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ABOUT THIS DOCUMENT 
 

The purpose of this document is to introduce Side-Channel attacks, as well as to 
assist in the decision making of how to protect cryptographic modules against 
such attacks. 

The document is divided into two parts: The first part presents Side-Channel 
attacks and provides introductory information about such attacks. The second 
part presents known methods for protection against such attacks with a brief 
effectiveness assessment, if such is available. 

This document is mainly intended for people who are considering the use of 
cryptographic modules and who need to compare several options with respect to 
their security. 

 

INTRODUCTION TO SIDE CHANNEL ATTACKS 
 

“Side channel attacks” are attacks that are based on “Side Channel Information”. 
Side channel information is information that can be retrieved from the encryption 
device that is neither the plaintext to be encrypted nor the ciphertext resulting 
from the encryption process. 

In the past, an encryption device was perceived as a unit that receives plaintext 
input and produces ciphertext output and vice-versa. Attacks were therefore 
based on either knowing the ciphertext (such as ciphertext-only attacks), or 
knowing both (such as known plaintext attacks) or on the ability to define what 
plaintext is to be encrypted and then seeing the results of the encryption (known 
as chosen plaintext attacks). Today, it is known that encryption devices have 
additional output and often additional inputs which are not the plaintext or the 
ciphertext. Encryption devices produce timing information (information about the 
time that operations take) that is easily measurable, radiation of various sorts, 
power consumption statistics (that can be easily measured as well), and more. 
Often the encryption device also has additional “unintentional” inputs such as 
voltage that can be modified to cause predictable outcomes. Side channel attacks 
make use of some or all of this information, along with other (known) 
cryptanalytic techniques, to recover the key the device is using. 

Side channel analysis techniques are of concern because the attacks can be 
mounted quickly and can sometimes be implemented using readily available 
hardware costing from only a few hundred dollars to thousands of dollars. The 
amount of time required for the attack and analysis depends on the type of attack 
(Differential Power Analysis, Simple Power Analysis, Timing, etc.) According to      
[ 1], SPA attacks on smartcards typically take a few seconds per card, while DPA 
attacks can take several hours. 

In a general, with a somewhat academic perspective as presented in [ 7], we may 
consider the entire internal state of the block cipher to be all the intermediate 
results and values that are never included in the output in normal operations. For 
example, DES has 16 rounds; we can consider the intermediate states, 
state[1::15], after each round except the last as a secret internal state. Side 
channels typically give information about these internal states, or about the 
operations used in the transition of this internal state from one round to another. 
The type of side-channel will, of course, determine what information is available 
to the attacker about these states. The attacks typically work by finding some 
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information about the internal state of the cipher, which can be learned both by 
guessing part of the key and checking the value directly, and additionally by 
some statistical property of the cipher that makes that checkable value slightly 
nonrandom. 

This document will relate only to the most common types of Side Channel 
information, which are: Timing attacks, Simple and Differential Power Analysis 
Attacks and Fault Attacks. 

 

TIMING ATTACKS 
 

Timing attacks are based on measuring the time it takes for a unit to perform 
operations. This information can lead to information about the secret keys. For 
example: By carefully measuring the amount of time required to perform private 
key operations, an attacker might find fixed Diffie-Hellman exponents, factor RSA 
keys, and break other cryptosystems [ 2]. If a unit is vulnerable, the attack is 
computationally simple and often requires only known ciphertext. 

Cryptosystems often take slightly different amounts of time to process different 
inputs. Reasons include performance optimizations to bypass unnecessary 
operations, branching and conditional statements, RAM cache hits, processor 
instructions (such as multiplication and division) that run in non-fixed time, and a 
wide variety of other causes. Performance characteristics typically depend on 
both the encryption key and the input data (e.g., plaintext or ciphertext). 
Intuition might suggest that unintentional timing characteristics would only reveal 
a small amount of information from a cryptosystem. However, as shown in [ 2], 
attacks exist which can exploit timing measurements, from vulnerable systems, 
to find the entire secret key. 

Timing measurements are fed into a statistical model that can provide the 
guessed key bit with some degree of certainty (by checking correlations between 
time measurements). 

Computing the variances is easy and provides a good way to identify correct 
exponent bit guesses. The number of samples needed to gain enough information 
to allow the recovery of the key are determined by the properties of the signal 
and the noise. The more noise there is, the more samples will be required. 
Generally, error correction techniques increase the memory and processing 
requirements for the attack, but can greatly reduce the number of samples 
required. [ 2] 

The specific examples that follow present specific background information for 
timing attacks against operations that are related to asymmetric encryption. Yet, 
it must be remembered that timing attacks can potentially be used against other 
cryptosystems, including symmetric functions. 

 

Cryptanalysis of a Simple Modular Exponentiator 
Diffie-Hellman and RSA operations consist of computing R=yx mod n, where n is 
public and y can be found by an eavesdropper. The attacker's goal is to find x, 
the secret key. For the attack, the victim must compute yx mod n for several 
values of y, where y, n, and the computation time are known to the attacker and 
x stays the same. Statistical methods will lead to the recovery of the key from 
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these measurements. The necessary information and timing measurements might 
be obtained by passively eavesdropping on an interactive protocol, since an 
attacker could record the messages received by the target and measure the 
amount of time taken to respond to each y. The attack assumes that the attacker 
knows the design of the target system, although in practice this could probably 
be inferred from timing information. The attack can be tailored to work with 
virtually any implementation that does not run in fixed time. 

The complete details about this attack, including the statistical models used, are 
available in [ 2]. 

 

Montgomery Multiplication and the CRT 
Modular reduction steps usually cause most of the timing variation in a modular 
multiplication operation. Montgomery multiplication eliminates the mod(n) 
reduction steps and, as a result, tends to reduce the size of the timing 
characteristics. [ 2] 

The Chinese Remainder Theorem (CRT) is also often used to optimize RSA private 
key operations. With CRT, (y mod p) and (y mod q) are computed first, where y 
is the message. These initial modular reduction steps can be vulnerable to timing 
attacks. The simplest such attack is to choose values of y that are close to p or to 
q, then use timing measurements to determine whether the guessed value is 
larger or smaller than the actual value of p or q. If y is less than p, computing y 
mod p has no effect, while if y is larger than p, it will be necessary to subtract p 
from y at least once. The specific timing characteristics depend on the 
implementation. [ 2] 

In some cases it may be possible to improve the Chinese Remainder Theorem 
RSA attack to use known (not chosen) ciphertexts, reducing the number of 
messages required and making it possible to attack RSA digital signatures [ 2]. 
Modular reduction is done by subtracting multiples of the modulus, and 
exploitable timing variations can be caused by variations in the number of 
compare-and-subtract steps. 

According to [ 2], it is not yet known whether timing attacks can be adapted to 
directly attack the mod p and mod q modular exponentiations performed with the 
Chinese Remainder Theorem. 

 

Timing Cryptanalysis of DSS 
If the modular reduction function runs in non-fixed time, the overall signature 
time should be correlated with the time for the (x · r mod q) computation. The 
attacker can calculate and compensate for the time required to compute H(m). 
Since H(m) is of approximately the same size as q, its addition has little effect on 
the reduction time. The most significant bits of x · r are typically the first used in 
the modular reduction. These depend on r, which is known, and the most 
significant bits of the secret value x. There would thus be a correlation between 
values of the upper bits of x and the total time for the modular reduction. By 
looking for the strongest probabilities over the samples, the attacker would try to 
identify the upper bits of x. As more upper bits of x become known, more of x · r 
becomes known, allowing the attacker to proceed through more iterations of the 
modular reduction loop to attack new bits of x. [ 2] 
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POWER CONSUMPTION ATTACKS 
 

These attacks are based on analyzing the power consumption of the unit while it 
performs the encryption operation. By either simple or differential analysis of the 
power the unit consumes, an attacker can learn about the processes that are 
occurring inside the unit and gain some information that, when combined with 
other cryptanalysis techniques, can assist in the recovery of the secret key. 

As described clearly in [ 1], integrated circuits are built out of individual 
transistors, which act as voltage-controlled switches. Current flows across the 
transistor substrate when charge is applied to (or removed from) the gate. This 
current then delivers charge to the gates of other transistors, interconnect wires, 
and other circuit loads. The motion of electric charge consumes power and 
produces electromagnetic radiation, both of which are externally detectable. 

To measure a circuit's power consumption, a small (e.g., 50 ohm) resistor is 
inserted in series with the power or ground input. The voltage difference across 
the resistor divided by the resistance yields the current. Well-equipped electronics 
labs have equipment that can digitally sample voltage differences at 
extraordinarily high rates (over 1GHz) with excellent accuracy (less than 1% 
error). Devices capable of sampling at 20MHz or faster and transferring the data 
to a PC can be bought for less than $400. [ 4] 

 

Simple Power Analysis (SPA) Attacks 
Simple Power Analysis is generally based on looking at the visual representation 
of the power consumption of a unit while an encryption operation is being 
performed. Simple Power Analysis is a technique that involves direct 
interpretation of power consumption measurements collected during 
cryptographic operations. SPA can yield information about a device's operation as 
well as key material. 

The attacker directly observes a system's power consumption. The amount of 
power consumed varies depending on the microprocessor instruction performed. 
Large features such as DES rounds, RSA operations, etc. may be identified, since 
the operations performed by the microprocessor vary significantly during different 
parts of these operations. SPA analysis can, for example, be used to break RSA 
implementations by revealing differences between multiplication and squaring 
operations. Similarly, many DES implementations have visible differences within 
permutations and shifts, and can thus be broken using SPA. [ 1] 

Because SPA can reveal the sequence of instructions executed, it can be used to 
break cryptographic implementations in which the execution path depends on the 
data being processed, such as: DES key schedule, DES permutations, 
Comparisons, Multipliers and Exponentiators. 

Most cryptographic units, that were tested, were found to be vulnerable to SPA 
attacks, though according to [ 1] it is not difficult to design a system that will not 
be vulnerable to such attacks. See the next chapter for possible solutions. 
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Differential Power Analysis (DPA) Attacks 
Differential Power Analysis Attacks are harder to prevent. They consist not only of 
visual but also statistical analysis and error-correction statistical methods, to 
obtain information about the keys. DPA usually consists of data collection and 
data analysis stages that make extensive use of statistical functions for noise 
filtering as well as for gaining additional information about the processes that the 
unit is performing.  

In addition to large-scale power variations due to the instruction sequence, there 
are effects correlated to data values being manipulated. These variations tend to 
be smaller and are sometimes overshadowed by measurement errors and other 
noise. In such cases, it is still possible to break the system using statistical 
functions tailored to the target algorithm. Because DPA automatically locates 
correlated regions in a device's power consumption, the attack can be automated 
and little or no information about the target implementation is required. 

In general terms, to implement a DPA attack, an attacker first observes m 
encryption operations and captures power traces T[1::m][1::k] containing k 
samples each. In addition, the attacker records the ciphertexts C[1::m]. No 
knowledge of the plaintext is required. DPA analysis uses power consumption 
measurements and statistical methods to determine whether a key block guess K 
is correct. [ 4]. Analyzing an outer DES operation first, using the resulting key to 
decrypt the ciphertexts, and attacking the next DES subkey can find Triple-DES 
keys. DPA can use known plaintext or known ciphertext and find encryption or 
decryption keys. [ 4] 

Several improvements can be applied to the data collection and DPA analysis 
processes to reduce the number of samples required or to circumvent counter-
measures. For example, it is helpful to apply corrections for the measurement 
variance, yielding the significance of the variations instead of their magnitude. 
One variant of this approach, automated template DPA, can find DES keys using 
fewer than 15 traces from most smart cards. [ 4] 

With regards to asymmetric ciphers, as also explained in detail in [ 4], public key 
algorithms can be analyzed using DPA by correlating candidate values for 
computation intermediates with power consumption measurements. For modular 
exponentiation operations, it is possible to test exponent bit guesses by testing 
whether predicted intermediate values are correlated to the actual computation. 
Chinese Remainder Theorem RSA implementations can also be analyzed, for 
example, by defining selection functions over the CRT reduction or recombination 
processes. In general, signals leaking during asymmetric operations tend to be 
much stronger than those from many symmetric algorithms because of the 
relatively high computational complexity of multiplication operations. 

High-Order DPA (HO-DPA) involves looking at power consumptions between 
several sub-operations of the encryption operation (and not just on the operation 
in general). Also, while the DPA techniques described above analyze information 
across a single event between samples, high-order DPA may be used to correlate 
information between multiple cryptographic sub-operations. Worth mentioning is 
that there is no known unit that is vulnerable to HO-DPA and that is not 
vulnerable to DPA as well. Yet, what is done to prevent DPA must also work 
against HO-DPA. In other words, the precautions that are taken to prevent DPA 
should be ones that work against HO-DPA as well, although according to [ 1] no 
systems are currently known that are resistant to DPA and are not resistant to 
HO-DPA. 
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DIFFERENTIAL FAULT ANALYSIS (DFA) ATTACKS 
 

Fault analysis relates to the ability to investigate ciphers and extract keys by 
generating faults in a system that is in the possession of the attacker, or by 
natural faults that occur. Faults are most often caused by changing the voltage, 
tampering with the clock, or by applying radiation of various types. 

The attacks are based on encrypting the same piece of data (which is not 
necessarily known to the attacker) twice and comparing the results. A one-bit 
difference indicates a fault in one of the operations. Now, a short computation 
can be applied for DES, for example, to identify the round in which the error has 
occurred. A whole set of operations can now be carried out (detailed in [ 3]) to 
recover one DES sub-key which is the sub-key of the last round. When this sub-
key is known, the attacker can either guess the missing 8 bits (the last sub-key 
uses 48 bits) for which there are only 256 options, or simply peel off the last 
round for which he knows the sub-key and perform the attack on the reduced 
DES. This second method can be used also against Triple-DES. The attack is 
detailed in [ 3]. 

Often, DFA can be combined with other attacks as differential-key attacks or 
differential related key cryptanalysis. 

Another type of Fault Analysis is the Non-Differential Fault Analysis, but this is 
based on causing permanent damage to devices for the purpose of extracting 
symmetric keys (such as of DES). It must be mentioned that a trait of such 
attacks is that they do not require correct ciphertexts (hence, ciphertexts that 
were produced before the damage to the unit has occurred) [ 3]. This leads to the 
attacker being able to make use of natural faulty units (that are malfunctioning 
since being manufactured), without himself tampering with them. 

 

PREVENTING SIDE CHANNEL ATTACKS 
 

This chapter presents known techniques that have been detailed in published 
literature. These techniques should be evaluated when defining the precautions to 
be taken by designers of cryptographic modules in ensuring that, to some extent, 
the product has the ability to resist side-channel attacks. 

 

GENERAL COUNTERMEASURES AGAINST ALL ATTACKS 
 

General Data-Independent Calculations 
In general, all operations that are performed by the module shall be data-
independent in their time consumption. In other words, the time that operations 
take must be totally independent of the input data or the key data. Whenever 
different sub-operations are performed according to input or key bits, these sub-
operations should take the same number of clock cycles.  

The general feature of making the time needed for operation execution fixed for 
every piece of data prevents all timing attacks. This is because these attacks are 
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based on variations in the computation time according to input and key bits. The 
only input property that may have an effect on the time the operation takes is the 
length of the exponent in exponentiation operations. However, the length of the 
exponent is information with no meaningful value for the attacker, and is mostly 
broadly known anyway. 

 

Blinding 
Techniques used for blinding signatures can be adapted to prevent attackers from 
knowing the input to the modular exponentiation function [ 2]. This should help 
against any type of side-channel attack. 

Even with blinding, the distribution will reveal the average time per operation, 
which can be used to infer the Hamming weight of the exponent. If anonymity is 
important or if further masking is required, a random multiple can be added to 
the exponent before each modular exponentiation. If this is done, care must be 
taken to ensure that the addition process itself does not have timing 
characteristics, which may reveal the random multiple. This technique may be 
helpful in preventing attacks that gain information leaked during the modular 
exponentiation operation due to electromagnetic radiation, system performance 
fluctuations, changes in power consumption, etc. since the exponent bits change 
with each operation.  

A more accurate discussion of this method can be found in [ 2]. 

 

Avoiding Conditional Branching and Secret Intermediates 
According to [ 4], avoiding procedures that use secret intermediates or keys for 
conditional branching operations will mask many SPA characteristics. 

Software implementation of critical code shall not contain branching statements. 
Similarly, these will not contain conditional execution statements, such as IF 
clauses. Calculations should be performed using functions that utilize elementary 
operations (such as AND, OR and XOR) and not using branching and conditional 
execution of portions of the code. 

This feature can make it extremely difficult to guess input and key values using 
measurements of time or power consumption. Conditional execution, which 
depends on input and key data, can easily reveal properties of this data if the 
attacker measures the time or power taken to perform certain actions. When all 
the lines of code are always running regardless of the input and key bits, the time 
and power taken to perform these actions does not depend on the data and 
therefore does not reveal any of its properties. 

This feature prevents all types of timing attacks on asymmetric ciphers as well as 
some power consumption attacks. 

 

Licensing Modified Algorithms 
The most effective general solution is to design and implement cryptosystems 
with the assumption that information will leak. A few companies develop 
approaches for securing existing cryptographic algorithms (including RSA, DES, 
DSA, Diffie-Hellman, El Gamal, and Elliptic Curve systems) to make systems 
remain secure even though the underlying circuits may leak information. 
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COUNTERMEASURES AGAINST TIMING ATTACKS 
 

Adding Delays 
The most obvious way to prevent timing attacks is to make all operations take 
exactly the same amount of time. Unfortunately this is often difficult. If a timer is 
used to delay returning results until a pre-specified time, factors such as the 
system responsiveness or power consumption may still change when the 
operation finishes in a way that can be detected. [ 2]  

Also according to [ 2], fixed time implementations are likely to be slow; many 
performance optimizations cannot be used since all operations must take as long 
as the slowest operation. 

When random delays are added, although these random delays do increase the 
number of ciphertexts required, attackers can compensate by collecting more 
measurements. The number of samples required increases roughly as the square 
of the timing noise [ 2]. So, random delays can make the attack a bit more 
difficult, but still possible. 

 

Time Equalization of Multiplication and Squaring 
The time taken by the unit for the performance of multiplication and for the 
performance of exponentiation actions should be set to be similar. Due to this 
quality, an attacker will not be able to learn if, when and how many 
multiplications are made and how many exponentiations. 

The equalization can be caused by always performing both operations 
(multiplication and exponentiation), regardless of the operation that is required at 
any given time. At any stage where one of the operations is required to run, both 
should be executed and the aftermath of the unnecessary operation is to be 
silently ignored.  

This technique prevents timing attacks against the exponentiation operations that 
are performed as a part of asymmetric encryption operations and which are 
subject to the most common attacks. 

  

COUNTERMEASURES AGAINST POWER ANALYSIS ATTACKS 
 

Power Consumption Balancing 
Power consumption balancing techniques should be applied when possible. 
Dummy registers and gates should be added on which (algorithm-wise) useless 
operations are made to balance power consumption into a constant value. 
Whenever an operation is performed in hardware, a complementary operation 



 

 

 

Introduction to Side-Channel Attacks Page 10 of 12 
 

should be performed on a dummy element to assure that the total power 
consumption of the unit remains balanced according to some higher value. 

Such techniques, by which the power consumption (as viewed from outside the 
module) is constant and independent on input and key bits, prevents all sorts of 
power consumption attacks such as SPA and DPA. 

Reduction of Signal Size 
One approach to preventing DPA attacks is by reducing signal sizes, such as by 
using constant execution path code, choosing operations that leak less 
information in their power consumption, balancing Hamming Weights and state 
transitions, or by physically shielding the device. 

Unfortunately, such signal size reduction generally cannot reduce the signal size 
to zero, as an attacker with an infinite number of samples will still be able to 
perform DPA on the (heavily-degraded) signal. [ 4] 

 

Addition of Noise 
Another approach against DPA involves introducing noise into power consumption 
measurements. Like signal size reductions, adding noise increases the number of 
samples required for an attack, possibly to an unfeasibly large number. In 
addition, execution timing and order can be randomized to generate a similar 
effect [ 4]. Again, noise alone only increases the number of samples required, 
however if this increase is high enough to make the sampling unfeasible due to 
the number of samples required, the countermeasure works. 

One suggested solution in [ 5] to prevent DPA attacks using noise is by adding 
random calculations that increase the noise level enough to make the DPA bias 
spikes undetectable. The results presented in [ 5] give some indication of how 
much noise needs to be added. The main goal is to add enough random noise to 
stop an attack, but yet to add just a minimal overhead. 

 

Shielding 
In practice, aggressive physical shielding as mentioned in [ 4] can make attacks 
unfeasible but adds significantly to a device's cost and size. 

 

Modification of the Algorithms Design 
A final approach against DPA attacks involves designing cryptosystems with 
realistic assumptions about the underlying hardware. Nonlinear key update 
procedures can be employed to ensure that power traces cannot be correlated 
between transactions. As a simple example, hashing a 160-bit key with SHA 
before using it as a key should effectively destroy partial information an attacker 
might have gathered about the key. Similarly, aggressive use of exponent and 
modulus modification processes in public key schemes can be used to prevent 
attackers from accumulating data across large numbers of operations. 

This may solve the problem, but it does require design changes in the algorithms 
and protocols themselves, which are likely to make the resulting product non-
compliant with standards and specifications. 
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COUNTERMEASURES AGAINST FAULT ATTACKS 
 

Running the encryption twice 
A possible solution (presented further in [ 3]) against DFA is for the unit to run the 
encryption twice and output the results only if these two are identical. The main 
problem with this approach is that it increases computation time. Also, the 
probability that the fault will not occur twice is not sufficiently small. Since the 
fault may still occur twice (especially if the fault was caused artificially), this 
countermeasure will only make the attack harder to implement (requiring more 
samples), but not impossible. 
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About Discretix 

Discretix is a semiconductor intellectual property company that develops and 
licenses advanced embedded security solutions for resource-constrained 
environments, such as wireless devices and smart-cards, where stringent limits 
apply to the cost, size and power consumption of the target devices. 

Discretix technology has already been adopted by some of the major vendors of 
wireless baseband and application chipset, as well as smart-card IC vendors. 
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