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Abstract:  This article reviews current achievements in the field of chemoinformatics 
and their impact on modern drug discovery processes. The main data mining approaches 
used in cheminformatics, such as descriptor computations, structural similarity matrices, 
and classification algorithms, are outlined. The applications of cheminformatics in drug 
discovery, such as compound selection, virtual library generation, virtual high throughput 
screening, HTS data mining, and in silico ADMET are discussed. At the conclusion, 
future directions of chemoinformatics are suggested. 
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1. Introduction 
 
Traditional Drug Discovery Process.  
 

There are seven steps in the drug discovery process: disease selection, target hypothesis, lead 
compound identification (screening), lead optimization, pre-clinical trail, and clinical trial and 
pharmacogenomic optimization. Traditionally, these steps are carried out sequentially [1], and if one of 
the steps is slow, it slows down the entire process. These slow steps are bottlenecks. 
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The Old Bottlenecks and HTS Technologies.  
 

Previously, the main bottlenecks in drug discovery were the time and costs of making (or finding) 
and testing new chemical entities (NCE). The average cost of creating a NCE in a major 
pharmaceutical company was estimated at around $7,500/compound [2]. In order to reduce costs, 
pharmaceutical companies have had to find new technologies to replace the old “hand-crafted” 
synthesis and testing NCE approaches. Since 1980, with the advent of high throughput screening 
(HTS), automated techniques have made possible robotized screening. Through this process, hundreds 
of thousands of individual compounds can be screened per drug target per year [2,3]. Since biologists 
can now test thousands of compounds per day, chemists are required to make enough compounds to 
meet the needs of biologists. But, can chemists make thousands of compounds a day? 

 
Combinatorial Chemistry.  
 

In response to the increased demand for new compounds by biologists, chemists started using 
combinatorial chemical technologies to produce more new compounds in shorter periods. 
Combinatorial chemistry (CC) systematically and repetitively yields a large array of compounds from 
sets of different types of reagents, called “building blocks”. By 2000, many solution- and solid-phase 
CC strategies were well-developed [4].  Parallel syntheses techniques are nowadays used in all major 
pharmaceutical companies. By increasing the capabilities of making and testing compounds, it was 
hoped that the drug discovery process could be accelerated dramatically. Unfortunately, this did not 
turn out to be the case. Seeking the reasons for these disappointing results, it was believed that 
increasing the chemical diversity of compound libraries would enhance the drug discovery process.  
Cheminformatics approaches would now be introduced in order to optimize the chemical diversity of 
libraries. 

 
Chemical Diversity and Cheminformatics. 
 

 It was soon realized that millions of compounds could be made by CC technologies. However, this 
procedure did not yield many drug candidates. In order to avoid wasting CC efforts, it was believed 
that it would be best to make chemically diverse compound libraries. In order to make a compound 
library with great chemical diversity, a variety of structural processing technologies for diversity 
analyses were created and applied. These computational approaches are the components of 
cheminformatics. After 1990, many chemical-diversity-related approaches were developed, such as 
structural descriptor computations, structural similarity algorithms, classification algorithms, 
diversified compound selections, and library enumerations. However, help from these diversity 
analyses approaches has been limited. More hits have been found from these chemically diverse 
libraries, but most of these hits do not result in new drugs. Therefore, the process of making and 
screening drug-like compounds came under question. 
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Drug-likeness and Lead-likeness.  
 

A chemically diverse library can contain many non-drug-like compounds. Therefore, technologies 
have been developed to recognize drug-like compounds from a diverse compound library [5-11]. These 
drug-like measuring and filtering technologies have partly solved the screening problems. However, 
they have not been good enough to completely solve these problems. It has been observed that many 
drug-like compounds, which should be potential candidates, do not come up as hits when they are 
screened against biological targets. It is believed that further refinement of the filtering technologies 
should be made in order to recognize lead-like compounds [12-13] instead of drug-like compounds. 
Intrinsically, lead-likeness and drug-likeness are the descriptors of potency, selectivity, absorption, 
distribution, metabolism, toxicity, and scalability. In the past, these parameters were optimized 
sequentially. Now, it is believed that these parameters should be optimized simultaneously. 

 
Paralleling Drug Discovery Process and Early ADMET Prediction.  
 

As the human genome project was completed, hundreds of new targets for drug discovery have 
been generated through genomics and modern molecular biology. Today’s reality is that the industry is 
facing many targets, but with little structural information.  One now finds too many hits when 
searching for lead candidates, thus lead optimization is stymied. To get more target structural 
information, high-throughput protein crystallization has been explored [14-15]. However, many targets 
are membrane proteins and it is very difficult to obtain structural information for these proteins. Hence, 
lead optimization remains the most serious bottleneck. In addition, we know that, about forty percent 
of all development candidates fail due to absorption, distribution, metabolism, excretion and toxicity 
(“ADMET”) problems [16].  

In the past, HTS for pharmaceutical discovery was used as a filter in order to identify the few 
potentially promising hits in a corporation’s synthetic archive. Therefore, HTS data analyses were 
focused on hits, and the bulk of the non-hit data was ignored [17]. Unfortunately, such hits generated 
from HTS can fail during efficiency or ADMET optimizations and thus increase drug discovery costs. 
A survey concluded that despite a doubling of R&D expenditures since 1980 and the widespread 
deployment of high throughput techniques, R&D timelines remain virtually unchanged. In other 
words, throwing money and technology at the discovery process has not made either it more efficient 
or profitable. In order to improve this situation, a new strategy is required using high throughput 
techniques (synthesis and screening) as tools to help both lead identification and lead optimization. In 
order to carry out this strategy, cheminformatics methods must be applied while generating data using 
high throughput techniques in order to assure that good ADMET properties are achieved while making 
and screening compounds, This approach is called a multi-parametric optimization strategy [18]. 



Molecules 2002, 7 
 

569 

Challenges to Cheminformatics.  
 

This new drug discovery strategy, challenges cheminformatics in the following aspects: (1) 
cheminformatics should be able to extract knowledge from large-scale raw HTS databases in a shorter 
time periods, (2) cheminformatics should be able to provide efficient in silico tools to predict ADMET 
properties, This is normally very hard to do [19]. This review paper will outline the achievements of 
cheminformatics and, propose new directions for cheminformatics. 
 
2. The Achievements of Cheminformatics 
 
The Origins of Cheminformatics.  
 

Cheminformatics (sometimes spelled as chemoinformatics or chemo-informatics) is a relatively 
new discipline. Actually, it has emerged from several older disciplines such as computational 
chemistry, computer chemistry, chemometrics, QSAR, chemical information, etc. The names 
identifying these older disciplines can be controversial, but they have been studied for many years. 
Cheminformatics involves the use of computer technologies to process chemical data. Initial activities 
in the field started with chemical document processing (the Journal of Chemical Documentation was 
published in 1961 by ACS. It was renamed the Journal of Chemical Information & Computer Science 
after 1974) [20]. What differentiates chemical data processing from other data processing is that 
chemical data involves the requirement to work with chemical structures. This requirement 
necessitated the introduction of special approaches to represent, store and retrieve structures in a 
computer system. Another challenge faced by this new field was to establish clear relationships 
between structural patterns and activities or properties.  One of the earliest cheminformatics studies 
involved chemical structure representations, such as structural descriptors. 

 
Descriptors and chemical structure database retrieval.  
 

Before the 1980s, computer speed was slow. Since structure and substructure searches are typical 
NP problems, they were computationally costly [21]. In order to make structure and sub-structure 
searching feasible on slow computer systems, many methods were attempted in order to find concise 
structural representations, such as, linear notations. These convert structural graphs to strings that can 
easily be searched by a computer. The data screening strategies filtered out the compounds were not 
the main structural features (search keys) in a given query. Then, an atom-by-atom search algorithm 
was applied (this was usually time consuming) to a smaller number of compounds. Subsequently, 
screening approaches have been used in most of chemical database management systems. These 
approaches are briefly summarized in the following points. 
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Linear notations.  
 

Structure linear notations convert chemical structure connection tables to a string, a sequence of 
letters, using a set of rules. The earliest structure linear notation was the Wiswesser Line Notation 
(WLN). ISI® adopted WLN to be used in some of their products in 1968 and, it is still use today. It 
was also adopted in the mid 1960s for internal use by many pharmaceutical companies. At that time 
(mid 60s to 80s) [22], it was considered the best tool to represent, retrieve and print chemical 
structures. In WLN, letters represents structural fragments and a complete structure is represented as a 
string. This system efficiently compressed structural data and, was very useful to storing and searching 
chemical structures in low performance computer systems. However, the WLN is difficult for non-
experts to understand. Later, David Weininger suggested a new linear notation designated as 
SMILESTM [23-24]. Since SMILESTM is very close to the “natural language” used by organic 
chemists, SMILESTM is widely accepted and used in many chemical database systems. To successfully 
represent a structure, a linear notation should be canonicalized. That is, one structure should not 
correspond to more than one linear notation string, and conversely, one linear notation string should 
only be interpreted as one structure.  

 
Canonicalization.  
 

If a structure corresponds to a unique WLN or a unique SMILESTM string, then the structure search 
results in a string match. WLN could meet this requirement in most cases. The SMILESTM approach 
can do this after canonical processing. Therefore, both WLN and canonical SMILESTM are able to 
solve structure search problems by string matches. A molecular graph (2D structure) can also be 
canonicalized into a real number through a mathematical algorithm. The real number is identified as a 
molecular topologic index. However, two different structures can have the same topologic index. 
Therefore, topologic indices can only be used as screens for accelerating structure database searching. 
Actually, the concept of molecular index was originally proposed for QSAR and QSPR studies. 
Wiener reported the first molecular topological index in 1947 [25]. If a molecule and its specific 
topologic index had a one-to-one relationship, then structure search could be done by number 
comparison [25]. However, substructure search still had to use an atom-by-atom matching algorithm, 
which, as mentioned earlier, could be very time-consuming. In order to further enhance chemical 
database search performance, efforts have been on the way to seek better structural screening 
technologies. 

 
Screens and search keys.  
 

In order to reduce the number of atom-by-atom matches, the screening approach was introduced. 
The idea is to pre-define a set of substructures (chemical functional groups) as a screen to filter out 
impossible structural search candidates. The search software avoids atom-by-atom matching of target 
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structures that do not contain all the substructures appearing in the query structure. The pre-defined 
substructures can also be called as search keys. These were adopted in MDL’s ISIS structure database 
systems. In MDL’s structure database systems (MACCS and ISIS), there are 166 search keys, and 960 
extended search keys [27]. The 166 search keys can be represented as a string that contains 166 letters. 
Later it was found to be much more efficient to use 166 bits instead of 166 letters since computers can 
carry out logic bit operations dramatically faster than string comparisons. On the other hand, one 
wonders how many search keys will suffice and, what substructures need to be covered by these search 
keys? 

 
Bit-maps and fingerprints.   
 

Pre-defined substructures, such as those used by MDL search keys, can be biased and may not 
work well for the structures that are not covered. Therefore, systematical substructure generation 
approaches were introduced. Hundreds of thousands of substructures can be generated by a 
systematical approach. In order to reduce the storage cost and enhance the computation performance, 
bit-maps are used to hold the substructure information. The idea is that a bit position represents a 
specifically enumerated substructure. When a bit is set to 1, it means the corresponding substructure is 
present and, 0 means the substructure is absent [28-29]. Such bit-maps are called fingerprints. Thus, a 
structure is profiled by its fingerprint as designated by its bit-map.  There are many types of molecular 
fingerprints depending on what set of substructures are used. For example, Daylight uses fingerprints 
that represent the substructures generated from the Daylight Fingerprint (software) Toolkit, and MDL 
fingerprints represent the substructures defined by the MACCS search keys, etc. Fingerprint 
approaches dramatically enhanced the performance of chemical structure database searching. The 
transition from linear notation strings to bit-maps was a profound development for cheminformatics. 
Having bit-map technology, one can compute the similarity of two different size structures. Although 
two structures may have a different number of atoms and bonds, they can have the same number of 
fingerprints that are each stored in the same size bit-maps (binary arrays). Since a bit-map profiles a 
structure, each component in the bit-map is termed as a structure descriptor.  Further questions that 
need to be considered are: (1) can these binary structural descriptors be expanded to real numbers? (2) 
can we use this technology to profile a compound library that may contain millions of structures? 

 
Structure descriptors and profiling compound libraries.  
 

After the pharmaceutical industry adopted high throughput techniques in the 1990s, quick profiling 
of a compound library with thousands or millions of chemical structures became an important issue. 
The purpose of profiling compound libraries is to answer the following questions: (1) how diverse is a 
library? (2) how similar are compounds in the corporate library compared with marketed drugs? (3) 
how should one select a sub-library, that structurally represents the whole library? (4) is a foreign 
library structurally complementary to the corporate library? Consideration of these questions is known 
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as diversity analysis. In order to do diversity analysis, scientists realized that they needed high 
throughput data mining approaches. Therefore, cheminformatics was born. The earliest 
cheminformatics approaches employed chemical database concepts, such as MACCS search key based 
fingerprints and Daylight fingerprints, in order to profile chemical structures. Diversity analysis was 
carried out by means of these tools. Currently, structure descriptors are used not only as sub-structure 
bit-maps, but also, to represent any structural property. These can be based upon topological or three-
dimensional properties, such as: molecular indices, molecular weight, number of H-bond donors, etc. 
The tools to calculate various structure descriptors are available publicly and commercially [30-35].  
Structure descriptors are fundamental tools to profile compound libraries and diversity analysis is one 
of the main components of modern cheminformatics. 

As mentioned previously, there are many structure descriptors. It is important to know how to use 
them. However, it should be noted that they couldn’t all be used together, because some of them may 
be redundant, some of them are correlated with each other, and too many descriptors will increase 
computation costs. Therefore, one needs rigorous approaches to generate and select descriptors. If a 
structure is represented by two or three structure descriptors, a compound library containing thousands 
of structures can be graphed in a two- or three-dimensional space using the descriptors as coordinates. 
Such graphs visually show compound structural diversity of a database. However, it should not be 
one’s objective to represent a structure just using three descriptors. It would be better to represent a 
structure with many (perhaps one hundred) descriptors. However, diversity graphs would then have to 
be one hundred-dimensional. In order to view a one hundred-dimensional space, one needs a 
technology to project higher dimensional data space to two- or three-dimensional space. This 
technology is known as dimension reduction. 

 
Dimension reduction and descriptor selection.  
 

Mathematically, a library with n compounds and represented by m (m >3) descriptors is an n ×××× m 
dimensional matrix. There is no way to graph the matrix, although one would like to review the 
diversity graphically. In order to solve this problem, dimensionality needs to be reduced to two or 
three. That is, dimension reduction is required. Many dimension reduction approaches are available. 
We will summarize some of the widely accepted dimension reduction technologies. 
  
Multidimensional scaling.  
 
 Multidimensional scaling (MDS) [36] or artificial neural network (ANN) methods are traditional 
approaches for dimension reduction. MDS is a non-linear mapping approach. It is not so much an exact 
procedure as rather a way to “rearrange” objects in an efficient manner, and thus to arrive at a 
configuration that best approximates the observed distances. It actually moves objects around in the 
space defined by the specified number of dimensions and, then checks how well the distances between 
objects can be reproduced by the new configuration. In other words, MDS uses a function 
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minimization algorithm that evaluates different configurations with the goal of maximizing the 
goodness-of-fit (or minimizing “lack of fit”) [37]. 
  
Self-organising map.  
 
 Self-organising map (SOM) is one of the ANN methods. Effectively, it is a vector quantization 
algorithm that creates reference vectors in a high-dimensional input space and uses them, in an ordered 
fashion, to approximate the input patterns in image space. It does this by defining local order 
relationships between the reference vectors so that they are made to depend on each other as though 
their neighboring values would lie along a hypothetical “elastic surface” [38-40]. The SOM is 
therefore able to approximate the point density function, p (x), of a complex high-dimensional input 
space, down to a two dimensional space, by preserving the local features of the input data. 
  
PCA and FA.  
 
 Principal component analysis (PCA) [41-42] and factor analysis (FA) [43] are usually used to filter 
out redundant descriptors and, eliminate descriptors having minor information contribution. PCA is 
used to transform a number of potentially correlated variables (descriptors) into a number of relatively 
independent variables that then can be ranked based upon their contributions for explaining the whole 
data set. The transformed variables that can explain most of the information in the data, are called 
principal components. The first principal component accounts for as much of the variability in the data 
as possible, and each succeeding component accounts for as much of the remaining variability as 
possible. The components having minor contribution to the data set may be discarded without losing 
too much information. FA uses an estimate of common variance among the original variables in order 
to generate the factor solution. A factor is the linear combination of original variables. The number of 
factors will always be less than the number of original variables. So, selecting the number of factors to 
keep for further analysis using common factor analysis is more problematic than is selecting the 
principle components. If the number of principal components or factors is less than four, then the 
multidimensional data can be graphed in two- or three-dimensional space, that is, PCA and FA can be 
used to reduce dimensionality. These dimension reduction approaches do not always work well. In 
order to validate the dimension reduction results, we need a technology to map a graphed point to its 
structure drawing. This technology is known as chemical structure-related data visualization. 
 
Visualizing structures from graphed data points 
 

Chemical structure graphs are chemists’ natural language. Since a compound library is mapped to 
points on a two-dimensional graph, a reasonable requirement is for one to have an easy way to see the 
structure by pointing to the corresponding dot. This problem has been well resolved by Spotfire® 
software [44]. Figure 1 shows an example [45]. 
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Figure 1.  Spotfire® software compares libraries and refers a structure from a dot. The 
red dots represent CMC (Comprehensive Medicinal Chemistry, MDL database product) 
compounds, and blue dots represent data from another library. 

 
 
 

Descriptor selection.   
 
 Successful data mining depends on good descriptor selection. If molecules are represented by 
improper descriptors, they will not lead to reasonable predictions. Correct descriptor selections rely on 
understanding the computational problem that one is trying to solve. Correlation analysis and relevant 
analysis approaches can help with this understanding. The criteria used for selecting descriptors should 
be: (1) the selected descriptors should be bioactivity related (requiring correlation analysis), (2) the 
selected descriptors should be informative (should have diversified value distributions), (3) the 
selected descriptors should be independent of each other (if two descriptors are correlated to each 
other, related property will be unfairly biased), (4) the selected descriptors should be simple to extract, 
easy to explain to a chemist, invariant to irrelevant transformations, insensitive to noise, and efficient 
to discriminate patterns in different categories (specificity). After comparing performance and 
predictability in high throughput data mining, researchers from multiple groups have consistently 
concluded that 2D descriptors perform significantly better than 3D descriptors [46-49]. This suggests  
that more research is needed in 3D descriptors. 
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 The goal of data mining is to derive patterns that are related to specified activities or properties. By 
analyzing data, we may divide a compound library into several groups. The compounds in the same 
group have common structural features (patterns). This is considered its classification. In order to 
classify structures, pattern recognition algorithms are needed. 

 
Classifications and pattern recognition.  
 

The core technology of data mining is pattern recognition. In cheminformatics, regression and 
classification are commonly used pattern recognition technologies. Regression analysis is usually 
applied to the variables that have continuous values. However, many structural descriptors are 
scattered or Boolean variables, which have to be processed by classification approaches, such as 
supervised or non-supervised learning algorithms. Before recognizing patterns, let’s understand what 
patterns are of interest to chemists. 

 
Patterns.  
 

Deriving patterns from a large-scale data set requires first understanding the problem before 
attempting to select and try from the many data mining tools. A researcher should know the types of 
patterns that he or she is seeking. Table 1 lists some commonly studied patterns. 
 

Table 1. Common Cheminformatics Patterns 
 

Pattern Method Remarks 
 

N

N

R2

R1

 

Markush 
structure or 
generic 
structure 

This is a topological pattern used by 
chemists for many years. It is determined by 
experience. It is an efficient way to represent 
an unlimited number of compounds with the 
same scaffold. Additional restrictions can be 
applied to make the pattern more specific. It 
is suitable for lead optimization and hit-to-
lead efforts. 

 

N

N

O  

Fingerprint This is the topological pattern systematically 
generated from an algorithm. This pattern 
has no human bias, but can be meaningless 
to chemistry. It is used in HTS data mining. 



Molecules 2002, 7 
 

576 

 
 
 

 

Three-
dimensional 
pharmacophore 

This pattern is derived, manually or 
computationally, from a three-dimensional 
molecular model.  The pattern is based upon 
a physical model and binding mechanism. It 
is sensitive to conformation changes. Better 
results are obtained when supported by 
crystal or NMR structural data. It is suitable 
for lead optimization.  

 
 

 

Regression Regression methods are the most traditional 
approaches for pattern recognition. These 
methods assume the variables are continuous 
and the curve shapes are pre-defined. For 
multidimensional data, curve patterns are not 
known and trying all possible curves is very 
time consuming. In these cases, genetic 
algorithms may be applied to partially solve 
the problem of identifying curve patterns. 

............................................................................................  

Decision tree 
classification 

This approach is applied when there are a 
great number of descriptors and, the 
descriptors have various value types and 
ranges. 

 

Hierarchical 
clustering 

This approach assumes the objects have 
hierarchical characters. The methods require 
similarity or distance matrices. The approach 
may produce multiple answers for users to 
explain or with which to experiment. 

 

 

Non-
hierarchical 
clustering 

The approach assumes the objects have non-
hierarchical characters, and the number of 
clusters is known prior the computation. The 
method requires similarity or distance 
matrices. The approach may produce 
multiple answers for users to explain or with 
which to experiment. 
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Self-
Organization 
Map (SOM) 

This is a neural network approach. The 
number of neurons, configuration of neurons, 
neighboring function, training rate and area, 
and monitoring parameters should be 
predefined. This method needs similarity or 
distance measurements [50]. 

 
 In order to compare patterns, one needs similarity or distance measurements. These measurements 
are briefly summarized as follows.  
 
Similarity or Distance metrics.  
 

Many pattern recognition techniques require distance or similarity measurements to quantitatively 
measure the distance or similarity of two objects (in our case, the objects are small molecules). 
Euclidean distance, Mahalanobis distance and correlation coefficients are commonly used for distance 
measurement, 
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where n is the number of descriptors, D represents the absolute distance between A and B, R represents 
the angle of vectors A and B in multidimensional space and, is interpreted as the quantity of the linear 
correlation of A and B. The value range of R is between –1 to +1 that is, from 100% dissimilar to 100% 
similar. The Euclidian distance assumes that variables are uncorrelated. When variables are correlated, 
the simple Euclidean distance is not an appropriate measure, however, the Mahalanobis distance (2) 
will adequately account such correlations. The Tanimoto coefficient is commonly employed for 
similarity measurements of bit-strings of structural fingerprints (Boolean logic). The simplified form is 
(4). 

γβα
γ

−+
=),( BAT  ,      (4) 

where α is the count of substructures in structure A, β the count of substructures in structure B, and γ is 
the count of substructures in both A and B. Many different similarity calculations have been reported. 
Holliday, Hu and Willett have published a comparison of 22 similarity coefficients for the calculation 
of inter-molecular similarity and dissimilarity, using 2D fragment bit-strings [51]. 
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 With proper structure descriptors and similarity or distance measurements, we are ready to classify 
(group) compounds. There are many classification approaches. They can be categorized into clustering 
and partitioning. 

 
Clustering.  
 

The term cluster analysis (CA) was first used by Tryon, in 1939. Actually CA encompasses a 
number of different classification algorithms. A general question in many areas of an inquiry is how to 
organize the observed data into meaningful structures, that is, how to develop taxonomies [52].  
Conceptually, the approach used by CA in order to address this problem, can well be described by the 
saying “birds of a feather flock together”. Since its initial introduction, many CA algorithms have been 
invented. They belong to two categories: hierarchical clustering [54] and partitional (non-hierarchical) 
clustering [53, 55]. Hierarchical clustering rearranges objects in a tree-structure (see Table 1). Javis-
Patrick (also known as nearest neighbor cluster algorithm) is commonly used to cluster chemical 
structures [56]. 

Correct clustering results rely on: (1) proper structure representation (bioactivity related 
descriptors), (2) suitable data normalization, and (3) carefully selected cluster algorithms and proper 
parameter settings. Data normalization is the basis for comparing experiments within large series when 
experimental conditions may not be identical. Normalization ensures that the experimental quality of 
the data is comparable and, sound mathematical algorithms have been employed. Normalization 
includes various options to standardize data and to adjust background levels and correct gradients. The 
commonly used normalization functions are as follows: 

 

Linear normalization: 
minmax

minminmax
min

)()''(''
XX
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i −
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Ratio normalization: 
∑
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Z-score normalization: 
δ

)(' xxx i
i

−=       (7) 

Generally, linear normalization is recommended (if X�max = 1 and X�min = 0, x�i is normalized in 
percentage by formula (5)). Z-score assumes xi obeys Gaussian distribution. If xi has a different 
distribution, then the normalization will twist the pattern (variance will be far away from the standard 
deviation) and leads to incorrect pattern recognition. One of the puzzling problems of cluster 
algorithms is that they require a user in some ways to guess the number of clusters before carrying out 
the clustering computation. Also, clustering cannot tolerate the heterogeneity of the data. This makes 
one turn to partitioning approaches. 
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Partitioning.  
 

Partitioning algorithms, such as, decision trees, are non-parametric approaches. It is difficult for 
regression or parametric classification approaches to work on heterogeneous types of data. The 
excessively large number of descriptors can make clustering computation infeasible. Decision trees are 
introduced to solve these problems. One of the most popular decision tree techniques is recursive 
partitioning (RP). It has been reported that RP algorithms can partition on data sets with over 100,000 
compounds and 2,000,000 descriptors, in less than an hour [57-58]. RP algorithms can also be used to 
build multivariable regression models. One of the disadvantages of the decision tree approach is 
similar to a problem with the clustering algorithm approach, namely: it suggests too many solutions. 

 
Applications in drug discovery.  
 

In the past decade, many cheminformatics approaches have been applied in the drug discovery 
process. It is impossible to enumerate all the applications, but the major applications can be outlined as 
follows. 

 
Compound selection.  
 

For many pharmaceutical organizations, HTS capacity is allocated on two levels: the number of 
targets screened and the number of samples screened per target. Screening all available compounds 
against all available targets is beyond the HTS capacity of pharmaceutical organizations [59]. On the 
other hand, for a given parallel synthesis protocol and for available reactants, combinatorial chemistry 
can make huge numbers of compounds which are, as well, beyond the HTS capacity of pharmaceutical 
organizations. Therefore, one must apply some method to select a smaller set of compounds from a 
large compound pool. The main tasks for compound selection are: (1) to select and acquire compounds 
from external sources that will provide complementary diversity to existing libraries, (2) to select for 
screening, from a corporate compound pool, a subset that provides diversity representation, (3) to 
select reagents to make a combinatorial library which will maximize diversity, and (4) to select 
compounds, from available compound collections, that are similar to known ligands yet, with different 
and novel scaffolds. Diversity-based compound selection has been done using many classification 
approaches.  

As early as 1995, Gasteiger and his co-workers reported an approach to assess similarity and 
diversity of combinatorial libraries by spatial autocorrelation functions and neural networks [60]. 
Sheridan and Kearsley at Merck used a genetic algorithm to suggest combinatorial libraries [61]. In 
1996, Brown and Martin at Abbott Laboratories evaluated a variety of structure-based clustering 
methods for use in compound selections [62]. They used MACCS search keys (MDL), Unity (Tripos) 
and Daylight 2D descriptors, Unity 3D rigid and flexible descriptors and two Abbott in-house 3D 
descriptors based on potential pharmacophore points. Further, they have compared Ward's and group-
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average hierarchical agglomerative, Guénoche hierarchical divisive and Jarvis-Patrick non-hierarchical 
clustering methods. The results suggested that 2D descriptors and hierarchical clustering methods are 
best used for separating biologically active molecules from inactives. In particular, the combination of 
MACCS descriptors and Ward’s clustering was optimal. Gillet, Willett, and Bradshaw reported a 
dissimilarity-based compound selection (DBCS) algorithm for generating structurally diverse 
combinatorial libraries [63]. They applied a DBCS approach at the product level, but it is synthetically 
inefficient since it does not result in a combinatorial library. Then they applied a genetic algorithm for 
selecting combinatorial libraries from the fully enumerated products and demonstrate that these 
libraries are significantly more diverse than those generated using reactant-based selection. Agrafiotis 
and the co-works at 3D Pharmaceuticals developed a number of algorithms for compound library 
diversity analysis, for examples: stochastic algorithms for maximizing diversity and distance-based 
diversity measurements based upon k-d trees [64-65]. Clark at Tripos implemented the OptiSim® 
program based on a stochastic selection algorithm that includes maximum and minimum dissimilarity-
based selection. Clark indicated that OptiSim® could mimic the representativeness of selections based 
on hierarchical clustering [66-67].  

Later, Pötter at Bayer AG compared a library design based upon random selection against the 
maximum and minimum dissimilarity-based selection. They found that using maximum dissimilarity 
methods lead to more stable quantitative structure-activity relationship (QSAR) models with higher 
predictive power compared to randomly chosen compounds. This predictive power is especially high 
when there is no compound in the test dataset with a similarity coefficient less than 0.7 to its nearest 
neighbor in the training set [68]. Pearlman and Smith developed cell-based diversity algorithms [69]. 
They proposed a simple algorithm for reducing dimensionality by identifying which axes (metrics) 
convey information related to affinity for a given receptor and which axes can be safely discarded as 
being irrelevant to that given receptor. This algorithm often reveals a three- or two-dimensional 
subspace of a (typically six-dimensional) BCUT chemistry-space and, thus, enables computer graphic 
visualization of the actual coordinates of active compounds and combinatorial libraries. Pearlman and 
Smith illustrated the importance of using receptor-relevant distances for identifying near neighbors of 
lead compounds, comparing libraries, and other diversity-related tasks.  

In 1999, Denis M. Bayada, Hans Hamersma, and Vincent J. van Geerestein [70] explored the 
differences between diversity and representatively, validated different diversity selection methods 
(such as the MaxMin function), compared several representativity techniques (selection of compounds 
closest to centroids of clusters, Kohonen neural networks, nonlinear scaling of descriptor values), and 
compared various types of descriptors (topological and 3D fingerprints, including some validated 
whole-molecule numerical descriptors that were chosen for their correlation with biological activities). 
They found that only clustering based on fingerprints or on whole-molecule descriptors can give 
results consistently superior to random selection when extracting a diverse set of activities from a file 
with potential drug molecules. The results further indicated that clustering selection from fingerprints 
is biased toward small molecules, a behavior that might partly explain its success over other types of 
methods. Using numerical descriptors instead of fingerprints, removes this bias without penalizing 
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performance too much. New diversity analysis approaches are still periodically being introduced 
coming [71-79], although there is now more emphasis on focused library design and focused 
screening. Bajorath in 2001 published a perspective in this field [80]. 

 
Virtual library generation.  
 

As equipment is being automated and miniaturized, HTS capacity keeps expanding [81] (Figure 2). 
But, increased HTS efforts have not significantly increased drug discovery successes [82]. Instead, 
other bottlenecks are being encountered such as: hit-to-lead processes, lead optimization, and target 
validation. 

Figure 2. The increase of HTS capacity 
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Considering total lead-like molecular space, the total percentage of compounds that current 

technologies have made and screened, is still small. This has made way for the birth of in silico or 
virtual screening (VS) technology [83-85]. Now, the compounds to be virtually screened are not 
limited to those that exist within the corporate inventory. A virtual library can be generated using a 
computational approach. The criteria for generating a general (not focused) virtual library are: (1) 
diversity, (2) ADMET properties, and (3) synthetic accessibility. There are a number of ways to 
generate a diverse virtual library. However, it is challenging to make a virtual library that meets the 
criteria set forth above in (2) and (3). Although work on this aspect has been reported [86-87], more 
investigation is required. 
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Virtual screening.  
 

In conjunction with high-throughput screening technology, virtual screening has become a main 
tool for identifying leads [83]. Virtual screening is actually one of the computational tools used to filter 
out unwanted compounds from physical libraries or in silico libraries. In order to reduce drug 
discovery costs, one needs to remove undesired compounds as early as possible. Filters have been built 
based upon oral bioavailability, aqueous solubility, metabolic clearance and, chemically reactivity or 
toxic chemical groups [88-90]. A virtual screening method for identification of “frequent hitters” in 
compound libraries has been reported [91]. If the target structure is known, one of the structure-based 
virtual screening methods that can be used is high throughput docking [92-93]. If the target structure is 
unknown, but the ligands from the literature or, competitors are known, then, similarity approaches can 
be applied [94-96]. If neither target structure nor ligand structure is known, then SAR patterns can be 
derived from experimental screening data by statistical approaches [97-99]. Also, virtual screening is a 
great tool for the design of a combinatorial library with a given target. For example, Hopfinger and co-
works have constructed a combinatorial library of glucose inhibitors of glycogen phosphorylase b 
using virtual screening technology and 4D-QSAR analyses [100]. Using the 4D-QSAR model 
developed for a training set of 47 glucose analogue inhibitors of glycogen phosphorylase, the 
investigators have developed a virtual approach to screen a focused combinatorial virtual library of 225 
inhibitors. Analysis of the binding predictions across the virtual library, reveals patterns of structure-
activity information. The patterns are then used to design new focused libraries. A recent review has 
indicated that HTS and VS are moving toward integration [101]. It is expected that such integration 
will make HTS more powerful for use in new lead discovery. 

 
SAR on HTS data and sequential screening.  
 

Sequential HTS is illustrated in Figure 3. The purpose of this process is to maximize receptor-
ligand interaction information by using HTS and CC technologies, discover novel leads as soon as 
possible and, minimize HTS and library production costs. Hawkins, Young, Rusinko and co-workers at 
GlaxoSmithKline recently published a number of papers on sequential HTS [102-103]. Sequential 
HTS screens compounds iteratively for activity, analyzes the results and, selects a new set of 
compounds for next screening, based on what has been learned from the previous screens. The 
iteration ends when the desired, nano-molar, novel leads are identified. Compound selection is driven 
by rapid SAR analyses using recursive-partitioning techniques [104]. Although there are not many 
publications on the subject, sequential HTS has been studied in many pharmaceutical companies under 
different terminologies, such as: recursive screening, and progressive screening. 
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Figure 3. Scheme for sequential HTS 
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In silico ADMET.  
 
Historically, drug absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies in 

animal models were performed after a lead compound was identified. Now, pharmaceutical companies 
are employing higher-throughput, in vitro assays to evaluate the ADMET characteristics of potential 
leads at earlier stages of development. This is done in order to eliminate candidates as early as 
possible, thus avoiding costs, which would have been expended on chemical synthesis and biological 
testing. Scientists are developing computational methods to select only compounds with reasonable 
ADMET properties for screening. Molecules from these computationally screened virtual libraries can 
then be synthesized for high-throughput biological activity screening. As the predictive ability of 
ADME/Tox software improves, and as pharmaceutical companies incorporate computational 
prediction methods into their R&D programs, the drug discovery process will move from a screening-
based to a knowledge-based paradigm. Under multi-parametric optimization drug discovery strategies, 
there is no excuse for failing to know the relative solubility and permeability rankings of collections of 
chemical compounds for lead identification [105]. 

 
1. Absorption.  Passive intestinal absorption (PIA) models have been studied by many groups, for 

years. The fluid mosaic model holds that the structure of a cell membrane is an interrupted 
phospholipid bilayer capable of both hydrophilic and hydrophobic interactions [106]. Trans-
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cellular passage through the membrane lipid/aqueous environment is the predominant pathway for 
passive absorption of lipophilic compounds, while low-molecular-weight (<200), hydrophilic 
compounds make use of the water-filled channels of the tight junctions between membrane cells 
(paracellular transport) [107]. Therefore, lipophilicity is considered a key property for activity in 
drug design and is a common property used to estimate the membrane permeability of a molecule. 
Lipophilicity is measured as the log of the partition coefficient between n-octanol and water (logP). 
LogP prediction programs are available and results are reasonably good [108a-e]. But, the 
relationship between logP and permeability is not linear. Permeability drops at both low and high 
logP. It is theorized that These non-linearities due to: (1) the inability of weakly lipophilic 
compounds to penetrate the lipid portion of the membrane and (2) the excessive partitioning of 
strongly lipophilic compounds into the lipid portion of the membrane and their subsequent inability 
to pass through the aqueous portion of the membrane [108f].  A strong relationship between PIA 
and polar surface area (PSA) has been discovered by several groups [109-113]. However, the 
models usually do not take the effects of other descriptors into account. In addition, the datasets 
used to build the PSA models are small. Even though a wide range of PSA was covered, it is not 
necessarily true the models cover the entire chemical space. Therefore, linear and non-linear 
multivariate models have been introduced to model PIA based upon: logP, molecular weight, H-
bonding, free energy, H-bond donor, H-bond acceptor, polarizability, numbers and strengths of H-
bond acceptor nitrogen and oxygen atoms, number of H-bond donor atoms, and lipophilicity (log D 
at pH 7.4) on the Caco-2 cell permeability. To select the best descriptors for predictive models, a 
genetic algorithm has been used  

 
2. Distribution. CNS-active drugs (CNS, central nervous system) must cross the blood-brain barrier 

(BBB). The experimental determination of the brain-blood partition ratio is difficult and time-
consuming to compute since it involves the direct measurement of the drug concentration in the 
brain and blood of laboratory animals. This obviously requires the synthesis of the compounds, 
often in radiolabeled form [120]. In vitro techniques to predict brain penetration are available 
[121], but they are experimentally cumbersome. The earlier work involved in correlating 
log(Cbrain/Cblood) or logBB and logP (octanol-cyclohexane), Pcyclohexane, or logPoct was based upon 
smaller (about 20 compounds) data sets [122-124]. More descriptors have been correlated with 
logBB [125-127], such as: excess molar refraction, solute polarizability, hydrogen bond acidity and 
basicity, and molecular volume. More recently a regression study on logBB and free energy �G 
has been reported [122]. Descriptors derived from 3D molecular fields to estimate the BBB 
permeation on a larger set of compounds and to produce a simple mathematical model have been 
studied. The method used (VolSurf) transforms 3D fields into descriptors and correlates them to 
the experimental permeation by a discriminant partial least squares procedure [128]. Human serum 
albumin (HSA) protein is the major transporter of non-esterified fatty acids, as well as of different 
drugs and metabolites, to different tissues. HSA allows solubilization of hydrophobic compounds, 
contributes to a more homogeneous distribution of drugs in the body, and increases their biological 
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lifetime. The binding strength of any drug to serum albumin is the main factor for availability of 
that drug to diffuse from the circulatory system to target tissues. All these factors cause the 
pharmacokinetics of almost any drug to be influenced and controlled by its binding to serum 
albumin [129]. Therefore, QSAR study on binding of drugs and metabolites to HSA is extremely 
important for the drug distribution. Biosensor analysis for prediction of HSA has been reported 130. 
In order to build an in silico predictive model for binding affinities to HSA, Colmenarejo and co-
workers at GlaxoSmithKline used a genetic algorithm to exhaustively search and select for 
multivariate and non-linear equations, starting from a large pool of molecular descriptors. They 
found that hydrophobicity (as measured by the ClogP) is the most important variable for 
determining the binding extent to HSA. Binding to HSA turns out to be determined by a 
combination of hydrophobic forces together with some modulating shape factors [131]. This agrees 
with X-ray structures of HSA alone or, bound to ligands, where the binding pockets of both sites I 
and II are composed mainly of hydrophobic residues [132]. 

 
3. Metabolism. Drug metabolism is another barrier to overcome. Metabolism is studied, by in vitro, in 

vivo and in silico approaches. HTS has been used for metabolism and pharmacokinetics [133-134].  
In vitro approaches determine metabolic stability, screening for inhibitors of specific cytochrome 
P450 isozymes and, identifying the most important metabolites. In vivo approaches measure 
hepatic metabolic clearance, volume of distribution, bioavailability, and, identify major 
metabolites. In silico approaches are categorized into three classes [135]: QSAR and 
pharmacophore models, protein models, and expert systems. QSAR and pharmacophore models 
predict substrates and inhibitors of a specific cytochrome P450 isozyme [136-137]. Protein models 
rationalize metabolite formations and identify possible substrates, potential metabolites or, 
inhibitors by means of docking algorithms [138-139]. Stereoelectronic factors involved in 
metabolic transformations can be taken into account using quantum chemical calculations. Expert 
systems are predictive databases that attempt to identify potential metabolites of a compound as 
determined by knowledge based rules defining the most likely products [140-141]. Testa advised 
that in structure-metabolism relationship (SMR) studies, the greater the chemical diversity of the 
investigated compounds, the smaller the chance that SMRs exist and can be uncovered. On the 
other hand, the information content of an SMR (if it exists) will increase as the boundaries of the 
chemical space increases and as the diversity of the compounds under investigation increases 
[142]. This paradox may limit the capacity of SMR, no matter which approach is used. Keseru and 
Molnar [135] think efficient PK optimization requires metabolic diversity within the focused 
library that cannot be achieved by the application of a simple SMR with limited information 
content. The high degree of structural similarity (especially in combinatorial libraries with a 
common core) prevents the application in metabolic diversity analysis. Therefore, they introduced 
a metabolic fingerprint concept, METAPRINT, for the assessment of metabolic similarity and 
diversity in combinatorial chemical libraries. Their metabolic fingerprint was developed by 
predicting metabolic pathways and corresponding potential metabolites. 
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4. Excretion/Elimination. Drugs such as the non-steroidal anti-inflammatory drugs (NSAIDs), are 
used in long term treatment. The accumulation of these drugs in the body may lead to serious side 
effects. Therefore, the prediction of half-life, which determines the length of time a drug will 
persist in the body, is important in order to reduce subsequent drug failures. Prediction of half-life 
is difficult, due to the multi-faceted nature of drug elimination. Distribution of drug in fat and 
major organs, excretion by kidneys and metabolism by liver all contribute to the rate at which a 
drug is eliminated from the body. On the other hand, it may be possible to make use of qualitative 
predictions of half-life. Such information can be used, for example, to predict whether a drug is 
likely to accumulate to a significant extent when used for prolonged treatment [143]. 

 
5. Toxicity. Many drugs are withdrawn for safety reasons and there are many reasons, including 

metabolism and excretion/elimination that cause toxicity. Current toxicity prediction approaches 
use either mechanistic or correlative methods. Correlative systems take molecular descriptors, 
biological data, and chemical structures and, by use of statistical analysis of data sets, represent 
them in mathematical models. The models describe the relationships between structure and activity 
and can be used to predict toxicity. The mechanistic approach involves human experts who make a 
considered assessment of the mechanism of interaction with a biological system, taking the 
molecular properties, biological data, and chemical structures into account [144]. The correlative 
approach uses an unbiased assessment of the data to generate relationships and predict toxicity. It is 
capable of discovering potentially new SARs [145] and, can lead to new ideas in the human 
assessment of mechanisms by which chemicals interact with biological systems. It is most useful 
for congeneric data sets or when one has a large amount of good data but little mechanistic 
knowledge. However, it can also generate relationships that have little chemical or biological 
plausibility. Results obtained are heavily dependent upon the quality of the data used to build the 
model. For these reasons careful validation is required for effective use of the correlative approach. 
The mechanistic method is based upon an understanding or hypothesis of the mechanisms of 
molecular interactions that determine the activity, i.e., there is some human input into the system of 
SAR generation. However, systems using this approach are restricted to human knowledge, being 
incapable of discovering new relationships automatically. As a consequence, they also have a 
tendency to be biased toward current ideas about mechanisms of action [144]. The early toxicity 
models were based on QSAR models and were used to predict LD50 [144], based upon various 
descriptors [146-148]. It was also reported that QSAR models (partial least-squares (PLS), 
Bayesian regularized neural network) correlating IGC50 [149] with the hydrophobicity, the 
logarithm of the 1-octanol/water partition coefficient, the molecular orbital properties, the lowest 
unoccupied molecular orbital energy (Elumo) and, maximum acceptor super-delocalizability (Amax) 
[150-151]. More QSAR models are still coming forth [152-153]. A representative mechanistic 
toxicity prediction approach was reported by Sanderson and co-workers [144, 154-156]. The 
program is now commercially available [157]. Artificial neural networks (ANN) have recently 
been applied in toxicity predictions [158-160]; these include: back-propagation neural network, 
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Bayesian-Regularized Neural Networks, and self-organization map (SOM). The organizations 
providing ADMET solutions are listed in reference [161]. 
 

3. Future Directions 
 
Parallel optimization.  
 

Cheminformatics has attained many achievements in diversity analysis, SAR, and virtual screening 
during the past decade. The new challenge is the parallel optimization of potency, selectivity and 
ADMET properties via predictive computational models [17]. Currently, there is no integrated system 
for this parallel optimization. In silico ADMET models are not broadly accepted and utilized because 
these models are not sufficiently robust and do not cover the diversity of medicinal chemists’ concerns. 
Good performance has, however, been attained in drug-likeness, solubility, and lipophilicity (logP). 

 
The paradox of predictivity versus diversity.  
 

Many ADMET models are based upon  small sets of chemical compounds (from tens to hundreds). 
These models are frequently cited as non-significance by potential users. Paradoxically, one of the 
reasons that these sets are so small is that many of the pharmaceutical companies in which these same 
potential users are working, do not share their in-house experimental data [19]. However, a more 
general problem for SAR study provides even a greater paradox, that of: predictivity versus diversity. 
This problem evolves from the fact that the greater the chemical diversity of the investigated 
compounds, the smaller the chance that SAR models exist and can be uncovered. On the other hand, 
the information content of an SAR model (if it exists) will increase as the boundaries of the chemical 
space and the diversity of the compounds under investigation increases. This phenomenon was 
revealed  by Testa in his structure-metabolism relationship (SMR) studies [142]. We believe it is also 
true in other in silico ADMET studies. It results from the condition that each bioactivity has its own 
mechanism. For example, there are many mechanisms to explain toxicity. In order to solve this 
paradox problem, one might consider combining the mechanism-based approaches (for example, a 
rule-based expert system) with other data mining approaches (such as classifications, regressions, and 
neural networks). 

 
From data mining to knowledge discovery.  
 

HTS, CC, and other new technologies produce great amounts of data. The total amount of data is 
still expanding exponentially. Current drug discovery is driven by data. However, the more important 
goal is to discover knowledge from the raw data. Knowledge discovery is defined as “the non-trivial 
extraction of implicit, unknown, and potentially useful information from data” [162]. It is true that 
HTS data studies discover knowledge (structural patterns, which are responsible for the concerned 
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bioactivities). However, at the start of one’s data mining efforts, it is not know if such knowledge is 
present in the database or if it can be effectively used and even if patterns can be reasonably extricated. 
The knowledge discovery process takes the raw, experimental results from data mining (the process of 
extracting trends or patterns from data), and then transforms it into useful and understandable 
information. This information is not typically retrievable by standard techniques [163]. Knowledge 
discovery should include the following stages: 

 
Exploratory Data Analysis. The purposes of this stage is to derive features (descriptors), to select 

relevant features (bioactivities related descriptors), and to systematically identify the relations among 
the features. 

 
Pattern Discovery. This stage uses various multivariable classification technologies, linear or non-

linear regression technologies, expert system approaches and machine learning technologies to 
discover the patterns, which can explain the data in great detail. 

 
Pattern Explanation. Any result should be explainable to chemists or biologists. Some data mining 

results can be straight forward for chemists, such as, topological patterns. However, the results from 
statistical approaches or machine learning methods may appear difficult for chemists to understand. 
Therefore, de-convolution or data visualization technologies are required to translate the abstract 
pattern such as, neural network patterns so that chemists can take chemical actions. 

 
New Technologies. New technologies, such as support vector machines (SVM) are appearing in 

recent scientific applications [164]. SVM is one of the discriminant approaches. This method 
eliminates many problems (such as: local minima, un-robust results, and too many parameter settings) 
experienced with other inference methodologies like neural networks and decision trees. However, 
more investigations are required for applying SVM in cheminformatics. 
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