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Abstract— When performing probabilistic localization using a
particle filter, a robot must have a good proposal distribution
in which to distribute its particles. Once weighted by their
normalized likelihood scores, these particles estimate a posterior
distribution over the possible poses of the robot.

This paper 1) introduces a new action model (the system
of equations used to determine the proposal distribution at
each time step) that can run on any differential drive robot,
even from log file data, 2) investigates the results of different
algorithms that modify the proposal distribution at each time
step in order to obtain more accurate localization, 3) investigates
the results of incrementally adapting the action model parameters
based on recent localization results in order to obtain proposal
distributions that better approximate the true posteriors.

The results show that by adapting the action model over time
and, when necessary, modifying the resulting proposal distri-
butions at each time step, localization improves—the maximum
likelihood score increases and, when possible, the percentage of
wasted particles decreases.

I. INTRODUCTION

In mobile robotics research, progress has been made in
many areas of spatial modeling; however, most research has
been in the area of precise incremental localization with re-
spect to a Cartesian frame of reference. For many researchers,
this is the preferred method of robot localization to perform
both global localization (when the robot is lost in a known
environment [1]) and local localization (where the robot
incrementally tracks small pose changes to remain localized—
necessary when performing simultaneous localization and
mapping (SLAM) [2]).

The most commonly used paradigm for incremental local-
ization is probabilistic localization [3]. Here, the robot has
some distribution of belief about its pose x = (x, y, θ). After
performing an action a and making an observation o, it must
then determine its new pose estimate x′.

p(x′|o,x,a,m) ∝ p(o|x′,m) · p(x′|x,a) (1)
posterior ∝ likelihood · proposal (2)

The proposal distribution p(x′|x,a) is determined by an
action model. The action model is a system of equations that
defines a probability distribution over resulting states x′, given
an initial state x and an action a. One of the contributions of
this paper is to introduce a new action model that models
non-trivial uncertainty, even when using data from log files.

Using the observation the robot has at its current location,
o, and a map of the world, m (either computed a priori or

via SLAM), the robot can create a likelihood distribution—a
distribution over possible robot poses based on an observation
model. Combining the likelihood and proposal distributions
yields a posterior distribution that represents the actual uncer-
tainty distribution of the robot’s pose in the world.

The particle filter is a well-known method that efficiently
approximates these distributions so that pose uncertainty can
be quickly calculated by a robot moving through an envi-
ronment. Particles are selected from the posterior distribution
from the previous time step. The action model, then “moves”
each particle to create the proposal distribution. Proposal
particles are weighted according to their likelihood scores and
normalized to sum to one. These weighted particles represent
the new posterior distribution over poses.

Many action models are hand tuned to generate proposal
distributions that overestimate the posterior. While this gener-
ally ensures high accuracy localization (the likelihood distribu-
tion definitely intersects the proposal), many particles end up
with negligible likelihood scores. By tuning an action model,
one can reduce these wasted particles. However, if improperly
tuned, proposals can become too small. Underestimating pro-
posals can cause inaccurate localization, which is a far more
serious problem than having wasted particles.

This paper investigates two orthogonal methods for adapting
the proposal in order to achieve better localization. The first
method adapts the proposal at each time step. The idea is
to change each proposal distribution based on the likelihood
scores generated by an initial set of particles. This allows a
proposal to grow or shrink in order to place its remaining par-
ticles in a region that will lead to higher accuracy localization.

The second method adapts the proposals at a slower rate.
The idea is to change the parameters of the action model
based on localization information from the recent past. This
changes future proposal distributions, leading to proposals that
better approximate the posteriors. This allows for fewer wasted
particles, termed efficiency in this paper.

Together these methods lead to better localization by im-
proving localization accuracy while attempting to decrease
wasted particles. In other words, by using the adaptive methods
investigated in this paper, the proposal distributions become
better approximations of their respective posterior distribu-
tions.



II. ACTION MODELS

An action model is important as it determines the location,
shape, and span of each proposal distribution. There has been
previous research into different differential drive action models
and into how to calibrate them.

Some research utilizes specific, contrived environments and
constrained motion in order to disambiguate translational error
from rotational error [4], [5]. In addition to constraining the
environment and the motion taken, these methods are run
offline, using the final localization error to find the parameters
of a static action model. If the underlying source of error
changes (e.g. motors wear out, new equipment changes the
load, or the travel surface changes), the researcher must run
these experiments again to determine new model parameters.

There has also been work tuning action model parameters
in unconstrained environments. By using existing localization
techniques to provide a ground-truth value for the pose, the
robot can measure the error between its odometry readings and
ground-truth. These errors may have random and systematic
components. The error measurements are then used to calibrate
the parameters of the action model.

Below, we discuss two approaches to action model tuning in
unconstrained environments. The notation we use is as follows:
if z is a scalar that represents an error-prone measured value,
then ẑ represents an estimate of the true value, and z̃ represents
a distribution of uncertainty.

Roy and Thrun [6] use online localization techniques to
calibrate the parameters of a sub-Cartesian action model. A
sub-Cartesian action model uses the change in wheel shaft
encoder counts between time k − 1 and time k to calculate
the incremental translational motion sk and rotational motion
φk. These values are used to estimate a change in Cartesian
space (x, y, θ) [7].

In their model, Roy and Thrun state that odometry errors
in both translation and rotation are linearly dependent on the
distance traveled, |sk|.

ŝk = sk + |sk| · ck
0 (3)

φ̂k = φk + |sk| · ck
1 (4)

The estimation of ŝk and φ̂k is done by tuning the linear
coefficients c0 and c1. ck

0 and ck
1 are calculated by first finding

the best linear coefficients for the current localization step,
c′0 and c′1, and then performing a weighted average with
the previous values of the parameters, ck−1

0 and ck−1
1 . This

weighted average keeps the values of c0 and c1 from having
large fluctuations.

ck
0 = ν · ck−1

0 + (1− ν) · c′0 (5)
ck
1 = ν · ck−1

1 + (1− ν) · c′1 (6)

Every pair of ŝk, φ̂k values corresponds to a change in the
estimated pose (x̂, ŷ, θ̂). The most common way to calculate
the pose is to assume that both the translation and rotation
maintained constant velocity across the measured interval.
This arc is closely approximated by assuming the robot

sequentially performs half of its rotation, all of its translation,
then the other half of its rotation [7].

x̂k = x̂k−1 + ŝk · cos(θ̂k−1 +
φ̂k

2
) (7)

ŷk = ŷk−1 + ŝk · sin(θ̂k−1 +
φ̂k

2
) (8)

θ̂k = θ̂k−1 + φ̂k (9)

The likelihood score of a pose can be evaluated based on
how well the robot’s current laser scan, if taken from that
pose, matches the occupancy grid. The pose that yields the
best match is seen as the ground-truth.

Roy and Thrun determine c′0 and c′1 by searching over
possible values of these parameters. This search is essentially
the same as sampling from a known proposal distribution. This
proposal has a mean at ck−1

0 , ck−1
1 , but the size and shape of

the proposal is not documented—although it is implied to be
static. However this search region is defined, it needs to be
general enough to find a useful ground-truth pose.

Eliazar and Parr [8] make some nice extensions to the
model above. The actual implementation in Eliazar and Parr’s
publication uses a Rao-Blackwellized particle filter, but the
concept can work with the simpler, single-map particle filter
implementation described earlier.

First, Eliazar and Parr add another dimension of error that
is normal to the direction of travel. This drift is represented
by δ̃k. Secondly, instead of estimating scalar values of ŝk and
φ̂k (estimating only the mode of the uncertainty), this model
tries to estimate the full distribution of error. They do this by
assuming that s̃k, δ̃k, and φ̃k are Gaussians. This makes the
change in Cartesian pose a distribution as well.

x̃k = x̃k−1 + s̃k · cos(θ̃k−1 +
φ̃k

2
) +

δ̃k · cos(θ̃k−1 +
φ̃k + π

2
) (10)

ỹk = ỹk−1 + s̃k · sin(θ̃k−1 +
φ̃k

2
) +

δ̃k · sin(θ̃k−1 +
φ̃k + π

2
) (11)

θ̃k = θ̃k−1 + φ̃k (12)

Additionally, the Gaussians s̃k, δ̃k, and φ̃k are dependent
on both sk and φk, generalizing from the more restrictive
model above. The problem now becomes how to determine
the correct parameters, c0 . . . c11, that define these Gaussians.

s̃k = N (sk · c0 + φk · c1, sk
2 · c2 + φk

2 · c3) (13)
δ̃k = N (sk · c4 + φk · c5, sk

2 · c6 + φk
2 · c7) (14)

φ̃k = N (sk · c8 + φk · c9, sk
2 · c10 + φk

2 · c11) (15)

Due to the large number of parameters, the authors designed
the algorithm to solve for six linear least squared systems. One
system solves for the mean parameters of s̃ (c0 and c1). Using
these values, another system solves for the variance parameters
of s̃ (c2 and c3). Similarly, the other four linear systems solve
for the parameters of δ̃ and φ̃ [8].



These parameters are found offline, after the data has been
gathered; thus, as in Roy and Thrun’s model, the search
regions used during the data collection must be large enough
to find some notion of ground-truth. Unlike Roy and Thrun’s
model, this model uses not only the best particle (the mode)
from each time step but uses the weights of all the particles
(from the likelihood scores) to help solve the least squared
systems.

III. A NEW ACTION MODEL

Both of the action models detailed above rely on having
sub-Cartesian odometry information (s, φ). However, many
localization implementations may not have access to this
information. Pre-compiled odometry servers, robot simulators,
and shared log files [9] usually only provide Cartesian poses—
(x, y, θ). This can be a problem for some researchers wanting
to utilize the above models since there are many values of
∆(x, y, θ)k that yield no solution for sk, φk (see Equations
7-9).

To overcome this problem, we use the approach proposed
by Rekleitis [5]. Similar to the way Equations 7-9 approximate
the constant velocity arc taken by the robot with a “turn-travel-
turn” approach [7], we can break any change in pose into
“turn-travel-turn” components.

αk = arctan(
∆yk

∆xk
)− θk−1; αk ∈ [−π, π] (16)

ρk =
√

∆xk
2 + ∆yk

2 (17)

βk = ∆θk − αk; βk ∈ [−π, π] (18)

When sitting still (ρk = 0), then αk = 0 and βk = ∆θk.
Because robots do not always translate forward, but can move
backwards, we also consider the case where α′

k = αk + π,
α′

k ∈ [−π, π], ρ′k = −ρk, β′
k = βk + π, β′

k ∈ [−π, π]. We
only use these values when |α′

k|+ |β′
k| < |αk|+ |βk|.

Using α, ρ, and β, we can extend Eliazar and Parr’s action
model.

s̃k = N (αk · c0 + ρk · c1 + βk · c2,

c3 + αk
2 · c4 + ρk

2 · c5 + βk
2 · c6) (19)

δ̃k = N (αk · c7 + ρk · c8 + βk · c9,

c10 + αk
2 · c11 + ρk

2 · c12 + βk
2 · c13) (20)

φ̃k = N (αk · c14 + ρk · c15 + βk · c16,

c17 + αk
2 · c18 + ρk

2 · c19 + βk
2 · c20) (21)

x̃k = x̃k−1 + s̃k · cos(θ̃k−1 + αk) +

δ̃k · cos(θ̃k−1 + αk +
π

2
) (22)

ỹk = ỹk−1 + s̃k · sin(θ̃k−1 + αk) +

δ̃k · sin(θ̃k−1 + αk +
π

2
) (23)

θ̃k = θ̃k−1 + φ̃k (24)

Notice, that we added a constant parameter in the variance
formulas. There are a couple reasons for this. Any “constant”
localization error due to the discretization of the map model
(e.g. occupancy grids [10]) can be handled. Additionally, for

testing purposes, it allows us a convenient way to create large,
overestimating models or small, underestimating models by
simply setting all uncertainty to be constant.

This is the action model we use below to compare changes
to the straightforward particle filter localization algorithm.

IV. BUILDING AN ACCURATE LOCALIZATION ALGORITHM

This section describes the different algorithms we utilize for
improving localization accuracy. We then run experiments to
show the validity of these algorithms under different condi-
tions.

A. KLD-sampling

In recent work, Fox provides a method by which a robot
that uses a particle filter to localize can be confident it
has sufficiently sampled the proposal distribution [11]. We
utilize this method in all of the tested algorithms below
for two reasons. First, it provides an upper bound on the
number of samples needed for a given proposal distribution.
This eliminates many redundant particles when the proposal
distribution is small. Second, it also provides a lower bound
on the number of particles. This ensures that large proposals
are adequately sampled, which permits a fair comparison of
localization accuracy between various localization algorithms.

B. Shrinking the proposal

Suppose a proposal distribution overestimates the variance
of the actual posterior distribution. Is there an intelligent way
to shrink the proposal in order to use a small number of addi-
tional particles to obtain better localization? We incorporate a
method by Grisetti, Stachniss, and Burgard [12] that shrinks
the proposal distribution in such cases, therefore allowing
more accurate localization.

Grisetti et al. observe that localization with laser range
finders usually produces likelihood distributions that are much
more highly peaked (smaller variance) than most proposal
distributions. Given this assumption, it is possible to treat the
proposal distribution as being constant under the likelihood
distribution. Given a constant proposal, the posterior distribu-
tion is equal to the likelihood distribution. Thus, a new, better
proposal would just be the estimated likelihood distribution.
To obtain a closed form for the new proposal, the distribution
around the likelihood peak is approximated with a Gaussian.

In our implementation the mean and covariance of the
Gaussian are estimated by the weighted mean and covariance
of the particles {x′j} sampled from the original proposal and
weighted by their normalized likelihoods. The equations are
as follows [12]:

µ =
1
η

∑
j

x′j p(o|x′j ,m) (25)

Σ =
1
η

∑
j

p(o|x′j ,m) (x′j − µ) (x′j − µ)T , (26)

where η =
∑

j p(o|x′j ,m).
For this new proposal, KLD-sampling should require far

fewer particles than in the original proposal due to the smaller



variance. In the experiments below, we refer to this algorithm
as shrink.

C. Growing the proposal

Suppose that a proposal underestimates the actual posterior
distribution. If the maximum likelihood particle in the proposal
has a high score, then localization will be largely unaffected.
The more serious case occurs if all sampled particles have
low likelihood scores, i.e. the proposal is not large enough
to intersect the peak of the likelihood distribution. A similar
scenario occurs when the proposal’s mode is displaced from
the actual posterior (e.g. wheel slippage causes the action
model to create a proposal far from the robot’s actual pose).
Is there an intelligent way to grow the proposal in order to
“locate” an area of high likelihood?

If all particles in a proposal distribution have low likelihood
scores, there is no signal that tells us exactly how to grow the
proposal to search for better likelihood scores. By likelihood
scores, we mean the unnormalized values of p(o|x′j ,m).

To handle such cases, we set a lower threshold on the
maximum likelihood score. In the event that all likelihood
scores fall below this threshold, a new proposal is created
that doubles the standard deviation, σ, of all three dimensions,
s, δ, φ, of the current proposal.

In our current implementation, we perform this doubling up
to five times if necessary. The threshold is annealed to become
more generous each time the proposal grows.

In the experiments below, we refer to this algorithm as
grow. The proposal does not always grow, only when required,
due to a lack of accurate localization using the current pro-
posal.

D. Shrinking and Growing

The shrink and grow algorithms above should be consid-
ered mutually exclusive improvements to the vanilla particle
filter algorithm, which uses a single, static proposal distribu-
tion.

In the experiments below, we also consider the shrink-and-
grow algorithm that performs shrink on the original proposal,
followed by grow if it is applicable (growing the original
proposal, not the “smaller” proposal created by shrink). The
shrink algorithm is also performed on any new proposal
generated by the grow algorithm. This allows a proposal to
grow until it intersects the likelihood distribution, then shrink
down to fit the likelihood with a highly peaked Gaussian.

E. Experimental Setup

We want to see the influence the above three algorithms
have on the accuracy of the particle filter. Here we describe
our experimental setup.

First, the robot explores an environment to create a sensor
log. The robot records an alternating sequence of time labeled
odometry and range observations. A SICK LMS 200 laser
range finder is used as the range sensing device. The log
file used here has 3961 odometry readings (and 3961 laser
readings) from a nine minute run. 418 time steps involve no
motion by the robot.

The log file is then used to create a global metrical map
via offline methods [13]. The global metrical map provides
ground-truth of the actual location of the robot at every laser
reading. The global map is represented as an occupancy grid
that has 5 cm cells. For each localization algorithm, KLD-
sampling is used to determine the number of particles each
proposal needs.

We then ran localization experiments using three different
sets of action model parameters. The parameter values of these
three models are shown in Table I.

The large action model has a constant sized position
and heading uncertainty that is centered on zero odometry
error. The parameters, chosen beforehand, were selected in an
attempt to overestimate the uncertainty at almost every time
step.

The small action model also has constant uncertainty cen-
tered on the odometry estimate. These parameters were chosen
to underestimate the posterior for a majority of the sensor
trace—when the robot is making small movements, this model
is sufficient for good localization.

The final action model is a least squares fitted model.
These parameters were calculated by finding the error in s, δ,
and φ between odometry and ground-truth (from the global
map) and solving a series of 6 least squares systems to fit
Equations 19-21 (explained earlier in the discussion of Eliazar
and Parr’s model [8]).

We tested 5 localization algorithms on these three models:
raw odometry, vanilla particle filter, shrink, grow, and shrink-
and-grow. For each time step in the log file, the robot is placed
at ground-truth. Each of the 5 algorithms is run for a single
localization step, and the localization results are recorded.
Comparing localization algorithms without ground-truth is
tricky, as one bad localization step due to unlucky sampling
can affect all future localization. By restarting localization at
ground-truth at each step, we can compare algorithms directly,
eliminating the problem of cumulative error. At each step,
the best (unnormalized) likelihood score of each algorithm is
recorded: our accuracy metric.

The 5 localization algorithms, each run on the three models,
gives us 15 datasets (each with 3960 localization steps) to
analyze (L1-L5, S1-S5, F1-F5 in Table II). If the 5 local-
ization algorithms were run separately, these datasets would
be independent, but to save time, we ran all 5 localization
algorithms at the same time: we ran shrink-and-grow and
recorded the data for the other 4 algorithms. This means some
of the algorithms had proposals that were supersets of others
(e.g. L5 had proposals that were supersets of the proposals in
L1-L4). To be rigorous in our comparison, we created another
15 datasets from a different run (i.e. different sampled particles
due to different random number generation). We compare these
15 datasets (L6-L10, S6-S10, F6-F10) with their counterparts.

F. Experimental Results

The complete results of our analysis are shown in Table
III; however, for this paper we will only be focusing on



c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

large 0 1 0 1e-2 0 0 0 0 0 0 1e-2 0 0 0 1 0 1 3e-2 0 0 0

small 0 1 0 1e-6 0 0 0 0 0 0 1e-6 0 0 0 1 0 1 3e-6 0 0 0
least-squares

fitted -0.012 0.99 -0.012 2.6e-05 0 0.0052 0 0.0014 -0.0016 0.0019 1.4e-05 0 0.0012 0 0.98 -0.0048 0.98 4.1e-05 0 0.0093 0

TABLE I. Action model parameters. large is an overestimating model. small is an underestimating model. least squares fitted is a model fit using the
ground-truth posterior distributions over the entire data trace.

alg.\model
large
static
run1

large
static
run2

small
static
run1

small
static
run2

LS fitted
static
run1

LS fitted
static
run2

large
dynamic

small
dynamic

LS fitted
dynamic

odometry L1 L6 S1 S6 F1 F6 LD1 SD1 FD1

vanilla PF L2 L7 S2 S7 F2 F7 LD2 SD2 FD2

shrink L3 L8 S3 S8 F3 F8 LD3 SD3 FD3

grow L4 L9 S4 S9 F4 F9 LD4 SD4 FD4

shrink & grow L5 L10 S5 S10 F5 F10 LD5 SD5 FD5

TABLE II. Dataset labels. Left of double bar are labels for datasets used in Section IV. Right of double bar are labels for datasets used in Section V.

L6 L7 L8 L9 L10

L1 × ↑ ↑ ↑ ↑
L2 ← × ↑ ↑ ↑
L3 ← ← × ← ↑
L4 ← ← ↑ × ↑
L5 ← ← ← ← ×

S6 S7 S8 S9 S10

S1 × ↑ ↑ ↑ ↑
S2 ← × ↑ ↑ ↑
S3 ← ← × ↑ ↑
S4 ← ← ← × ↑
S5 ← ← ← ← ×

F6 F7 F8 F9 F10

F1 × ↑ ↑ ↑ ↑
F2 ← × ↑ ↑ ↑
F3 ← ← × × ↑
F4 ← ← × × ↑
F5 ← ← ← ← ×

TABLE III. Localization accuracy of 5 different algorithms. Paired t-test comparison of maximum likelihood score (accuracy) between different localization
algorithms. Any algorithm that outperforms another with a statistical confidence of at least 99% (p ≤ 0.01) should be pointed to by an arrow. “×” means
that p > 0.01.

certain aspects of the table. For example, the “raw odometry”
localization algorithm can be ignored as it is not very accurate.

The table shows (via arrows) the algorithm that performed
better: higher maximum likelihood scores. An algorithm is
“better” with a 99% confidence (p ≤ 0.01) using the standard
paired t-test. “×” represents little or no difference between
algorithms for a particular action model (p > 0.01). We
expected no significant difference between results collected
from running the same algorithm on the same model (the
diagonals).

Note that the shrink algorithm outperforms the vanilla
particle filter in all cases: L3 over L7, L8 over L2, S3 over S7,
S8 over S2, F3 over F7, F8 over F2. It also outperforms grow
on the overestimating action model (L3 over L9, L8 over L4).
This result is expected due to a more precise search space of
the adapted proposal.

The grow algorithm also improves localization accuracy
over the vanilla particle filter for every action model. As
expected, it outperforms shrink on the underestimating model
(S4 over S8, S9 over S3).

Finally, shrink-and-grow achieves better accuracy than any
other algorithm.

V. BUILDING AN EFFICIENT LOCALIZATION MODEL

Overestimating models can provide quite good localization
accuracy. We observe this by comparing localization accuracy
across models in the previous section: L5 is as good as F10

(i.e. p > 0.01), and L10 is as good as F5. However, if the
action model is always producing overestimating proposals,
then many particles are wasted. By tuning the action model
parameters online, the proposals should become better approx-
imations of the posterior distributions. Thus, we expect to get
more efficiency without losing accuracy.

A. Online Action Model Tuning

The previous section investigates methods for shrinking
and growing the proposal distribution at each time step for
accurate localization. Here we investigate a method that per-
forms online action model tuning on a larger time scale.
This process determines updated values for the parameters
c0 . . . c20 in Equations 19-21. By performing online parameter
tuning, an action model can be customized to produce proposal
distributions that closely resemble the posteriors. Additionally,
online tuning of parameters should make localization robust
to changes in the environment or to robot characteristics as
the robot moves through the world.

We tune our parameters, c0 . . . c20, using a series of least
squares systems (described in Eliazar and Parr’s work [8] and
used for the least squares fitted action model). There are
some additional issues that must be addressed in order to
perform online parameter tuning.

1) Accumulating enough data: When tuning offline, all the
data has been accumulated, and the linear systems are over-
constrained. When tuning online, we must make sure to have
enough data (αk, ρk, βk, sk, δk, φk) to constrain the linear
systems. The systems become constrained given four different
values of αk, ρk, and βk; however, we have observed that
more data than this is needed.

Because the lasers are updated at about 8 Hz, the robot
can accumulate enough data to constrain the linear systems in
about 0.5 seconds; however, the robot cannot move very far
in this amount of time. We have found that if we tune the
parameters this frequently, we can get very large parameter
values due to the small, noisy values of αk, ρk, βk and s, δ,
φ.

For the experiments below, we wait to tune the linear
systems until the robot’s cumulative displacement is at least 1
meter and its cumulative rotation is at least 10◦ from the last



tuning event. These two constants were chosen arbitrarily, and
have not been validated against other possible values.

2) Estimating action and error values: Because shrink and
shrink-and-grow end up sampling directly from a proposal
(rather than sampling from the previous posterior distribution
and moving the particles according to the action model), these
algorithms do not have s, δ, φ values for their final posterior
particles. To obtain these values, which are necessary to solve
the least squared systems, we draw two samples: one sample
from the previous posterior distribution (in our experimental
platform this is simply the ground-truth from the previous time
step) and one sample from the new posterior distribution. We
can then use the action αk, ρk, βk and the two samples to find
the s, δ, φ displacement for the new posterior particle. Those
values are used in the linear least squares systems.

3) Using multiple samples per time step: Unlike Roy and
Thrun [6], we do not simply want to tune our model using the
maximum likelihood particles from the recent past. Instead,
we would like to use multiple particles from each time step,
as per Eliazar and Parr’s calibration technique [8]. This forces
the least squares systems to consider all the uncertainty from
previous time steps, not just the modes.

To do this we simply perform N iterations of the above
calculations to determine s, δ, φ values for N particles at each
time step. In our current experiments, we set N = 100. Unlike
Eliazar and Parr, because we are drawing these particles from
the posterior, we do not use likelihoods as weights in the least
squares systems.

4) Throttling the change in parameters: As noted in Roy
and Thrun’s paper, if the new parameters are simply plugged
into the action model, the fluctuations of the mean and variance
of proposals will be large. To restrain the change in values,
we also update the parameters using a weighted average.

For each parameter, ci, the new estimated value is combined
with the previous value to get an updated value: cl

i = ν ·cl−1
o +

(1−ν) ·c′i. Here l occurs at a different timescale than k, which
has been used throughout this paper.

Through experimentation, we found that ν = 0.1 worked
the best. Larger values were to restrictive, yielding parameter
changes that were to slow given our limited sensor trace.

B. Experimental Setup

We want to compare the effects of dynamic action models,
which change their parameters online, versus the static action
models demonstrated in the previous section. To do this, we
created 15 new datasets, running the 5 localization algorithms
on the 3 action models above. The difference here is that these
action models start with the parameters given in Table I, but are
allowed to change. These datasets are shown in the rightmost
portion of Table II: LD1, . . . , FD5.

When gathering datasets, we recorded the mean likelihood
score per particle, or average score, in addition to the max-
imum score. This average is calculated using all particles
sampled in a localization step (i.e. all particles from the
original proposal and all particles from any adaptive proposals
are used). We will use this average as an efficiency metric. If

the average is low, then many of the sampled particles were
unnecessary due to low likelihood scores.

C. Experimental Results

The complete results of this experiment are shown in Tables
IV and V. We are only concerned with certain aspects of
these tables (e.g. the raw odometry always has a high average
likelihood score since there is only 1 particle). Again, the
arrows represent a significance of 99% (p ≤ 0.01).

In the previous section, we compared the different localiza-
tion algorithms against each other. There, the tables are easiest
to read in terms of which algorithm outperformed another, and
it was clear that shrink-and-grow was the most best algorithm
for accuracy. In these tables, it is much easier to look at which
action models benefitted from online parameter tuning (i.e. the
diagonals).

For the large action model, we clearly see that using
dynamic action model parameters results in more effective
proposal distributions: less wasted particles. All algorithms
(except for the single pose raw odometry) are more efficient
when the action model is allowed to shrink down from an
overestimating model (Table V, left). The shrink algorithm
does lose accuracy (LD3 vs. L3,8); however, this is expected
since the overestimating proposals cover a larger search area
than the smaller proposals of the dynamic action model.
Most important, shrink-and-grow remains accurate despite
dynamically changing the parameters to gain efficiency.

The results presented in Tables III-V demonstrate that when
starting with an overestimating action model, the overall best
algorithm to use is shrink-and-grow with online action model
tuning enabled.

For the small action model, we clearly see that allowing
dynamic action model parameters decreases efficiency. This
is expected, as larger proposals will undoubtedly mean some
particles end up with low likelihood scores. However, this de-
crease in efficiency is overshadowed by an all around increase
in accuracy (the diagonals all point to SD2 − SD5). When
shrink is run with a dynamic action model, it becomes more
accurate than both grow and shrink-and-grow run with static
action models (SD3 over both S4,9 and S5,10). Again shrink-
and-grow improves its accuracy when the action model pa-
rameters are allowed to change online.

For localization, we prefer accuracy over efficiency (espe-
cially when the proposal is small enough to estimate using
relatively few particles); thus, when starting with an underesti-
mating action model, the overall best algorithm to use is again
shrink-and-grow with online action model tuning enabled.

For the least squares fitted action model, we see that the
vanilla particle filter and the grow algorithm perform worse
with respect to accuracy when the action model parameters
are allowed to change, although grow gains efficiency. We
interpret these results to mean the initial parameters must have
been slightly overestimating the best parameters in at least one
dimension. Most important, there is no negative effect from
the dynamic action model on the accuracy or efficiency of
shrink-and-grow.



L1,6 L2,7 L3,8 L4,9 L5,10

LD1 × ↑ ↑ ↑ ↑
LD2 ← ← ↑ × ↑
LD3 ← ← ↑ ← ↑
LD4 ← ← ↑ ← ↑
LD5 ← ← ← ← ×

S1,6 S2,7 S3,8 S4,9 S5,10

SD1 × ↑ ↑ ↑ ↑
SD2 ← ← ← ↑ ↑
SD3 ← ← ← ← ←
SD4 ← ← ← ← ×
SD5 ← ← ← ← ←

F1,6 F2,7 F3,8 F4,9 F5,10

FD1 × ↑ ↑ ↑ ↑
FD2 ← ↑ ↑ ↑ ↑
FD3 ← ← × × ↑
FD4 ← ← ↑ ↑ ↑
FD5 ← ← ← ← ×

TABLE IV. Localization accuracy of dynamic vs. static action models. Paired t-test comparison of maximum likelihood scores between dynamic vs. static
action model tuning. The significance results are the same when comparing LD1 − LD5 to either datasets L1 − L5 or datasets L6 − L10. Any algorithm
that outperforms another with a statistical confidence of at least 99% (p ≤ 0.01) should be pointed to by an arrow. “×” means that p > 0.01.

L1,6 L2,7 L3,8 L4,9 L5,10

LD1 × ← ← ← ←
LD2 ↑ ← ← ← ←
LD3 ↑ ← ← ← ←
LD4 ↑ ← ← ← ←
LD5 ↑ ← ← ← ←

S1,6 S2,7 S3,8 S4,9 S5,10

SD1 × ← ← ← ←
SD2 ↑ ↑ ↑ ↑ ↑
SD3 ↑ ↑ ↑ ↑ ↑
SD4 ↑ ↑ ↑ ↑ ↑
SD5 ↑ ↑ ↑ ↑ ↑

F1,6 F2,7 F3,8 F4,9 F5,10

FD1 × ← ← ← ←
FD2 ↑ × ↑ ← ↑
FD3 ↑ ← × ← ←
FD4 ↑ ↑ ↑ ← ↑
FD5 ↑ ← ↑ ← ×

TABLE V. Localization efficiency of dynamic vs. static action models. Paired t-test comparison of average likelihood scores between dynamic vs. static
action model tuning.

If the initial action model is already quite good, Tables
III-V demonstrate that shrink-and-grow should be used for
improved accuracy. Online tuning has no significant effects
on accuracy or efficiency when using shrink-and-grow and
an action model pre-tuned for a specific environment.

VI. CONCLUSION

In this paper, we provided a new action model that takes any
change in x, y, θ and creates a non-trivial proposal distribution
with Gaussians along the direction of travel, normal to the
direction of travel, and in the orientation dimension.

We then used this action model to test the effects of
different localization algorithms on localization accuracy. The
most accurate algorithm was an algorithm introduced in this
paper, shrink-and-grow, that adapts by shrinking and growing
(if necessary) each individual proposal in order to better
approximate the posterior distribution.

In order to prevent the algorithm from always having to
grow or always having to shrink by a large amount, we allowed
the action model parameters to change over time. By tuning
the parameters online, we showed that the shrink-and-grow
algorithm becomes more accurate for initially underestimating
models. We also showed that the efficiency of shrink-and-
grow improves when an overestimating action model tunes its
parameters online.

Compiling all results, we found that the shrink-and-grow
algorithm combined with a dynamic action model results in
high accuracy localization while decreasing wasted particles
when the initial parameter values start too high.

When performing online parameter tuning, shrink-and-
grow did not significantly improve accuracy or efficiency over
a least squares fitted static action model. We believe that this
is due to the fact that the physical properties of the ground
plane (thus the underlying systematic errors in the odometry)
never changed throughout our test environment.

We expect future work will reveal that when moving be-
tween different surfaces (e.g. carpet vs. tile), online parameter
tuning will show a significant improvement in both localization
accuracy and efficiency over a static model tuned for a par-
ticular surface. In these scenarios, it is not just the parameters

describing the variance of the proposal distributions that must
change but also the parameters that describe the mean.
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