAGE and MENDEL programs are very similar in their focus. They both handle pedigrees 

of arbitrary structure and various phenotypes. MENDEL is more flexible in the problems it can address, for 

example, the user can impose linear constraints on the parameters to be estimated, which is not possible in 

ILINK. On the other hand, MENDEL is more demanding both of the user (it requires fluency in 

FORTRAN) and of computer resources (it requires more memory than LINKAGE for the same problem). 

On the PC many linkage problems that cannot be handled by MENDEL can successfully be carried out by 

the LINKAGE programs. 

 A special version of the LINKAGE programs, TLINKAGE [31-33], allows for two loci jointly 

leading to disease (Lathrop and Ott, 1990). This possibility has also been incorporated in the MENDEL 

program (Schork et al., 1993). 

 GRONLOD is the newest member of these programs. It has been written in Prolog and takes 

advantage of Prolog's possibilities to represent abstract objects and work with dependencies among them. 

B.2 Database and pedigree drawing programs 
How should pedigree data be kept in a computer?  Many people simply keep it in files (in ASCII or other 

format) with rows corresponding to individuals and columns corresponding to phenotypes at different loci. 

In addition to the phenotypes, there are columns containing the sex of an individual and pointers to the two 

parents (analogous to a LINKAGE pedigree file). This approach is probably easiest and sufficient if the 

amount of data is small enough to be manageable in this form. 

 Another method is to enter the data into a database using one of the commercially available database 

programs such as dBASE, Foxbase, Paradox, etc. Databases have various advantages. For example, some 

columns can be singled out for special consideration, or a printout of the database may be made suppressing 

some columns containing sensitive data. On the other hand, the user must learn commands specific for that 

database. Specialized databases have been developed for family pedigree data. They are typically capable of 

http://www.jurgott.org/linkage/util.htm#pvalues
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writing output in a format suitable for analysis by a linkage program or of graphically displaying the 

pedigree. Nowadays, many people keep linkage and association data in PLINK format [34], which actually 

is the LINKAGE format, which in turn is the LIPED format. 

B.3 Sources of information 
Nowadays, most information for scientists is online. For example, for linkage analysis, see 

http://lab.rockefeller.edu/ott/, which contains links to other sources of information. Also, the “McKusick 

catalog,” or Mendelian Inheritance of Man (McKusick, 1990) contains information on loci with an 

established mode of onheritance. 

 The section number B.4 contained information on how to obtain programs by mail, which is now 

obsolete. 

B.5 PC hardware and operating systems 
Some of the newer program versions run only on Linux. I have been using Ubuntu Linux for a while. It is 

easy to use and provides a large number of add-on programs. However, in my experience, it is not stable. 

Also, when I tried running a large job (the Pseudomarker program) it got stuck even though it ran on a 64 bit 

PC with 48 GB of memory. Commercial Linux installations like Red Hat Linux and SuSE Linux seem more 

reliable (I started using the latter on a Dell server with 96 GB of RAM memory). The freely available 

openSUSE seems to be equivalent to SuSE and in my experience behaves well. 

B.6 Program constants and recompiling the LINKAGE programs 
In the Pascal version of LINKAGE (the version considered in this book), array bounds such as maximum 

number of alleles are given as program constants. They may be changed and set to a user's needs. Once such 

constants are changed, the programs need to be recompiled for the new constant values to take effect. We 

first discuss the most important constants for the general analysis programs. Deviating constant definitions 

for CEPH and other programs will be noted. Then we outline the steps necessary to recompile the programs. 

The Users' Guide to Analysis Programs, which comes with the LINKAGE programs, also contains 

explanations on these constants. Ideally, all constants are set to high values such that no recompiling of the 

programs is required. However, to keep the size of the program down to a manageable level, the program 

constants should be set to small values whenever possible. Also, in Turbo Pascal, the total of all arrays 

cannot exceed more than 64KB of memory space. 

 MAXNEED sets the upper bound to an array containing various recombination probabilities. Its 

value depends only on the number of loci. For locus numbers from 2 through 8, the minimum values of 

MAXNEED are 7, 32, 157, 782, 3907, 19532, and 97657 respectively. If the array size required by the 

program is larger than MAXNEED, the program will terminate with an error. If MAXNEED is larger than 

necessary, the program will write on the screen the minimum value of MAXNEED it requires in this run. 

 MAXCENSOR determines the length of an array, which holds intermediate results for individuals. 

In a given run, there is an optimal value for MAXCENSOR. If MAXCENSOR is smaller than this optimal 

value, the program will run less efficiently and will print on the screen that it would benefit from an increase 

in MAXCENSOR. If MAXCENSOR is larger than the optimal value, the program will not run faster than 

with the optimal value and will print on the screen the optimal value for MAXCENSOR. 

 MAXLOCUS simply determines the maximum number of loci allowed. This and all other constants 

below represent upper limits. If these upper limits are insufficient for a particular run, the program will stop 

with an error message. 

 MAXSEG should be set equal to 2 to the power of (maxlocus-1). For example, MAXLOCUS=5 calls 

for MAXSEG=16. 

 MAXALL specifies the maximum number of alleles at a single locus. 

 MAXHAP is the maximum number of multilocus haplotypes the program can handle. To be safe, set 

MAXHAP to a value as large as the product of the number of alleles at all loci used in a particular run. In 

Turbo Pascal, MAXHAP must not be larger than 126 or else the program cannot be compiled. 

 MAXFEM is the maximum number of female multilocus genotypes the program can handle, and 

MAXMAL is the analogous quantity for males. These two values should be set to a value at least as large as 

MAXHAP(MAXHAP+1)/2. larger values are wasteful of memory space. Some Pascals allow setting 

http://lab.rockefeller.edu/ott/
http://www.ncbi.nlm.nih.gov/omim/
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constants as simple functions of other constants. In Turbo Pascal, for example, the user need not set 

MAXFEM and MAXMAL because they are determined by the constant MAXHAP as given above. Note 

that in Turbo Pascal, the product MAXFEMMAXPED must not be larger than 65,536, where MAXPED = 

maximum number of pedigrees. For example, with MAXHAP=64 (MAXFEM=2080), no more than 

MAXPED=31 pedigrees can be analyzed in a single run. 

 MAXIND is the maximum number of individuals in all pedigrees combined. 

 AFFALL is an integer number indicating which allele is the disease allele. In most applications, a 

low allele frequency together with the penetrances imply which allele is the disease allele. In these cases the 

value of AFFALL is irrelevant. At sex-linked quantitative trait loci, the phenotype in males is assumed to be 

of a fully penetrant affection status type and no penetrances must be specified. In this case, AFFALL is used 

to identify the disease allele. Also, for rare dominant diseases, homozygotes may be disregarded in the 

analysis (see MINFREQ below). In this case, too, AFFALL is used to identify the disease allele. 

 MINFREQ represents a gene frequency limit for the AFFALL allele in the following sense:  if the 

specified frequency of the AFFALL allele is smaller than MINFREQ, then homozygotes for the AFFALL 

allele will not be considered. This is only meaningful for rare dominant diseases where AFFALL is the 

disease allele. In practice, one usually has MINFREQ=0. Homozygotes may be eliminated from 

consideration with the use of liability classes. 

 MAXTRAIT is the maximum number of (quantitative) variables at a quantitative trait locus type. In 

most applications this is equal to 1 (univariate phenotype). Some compilers require MAXTRAIT to be at 

least 2. 

 MAXFACT is the maximum number of binary codes at a locus. MAXFACT must be at least as large 

as MAXALL. 

 SCALE and SCALEMULT are used to increase the likelihood such that it does not grow to too small 

a number thereby causing an underflow. If problems with underflow or overflow occur, SCALE and 

SCALEMULT should be changed. The best protection against underflow and overflow, however, is to work 

with double precision instead of single precision variables. 

 FITMODEL is either true or false. If true, the program will calculate likelihoods whether or not a 

family is informative. If FITMODEL=false, uninformative families are skipped. 

 DOSTREAM should be set to true if the locus report program, LRP, is to be used to interpret 

program output. 

 BYFAMILY is either true or false. If set to true, likelihoods (not lod scores) will be output for each 

family, otherwise no individual family results will be provided. 

 NBIT indicates the precision of real variables and should be set to a value as large as the mantissa 

length of real variables. For example, it is equal to 23 for single precision and 52 for double precision 

variables. In some versions of LINKAGE, a procedure "precision" is furnished, which calculates NBIT as a 

variable such that the user need not set it as a constant. 

 MAXN is the maximum number of parameters that ILINK can iteratively estimate for that locus 

identified at the bottom of the datafile by "this locus may have iterated parameters."  This number of 

parameters includes the penetrances in all liability classes. 

 In the CEPH programs, MAXSYSTEM, MAXIND, and MAXPED refer to the respective maximum 

number of loci, individuals, and pedigrees after the transformation step. These values may be considerably 

larger than the corresponding values in the pedigree data and cannot be determined before the CFACTOR 

program has completed. CFACTOR produces two output files, TEMPDAT.DAT and TEMPPED.DAT, 

which contain the numbers of loci, individuals, and pedigrees to which the three constant above refer. 

 The Pascal version of the LINKAGE program is now compiled with Free Pascal 

(http://www.freepascal.org/), which is available for Windows and Linux. I recently installed it in SuSE 

Linux using the install script that comes with the program. 

B.7 How to set up a linkage study with sequence data 

B.7.1 Disease phenotype 

Assume that you want to investigate the genetics of a particular disease (yes-no trait, affected and unaffected 

individuals). One of the first questions is how much of the variability of the phenotype is due to genes as 

opposed to effects of common family environment or random environment. Generally, the fact that a disease 

http://www.freepascal.org/
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"runs in families" is taken as evidence for a genetic component, and it usually is. But well-known exceptions 

exist. For example, Kuru (a disease earlier quite prevalent in Papua-New Guinea) was once thought to be 

due to a dominant gene but was later found to be transmitted by a virus through cannibalism (Lindenbaum, 

1979). 

 Classical methods of addressing the question of genetic involvement are comparing the concordance 

rate among monozygotic siblings (who share 100% of their genes) with the concordance rate among 

dizygotic twins (who on average share 50% of their genes). To avoid the confounding effects of common 

family environment, siblings reared apart are often also investigated. However, such analyses only show 

genetic effects but these may be due to one or several genes. Specialized analyses can help discriminate 

between these possibilities. For example, the major gene statistic of Jayakar et al. (1984) is designed to be 

sensitive to the presence of single major genes influencing quantitative characters. It has been applied to 

obesity and gave weak evidence for the presence of a major gene influencing body weight (Zonta et al., 

1987). 

 A method often used to dissect effects of major genes from other effects is complex segregation 

analysis (Morton and MacLean 1974; Bonney et al, 1988). Also, the comparison of recurrence risks among 

different types of relatives (Risch, 1990b) appears to be a powerful tool for detecting major genes. 

 Segregation analysis typically is very sensitive to ascertainment, and false assumptions on 

ascertainment may easily invalidate a segregation analysis (Greenberg, 1986). Linkage analysis, on the other 

hand, does not suffer from this problem, that is, one may select family members on the basis of the 

phenotypes at one locus in any way one wants to and the linkage analysis will still be valid and will furnish 

unbiased estimates of the recombination fraction. For this reason, many investigators skip formal 

segregation analysis and make a small number of "reasonable" assumptions on the mode of inheritance of 

the disease to be investigated. The problems addressed here are beyond the scope of this book. You may also 

want to consult section 11.9 in Ott (1991). 

 If multiple genes jointly have an effect on a disease, several investigations have shown that in many 

cases analysis under a single-gene model retains much of the linkage information of the multilocus situation 

but the recombination fraction tends to be biased upwards. This implies that in testing a disease versus a 

map of markers, a complex trait tends to be localized outside of the map even if in reality a gene exists 

inside the map. Therefore, for complex traits, one should stick to twopoint analysis (disease versus one 

marker at a time). 

 Now, we will assume the presence of a single gene responsible for a disease. The first task is to find 

a number of suitable families willing to collaborate and donate small amounts of blood for marker typing. 

Ideally, there should be several affected individuals in one sibship. For dominant diseases, extended families 

are more useful than nuclear families. Also, parents should be available for marker typing whenever 

possible. Once a set of families has been ascertained and affection status has been established at least in a 

preliminary manner, before marker typing has even begun, you may want to estimate the expected lod score 

or the power for detecting linkage with the given family data. This is usually done by computer simulation 

under the assumption that it will be possible to find a marker close to the disease gene, say, at a distance of 

2-5 cM. The simulation may also be carried out with two flanking markers but that takes much more 

computer time. Therefore, one usually works with a single “virtual” marker tightly linked (1 cM) with the 

disease gene. 

 At the true (simulated) recombination fraction, r, an expected lod score of, say, 3 means that on 

average the lod score you will find at θ = r will be equal to 3. Approximately, there is a 50% chance that the 

lod score in your study will be equal to 3 or higher. Usually, a power larger than 50% is desired. Of course, 

these simulations are reliable only when carried out with reasonable parameter values. For example, if 

penetrance for the disease at high age is 50% but you assume 80% in the simulation, the simulation will 

indicate more power than is available in the data, and the results of the linkage analysis tend to be 

disappointing. Also, at least in complex traits, be sure to allow for phenocopies (nongenetic cases) and make 

their penetrance age dependent if the penetrance of genetic cases is also age dependent. 

B.7.2 Large numbers of markers and sequence data 

Genotyping with SNP chips is now relatively inexpensive, so this is a good way to start a linkage study. You 

may also do exome or whole genome sequencing on family members and extract SNPs from sequence data 

but this is a more expensive undertaking. 
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 With several 100,000 SNPs, the most important task is to verify family relationships. It is good 

practice to run a suitable program, for example, plink version 1.9 (plink2) with the --mendel parameter, 

which will furnish, for example, numbers of mendel errors by individual. The program will not detect all 

mendel errors; this is only possible by actually performing likelihood calculations, but such a plink run will 

be very informative. It may well show that one or two individuals stand out as causing unusually large 

numbers of errors. This may mean that such individuals do not belong into the pedigree and their marker 

genotypes should then preferably all be set equal to unknown. 

 A more precise way to scutinize family relationships is to compute pairwise IBD relationships, for 

example, with the --genome option in the plink program. 

Appendix C: List of programs, and where to obtain them 
The following list is not intended to be exhaustive, but rather to provide an overview of some of the 

programs available for human genetic analysis. The programs listed are mostly as in the original book 

version (and some may no longer exist), augmented with some newer programs. For a detailed list of 

programs see http://lab.rockefeller.edu/ott/geneticsoftware. See also our upcoming review article (Ott & 

Leal, submitted). 

Segregation Analysis 
PAP (Hasstedt and Cartwright, 1981) 

POINTER (Lalouel and Yee, 1980) 

REGRESS (Bonney et al, 1988) 

SAGE (Elston et al, 1986) 

Database programs 
CYRILLIC (Chapman, 1990) 

dbLINK (Sarfarazi, 1990) 

dGENE (Lange et al, 1988) 

KINDRED - Epicenter Software 

LABMAN/LINKMAN (Adams et al, 1990)  

LIPIN (Trofatter et al, 1986) 

Megabase (Fenton et al, 1990) 

MEGADATS (Gersting, 1987) 

PEDSYS (Dyke and Mamelka, 1987) 

Pedigree Drawing Programs 
FTREE - Rodney Go 

GENETREE - Ellen Wijsman 

KINDRED - Epicenter Software 

PEDIGREE/DRAW (Dyke and Mamelka, 1987) 

PEDRAW (Curtis, 1990) 

PLOT2000 (Wolak and Sarfarazi, 1987) 

SCHESIS (Round et al, 1990) 

Linkage Analysis 
CINTMAX (Weeks et al, 1991) 

CRI-MAP (Lander and Green, 1987) 

EXCLUDE (Edwards, 1987) 

GRONLOD (te Meerman, 1993) 

LINKAGE (Lathrop et al, 1984) - (See section B.4) 

LIPED (Ott, 1974) 

MAPMAKER (Lander et al, 1987) 

MAP90 (Morton and Andrews, 1989) 

https://www.cog-genomics.org/plink2/
http://lab.rockefeller.edu/ott/geneticsoftware
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MDMAP (Falk, 1991) 

MENDEL [19] 

PAP (Hasstedt and Cartwright, 1981) 

PROGRAMS FOR PEDIGREE ANALYSIS (MENDEL/FISHER/SEARCH) [19] 

PSEUDOMARKER [23, 24] 

RHMAP (Boehnke et al, 1992) 

SAGE (Elston et al, 1986) 

SCHESIS (Round et al, 1990) 

TLINKAGE [31-33] See manual   

Simulation Programs 
CHRSIM (Speer et al, 1992) 

MOM (Ott and Terwilliger, 1992) 

SIMLINK (Boehnke, 1986) 

SIMULATE (Ott and Terwilliger, 1992) 

SLINK (Including MSIM/ISIM/LSIM) (Weeks et al, 1990) 

TYPENEXT (Ott et al, 1992) 

Non-Parametric Analysis Programs 
APM (Weeks and Lange, 1988) 

SAGE (Elston et al, 1986) 

Heterogeneity Testing 
B-TEST (Risch, 1988) 

HOMOG (Ott, 1991) 

MTEST (Ott, 1991) 

C-GEN (MacLean et al, 1993) 

Miscellaneous Programs 
EH - [35] 

LINKAGE UTILITY PROGRAMS (Ott, 1991) 

MULTIMAP (Cox et al, 1992) 

Miscellaneous Population Genetics Programs (Weir, 1993) - (Source Code given in Weir, 1993) 

PLINK version 1.9, highly updated and very fast, also reads vcf files; 

 https://www.cog-genomics.org/plink2 
SENSEN - Sensitivity Analysis (Hodge and Greenberg, 1992) 

VARYPHEN - (Xie et al, 1991) 

 

  

http://www.jurgott.org/linkage/tlinkage.htm
https://www.cog-genomics.org/plink2
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GNU Free Documentation License 

Version 1.3, 3 November 2008 

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. 

<http://fsf.org/>  

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. 

0. PREAMBLE 

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure 

everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, 

this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications 

made by others. 

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It 

complements the GNU General Public License, which is a copyleft license designed for free software. 

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program 

should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be 

used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for 

works whose purpose is instruction or reference. 

1. APPLICABILITY AND DEFINITIONS 

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be 

distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under 

the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is 

addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. 

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with 

modifications and/or translated into another language. 

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the 

publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly 

within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) 

The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical 

or political position regarding them. 

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says 

that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be 

designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there 

are none. 

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the 

Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. 

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general 

public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint 

programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a 

variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of 

markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if 

used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". 

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or 

XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples 

of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by 

proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated 

HTML, PostScript or PDF produced by some word processors for output purposes only. 

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this 

License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the 

most prominent appearance of the work's title, preceding the beginning of the body of the text. 

The "publisher" means any person or entity that distributes copies of the Document to the public. 

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses 

following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as 

"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document 

means that it remains a section "Entitled XYZ" according to this definition. 

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty 

Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that 

these Warranty Disclaimers may have is void and has no effect on the meaning of this License. 

http://fsf.org/
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2. VERBATIM COPYING 

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright 

notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions 

whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you 

make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must 

also follow the conditions in section 3. 

You may also lend copies, under the same conditions stated above, and you may publicly display copies. 

3. COPYING IN QUANTITY 

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the 

Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: 

Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the 

publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other 

material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy 

these conditions, can be treated as verbatim copying in other respects. 

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual 

cover, and continue the rest onto adjacent pages. 

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent 

copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using 

public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If 

you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this 

Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy 

(directly or through your agents or retailers) of that edition to the public. 

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them 

a chance to provide you with an updated version of the Document. 

4. MODIFICATIONS 

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the 

Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and 

modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: 

 A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions 

(which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if 

the original publisher of that version gives permission.  

 B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified 

Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), 

unless they release you from this requirement.  

 C. State on the Title page the name of the publisher of the Modified Version, as the publisher.  

 D. Preserve all the copyright notices of the Document.  

 E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.  

 F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the 

terms of this License, in the form shown in the Addendum below.  

 G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.  

 H. Include an unaltered copy of this License.  

 I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and 

publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one 

stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified 

Version as stated in the previous sentence.  

 J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise 

the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You 

may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of 

the version it refers to gives permission.  

 K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the 

substance and tone of each of the contributor acknowledgements and/or dedications given therein.  

 L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are 

not considered part of the section titles.  

 M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.  

 N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.  
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 O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from 

the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant 

Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. 

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—

for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. 

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list 

of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through 

arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by 

arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit 

permission from the previous publisher that added the old one. 

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply 

endorsement of any Modified Version. 

5. COMBINING DOCUMENTS 

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified 

versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all 

as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. 

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If 

there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end 

of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to 

the section titles in the list of Invariant Sections in the license notice of the combined work. 

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; 

likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled 

"Endorsements". 

6. COLLECTIONS OF DOCUMENTS 

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of 

this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for 

verbatim copying of each of the documents in all other respects. 

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this 

License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. 

7. AGGREGATION WITH INDEPENDENT WORKS 

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or 

distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the 

compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the 

other works in the aggregate which are not themselves derivative works of the Document. 

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire 

aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of 

covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. 

8. TRANSLATION 

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing 

Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all 

Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the 

license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and 

the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License 

or a notice or disclaimer, the original version will prevail. 

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title 

(section 1) will typically require changing the actual title. 

9. TERMINATION 

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to 

copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. 

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and 

until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the 

violation by some reasonable means prior to 60 days after the cessation. 

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some 

reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you 

cure the violation prior to 30 days after your receipt of the notice. 

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this 

License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give 
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you any rights to use it. 

10. FUTURE REVISIONS OF THIS LICENSE 

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new 

versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See 

http://www.gnu.org/copyleft/. 

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this 

License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any 

later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this 

License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can 

decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to 

choose that version for the Document. 

11. RELICENSING 

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also 

provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive 

Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site. 

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit 

corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that 

same organization. 

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document. 

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere 

other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were 

thus incorporated prior to November 1, 2008. 

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, 

provided the MMC is eligible for relicensing. 

ADDENDUM: HOW TO USE THIS LICENSE FOR YOUR DOCUMENTS 

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license 

notices just after the title page: 

    Copyright (C)  YEAR  YOUR NAME. 

    Permission is granted to copy, distribute and/or modify this document 

    under the terms of the GNU Free Documentation License, Version 1.3 

    or any later version published by the Free Software Foundation; 

    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 

    A copy of the license is included in the section entitled "GNU 

    Free Documentation License". 

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with … Texts." line with this: 

    with the Invariant Sections being LIST THEIR TITLES, with the 

    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. 

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. 

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free 

software license, such as the GNU General Public License, to permit their use in free software.  

 

  

http://www.gnu.org/copyleft/
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