
ww ww ww .. dd ii ss cc rr ee tt ii xx .. cc oo mm
A d v a n c e d s e c u r i t y s o l u t i o n s f o r c o n s t r a i n e d e n v i r o n m e n t s

Introduction to
Side Channel Attacks

White Paper

Discretix Technologies Ltd.

Author: Hagai Bar-El
Title: Information Security Analyst
Email: hagai.bar-el@discretix.com
Tel: +972-9-8858810
www.discretix.com

Introduction to Side-Channel Attacks Page 2 of 12

ABOUT THIS DOCUMENT

The purpose of this document is to introduce Side-Channel attacks, as well as to
assist in the decision making of how to protect cryptographic modules against
such attacks.

The document is divided into two parts: The first part presents Side-Channel
attacks and provides introductory information about such attacks. The second
part presents known methods for protection against such attacks with a brief
effectiveness assessment, if such is available.

This document is mainly intended for people who are considering the use of
cryptographic modules and who need to compare several options with respect to
their security.

INTRODUCTION TO SIDE CHANNEL ATTACKS

“Side channel attacks” are attacks that are based on “Side Channel Information”.
Side channel information is information that can be retrieved from the encryption
device that is neither the plaintext to be encrypted nor the ciphertext resulting
from the encryption process.

In the past, an encryption device was perceived as a unit that receives plaintext
input and produces ciphertext output and vice-versa. Attacks were therefore
based on either knowing the ciphertext (such as ciphertext-only attacks), or
knowing both (such as known plaintext attacks) or on the ability to define what
plaintext is to be encrypted and then seeing the results of the encryption (known
as chosen plaintext attacks). Today, it is known that encryption devices have
additional output and often additional inputs which are not the plaintext or the
ciphertext. Encryption devices produce timing information (information about the
time that operations take) that is easily measurable, radiation of various sorts,
power consumption statistics (that can be easily measured as well), and more.
Often the encryption device also has additional “unintentional” inputs such as
voltage that can be modified to cause predictable outcomes. Side channel attacks
make use of some or all of this information, along with other (known)
cryptanalytic techniques, to recover the key the device is using.

Side channel analysis techniques are of concern because the attacks can be
mounted quickly and can sometimes be implemented using readily available
hardware costing from only a few hundred dollars to thousands of dollars. The
amount of time required for the attack and analysis depends on the type of attack
(Differential Power Analysis, Simple Power Analysis, Timing, etc.) According to
[1], SPA attacks on smartcards typically take a few seconds per card, while DPA
attacks can take several hours.

In a general, with a somewhat academic perspective as presented in [7], we may
consider the entire internal state of the block cipher to be all the intermediate
results and values that are never included in the output in normal operations. For
example, DES has 16 rounds; we can consider the intermediate states,
state[1::15], after each round except the last as a secret internal state. Side
channels typically give information about these internal states, or about the
operations used in the transition of this internal state from one round to another.
The type of side-channel will, of course, determine what information is available
to the attacker about these states. The attacks typically work by finding some

Introduction to Side-Channel Attacks Page 3 of 12

information about the internal state of the cipher, which can be learned both by
guessing part of the key and checking the value directly, and additionally by
some statistical property of the cipher that makes that checkable value slightly
nonrandom.

This document will relate only to the most common types of Side Channel
information, which are: Timing attacks, Simple and Differential Power Analysis
Attacks and Fault Attacks.

TIMING ATTACKS

Timing attacks are based on measuring the time it takes for a unit to perform
operations. This information can lead to information about the secret keys. For
example: By carefully measuring the amount of time required to perform private
key operations, an attacker might find fixed Diffie-Hellman exponents, factor RSA
keys, and break other cryptosystems [2]. If a unit is vulnerable, the attack is
computationally simple and often requires only known ciphertext.

Cryptosystems often take slightly different amounts of time to process different
inputs. Reasons include performance optimizations to bypass unnecessary
operations, branching and conditional statements, RAM cache hits, processor
instructions (such as multiplication and division) that run in non-fixed time, and a
wide variety of other causes. Performance characteristics typically depend on
both the encryption key and the input data (e.g., plaintext or ciphertext).
Intuition might suggest that unintentional timing characteristics would only reveal
a small amount of information from a cryptosystem. However, as shown in [2],
attacks exist which can exploit timing measurements, from vulnerable systems,
to find the entire secret key.

Timing measurements are fed into a statistical model that can provide the
guessed key bit with some degree of certainty (by checking correlations between
time measurements).

Computing the variances is easy and provides a good way to identify correct
exponent bit guesses. The number of samples needed to gain enough information
to allow the recovery of the key are determined by the properties of the signal
and the noise. The more noise there is, the more samples will be required.
Generally, error correction techniques increase the memory and processing
requirements for the attack, but can greatly reduce the number of samples
required. [2]

The specific examples that follow present specific background information for
timing attacks against operations that are related to asymmetric encryption. Yet,
it must be remembered that timing attacks can potentially be used against other
cryptosystems, including symmetric functions.

Cryptanalysis of a Simple Modular Exponentiator
Diffie-Hellman and RSA operations consist of computing R=yx mod n, where n is
public and y can be found by an eavesdropper. The attacker's goal is to find x,
the secret key. For the attack, the victim must compute yx mod n for several
values of y, where y, n, and the computation time are known to the attacker and
x stays the same. Statistical methods will lead to the recovery of the key from

Introduction to Side-Channel Attacks Page 4 of 12

these measurements. The necessary information and timing measurements might
be obtained by passively eavesdropping on an interactive protocol, since an
attacker could record the messages received by the target and measure the
amount of time taken to respond to each y. The attack assumes that the attacker
knows the design of the target system, although in practice this could probably
be inferred from timing information. The attack can be tailored to work with
virtually any implementation that does not run in fixed time.

The complete details about this attack, including the statistical models used, are
available in [2].

Montgomery Multiplication and the CRT
Modular reduction steps usually cause most of the timing variation in a modular
multiplication operation. Montgomery multiplication eliminates the mod(n)
reduction steps and, as a result, tends to reduce the size of the timing
characteristics. [2]

The Chinese Remainder Theorem (CRT) is also often used to optimize RSA private
key operations. With CRT, (y mod p) and (y mod q) are computed first, where y
is the message. These initial modular reduction steps can be vulnerable to timing
attacks. The simplest such attack is to choose values of y that are close to p or to
q, then use timing measurements to determine whether the guessed value is
larger or smaller than the actual value of p or q. If y is less than p, computing y
mod p has no effect, while if y is larger than p, it will be necessary to subtract p
from y at least once. The specific timing characteristics depend on the
implementation. [2]

In some cases it may be possible to improve the Chinese Remainder Theorem
RSA attack to use known (not chosen) ciphertexts, reducing the number of
messages required and making it possible to attack RSA digital signatures [2].
Modular reduction is done by subtracting multiples of the modulus, and
exploitable timing variations can be caused by variations in the number of
compare-and-subtract steps.

According to [2], it is not yet known whether timing attacks can be adapted to
directly attack the mod p and mod q modular exponentiations performed with the
Chinese Remainder Theorem.

Timing Cryptanalysis of DSS
If the modular reduction function runs in non-fixed time, the overall signature
time should be correlated with the time for the (x · r mod q) computation. The
attacker can calculate and compensate for the time required to compute H(m).
Since H(m) is of approximately the same size as q, its addition has little effect on
the reduction time. The most significant bits of x · r are typically the first used in
the modular reduction. These depend on r, which is known, and the most
significant bits of the secret value x. There would thus be a correlation between
values of the upper bits of x and the total time for the modular reduction. By
looking for the strongest probabilities over the samples, the attacker would try to
identify the upper bits of x. As more upper bits of x become known, more of x · r
becomes known, allowing the attacker to proceed through more iterations of the
modular reduction loop to attack new bits of x. [2]

Introduction to Side-Channel Attacks Page 5 of 12

POWER CONSUMPTION ATTACKS

These attacks are based on analyzing the power consumption of the unit while it
performs the encryption operation. By either simple or differential analysis of the
power the unit consumes, an attacker can learn about the processes that are
occurring inside the unit and gain some information that, when combined with
other cryptanalysis techniques, can assist in the recovery of the secret key.

As described clearly in [1], integrated circuits are built out of individual
transistors, which act as voltage-controlled switches. Current flows across the
transistor substrate when charge is applied to (or removed from) the gate. This
current then delivers charge to the gates of other transistors, interconnect wires,
and other circuit loads. The motion of electric charge consumes power and
produces electromagnetic radiation, both of which are externally detectable.

To measure a circuit's power consumption, a small (e.g., 50 ohm) resistor is
inserted in series with the power or ground input. The voltage difference across
the resistor divided by the resistance yields the current. Well-equipped electronics
labs have equipment that can digitally sample voltage differences at
extraordinarily high rates (over 1GHz) with excellent accuracy (less than 1%
error). Devices capable of sampling at 20MHz or faster and transferring the data
to a PC can be bought for less than $400. [4]

Simple Power Analysis (SPA) Attacks
Simple Power Analysis is generally based on looking at the visual representation
of the power consumption of a unit while an encryption operation is being
performed. Simple Power Analysis is a technique that involves direct
interpretation of power consumption measurements collected during
cryptographic operations. SPA can yield information about a device's operation as
well as key material.

The attacker directly observes a system's power consumption. The amount of
power consumed varies depending on the microprocessor instruction performed.
Large features such as DES rounds, RSA operations, etc. may be identified, since
the operations performed by the microprocessor vary significantly during different
parts of these operations. SPA analysis can, for example, be used to break RSA
implementations by revealing differences between multiplication and squaring
operations. Similarly, many DES implementations have visible differences within
permutations and shifts, and can thus be broken using SPA. [1]

Because SPA can reveal the sequence of instructions executed, it can be used to
break cryptographic implementations in which the execution path depends on the
data being processed, such as: DES key schedule, DES permutations,
Comparisons, Multipliers and Exponentiators.

Most cryptographic units, that were tested, were found to be vulnerable to SPA
attacks, though according to [1] it is not difficult to design a system that will not
be vulnerable to such attacks. See the next chapter for possible solutions.

Introduction to Side-Channel Attacks Page 6 of 12

Differential Power Analysis (DPA) Attacks
Differential Power Analysis Attacks are harder to prevent. They consist not only of
visual but also statistical analysis and error-correction statistical methods, to
obtain information about the keys. DPA usually consists of data collection and
data analysis stages that make extensive use of statistical functions for noise
filtering as well as for gaining additional information about the processes that the
unit is performing.

In addition to large-scale power variations due to the instruction sequence, there
are effects correlated to data values being manipulated. These variations tend to
be smaller and are sometimes overshadowed by measurement errors and other
noise. In such cases, it is still possible to break the system using statistical
functions tailored to the target algorithm. Because DPA automatically locates
correlated regions in a device's power consumption, the attack can be automated
and little or no information about the target implementation is required.

In general terms, to implement a DPA attack, an attacker first observes m
encryption operations and captures power traces T[1::m][1::k] containing k
samples each. In addition, the attacker records the ciphertexts C[1::m]. No
knowledge of the plaintext is required. DPA analysis uses power consumption
measurements and statistical methods to determine whether a key block guess K
is correct. [4]. Analyzing an outer DES operation first, using the resulting key to
decrypt the ciphertexts, and attacking the next DES subkey can find Triple-DES
keys. DPA can use known plaintext or known ciphertext and find encryption or
decryption keys. [4]

Several improvements can be applied to the data collection and DPA analysis
processes to reduce the number of samples required or to circumvent counter-
measures. For example, it is helpful to apply corrections for the measurement
variance, yielding the significance of the variations instead of their magnitude.
One variant of this approach, automated template DPA, can find DES keys using
fewer than 15 traces from most smart cards. [4]

With regards to asymmetric ciphers, as also explained in detail in [4], public key
algorithms can be analyzed using DPA by correlating candidate values for
computation intermediates with power consumption measurements. For modular
exponentiation operations, it is possible to test exponent bit guesses by testing
whether predicted intermediate values are correlated to the actual computation.
Chinese Remainder Theorem RSA implementations can also be analyzed, for
example, by defining selection functions over the CRT reduction or recombination
processes. In general, signals leaking during asymmetric operations tend to be
much stronger than those from many symmetric algorithms because of the
relatively high computational complexity of multiplication operations.

High-Order DPA (HO-DPA) involves looking at power consumptions between
several sub-operations of the encryption operation (and not just on the operation
in general). Also, while the DPA techniques described above analyze information
across a single event between samples, high-order DPA may be used to correlate
information between multiple cryptographic sub-operations. Worth mentioning is
that there is no known unit that is vulnerable to HO-DPA and that is not
vulnerable to DPA as well. Yet, what is done to prevent DPA must also work
against HO-DPA. In other words, the precautions that are taken to prevent DPA
should be ones that work against HO-DPA as well, although according to [1] no
systems are currently known that are resistant to DPA and are not resistant to
HO-DPA.

Introduction to Side-Channel Attacks Page 7 of 12

DIFFERENTIAL FAULT ANALYSIS (DFA) ATTACKS

Fault analysis relates to the ability to investigate ciphers and extract keys by
generating faults in a system that is in the possession of the attacker, or by
natural faults that occur. Faults are most often caused by changing the voltage,
tampering with the clock, or by applying radiation of various types.

The attacks are based on encrypting the same piece of data (which is not
necessarily known to the attacker) twice and comparing the results. A one-bit
difference indicates a fault in one of the operations. Now, a short computation
can be applied for DES, for example, to identify the round in which the error has
occurred. A whole set of operations can now be carried out (detailed in [3]) to
recover one DES sub-key which is the sub-key of the last round. When this sub-
key is known, the attacker can either guess the missing 8 bits (the last sub-key
uses 48 bits) for which there are only 256 options, or simply peel off the last
round for which he knows the sub-key and perform the attack on the reduced
DES. This second method can be used also against Triple-DES. The attack is
detailed in [3].

Often, DFA can be combined with other attacks as differential-key attacks or
differential related key cryptanalysis.

Another type of Fault Analysis is the Non-Differential Fault Analysis, but this is
based on causing permanent damage to devices for the purpose of extracting
symmetric keys (such as of DES). It must be mentioned that a trait of such
attacks is that they do not require correct ciphertexts (hence, ciphertexts that
were produced before the damage to the unit has occurred) [3]. This leads to the
attacker being able to make use of natural faulty units (that are malfunctioning
since being manufactured), without himself tampering with them.

PREVENTING SIDE CHANNEL ATTACKS

This chapter presents known techniques that have been detailed in published
literature. These techniques should be evaluated when defining the precautions to
be taken by designers of cryptographic modules in ensuring that, to some extent,
the product has the ability to resist side-channel attacks.

GENERAL COUNTERMEASURES AGAINST ALL ATTACKS

General Data-Independent Calculations
In general, all operations that are performed by the module shall be data-
independent in their time consumption. In other words, the time that operations
take must be totally independent of the input data or the key data. Whenever
different sub-operations are performed according to input or key bits, these sub-
operations should take the same number of clock cycles.

The general feature of making the time needed for operation execution fixed for
every piece of data prevents all timing attacks. This is because these attacks are

Introduction to Side-Channel Attacks Page 8 of 12

based on variations in the computation time according to input and key bits. The
only input property that may have an effect on the time the operation takes is the
length of the exponent in exponentiation operations. However, the length of the
exponent is information with no meaningful value for the attacker, and is mostly
broadly known anyway.

Blinding
Techniques used for blinding signatures can be adapted to prevent attackers from
knowing the input to the modular exponentiation function [2]. This should help
against any type of side-channel attack.

Even with blinding, the distribution will reveal the average time per operation,
which can be used to infer the Hamming weight of the exponent. If anonymity is
important or if further masking is required, a random multiple can be added to
the exponent before each modular exponentiation. If this is done, care must be
taken to ensure that the addition process itself does not have timing
characteristics, which may reveal the random multiple. This technique may be
helpful in preventing attacks that gain information leaked during the modular
exponentiation operation due to electromagnetic radiation, system performance
fluctuations, changes in power consumption, etc. since the exponent bits change
with each operation.

A more accurate discussion of this method can be found in [2].

Avoiding Conditional Branching and Secret Intermediates
According to [4], avoiding procedures that use secret intermediates or keys for
conditional branching operations will mask many SPA characteristics.

Software implementation of critical code shall not contain branching statements.
Similarly, these will not contain conditional execution statements, such as IF
clauses. Calculations should be performed using functions that utilize elementary
operations (such as AND, OR and XOR) and not using branching and conditional
execution of portions of the code.

This feature can make it extremely difficult to guess input and key values using
measurements of time or power consumption. Conditional execution, which
depends on input and key data, can easily reveal properties of this data if the
attacker measures the time or power taken to perform certain actions. When all
the lines of code are always running regardless of the input and key bits, the time
and power taken to perform these actions does not depend on the data and
therefore does not reveal any of its properties.

This feature prevents all types of timing attacks on asymmetric ciphers as well as
some power consumption attacks.

Licensing Modified Algorithms
The most effective general solution is to design and implement cryptosystems
with the assumption that information will leak. A few companies develop
approaches for securing existing cryptographic algorithms (including RSA, DES,
DSA, Diffie-Hellman, El Gamal, and Elliptic Curve systems) to make systems
remain secure even though the underlying circuits may leak information.

Introduction to Side-Channel Attacks Page 9 of 12

COUNTERMEASURES AGAINST TIMING ATTACKS

Adding Delays
The most obvious way to prevent timing attacks is to make all operations take
exactly the same amount of time. Unfortunately this is often difficult. If a timer is
used to delay returning results until a pre-specified time, factors such as the
system responsiveness or power consumption may still change when the
operation finishes in a way that can be detected. [2]

Also according to [2], fixed time implementations are likely to be slow; many
performance optimizations cannot be used since all operations must take as long
as the slowest operation.

When random delays are added, although these random delays do increase the
number of ciphertexts required, attackers can compensate by collecting more
measurements. The number of samples required increases roughly as the square
of the timing noise [2]. So, random delays can make the attack a bit more
difficult, but still possible.

Time Equalization of Multiplication and Squaring
The time taken by the unit for the performance of multiplication and for the
performance of exponentiation actions should be set to be similar. Due to this
quality, an attacker will not be able to learn if, when and how many
multiplications are made and how many exponentiations.

The equalization can be caused by always performing both operations
(multiplication and exponentiation), regardless of the operation that is required at
any given time. At any stage where one of the operations is required to run, both
should be executed and the aftermath of the unnecessary operation is to be
silently ignored.

This technique prevents timing attacks against the exponentiation operations that
are performed as a part of asymmetric encryption operations and which are
subject to the most common attacks.

COUNTERMEASURES AGAINST POWER ANALYSIS ATTACKS

Power Consumption Balancing
Power consumption balancing techniques should be applied when possible.
Dummy registers and gates should be added on which (algorithm-wise) useless
operations are made to balance power consumption into a constant value.
Whenever an operation is performed in hardware, a complementary operation

Introduction to Side-Channel Attacks Page 10 of 12

should be performed on a dummy element to assure that the total power
consumption of the unit remains balanced according to some higher value.

Such techniques, by which the power consumption (as viewed from outside the
module) is constant and independent on input and key bits, prevents all sorts of
power consumption attacks such as SPA and DPA.

Reduction of Signal Size
One approach to preventing DPA attacks is by reducing signal sizes, such as by
using constant execution path code, choosing operations that leak less
information in their power consumption, balancing Hamming Weights and state
transitions, or by physically shielding the device.

Unfortunately, such signal size reduction generally cannot reduce the signal size
to zero, as an attacker with an infinite number of samples will still be able to
perform DPA on the (heavily-degraded) signal. [4]

Addition of Noise
Another approach against DPA involves introducing noise into power consumption
measurements. Like signal size reductions, adding noise increases the number of
samples required for an attack, possibly to an unfeasibly large number. In
addition, execution timing and order can be randomized to generate a similar
effect [4]. Again, noise alone only increases the number of samples required,
however if this increase is high enough to make the sampling unfeasible due to
the number of samples required, the countermeasure works.

One suggested solution in [5] to prevent DPA attacks using noise is by adding
random calculations that increase the noise level enough to make the DPA bias
spikes undetectable. The results presented in [5] give some indication of how
much noise needs to be added. The main goal is to add enough random noise to
stop an attack, but yet to add just a minimal overhead.

Shielding
In practice, aggressive physical shielding as mentioned in [4] can make attacks
unfeasible but adds significantly to a device's cost and size.

Modification of the Algorithms Design
A final approach against DPA attacks involves designing cryptosystems with
realistic assumptions about the underlying hardware. Nonlinear key update
procedures can be employed to ensure that power traces cannot be correlated
between transactions. As a simple example, hashing a 160-bit key with SHA
before using it as a key should effectively destroy partial information an attacker
might have gathered about the key. Similarly, aggressive use of exponent and
modulus modification processes in public key schemes can be used to prevent
attackers from accumulating data across large numbers of operations.

This may solve the problem, but it does require design changes in the algorithms
and protocols themselves, which are likely to make the resulting product non-
compliant with standards and specifications.

Introduction to Side-Channel Attacks Page 11 of 12

COUNTERMEASURES AGAINST FAULT ATTACKS

Running the encryption twice
A possible solution (presented further in [3]) against DFA is for the unit to run the
encryption twice and output the results only if these two are identical. The main
problem with this approach is that it increases computation time. Also, the
probability that the fault will not occur twice is not sufficiently small. Since the
fault may still occur twice (especially if the fault was caused artificially), this
countermeasure will only make the attack harder to implement (requiring more
samples), but not impossible.

REFERENCES
1. Introduction to Differential Power Analysis and Related Attacks / Paul C.

Kocher, Joshua Jaffe, and Benjamin Jun

2. Timing Attacks on Implementations of DH, RSA, DSS and Other Systems /
Paul C. Kocher

3. Differential Fault Analysis of Secret Key Cryptosystems / Eli Biham & Adi
Shamir

4. Differential Power Analysis / Paul Kocher, Joshua Jaffe, and Benjamin Jun

5. Investigations of Power Analysis Attacks on Smartcards / Thomas S.
Messerges, Ezzy A. Dabbish, and Robert H. Sloan

6. Tamper Resistance - a Cautionary Note / Ross Anderson & Markus Kuhn
 Informative Reference

7. Side Channel Cryptanalysis of Product Ciphers / John Kelsey, Bruce
Schneier, David Wagner, and Chris Hall

Introduction to Side-Channel Attacks Page 12 of 12

About Discretix

Discretix is a semiconductor intellectual property company that develops and
licenses advanced embedded security solutions for resource-constrained
environments, such as wireless devices and smart-cards, where stringent limits
apply to the cost, size and power consumption of the target devices.

Discretix technology has already been adopted by some of the major vendors of
wireless baseband and application chipset, as well as smart-card IC vendors.

Discretix Technologies Ltd.

Corporate
Headquarters
43 Hamelacha Street
Beit Etgarim
Poleg Industrial Zone
Netanya 42504
Israel
Tel: +972 9 885 8810
Fax: +972 9 885 8820
Email:
marketing@discretix.com

Representative in
Japan:
Triangle Technologies KK
Sogo-Hirakawacho Bldg.
4F 1-4-12
Hirakawacho Chiyoda-ku
Tokyo, Japan
Te l: +81 3 5215 8760
Fax: +81 3 5215 8765
Email:
japan.info@discretix.com

