
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

A Decomposition for the Low Dimensional Cohomology of
Semidirect Product of Topological Groups

H. Sahleh

Department of Mathematics, University of Guilan

P.O.BOX 1914, Rasht, Iran

E-mail:sahleh@guilan.ac.ir

Received: December 20, 2010 Accepted: January 7, 2011 doi:10.5539/jmr.v3n2p177

Abstract

Let G be a topological group and A a trivial G-module. Suppose G is the semidirect product of a closed normal subgroup
N and a subgroup T . In this paper we find, Hi(G, A) i = 1, 2, the first and the second cohomology of G in terms of its
factors.
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1. Introduction

The concept of semidirect product is one of the basic notions in group theory.In recent years it has found its way into
Banach algebra theory [Palmer, T.W. 1978; Thomas, M.P. 1991; Berndt O. 1994] and categorical group [Garzon, A.R.,
2001]. In this paper we use it in the category of topological groups. In section 2, we recall the semidirect product and
cohomology of topological groups [Sahleh, H. 2007]. In section 3, we show that if G is the semidirect product of a normal
subgroup N and a subgroup T then Hi(T, A) is a direct summand of Hi(G, A), i = 1, 2.

Spaces are assumed to be completely regular and Hausdorff. A topological extension of Q by K is a short exact sequence

0 → K
i→ G

π→ Q → 0, where i is a topological embedding onto a closed subgroup and π an open continuous onto
homomorphism. The extension is central if K is in the center of G. We consider extensions with a continuous section i.e.
u : Q → G such that πu = Id. For example,if Q is a connected locally compact group, then any topological extension
of Q by a connected simply connected Lie group has a continuous section [Shtern, A. 2001, theorem 2]. Notation and
definitions as in [Berndt, O. 1998].

2. Semidirect product and cohomology of topological groups

2.1 Semidirect product

In this part we define the semidirect product in the category of topological groups.

Definition 2.1.1 Let K and Q be topological groups. The semidirect product of Q and K is an exact sequence 0 → K
i→

G
π→ Q → 0 with a continuous homomorphism u : Q → G such that πu = IdQ. Sometimes G itself is called a semidirect

product of Q and A.

Examples:

(1) A direct product K × Q is a semidirect product of K by Q (also Q by K)

(2) An abelian group is a semidirect product iff it is a direct (usually called a direct sum ) since every subgroup of an
abelian group is normal.

(3) cyclic groups of prime power order are not semidirect product since they can not be direct sum of two proper
subgroups.

For the extensions there is a standard notion of equivalence.

Definition 2.1.2 Let K and Q be topological groups and

(e) : 0 → K
i→ G

π→ Q → 0

(e
′
) : 0 → K

i→ G
′ π→ Q → 0

be two semidirect product of Q and K with the homomorphisms u : Q → G, u
′

: Q → G
′
, respectively. Then (e) and

(e
′
) are equivalent, denoted by e ∼ e

′
, if there is an open continuous isomorphism α : G → G

′
such that the following
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diagram commutes

0 → K → G
π→ Q → 0

‖ ↓α ‖

0 → K → G
′ π

′

→ Q → 0

πα = π
′
, πu = IdQ, π

′
u

′
= IdQ

Remark. In definition 2.1.2 it is sufficient to demand that α be continuous isomorphism. It can be shown that α is open as
follows: Let U1 be a neighborhood of identity in G. Since π is open and π

′
is continuous we can choose a neighborhood

of identity V1 ⊂ U1 in G and a neighborhood of identity U in G
′

such that π
′
(U) ⊆ π(V1) and (Uα(V1)−1) ∩ K ⊆ U1. Then

for every u ∈ U, there is a v ∈ V1 such that π
′
(u) = π(v) = π

′
α(v). Hence u = qα(v) where q ∈ (Uα(V1)−1)∩ K ⊆ U1. Thus

qv ∈ U1U1 and α(qv) = u. We have shown that α(U1U1) ⊇ U and so is a neighborhood of identity in G. This is sufficient
to say that α is open.

We consider the case where K is abelian.

Proposition 2.1.3 Let 0 → K
i→ G

π→ Q → 0 be an extension with a continuous section u : Q → G.

(1) for every x ∈ G, conjugation θx : K → K defined by x.a = u(x)au(x)−1, a ∈ K is independent of the choice of u.

(2) The map θ : Q → Aut(K), x *→ θx is a homomorphism.

Proof. (1). Let u : Q → G, and u
′

: Q → G ,πu
′
(x) = x, πu(x) = x. Then u(x)u

′
(x) ∈ kerπ = K Therefore, u

′
(x) = u(x)b

for some b ∈ K.Now u
′
(x)au

′
(x)−1 = u(x)a(u(x)b)−1 = u(x)bb−1u(x)−1 = u(x)au(x)−1 since K is abelian.

(2). Since K is normal in G, then θx(a) = u(x)au(x)−1 ∈ K. So θx is a map from K to K. Also θX is an automorphism
because conjugations are. If x, y ∈ Q, then

θx(θy(a)) = θx(u(x)au(x)−1) = u(x)u(y)au(y)−1u(x)−1

while
θxy(a) = u(xy)au(xy)−1

But u(xy) and u(x)u(y) both are lifting of xy,πu(xy) = π(u(x)u(y)). So by part (1), θxθy = θxy.

Remark. The homomorphism θ indicates how K is normal in G. For example let K be a cyclic group of order 3 and
Q =< x > be the cyclic group of order 2. If G is the semidirect product, then G is abelian and K lies in the center of G. In
this case u(x)au(x)−1 = a for all a ∈ K and θx = 1K .

proposition 2.1.4 Let K and Q be topological groups with K abelian. Then θ : Q → Aut(K) makes K into a ZQ-module

xa = θx(a) for all a ∈ Q. Conversely if K is a left ZQ-module then x *→ θx defines a homomorphism θ → Aut(K).

Proof. Let b ∈ ZQ.Then b has a unique expression of the form w =
∑

x∈Q mxx where mx ∈ Z and almost all mx = 0.
Define

(
∑

mxx)a =
∑

mxθx(a) =
∑

mx(xa)

Since θ is a homomorphism, θ(1) = 1 + K, and so 1a = θ1(a). Since θx ∈ Aut(K), x(a + b) = xa + xb It follows that
w(a + b) = wa + wb for all w ∈ ZQ. Similarly, (w + v)a = wa + va w, v ∈ ZQ. Finally (wv)a = w(va) since (xy)a = x(ya),
x, y ∈ Q. But (xy)A = θxy(a) = θx(θy(a)) = θx(ya) = x(ya).

Corollary 2.1.4 If 0 → K
i→ G

π→ Q → 0 is an extension with a continuous section u : Q → G. Then K is a left

ZQ-module by xa = u(x)au(x)−1 x ∈ Q, a ∈ K. The multiplication is independent of the choice of u.

Proof. By propositions 2.1.3 and 2.1.4.

Now we express the semidirect product as a product of groups.

Proposition 2.1.5 Let K be a normal subgroup of G

(1) If 0 → K
i→ G

π→ Q → 0 is a splitting with j : Q → G, π j = 1Q, then i(K) ∩ j(Q) = 0 and i(k) j(Q) = G

(2) Every g ∈ G has a unique form g = a j(x), a ∈ K, x ∈ Q

(3) If K and Q are subgroups of G with K normal in G then G is a semidirect product of K by Q iff K∩Q = {1},KQ = G

and each g ∈ G has a unique form g = ax, a ∈ K, x ∈ Q

178 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

Proof. (1) : If g ∈ i(K) ∩ j(Q), then g = i(a) = j(x) for some a ∈ K, x ∈ Q. Now g = j(x) implies that π(g) = π j(x) =
x, π(g) = πi(a) = 0. Therefore, x = 0 and g = j(x) = 0. If g ∈ G then π(g) = π jπ(g) and so g j(π(g)−1) ∈ kerπ; hence there
is a ∈ K with a( jπ(g))−1 = i(a) and so g = i(a) j(π(g)) ∈ (i(K)( j(Q)).

(2) : We identify i(a) as a. If g = a j(x) = a
′
j(x

′
), then i(a)i(a

′
)−1 = j(x) j(x

′
)−1. Hence 0 = πi(a)i(a

′
)−1 = π j(x) j(x

′
)−1 =

xx
′
.So x = x

′
. Similarly a = a

′
.

(3) : Since i and j are inclusions, necessity is the spacial case of (2). Conversely if each g ∈ G has a unique expression
g = ax, a ∈ K, x ∈ Q. Define π : G → Q by π(ax) = x. It is easy to check that π is a continuous homomorphism.

Definition 2.1.6 Let G be a topological group and N a G-module. Then a subgroup K of the semidirect product N ∝ G is
called a complement (or complement to N) if

(1) N ∩ K = 0

(2) NK = N ∝ G

Example. The symmetric group, S 3, is the semidirect product of cyclic groups of order 2 and 3 ; S 3 = Z3 ∝ Z2. Let
N = Z3. This has complements < (12) >, < (13) > and < (23) >, which are all conjugate.

2.2. Cohomology of topological groups

In this part we recall the cohomology of topological groups [Sahleh, H. 2007]. When G is a topological group the theory
of cohomology gets more interesting since we have both algebraic and topological notions of cohomology and there are
different ways to combine them.

Let G be a topological group and A an abelian topological group on which G acts continuously.

Let Cn(G, A) be the continuous maps φ : Gn → A with the coboundary map

Cn(G, A)
δn→ Cn+1(G, A))

given by

δφ(g1, ..., gn) = g1.φ(g2, ..., gn)

+
∑n−1

i=1
(−1)iφ(g1, ..., gigi+1, ..., gn) + (−1)nφ(g1, ..., gn−1)

Note that this is analogous to the inhomogeneous resolution for the discrete case [Fulp R.O., 1976].

Definition 2.2.1. The continuous group cohomology of G with coefficient in A is

Hn(G, A) = kerδn/Imδn−1

Let Exts(G, A) be the set of extensions of GA by A with a continuous section. It is known, by the Baer sum, that Exts(G, A)
is an abelian topological group. By [Hu, S.T. 1952], if G is a topological group and A a trivial G-module then there is
an isomorphism between the second cohomology of G and the group of extensions of A by G with continuous sections,
namely

H2(G, A) + Exts(G, A)

Note that if the extension 0 → A
i→ M

π→ G → 0 has a continuous section then M + A×G, as topological spaces [Berndt,
O. 1998].

3. A decomposition

Let G be the semidirect product of a normal subgroup N and a subgroup T and A a G-module. Suppose N acts trivially on
A. In this section we express H1(G, A) and H2(G, A) in terms of the first and the second cohomology of N and T .

Remark. Let S be a subgroup of G. By ZS we mean the additive group of continuous homomorphisms z : S → A such
that

σ1(z(σ2)) − z(σ1σ2) + z(σ1) = 0 , σ1, σ2 ∈ S

Theorem 3.1 Let G be the semidirect product of a normal subgroup N and a subgroup T and A a G-module on which N

acts trivially. Let I be the subgroup of Hom(N, A) such that

τh(ν) = h(τν),∀τ ∈ T, ν ∈ N

Then

H1(G, A) � H1(T, A) ⊕ I
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Proof. Let f ∈ ZG. Then the restrictions fT and fN are in ZT and ZN , respectively. Now define a map i : ZG → ZT ⊕ ZN

by i( f ) = ( fT , fN). It is clear that i is continuous. We show that fN ∈ I and im(i) = ZN ⊕ I. The map i is an injective
homomorphism since G = T N. We also have

f (n1, n2) = n1( f (n2)) + f (n1) = f (n1) + f (n2), n1, n2 ∈ N

since N acts on A trivially. Also for each n ∈ N, t ∈ T

t f (n) = f tn) − f (t) = f (tnt−1) − f (t) = tnt−1 f (t) + f (tnt−1) − f (t) = f (tnt−1)

Thus fN ∈ I.

Let g ∈ ZT , h ∈ I. Since T ∩ N = 0, define F : G → A

F(nt) = g(t) + h(n), ‘n ∈ N, t ∈ T

For all n1, n2 ∈ N, t1, t2 ∈ T

n1t1(F(n2t2) − f (n1t1n2t2) + F(n1t1)
= n1t1(g(t2) + h(n2)) − h(n1t1n2t−1

1 ) + g(t1) + h(n1)
= t1(g(t2)) + t1(h(n2)) − g(t1t2) − n1(h(t1n2t−1

1 )) − h(n1) + g(t1) + h(n1)
= t1(h(n2)) − h(t1n2t−1

1 )
= 0.

Since fT = g, FN = h, it follows that
Im(i) = ZT ⊕ I

Let BS be the addetive subgroup of all continuous maps b : S → A such that

b(s) = sa − a, , s ∈ S

with some a ∈ A. It is clear that BS ⊆ ZS , H1(S , A) = ZS /BS and

i(BS ) = BT ⊕ BN , , BN = {0}

Hence, i induices an isomorphism from H1(G, A) to H1(T, A) ⊕ I.

Note. For each subgroup S of G we denot
S ∗ = Hom(S , A)

By the tensor product of two groups G, H we mean [Fulp R.O., 1976]

G ⊗ H = Hom(G, Ĥ̂)

If G is finitely generated then G ⊗ H is locally compact. In this case the definition of the tensor product coincides with the
definition of Moskowitz[1967]. If G and H are descrete then G ⊗ H is the usual tensor product of discrete abelian groups.

In the following theorem N ∧ N denotes the usual exterior product of N.

Theorem 3.2 Let A be a locally compact abelian divisiable group. Suppose N is the direct product of its r (discrete) finite

cyclic subgroups, N1,N2, ...,Nr r ≥ 1 and for each t ∈ T there exists an integer k such that tnt−1 = nk for every n ∈ N.

Then

H2(G, A) � H2(T, A) ⊕ (N ∧ N) ⊕ (⊕r
i=1H1(T,N∗

i ))

Proof. Induction on r. Note that the action of T on N∗
i is given by

(t f )(n) = f (tnt−1) , t ∈ T , f ∈ N∗
i , n ∈ Ni

Let s be a positive integer. Suppose the theorm holds for r < s.

Let N
′
= N1N2...Ns−1, so that G is the semiduirect product of Ns by T N

′
. Let R : H2(G, A) → H2(T N

′
, A) be the

restriction map. Then by [Tahara K, 1972,theorem 2]

H2(G, A) � H2(T N
′
, A) ⊕ KerR
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and there is an exact sequence
0 → H1(T N

′
,N∗

i ) → KerR → H2(NS , A)

where the action of T N
′

is given by

(σ f )(μ) = f (σμσ−1) , σ ∈ T N
′
, f ∈ N∗

i , μ ∈ NS

By [Fulp R.O., 1976], H2(Ns, A) � Ext(Ns, A) � A/sA = 0. Thus

(1) H2(G, A) � H2(T N
′
, A) ⊕ H1(T N

′
,N∗

i )

Now by inductiuon
H2(T N

′
, A) � H2(T, A) ⊕ H2(N

′
, A) ⊕ (⊕s−1

i=0 H1(T,N∗
i )

Let h ∈ Hom(N
′
,N∗

i ) , t ∈ T , t ∈ T , ν ∈ N
′
. μ ∈ Ni. By assumption

tμt−1 = νk f or some k ∈ Z

Hence
(t(h(μ))(ν) = (h(ν))(tμt−1) = (h(ν))(μt)) = t(h(ν)(μ)) = (th(ν))(μ) = (h(tνt−1)(μ)

Therefore, t(h(ν)) = h(tνt−1). So by theorem 3.1,

H1(T N
′
,N∗

i ) = H1(T,N∗
i ) ⊕ Hom(N

′
,N∗

i )

Since Hom(N
′
,N∗

i ) =
⊕s−1

i=1 Hom(Ni,N
∗
i ) it follows that

H2(G, A) � H2(T, A) ⊕ (N
′ ∧ N

′
) ⊕ H1(T,N∗

i ) ⊕
⊕s−1

i=1 Ni ⊗ Ni

� H2(T, A) ⊕ (N ∧ N) ⊕
⊕s

i=1H1(T,N∗
i ).
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