
Copyright

by

Lance A. Tokuda

1999

Evolving Object-Oriented Designs with Refactorings

by

Lance Aiji Tokuda, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1999

Evolving Object-Oriented Design with Refactorings

Approved by
Dissertation Committee:

iv

Acknowledgments

First and most importantly, I am deeply indebted to my advisor, Don Batory, for many

years of support and advice, for providing constant direction and focus to my research,

and for reading countless drafts of my dissertation and conference papers (paper16.fm is

the record). Thanks Don for everything!

I would like to thank my family who has been holding off on my graduation cele-

bration trip to Las Vegas for some years now. You can finally address me as ’doctor’.

I would like to thank the hundreds of employees at Resumix Inc. who worked

towards its eventual sale to Ceridian Corporation. The life of a rich graduate student is

more fun than most people can possibly imagine.

I would like to thank my best friend, Tina Sayama, for proofreading my disserta-

tion, for those weekly five hour phone calls in my early years at UT, and for all the fun

times we spent together. More than anything else, I wanted to finish my degree so I could

return to California and be with you.

Finally, I would like to thank all of the volleyball players from my intramural

championship teams: Grace (my favorite!), Lorinda, Faye, Heather, Julie, and dozens of

others. Volleyball was the best part of my life at UT and I could never have played it alone.

I also want to thank my intramural champion miniature golf partners: Jeff, Grace, and

most of all Marina for that time we won by thirty strokes. Many people receive Ph.D.’s

from the University of Texas but no one I know of has ever won seventeen intramural

sports championships — this is what I am most proud of in the time I spent here at Texas.

Thanks guys for making graduate school fun!

LANCE AIJI TOKUDA

The University of Texas at Austin

September 1999

v

Contents

Acknowledgements iv

Contents v

Chapter 1 Introduction 1
3.1 Problem: design evolution . 1
3.2 Characteristics of an acceptable solution . 3
3.3 Approach: refactoring . 4
3.4 Overview . 5
3.5 Notation . 6

Chapter 2 Related Work 8
4.1 Transformation systems . 8
4.2 Transforming structured programs . 9
4.3 Object-oriented designs . 9
4.4 Transforming object-oriented designs . 12
4.5 Preserving behavior . 13
4.6 Other tools . 14

Chapter 3 Refactorings 16
5.1 Example . 16
5.2 Preserving behavior . 18
5.3 Conservatism of enabling conditions . 22
5.4 Verification of enabling conditions . 23
5.5 List of refactorings . 23

Chapter 4 Evolving designs with refactorings 25
6.1 Object-oriented schema transformations . 26
6.2 Design pattern microarchitectures . 28

6.2.1 Adapter . 31
6.2.2 Bridge . 32
6.2.3 Role of refactorings for design patterns 35

6.3 Hot-spot analysis . 36
6.3.1 Data hot-spots . 37
6.3.2 Functional hot-spots . 39

vi

6.3.3 Role of refactorings for hot-spot analysis 43
6.4 Role of refactorings for object-oriented design evolution 43

Chapter 5 Evolving an application 45
7.1 Refactorings and software evolution . 45
7.2 A refactoring example . 46
7.3 Benefits of the refactored system . 53

7.3.1 Adding other tire and engine classes 54
7.3.2 Switching classes . 55
7.3.3 Adding factories . 55
7.3.4 Application reuse . 56

7.4 Summary . 56

Chapter 6 Evolving real world applications 58
8.1 Unique features . 58
8.2 Application selection . 59
8.3 Evolving CIM Works . 60

8.3.1 Refactoring steps . 62
8.3.2 Lessons learned . 65

8.4 Evolving the Andrew User Interface System 68
8.4.1 Refactoring steps . 69
8.4.2 Lessons learned . 71

8.5 Summary . 75

Chapter 7 Implementation details 77
9.1 Design considerations . 77
9.2 Evolving applications . 79

9.2.1 Preparing the application 80
9.2.2 Implementation of refactorings 84

9.3 Sage++ for transformation developers . 87

Chapter 8 Introspection and lessons learned 89
10.1 Refactoring benefits . 89
10.2 Refactoring limitations . 91
10.3 Refactoring requirements . 94

Chapter 9 Conclusions 97
11.1 Contributions . 98
11.2 Future directions . 100

vii

Appendix A: Refactorings 102
Add factory method . 103
Add variable . 104
Composite . 105
Create iterator . 106
Create method accessor . 107
Declare abstract method . 108
Decorator . 109
Inherit . 110
Move variable across object boundary . 111
Procedure to method . 112
Procedure pointer to command . 113
Procedure to command . 114
Singleton . 115
Structure to pointer . 116
Structure to class . 117
Substitute . 118

Appendix B: Supported patterns 119
B.13Design patterns 119

B.13.1Builder . 119
B.13.2Strategy . 122

B.13Hot-spot meta patterns 125
B.13.1No meta pattern to 1:1 recursive unification 126
B.13.21:1 recursive unification to 1:1 recursive connection 127
B.13.3No meta pattern to 1:N recursive unification 128
B.13.41:N recursive unification to 1:N recursive connection 129

Bibliography 131

1

Chapter 1

Introduction

1.1 Problem: design evolution

All successful software applications evolve [Par79]. During the 1970s, evolution

and maintenance accounted for 35 to 40 percent of the software budget for an

information systems organization. This number jumped to 60 percent in the 1980s.

It was predicted that without a major change in approach, many companies will

spend close to 80 percent of their software budget on evolution and maintenance

[Pre92].

As applications evolve, so do their designs. Designs evolve for many reasons:

• Capability — to support new features or changes to existing features.

• Reusability — to carve out software artifacts for reuse in other applications.

• Extensibility — to provide for the addition of future extensions.

• Maintainability — to reduce the cost of software maintenance through

restructuring.

We have observed that designs also evolve for human reasons:

• Experience. Experienced employees may create better designs based on

their domain knowledge.

2

• New Perspective. New project members often have different ideas about

how a design could or should be structured. Many organizations use a code

ownership model which empowers new employees with the ability to realize

their ideas.

• Experimentation. Arriving at a suitable design may require exploration of

different design paths. We have observed software cycles in which the princi-

pal development activity was experimentation with multiple designs.

It is well-known that object-oriented design methodologies offer important

opportunities for reducing maintenance costs: the modularity of classes and

frameworks can simplify reuse and extension. Language features such as

inheritance also contribute to maintenance by allowing specializations of a class

to be built without altering the original class.

Evolving a paper design for an unimplemented software application is

relatively easy1. Tools exist for constructing and editing an application’s class

diagram. Inheritance and aggregation relationships can be created and deleted,

instance variables can be moved up and down the inheritance hierarchy, and

classes can be added and deleted, all through a point and click interface.

Evolving the design of a legacy system is much more difficult. Besides editing

the paper design, an engineering team must also alter an application’s source code

to reflect the new design. Conditions must be checked to ensure that design

changes can be made safely, lines of affected source code are identified, changes

are coded, the system is tested to check for the introduction of errors, any errors

are fixed and the system is retested. Retesting continues until the expected

likelihood of an error occurring is sufficiently low.

This process can be especially difficult to execute during a software cycle in

1. Here we are referring to the task of changing design diagrams and documents to reflect the new
design, not the intellectual task of determining what the new design should be.

3

which new development requires a stable design. One option is to branch the code

hierarchy to pursue both a new design and parallel development under the stable

older design. This software process requires a tedious and possibly costly

integration of all changes under both designs. An option which avoids the

integration phase is to suspend affected development while a new design is being

implemented. Under this option, design changes may become a project

bottleneck. Experimentation with different designs can be very costly, and delays

in the successful completion of design tasks may lead to delays in the entire

project.

Our research seeks to reduce the effort required to evolve and experiment with

designs by automating the process when feasible. Ideally, designers would edit a

graphical design and any implied changes would be immediately reflected in

source code through automation.

1.2 Characteristics of an acceptable solution

A major focus of this thesis is to develop technology which can be transferred to a

mainstream programming environment. An acceptable solution should have the

following characteristics:

• Support for a mainstream programming language. We recognize three

mainstream programming languages — C, Cobol, Fortran, and their deriva-

tives. For object-oriented software development, C++ (a derivative of C) is

the overwhelming choice in industry. The Java language whose syntax is

similar to C++ is also generates significant interest because of its applicabil-

ity to the internet.

4

• Support for legacy applications. The assets of a software organization

reside largely in its legacy code base. The primary function of most software

organizations is to maintain and enhance this legacy. A solution would be

most useful if it could assist in this function.

• Support for large applications. A solution should scale to meet the needs of

today’s larger applications. Applications containing over 100K lines of

source code are commonplace.

1.3 Approach: refactoring

Refactorings are behavior-preserving program transformations which can aid in

the creation of new designs2 and the restructuring of legacy designs [Opd92].

Primitive refactorings perform simple edits on a class diagram such as adding new

classes, creating instance variables, and moving instance variables up and down

the class hierarchy. Compositions of refactorings have been shown to create

abstract classes and capture aggregation and components.

One of the refactoring complexities recognized by Opdyke in 1992 was that

there was no systematically organized explanation for the kinds of design changes

that people make [Opd92]. Without any kind of organization, it was difficult to

determine if the capabilities offered by refactorings would be generally useful in

the evolution of real-world designs.

This changed with the birth of the patterns movement which sought to capture

solutions to common object-oriented design problems [Gam95, Pre95]. Patterns

were used successfully for the purpose of restructuring existing designs [Hun95].

Furthermore, we showed that many patterns can be viewed as target states of

2. The term design as used in this paper is a limited definition which refers to an application’s class
diagram with extensions from Gamma [Gam95]. The term is closely aligned with database
schema design. For programs, state diagrams, object interaction diagrams, and scenarios all cap-
ture aspects of an application’s design which are not visible on a class diagram.

5

automated3 refactorings applied to evolving designs [Tok95, Tok99].

This research assesses the capabilities of refactorings for evolving object-

oriented designs and attempts to determine if refactoring technology can be

successfully transferred to the mainstream. To that end, we pursue the following

goals:

1. to identify a set of refactoring capabilities which can be used to evolve

object-oriented designs,

2. to design and code a set of refactorings which implement the capabilities

for a mainstream programming language,

3. to test the refactorings on a small scale,

4. if successful, to test on a large scale, and

5. to identify the benefits, limitations, requirements, and open issues when

transferring refactoring technology to a mainstream programming

environment.

The next section describes the contents of this thesis as they relate to these

goals.

1.4 Overview

Chapter 2 identifies related work in refactoring, program transformations, tools,

and patterns.

Chapter 3 introduces refactorings. This chapter defines a refactoring, provides

an example, identifies refactorings contributed by this research, and discusses the

issue of behavior preservation.

Chapter 4 catalogs the schema transformations, design patterns, and hot-spot

3. The term automated in this paper refers to a refactoring’s programmed check for enabling condi-
tions and its execution of all source code changes. The choice of which refactorings to apply is
always made by a human.

6

meta patterns whose introduction can be automated with refactorings. Refactoring

support for design patterns and hot-spot meta patterns is an original contribution

of this research.

Chapter 5 provides a proof-of-concept example which demonstrates the ability

of refactorings to add design patterns to an evolving application. The results

motivate further research on real-world applications.

Chapter 6 details the refactoring of two real-world applications. This chapter

provides application selection criteria, methodology for applying refactorings, and

a step-by-step description of refactorings applied. The applications are (to our

knowledge) the largest transformed to date.

Chapter 7 describes the refactoring design and implementation. It also includes

lessons learned for future refactoring implementors.

Chapter 8 is an evaluation of this work. Sections included discuss benefits,

limitations, requirements, and open issues.

Chapter 9 presents a summary of our research and results.

1.5 Notation

A summary of the class diagram notation used throughout the remainder of this

thesis is presented in Figure 1. Within the main body of text, we use the following

conventions:

• Refactoring — a refactoring.

• AbstractClass — an abstract class name.

• ConcreteClass — a concrete class name.

• Method() — a method or procedure name.

• Instance_variable — an instance variable.

7

ConcreteSubclass1 ConcreteSubclass2

InstanceVariable

AbstractClass

AbstractOperation()

Operation()

ConcreteClass1
owns

Implementation

ConcreteClass2

references

Figure 1: Notation

ConcreteClass3
creates

8

Chapter 2

Related Work

Our research applies transformation systems to recent developments in object ori-

ented design and evolution. This chapter highlights the significant contributions

impacting this research.

2.1 Transformation systems

This work distinguishes between specification-to-source and source-to-source

transformations. Specification-to-source transformations transform a high level

program specification to compilable source. Examples are software generators

[Rea86, Bax90, Bat94]. The ratio between lines of specification to lines of code

generated can be one-to-ten or higher. The popularity of software generators is

limited because they are often domain-specific and they require the use of non-

standard programming languages.

Source-to-source transformations transform a program coded in a given

language to a new program coded in the same language. They are not limited to a

domain and the transformations can be written to support standard programming

languages. The benefits of source-to-source transformations have yet to be

quantified. Refactorings are a form of behavior-preserving source-to-source

transformation.

9

2.2 Transforming structured programs

Griswold developed behavior-preserving transformations for programs written in

Scheme [Gri91]. An example transformation is var-to-expr which replaces occur-

rences of a variable with the expression it is bound to. The goal of these transfor-

mations was to assist in the restructuring of functionally decomposed software.

Software architectures developed using the classic structured software design

methodology [You79] are difficult to restructure. Structured designs represent pro-

grams as structure charts — trees whose nodes represent functionality and whose

branches represent the transfer of control and data (Figure 8.1). The presence of

control information makes it difficult to relocate subtrees of the structure chart

since both input and output control information can be unique to a specific location

in the chart. As a result, most of Griswold’s transformations are limited to the level

of a function or a block of code.

Baxter’s DMS is a source-to-source transformation system used commercially

on COBOL programs up to one million lines of code in size [Bax97]. The primary

functions of Baxter’s transformations are to unify duplicate code and remove dead

code. The transformations do not preserve behavior.

2.3 Object-oriented designs

Before 1992, there were few notions about what a good object-oriented design

should be. The most popular book on object-oriented design was the first edition of

Booch’s Object-Oriented Analysis and Design with Applications [Boo94]. The

major contribution of this text was a method for documenting an application’s

10

design. There was little guidance for creation and evolution of good designs. The

primary method for transferring the knowledge of experienced object-oriented

designers was through the publication of design rules of thumb:

• Rochat proposed guidelines for developing good programming style in

Smalltalk [Roc86]. An example guideline is to carefully name classes and

class members.

• Johnson and Foote proposed a set of rules for designing reusable classes

[Joh88]. Example rules are to reduce the number of arguments of a method

to fewer than six and to keep the size of methods small (fewer than thirty

lines).

main

Proc2Proc1

Proc1bProc1a

Pa1a2P1a1

Proc2c

P2c2P2c1

Proc2a

P2a1

Proc2b

P2b2

Proc1

Proc1b

Input data and control
information

Output data and
control information

Figure 8.1: Structure chart for a traditional structured design.
Control information for any node of the chart can be
unique to that node making relocation of nodes difficult.

11

• Lieberherr and others proposed the “Law of Demeter” which states that a

method should have limited knowledge of an object model [Lie89]. The

effect is to prevent a method from being executed through more than one

link (e.g. “this.a.b.c.d.foo()”). They note, however, that the law can

require an increase in the number of methods and method arguments result-

ing in poor code readability and slower execution speeds [Lie88].

In general, rules provided a checklist of things to look for and things to avoid

but offered limited assistance in solving any particular object-oriented design

problem.

A new approach to the transfer of object-oriented design experience was

presented in 1992 when Gamma released a preliminary version of a technical

report which proposed design patterns as a method of capturing expert solutions

to many common object-oriented design problems. Patterns were discovered in a

wide variety of applications and toolkits including Smalltalk Collections [Gol84],

ET++ [Wei88], MacApp [App89], and InterViews [Lin92]. This report sparked a

patterns revolution in the object-oriented community and a flood of articles and

books on patterns were subsequently published [Gam95, And94, Bec94, Coa95,

etc.]. An interesting extension was the work of Pree who identified meta patterns

which abstractly described how many design patterns worked [Pre94].

While design patterns were useful in the initial software design, they were

often applied in the maintenance phase of the software lifecycle [Gam93]. Huni

demonstrated the advantages of adding patterns to an existing design by evolving

a framework for network protocols [Hun95]. This motivated work on tool support

for patterns.

12

2.4 Transforming object-oriented designs

Bergstein defined a small set of object-preserving class transformations which can

be applied to class diagrams [Ber91]. Lieberherr implemented these transforma-

tions in the Demeter object-oriented software environment [Lie91]. Example trans-

formations are deleting useless subclasses and moving instance variables between

a superclass and a subclass. Bergstein’s transformations are object preserving so

they cannot add, delete, or move methods or instance variables exported by a class.

Banerjee and Kim identified a set of schema transformations which accounted

for many changes to evolving object-oriented database schema [Ban87]. Opdyke

defined a parallel set of behavior-preserving transformations for object-oriented

applications based on the work by Banerjee and Kim, the design principles of

Johnson and Foote [Joh88], and the design history of the UIUC Choices software

system [May89]. These transformations were termed refactorings.

Implementations of Opdyke’s refactorings for C++ were developed by Tokuda

and Batory [Tok95, Tok99] and Schultz [Sch98b]. An implementation for

Smalltalk was developed by Roberts [Rob97]. Roberts offered Smalltalk-specific

design criteria for a program transformation tool. One criteria which also applied

to C++ software is that users should be allowed to name new entities introduced

through transformations.

Opdyke first claimed that a series of refactorings could be used to create

abstract classes and part-whole relationships [Opd92, Opd93]. This was

demonstrated for abstract classes [Tok95] and for part-whole relationships in the

CIM Works example from Chapter 6. Scherlis proposed refactorings which were

shown to support a hypothetical derivation of the Java String and StringBuffer

classes from an original null terminated string class [Sch98a]. Tokuda and Batory

proposed and implemented refactorings to support Gamma’s design patterns

[Tok95] and Pree’s hot-spot meta patterns [Tok99] as target states for software

13

restructuring efforts.

Refactorings have been used alter existing designs. Winsen used refactorings

(primarily renaming) to make design patterns more explicit [Win96]. Tokuda and

Batory [Tok95], Roberts [Rob97], and Shultz [Sch98b] added design patterns to

evolve an application’s design.

Fowler proposed a set of manual refactorings for evolving an application’s

design. An example is introduce_null_object which replaces checks for a null

object pointer with an object which performs the null case behaviors [Fow99].

Fowler’s refactorings do not state the enabling conditions required to preserve

behavior. Compilation and testing is recommended at multiple points within each

refactoring.

2.5 Preserving behavior

Banerjee and Kim identified a set of invariants which preserve behavior for

object-oriented database schema [Ban87] and Opdyke proposed a similar set of

invariants to preserve behavior for refactorings [Opd92]. Opdyke’s refactorings

are accompanied by proofs which demonstrate that the enabling conditions he

identified for each refactoring preserve the invariants.

Roberts used dynamic analysis to perform some enabling condition checks. An

example is for the Smalltalk rename_method refactoring. Smalltalk allows

dynamically created messages to be sent via the “perform: message”. For an

application using this approach, any automatic renaming process has the potential

of failure. Robert’s implementation of rename_method renamed the original

method and replaced it with a method wrapper. As the program ran, the wrapper

detected sites that called the original method. Whenever a call to the old method

was detected, the method wrapper suspended execution of the program, traced up

the call stack to the sender, and changed the source code to refer to the new,

14

renamed method [Rob97]. Roberts notes that the major drawback to this type of

refactoring is that the refactoring is only as good as the test suite. If there are

pieces of code that are not executed, they will never be analyzed, and the

refactoring will not be completed for that particular section of code.

Hursch and Seiter presented a subset of Opdyke’s refactorings which operated

under an alternative framework for preserving behavior. The framework consisted

of three parts: a formal description of the dependencies between the main

components of an object-oriented framework, a definition of behavioral

equivalence, and a process model for maintaining consistency and behavior

between components [Hur96]. A refactoring implementation using the Hursch and

Seiter framework is currently under development for an object-oriented version of

Scheme.1

Chan and others propose promises to address the important topic of preserving

behavior when full source for all components is not available [Cha98]. Promises

are annotations which act as surrogates for actual components. They allow

refactoring enabling conditions to be checked without viewing the original source

code. Promises offer a possible solution to the problem of transforming

proprietary third party components, however, the solution requires developers to

define and maintain non-standard information about their components. The

barriers to adopting this approach will be similar to those encountered when

proposing major changes to a language standard, and thus may be difficult to

overcome.

1. There is no provision in this formal framework to represent the syntax and semantics of the lan-
guage being transformed. Programs are transformed at the level of a class diagram independent
of the underlying language. We believe that this framework is subject to the same errors and
oversights encountered with Opdyke’s invariants since these problems only occur when certain
language features are present (e.g. aggregates for C++).

15

2.6 Other tools

A number of tools instantiate a design pattern and insert it into existing source

code [Bud96, Kim96, Flo97]. Instantiations are not necessarily refactorings, so

testing of any changes may be required. Also, the number of lines of code added

by instantiating a pattern is generally small. Budinsky offers an array of

implementation options for each pattern which would also be beneficial for

refactorings. Florijn and Meijers check invariants governing a pattern and repairs

violations when possible. Refactorings do not have this pattern-level knowledge.

A related approach for adding patterns is to provide language constructs which

directly support a pattern’s implementation. Bosch proposes language support for

eight of Gamma’s design patterns [Bos98]. Language constructs reduce pattern

implementation costs and make patterns easier to recognize. The major drawback

to this approach is that no standard language having the language features

proposed currently exists.

16

Chapter 3

Refactorings

A refactoring is a parameterized behavior-preserving program transformation that

typically has a straightforward (but not necessarily trivial) impact on an applica-

tion’s design. A refactoring is more precisely defined by (a) a purpose, (b) argu-

ments, (c) a description, (d) enabling conditions, (e) an initial state, and (f) a target

state.

Refactorings check enabling conditions to ensure that program behavior is

preserved, identify source code affected by a change, and execute all changes.

Programs are restructured by applying a series of refactorings. When individual

refactorings preserve behavior, a series of refactorings will also preserve

behavior.

3.1 Example

An example refactoring is inherit[Base, Derived], which establishes a superclass-

subclass relationship between two classes, Base and Derived, that were previously

unrelated. From the perspective of an object-oriented class diagram, the inherit

refactoring merely adds an inheritance relationship between the Base and Derived

classes, but also it alters the application’s source code to reflect this change. The

complete definition for inherit[Base, Derived] is given in Figure 2.1.

17

Figure 2.1: Inherit[Base, Derived] transformation

Derived

Base

(a) Initial State (b) Target state

Name:
Inherit[Base, Derived]

Purpose:
To establish a superclass-subclass relationship between two existing
classes.

Arguments:
Base - superclass name
Derived - subclass name

Description:
Inherit[] makes Base a superclass of Derived.

Enabling Conditions:
1. Base must not be a subclass of Derived and Derived must not

have a superclass.

2. Member variables of Derived must have distinct names from
member variables of Base and its superclasses.

3. A member function of Derived which overrides a function must
have the same type signature as the function it overrides.

4. Subclasses of Base must implement any pure virtual methods if
objects of that class are created.

5. Initializer lists must not be used to initialize Derived objects.

6. For all inherited instance variables whose type is a class, the
constructors for those classes cannot have any side-effects outside
of object initialization if Derived is instantiated.

7. Program behavior must not depend on the size or layout of
Derived.

Derived

Base

18

3.2 Preserving behavior

To preserve behavior, we adopt the method proposed by Banerjee and Kim for

database schema evolutions [Ban87] and employed by Opdyke for refactorings

[Opd92]. A set of invariants is defined which, if preserved, provides assurances

that two programs will run identically. When a refactoring runs the risk of violat-

ing an invariant, enabling conditions are added to guarantee that the invariant is

preserved.

Opdyke identifies seven invariants required to preserve the behavior of C++

and Smalltalk programs [Opd92]:

1. Unique superclass. After refactoring, a class must always have at most

one direct superclass and its superclass must not also be one of its

subclasses. This limits the focus of this research to single inheritance

systems.

2. Distinct class names. After refactoring, each class must have a unique

class name and classes cannot be nested.

3. Distinct member names. After refactoring, all member variables and

functions within a class must have distinct names. This does allow for a

member function in a superclass to be overridden in a subclass.

4. Inherited member variables not redefined. A member variable inherited

from a superclass cannot be redefined in any of its subclasses.

5. Compatible signatures in member function redefinition. After

refactoring, if a member function defined in a superclass is redefined in a

subclass, it must maintain the same type signature.

6. Type-safe assignments. After refactorings, the type of each expression

assigned to a variable must be an instance of the variable’s defined type,

or (if it is a pointer variable) possibly an instance of one of its subtypes.

7. Semantically equivalent references and operations. This condition

19

allows for simplification of expressions, removal of dead code, addition of

variables and functions if they are unreferenced, changing the type of a

variable as long as each operation on the variable is defined equivalently

for the new type, and replacing the references to a variable or function in

one class with equivalent references to a variable or function defined in

another class. A complete discussion of this invariant is given in Opdyke’s

thesis [Opd92, pp. 28-30].

All refactorings in our work preserve these invariants. For the inherit example

(Figure 2.1):

1. The first enabling condition states that Base must not be a subclass of

Derived and Derived must not have a superclass. This preserves the unique

superclass invariant.

2. Inherit does not add or change any class names preserving the distinct

class names invariant.

3. Inherit does not add or change any member variable or function names

preserving the distinct member names invariant.

4. The second enabling condition states that member variables of Derived

must have distinct names from member variables of Base and its

superclasses. This preserves the inherited member variables not redefined

invariant.

5. The third enabling condition states that a member function of Derived

which overrides a function must have the same type signature as the

function it overrides. This preserves the compatible signatures in member

function redefinition invariant.

6. Inherit does not change the type of any expression assigned to a variable

preserving the type-safe assignments invariant.

7. Finally, inherit does not change any variables referenced or functions

20

invoked preserving the semantically equivalent references and operations

invariant. Note that inherit only creates an inheritance relationship but it

does not perform any kind of substitution.

The claim is that preservation of these invariants is proof of behavior

preservation for C++ and Smalltalk. However, our experiments and analysis show

that while the invariants may preserve behavior for object-oriented databases or

specification-to-source transformation systems, they did not preserve behavior for

source-to-source transformation systems because of complexities introduced by

the language being transformed. When a refactoring was found to change

behavior, we created an invariant to be preserved. We contribute the following

additional invariants:

8. Implementation of pure-virtual functions. If a class is instantiated, then

it cannot have any pure-virtual functions. C++ does not allow an

instantiated class to inherit pure-virtual functions — the functions must be

overridden [Ell90]1.

9. Maintaining aggregate objects. If a program depends on the aggregate

property of an object, then that property must be preserved. An object of a

class is an aggregate if that class has no constructors, no private or

protected members, no superclasses, and no virtual functions. In C++,

aggregates are the only objects which can be initialized by initializer lists

[Ell90]2.

10. No instantiation side-effects. If a refactoring can change the number of

times a class is instantiated, then the constructor cannot have any side-

1. Opdyke’s add_variable refactoring allows you to add an instance variable whose type is a class
which declares or inherits a pure-virtual function.

2. An example violation of this invariant was discovered in our experiments described in Section
6.4.2.

21

effects beyond initializing the object created3.

The inherit refactoring preserves these invariants:

• The fourth enabling condition states that subclasses of Base must imple-

ment any pure virtual methods if objects of that class are created. This pre-

serves the implementation of pure-virtual functions invariant.

• The fifth enabling condition states that initializer lists must not be used to

initialize Derived objects. In C++, the only special property of aggregates is

that they can be initialized with initializer lists. This condition preserves

the maintaining aggregate objects invariant.

• The sixth enabling condition states that for all inherited instance variables

whose type is a class, the constructors for those classes cannot have any

side-effects outside of object initialization if Derived is instantiated. This

preserves the no instantiation side-effects invariant.

Finally, Opdyke states that his refactorings do not apply to programs which are

dependent on the size or physical layout of objects. Unlike the multiple

inheritance condition which is prevented by the unique superclasses invariant,

Opdyke chose not to create an invariant to govern this condition. For consistency,

we create an invariant to handle this case:

11. Size and layout independence. If a program is dependent of the size and

layout of objects, it cannot alter their size or layout.

The seventh enabling condition of inherit preserves this invariant. We make no

claim that this expanded list of invariants is complete. A formal proof of behavior

preservation would require a rigorous analysis of the ANSI specification which is

3. For example, if a class maintains a class variable of the number of objects created and its con-
structor prints this number, the behavior of a program would change if the number of class
instantiations changed. Opdyke’s add_variable refactoring allows you to add to class C an
instance variable whose type is class H. After refactoring, code which instantiates class C will
also instantiate class H changing the number of times H is instantiated.

22

beyond the scope of this dissertation. Rather, we treat invariants as test cases

which must be satisfied for each refactoring. Having more test cases increases the

reliability of refactorings, but does not guarantee their freedom from errors. Our

views on behavior preservation are discussed further in Section 8.2.

3.3 Conservatism of enabling conditions

A conservative condition refers to a condition which is more restrictive than neces-

sary to preserve behavior. Conservative conditions are easier to design and imple-

ment.

While a reduction in conservatism leads to more powerful refactorings, it is

generally unrealistic to seek a non-conservative refactoring implementation.

Consider the non-conservative check of enabling conditions for the semantically

equivalent references and operations invariant in the case where a type is

changed. A type change requires that operations performed on a variable of the

old type are equivalent to operations performed on a variable of the new type.

Since operations are C++ routines, the non-conservative solution to this problem

requires you to determine whether two C++ routines are semantically equivalent

where semantic equivalence is defined as having the same inputs map to the same

outputs. One can imagine two arbitrarily complex routines whose semantic

equivalence would be virtually impossible to detect for both computers and

humans.

23

3.4 Verification of enabling conditions

Most but not all enabling conditions are verified automatically. For the inherit

refactoring in Figure 2.1, the first five enabling conditions are checked automati-

cally. For example, it is possible to examine an abstract syntax tree and verify that

Base is not a subclass of Derived (the first enabling condition). Opdyke identifies

two enabling conditions which cannot be verified automatically [Opd92]:

• Program behavior must not be dependent on the size of objects.

• Program behavior must not be dependent on the physical layout of objects.

While it may be possible to introduce conservative enabling conditions to

determine that a program’s behavior is independent of object size (e.g. restrict

recasting, disallow pointer arithmetic, and disallow sizeof, etc.), the resulting

refactoring may have limited applicability because of the conservatism. The

inherit refactoring requires that programs be independent of object size since

adding a superclass can change the size of an object. Thus, not all enabling

conditions for inherit are checked automatically.

3.5 List of refactorings

The list of refactorings used in our research is given in Table 1. In addition to the

refactorings proposed by Banerjee and Kim for evolving object-oriented database

schemas [Ban87] and by Opdyke for restructuring object-oriented programs

[Opd92], we found that transforming actual C++ programs required the following

new refactorings:

• We enlarged the set of schema evolutions to include, for example, inherit

(Figure 2.1) and substitute. Substitute changes a class’s dependency on a

class C to a dependency on a superclass of C [Tok95].

24

• Other refactorings are language-specific; procedure_to_method and

structure_to_class convert C artifacts to their C++ equivalents.

• A third set of refactorings supports the addition of patterns in evolving pro-

grams [Tok95, Tok99]. Examples include add_factory_method, singleton,

and procedure_to_command. Add_factory_method creates a method which

returns a new object, singleton creates a class with only one instance, and

procedure_to_command converts a C procedure to a singleton class with a

method for executing the procedure.

The refactorings added to the lists of Banerjee, Kim, and Opdyke are italicized

in Table 1. A complete definition of each refactoring is provided in Appendix B.

Table 1: Refactorings

Schema Refactorings

add_variable
create_variable_accessor
create_method_accessor
rename_variable
remove_variable
push_down_variable
pull_up_variable
move_variable_across_object_boundary
create_class
rename_class
remove_class
inherit
substitute
rename_method
remove_method
push_down_method
pull_up_method
move_method_across_object_boundary

extract_code_as_method
declare_abstract_method
structure_to_pointer

C++ Refactorings

procedure_to_method
structure_to_class

Pattern Refactorings

add_factory_method
create_iterator
composite
decorator
procedure_to_command
singleton

25

Chapter 4

Evolving designs with refactorings

Methods for evolving designs appear to follow regular patterns, particularly for

object-oriented applications. Three kinds of object-oriented design evolution that

have been identified to date are: schema transformations, design pattern microar-

chitectures, and hot-spot meta patterns.

• Schema transformations are drawn from object-oriented database schema

transformations that perform edits on a class diagram [Ban87]. Examples are

renaming a class, adding new instance variables, and moving a method up

the class hierarchy.

• Design patterns are recurring sets of relationships between classes, objects,

methods, etc. that define preferred solutions to common object-oriented

design problems [Gam95].

• The hot-spot-driven-approach is based on the identification of aspects of a

software program which are likely to change from application to application

(i.e. hot-spots) [Pre95]. Designs using abstract classes and template methods

are prescribed to keep these hot-spots flexible.

This chapter catalogs the schema transformations, design patterns, and hot-

spot meta patterns whose introduction can be automated with refactorings.

Refactoring support for design patterns and hot-spot meta patterns is an original

contribution of this research.

26

4.1 Object-oriented schema transformations

A database schema for an object-oriented database management system

(OODBMS) looks like a class diagram for an object-oriented application. Conse-

quently, OODBMS schema transformations have parallels in object-oriented soft-

ware evolution. An example schema transformation is moving the domain of an

instance variable up the inheritance hierarchy (Figure 4.1). This particular transfor-

mation is supported by the refactoring pull_up_variable which moves an instance

variable to a superclass.

Banerjee and Kim describe 19 object-oriented database schema

transformations of which 12 have been implemented as automated refactorings1

(see Table 4.1). We also implement three additional schema transformations not

1. The seven refactorings which are not supported are: a) changing the value of a class variable, b)
changing the code of a method, c) changing the default value of an instance variable, d) changing
the inheritance parent of an instance variable, e) changing the inheritance of a method, f) adding
a method, and g) changing the order of superclasses. The first three refactorings are not behavior-
preserving. The next two are not supported by mainstream object-oriented programming lan-
guages. The f) cannot be automated. Finally, g) is not supported because this research is cur-
rently limited to applications without multiple inheritance.

Base

Derived

Base

iv

Derived

iv

Figure 4.1: Using pull_up_variable to move instance
variable "iv" from Derived to Base

27

listed in [Ban87] (Table 4.2). Move_method_across_object_boundary was

proposed by Roberts [Rob97] while we proposed the latter two refactorings

[Tok95, Tok99a]. Figure 4.2 and Figure 4.3 display the

Description from [Ban87] Refactoring

Adding a new instance variable add_variable

Drop an existing instance variable remove_variable

Change the name of an instance variable rename_variable

Change the domain of an instance variable pull_up_variable and
push_down_variable

Drop the composite link property of an instance

variablea
structure_to_pointer

Drop an existing method remove_method

Change the name of a method rename_method

Make a class S a superclass of class C inherit

Remove class S as a superclass of class C uninherit

Add a new class create_class

Drop an existing class remove_class

Change the name of a class rename_class

Table 4.1: Schema changes supported as refactorings

a. A class A with an instance variable of class B having the composite link property specifies that A
owns B. B cannot be created independently of A and B cannot be accessed through a composite
link of another object.

Description Refactoring

Move a method through a composite link move_method_across_object_boundary

Move a variable through a composite link move_variable_across_object_boundary
(Figure 4.2)

Change a class’ dependency on a class C

to a dependency on a superclass S of C

substitute (Figure 4.3)

28

move_variable_across_object_boundary and substitute refactorings when viewed

at the level of a class diagram (see Appendix A for a complete definition).

Schema transformations perform many of the simple edits encountered when

evolving class diagrams. They can be used alone or in combination to evolve

object-oriented designs. Opdyke first proposed applying a series of schema

transformations to create abstract superclasses and capture components [Opd92].

4.2 Design pattern microarchitectures

Design patterns capture expert solutions to many common object-oriented design

problems: creation of compatible components, adapting a class to a different inter-

face, subclassing versus subtyping, isolating third party interfaces, etc. Patterns

have been discovered in a wide variety of applications and toolkits including

Smalltalk Collections [Gol84], ET++ [Wei88], MacApp [App89], and InterViews

Object

Point

x
y

Point

Object

x
y

Figure 4.2: Using move_variable_across_object_boundary to
move instance variables x and y

Letter

Filer Document

Letter

Filer Document

Figure 4.3: Using substitute to change Filer’s reference to a Letter
to a reference to a Document

29

[Lin92]. As with database schema transformations, refactorings have been shown

to directly implement certain design patterns. Six patterns are automatable as

refactorings (see Table 4.3).

While design patterns are useful when included in an initial software design,

they are often applied in the maintenance phase of the software lifecycle

[Gam93]. For example, the original designer may have been unaware of a pattern

or additional system requirements may arise that require unanticipated flexibility.

Alternatively, patterns may lead to extra levels of indirection and complexity

inappropriate for the first software release. A number of patterns can be viewed as

automatable program transformations applied to an evolving design [Tok95]. At

least seven patterns from [Gam95] can be viewed as a program transformation

Pattern Description

Command Command encapsulates a request as an object, thereby letting you parameter-
ize clients with different requests, queue or log requests, and support undoable
operations. The procedure_to_command refactorings converts a proce-
dure to a command class. (See example in Section 6.4.1.)

Composite Composite composes objects into tree structures to represent part-whole hier-
archies. The composite refactoring converts a class into a composite class.
(See example in Section 4.3.2.)

Decorator Decorator attaches additional responsibilities to an object dynamically. The
decorator refactoring converts a class into a decorator class. (See example in
Section 4.3.2.)

Factory
Method

Factory Method defines an interface for creating an object, but lets subclasses
decide which class to instantiate. The add_factory_method refactoring
adds a factory method to a class. (See example in Section 5.2.)

Iterator Iterator provides a way to access the elements of an aggregate object sequen-
tially without exposing its underlying representation. The create_iterator
refactoring generates an iterator class.

Singleton Singleton ensures a class will have only one instance and provides a global
point of access to it. The singleton refactoring converts an empty class into a
singleton. (See example in Appendix A.)

Table 4.3: Design patterns supported as refactorings

30

(see Table 4.4).

In all cases, we can apply refactorings to simple designs to create the designs

used as prototypical examples in [Gam95]. The following sections show how the

Adapter and Bridge design patterns can be automated. Derivations for other

patterns are provided in Appendix B.

Pattern Description Example

Abstract Factory Abstract Factory provides an interface for creating fami-
lies of related or dependent objects without specifying
their concrete class.

Section 5.2

Adapter Adapter lets classes work together that couldn’t other-
wise because of incompatible interfaces.

Section 4.2.1

Bridge Bridge decouples an abstraction from its implementation
so that the two can vary independently.

[Sch98]a,
Section 4.2.2

a. The example from [Sch98] is only partially automated because they were limited to the original
refactorings from [Opd93]. A fully automated example is provided in Section 4.2.2.

Builder Builder separates the construction of a complex object
from its representation so that the same construction pro-
cess can create different representations.

Appendix B

Strategy Strategy lets algorithms vary independently from the cli-
ents that use them.

Appendix B

Template Method Template Method lets subclasses redefine certain steps
of an algorithm without changing the algorithm struc-
ture.

Section 4.3.2

Visitor Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

[Rob97]

Table 4.4: Design patterns supported as a composition of refactorings

31

4.2.1 Adapter

Adapter lets classes work together that couldn’t otherwise because of incompatible

interfaces. In the object adapter example from [Gam95] (Figure 4.4), the TextShape

class adapts TextView’s GetExtent() method to implement BoundingBox(). The

adapter can be constructed from the original TextView class (Figure 4.5) in four

steps:

1. Create the adapting classes. Create the classes TextShape and Shape using

create_class. Make TextShape a subclass of Shape using inherit (Figure 4.6).

2. Add an instance variable holding an object to be adapted. Add the text

instance variable to TextShape using add_variable (Figure 4.7).

Shape

BoundingBox()

text TextView

text->GetExtent();

TextShape

BoundingBox() GetExtent() TextView

GetExtent()

Figure 4.5: Unadapted TextView classFigure 4.4: TextShape adapts
TextView’s interface

Shape

TextView
TextShape

GetExtent()

Shape

text TextView
TextShape

GetExtent()

to adapter
Figure 4.6: Adapter class created Figure 4.7: Adaptee instance variable added

32

3. Add adapted methods to the adapter’s interface. Create the

BoundingBox() method which calls text->GetExtent() using

create_method_accessor. Create_method_accessor creates a method which

replaces calls of the form instance_variable->method().

4. Declare the methods in the adapter’s superclass. Declare BoundingBox()

in Shape using declare_virtual_method (Figure 4.4).

4.2.2 Bridge

Bridge decouples an abstraction from its implementation so that the two can vary

independently. In the example from [Gam95] (Figure 4.8), the Window abstraction

and WindowImp implementation are placed in separate hierarchies. All operations on

Window subclasses are implemented in terms of abstract operations from the Window-

Imp interface. Only the WindowImp hierarchy needs to be extended to support another

windowing system. We refer to the relationship between Window and WindowImp as a

bridge because it bridges the abstraction and its implementation, allowing them to

vary independently.

impWindow

DrawRect()
DrawText()

imp->DrawLine();

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

XWindow

 DrawLine()

DrawText()

WindowImp

DrawLine()

DrawText()

XDrawLine();

bridge

Window

DrawRect()
DrawText()

DrawLine();

DrawLine();
DrawLine();
DrawLine();

XDrawLine();DrawLine()

Figure 4.8: Bridge design pattern example Figure 4.9: Design for a single window
system

33

Refactorings can be used to install a bridge design pattern given a simple

design committed to a single window system. Figure 4.9 depicts a system

designed for X-Windows. This system can be evolved with refactorings to use the

bridge design pattern in five steps:

1. Create the implementor classes. Create classes XWindow and WindowImp

using create_class. Make WindowImp a superclass of XWindow with inherit

(Figure 4.10).

2. Add an instance variable which links the abstraction to an

implementation. Add instance variable imp to the Window class using

add_variable (Figure 4.11).

3. Move methods required for an implementation to the implementor class.

Move methods DrawLine() and DrawText() to the XWindow class using

the refactoring move_method_across_object_boundary. These methods are

accessed through the imp instance variable. Add a DrawText() method to

Window which calls DrawText() in WindowImp using

create_method_accessor. This preserves Window’s interface2 (Figure 4.12).

Window

DrawRect()
DrawText()
DrawLine()

XWindow

WindowImp

Window

DrawRect()
DrawText()
DrawLine()

imp
XWindow

WindowImp

DrawLine();

DrawLine();
DrawLine();
DrawLine();

XDrawLine();

DrawLine();

DrawLine();
DrawLine();
DrawLine();

XDrawLine();

Figure 4.10: Implementor classes created Figure 4.11: Implementor instance
variable added to Window

34

4. Declare the methods in the implementor superclass. Declare method

DrawLine() and DrawText() in WindowImp with declare_virtual_method

(Figure 4.13.)

5. Generalize the abstraction to accept any implementation. Change the type

of instance variable imp from XWindow to WindowImp using substitute

(Figure 4.8).

The Bridge microarchitecture uses object composition to provide needed

flexibility. Object composition is also present in the Builder and Strategy design

patterns (see Appendix B). The trade-offs between use of inheritance and object

composition are discussed in [Gam95, pp. 18-20]. Refactorings allow a designer

to safely migrate from statically checkable designs using inheritance to

dynamically defined designs using object-composition.

2. Note that the original Window class also had a DrawLine() method which was used to implement
DrawRect(). The target design from [Gam95] did not include DrawLine() as a part of Window’s
interface, thus, no accessor for it was added in this example.

Figure 4.12: Window system specific methods moved to XWindow class

impWindow

DrawRect()

imp->DrawLine();

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

XWindow

DrawLine()

WindowImp

DrawText()

XDrawLine();

DrawText()

35

4.2.3 Role of refactorings for design patterns

Gamma et. al. note that a common design pattern pitfall is overenthusiasm: "Pat-

terns have costs (indirection, complexity) therefore [one should] design to be as

flexible as needed, not as flexible as possible." The example from [Gam96] is dis-

played in Figure 4.14. Instead of creating a simple Circle class, an overenthusiastic

designer adds a Circle factory with strategies for each method, a bridge to a Circle

Figure 4.13: Window system specific methods moved to XWindow class

impWindow

DrawRect()

imp->DrawLine();

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

XWindow

DrawLine()
DrawText()

XDrawLine();

DrawText()

WindowImp

DrawLine()
DrawText()

Circle

draw()

radius

createCircle()

CircleFactory

bounds()

Circle

draw()
bounds()

CircleDecorator

CircleImp

bounds()

BoundsStrategy

draw()

DrawStrategy

Figure 4.14: Overenthusiastic use of design patterns

36

implementation, and a Circle decorator. The design is likely to be more complex

and inefficient than what is actually required. The migration from a single Circle

class to the complex microarchitecture in Figure 4.14 can be viewed as a transfor-

mation. This transformation is in fact automatable with refactorings3. Thus,

instead of overdesigning, one can start with a simple Circle class and add the Fac-

tory Method, Strategy, Bridge, and Decorator design patterns as needed.

Refactorings can restructure existing implementations to make them more

flexible, dynamic, and reusable, however, their ability to affect algorithms is

limited. Patterns such as Chain of Responsibility and Memento require that

algorithms be designed with knowledge about the patterns employed. These

patterns are thus considered to be fundamental to a software design because there

is no refactoring enabled evolutionary path which leads to their use. Refactorings

allow a designer to focus on fundamental patterns when creating a new software

design. Patterns supported through refactorings can be added on an if-needed

basis to the current or future design at minimal cost.

4.3 Hot-spot analysis

The hot-spot-driven-approach [Pre94] identifies which aspects of a framework are

likely to differ from application to application. These aspects are called hot-spots.

When a data hot-spot is identified, abstract classes are introduced. When a func-

tional hot-spot is identified, extra methods and classes are introduced.

3. A Circle factory is created [Tok95]. Strategies are added (Section 4.2). The Bridge pattern is
applied (Section 4.2). Finally, a decorator is added (Section 4.2).

37

4.3.1 Data hot-spots

When the instance variables between applications are likely to differ, Pree pre-

scribed the creation of abstract classes. Refactorings have repeatedly demonstrated

the ability to create abstract classes [Opd93, Tok95, Rob97]. As an example, Pree

and Sikora provide a Mailing System case study [Pre95]. Figure 4.15 displays the

initial state of its software design. In this system, Folder cannot be nested, and only

TextDocument can be mailed. Their suggested design is displayed in Figure 4.16.

Under the improved design, Folders can be nested and any subclass of DesktopItem can

be mailed. Refactorings can automate these changes in five steps:

1. Create a DesktopItem class using create_class (Figure 4.17).

2. Make DesktopItem a superclass of TextDocument using inherit (Figure 4.18).

3. Generalize the link between Mailer and TextDocument to a link between Mailer

and DesktopItem using substitute (Figure 4.19). Subclasses of DesktopItem can

now be mailed.

4. Generalize the link between Folder and TextDocument to a link between Folder

and DesktopItem using substitute (Figure 4.20). Folder can now contain any

DesktopItem.

Mailer

Folder

Mailbox

TextDocument Mailer

Folder

Mailbox

DesktopItem

TextDocument

Figure 4.16: Final state of mailing systemFigure 4.15: Initial state of mailing system

38

5. Make Folder a subclass of DesktopItem using inherit (Figure 4.16). A Folder

which can contain a DesktopItem can now contain another Folder.

With the improved design, a Folder can be nested within another Folder, and

DesktopItem provides a superclass for adding other types of media to be mailed.

These changes which would normally be implemented and tested by hand can be

automated with refactorings.

Figure 4.17: Empty TextDocument class
created

Mailer

Folder

Mailbox

TextDocument Mailer

Folder

Mailbox

DesktopItem

TextDocument

DesktopItem

Figure 4.18: TextDocument inherits from
DesktopItem

Mailer

Folder

Mailbox

DesktopItem

TextDocument

Mailer

Folder

Mailbox

DesktopItem

TextDocument

Figure 4.19: Mailer dependency changed from Figure 4.20: Folder can contain any
TextDocument to DesktopItem DesktopItem

39

4.3.2 Functional hot-spots

For the case of differing functionality, solutions based on template and hook meth-

ods are prescribed to provide the needed behavior. A template method provides the

skeleton for a behavior. A hook method is called by the template method and can be

tailored to provide different behaviors. Figure 4.21 is an example of a template

method and hook method defined in the same class. Different subclasses of T can

override hook method M2() which leads to differing functionality in template

method M1(). (Figure 4.22). Pree identifies seven meta patterns for template and

hook methods: unification, 1:1 connection, 1:N connection, 1:1 recursive connec-

tion, 1:N recursive connection, 1:1 recursive unification, and 1:N recursive unifica-

tion [Pre94]. Refactorings can be applied to a design to add meta patterns or to

transition from one meta pattern to another. The transitions between patterns

enabled by refactorings are displayed in Figure 4.23.

We consider the 1:N connection composition to be fundamental to a design.

For this pattern, a template object is linked to a collection of hook objects (Figure

4.24). This implies that the template method has knowledge about how to use

multiple hook methods and thus cannot be derived from the 1:1 connection

composition in which the template method is coded for a single hook method. The

T

M1()
M2()

while (...)

do special behavior

M2()
do ...

H

M2()

Figure 4.22: Hook method M2()
overridden in class H

T

M1()
M2()

while (...)
M2();

do ...

do special behavior

Figure 4.21: Template and hook methods
in same class

40

remainder of this section demonstrates automation of the first two transitions in

Figure 4.23. Derivations for the remaining transitions are given in Appendix B.

Figure 4.25 displays the transformation of a design with no template or hook

methods to a design using the unification meta pattern for which both template

and hook methods are located in the same class (transition 1 from Figure 4.23).

Class T having method M1() which calls some special behavior. A hook method

can be added with refactorings in one step:

1. Encapsulate the special behavior as a method. Create a hook method M2()

which executes the special behavior using extract_code_as_method (Figure

4.25, right hand side).

In the new microarchitecture, general behavior is contained in template

method M1() while special behavior is captured by hook method M2(). To extend

the design, subclasses of T override M2() to provide alternative behaviors for

Figure 4.23: Hot-spot meta pattern transitions enabled by refactorings

No meta pattern

1:1 connection

Unification 1:1 recursive unification

1:1 recursive connection

1:N recursive unification

1:N recursive connection

1

2

3

4

5

6

T

M1()

H

M2()

call a collection
do special behaviorof M2() methods

ref

Figure 4.24: 1:N connection meta pattern

41

M1(). The extended structure can be added in three steps:

1. Create a hook class as a subclass of the template class. Create class H

using create_class. Make H a subclass of T using inherit (Figure 4.26).

2. Declare the hook method in the template class so it can be overridden in

the hook class. Declare M2() in T using declare_virtual_method.

3. Move the hook method implementation to the hook class. Move M2() into

H using push_down_method (Figure 4.22).

Figure 4.27 displays the transformation from unification to 1:1 connection

(transition 2 from Figure 4.23). Consider the 1:1 connection meta pattern which

stores the hook method in an object owned by the template class (Figure 4.27,

right hand side). Behavior can be changed at run-time by assigning a hook object

with a different behavior to the template class. 1:1 connection can be automated in

three steps using the unification pattern (Figure 4.27, left hand side) as a starting

T

M1()
while (...)

do special behavior
do ...

Figure 4.25: Method M1() calls a special behavior which differs for
each application

T

M1()
M2()

while (...)
M2();

do ...

do special behavior

T

M1()
M2()

while (...)

do special behavior

M2()
do ...

H

Figure 4.26: Hook class created

42

point.

1. Create the hook class. Create class H using create_class.

2. Link the template class to the hook class. Add an instance variable ref to

T with add_variable (Figure 4.28).

3. Move the hook method to the hook class. Move M2() to class H using

move_method_across_object_boundary (Figure 4.27, right hand side).

The behavior of template method M1() can now be altered dynamically by

pointing to different hook class objects with different implementations of M2().

T

M1()

H

M2()

while (...)

do special behaviorref->M2()
do ...

ref

Figure 4.27: Unification to 1:1 connection

T

M1()

M2()

while (...)

do special behavior

M2()
do ...

Figure 4.28: Connection to H object created

T

M1()

H

M2()

while (...)
do special behavior

ref->M2()
do ...

ref

43

4.3.3 Role of refactorings for hot-spot analysis

The hot-spot-driven-approach provides a comprehensive method for evolving

designs to manage changes in both data and functionality. Pree notes that "the

seven composition meta patterns repeatedly occur in frameworks." Thus, we

expect an ongoing need to add meta patterns to evolving designs.

The addition of meta patterns is currently a manual process. This section

demonstrates that meta patterns can be viewed as transformations from a simpler

design. Refactorings automate the transition between designs granting designers

the freedom to create simple frameworks and add patterns as needed when hot-

spots are identified.

4.4 Role of refactorings for object-oriented
design evolution

Design evolution is a costly yet unavoidable consequence of a successful applica-

tion. One method for reducing cost is to automate aspects of the evolutionary cycle

when possible. For object-oriented applications in particular, there are regular pat-

terns by which designs evolve. Three modes of design evolution are: schema trans-

formations, the introduction of design pattern microarchitectures, and the hot-spot-

driven-approach. Many evolutionary changes can be viewed as program transfor-

mations which are automatable with object-oriented refactorings. Refactorings are

superior to hand-coding because they check enabling conditions to ensure that a

change can be made safely, identify all lines of source code affected by a change,

and perform all edits. Refactorings allow design evolution to occur at the level of a

class diagram and leave the code-level details to automation. Designs should

evolve on an if-needed basis:

• "Complex systems that work evolved from simple systems that worked." —

Booch

44

• "Start stupid and evolve." — Beck

Refactorings directly address the need to evolve from simple to complex

designs by automating many common design transitions. We believe that the

majority of all object-oriented applications undergoes some form of automatable

evolution. The broad scope of supported changes indicates that refactorings can

have a significant impact when applied to evolving designs. This claim is

validated with real applications in Chapter 6 where many hand-coded changes

between two major releases are automated.

45

Chapter 5

Evolving an application

This chapter demonstrates the role of refactorings in evolving object-oriented

applications. Refactorings can automate design evolution to produce new designs

which are more extensible and reusable.

5.1 Refactorings and software evolution

Refactorings transform a software system from one compilable state to another

compilable state while preserving behavior. For this reason, they are well suited to

the principled development style advocated by O’Shea, Beck, Casais and others.

This style performs improvements by first transforming the design while preserv-

ing program behavior, and then extends the better designed system [OSh86,

Cas91]. Design transformation is currently a manual process. Refactorings can

automate some or all of this process (Figure 5.1).

The steps involved in transforming a design include: identifying source code

Identify changes Transform design
Build on new

design

Figure 5.1: Software evolution processes

AUTOMATABLE

46

affected by a design change, implementing the change, testing the change, fixing

bugs, and retesting the application until the risk of introducing new errors is

minimized. Refactorings automate the identification of source code affected by a

change and the execute the changes. The behavior preserving nature of

refactorings eliminates the need for a test and debug cycle1. The example

presented in this chapter demonstrates that refactorings can automate design

changes which have a widespread impact on both an application’s design and on

its underlying source code.

5.2 A refactoring example

We use a proof-of-concept example to illustrate the design evolution process. The

example evolves a Car Factory application that creates a Honda Prelude with a

VTEC2_2 engine and GY184_HR14 tires. The Prelude is driven for one million miles

during which time tires are rotated and changed, and the engine is replaced. The

program and its class diagram are displayed in Figure 5.2a and Figure 5.3.

Inspection of the class diagram reveals that the application will create one kind

of car with a single choice for an engine and tires. At some point, we want to

create other cars with different engines and tires. There are several problems that

must be addressed to generalize this program. In this example, we use object-

oriented transformations to create and install an abstract factory and demonstrate

that the resulting program is easier to extend and reuse. The design is transformed

in six steps:

1. Create superclasses to support other tires and engines. Tire and Engine

classes are created using create_class. Tire and Engine are then declared to

be superclasses of GY184_HR14 and VTEC2_2 respectively using inherit.

1. See Section 8.2 for a detailed discussion on behavior preservation.

47

#include <iostream.h>

class GY184_HR14 {
public:
 int miles, max_miles;
 void Drive(int m) {
 miles += m;
 }
 GY184_HR14 () {
 max_miles = 40000;
 miles = 0;
 }
};
class VTEC2_2 {
public:
 int miles, max_miles;
 void Drive(int m) {
 miles += m;
 }
 VTEC2_2 () {
 max_miles = 100000;
 miles = 0;
 }
};
class Car {
private:
 GY184_HR14 *lf_tire, *lb_tire,
 *rf_tire,*rb_tire;
 VTEC2_2 *engine;

public:
 int miles;
 Car();
 void RotateTires() {
 GY184_HR14 *tire;

 tire = lf_tire;
 lf_tire = lb_tire;
 lb_tire = lf_tire;
 tire = rf_tire;
 rf_tire = rb_tire;
 rb_tire = rf_tire;
 cout << "Rotating tires\n";
 }
 void ReplaceTires(GY184_HR14 *lf,
 GY184_HR14 *rf, GY184_HR14 *lb,
 GY184_HR14 *rb) {
 delete lf_tire;
 delete lb_tire;
 delete rf_tire;
 delete rb_tire;
 lf_tire = lf;
 lb_tire = lb;
 rf_tire = rf;
 rb_tire = rb;
 cout << "Replacing tires\n";
 }
 void ReplaceEngine(VTEC2_2 *e) {
 delete engine;
 engine = e;
 cout << "Replacing engine\n";
 }
 void Drive(int m) {
 miles += m;
 engine.Drive(m);

 lf_tire.Drive(m);
 lb_tire.Drive(m);
 rf_tire.Drive(m);
 rb_tire.Drive(m);

cout << "Driving " << m << " miles\n";
 }
 int TireMiles() {
 return lf_tire->miles;
 }
 int MaxTireMiles() {
 return lf_tire->max_miles;
 }
 int EngineMiles() {
 return engine->miles;
 }
 int MaxEngineMiles() {
 return engine->max_miles;
 }
};

class App {
public:
 App() {
 }
 void run();
};

App *app;

Car::Car(GY184_HR14 *lf,
GY184_HR14 *lb,
GY184_HR14 *rf,
GY184_HR14 *rb, VTEC2_2 *e) {

 engine = new VTEC2_2;
 lf_tire = new GY184_HR14;
 lb_tire = new GY184_HR14;
 rf_tire = new GY184_HR14;
 rb_tire = new GY184_HR14;
}
void App::run() {
 Car *car = new Car(new GY184_HR14,
 new GY184_HR14, new GY184_HR14,
 new GY184_HR14, new VTEC2_2);
 while (car->miles < 1000000) {
 car->Drive(1000);
 if (car->TireMiles() >=
 car->MaxTireMiles())
 car->ReplaceTires(new GY184_HR14,

new GY184_HR14, new GY184_HR14,
new GY184_HR14);

 else if (car->TireMiles() %5000 ==0)
 car->RotateTires();
 if (car->EngineMiles() >=
 car->MaxEngineMiles())
 car->ReplaceEngine(new VTEC2_2);
 }
 cout << "Total miles driven: " <<
 car->miles << "\n";
}

int main () {
 app = new App;
 app->run();
}

Figure 5.2a: Car Factory program

48

class Tire { // Tire class created
};

class Engine { // Engine class created
};

// subclass of Tire
class GY184_HR14 : public Tire {
public:
int miles, max_miles;
 void Drive(int m) {
 miles += m;
 }
};

// subclass of Engine
class VTEC2_2 : public Engine {
public:
 int miles, max_miles;
 void Drive(int m) {
 miles += m;
 }
};

Figure 5.2b: Creating Tire and Engine
superclasses

class Tire {
public:
 int miles, max_miles; // from subclass
 void Drive(int m) { // from subclass
 miles += m;
 }
};

class Engine {
public:
 int miles, max_miles; // from subclass
 void Drive(int m) { // from subclass
 miles += m;
 }
};

class GY184_HR14 : public Tire {
};

class VTEC2_2 : public Engine {
}

Figure 5.2c: Moving variables and methods
to superclasses

class Car {
public:
// variables changed from GY184_HR14 to

Tire
 Tire *lf_tire, *lb_tire, *rf_tire,
 *rb_tire;

 // variable changed from VTEC2_2 to
Engine

Engine *engine;

 void RotateTires() {
 // variable type changed from
GY184_HR14
 // to Tire
 Tire *tire;
 ...
 }

// variables changed from GY184_HR14 to
Tire
 void ReplaceTires(Tire *lf, Tire *rf,

Tire *lb, Tire *rb) {
 ...
 }

 // variable type changed from VTEC2_2
 // to Engine
 void ReplaceEngine(Engine *e) {
 ...
 }

 ...
};

Figure 5.2d: Generalizing Car class

class PreludeFactory {
public:
 // new method to create Tires
 Tire *MakeTire() {
 return new GY184_HR14;
 }

 // new method to create Engine
 Engine *MakeEngine() {
 return new VTEC2_2;
 }
};

class Car {
public:
 ...
// arguments to constructor generalized

 Car (Tire *, Tire *,
 Tire *, Tire *, Engine *);
 ...
}

class App {
public:
 Car *car;

 // new instance variable created
 PreludeFactory *car_factory;

 App() {
 // new instance variable initialized
 car_factory = new PreludeFactory;

 car = new Car;
 }
 void run();
};

49

Car::Car(Tire *, Tire *,
 Tire *, Tire *, Engine *) {
 miles = 0;

// use factory method to create engine
engine = app->car_factory

->MakeEngine();

 // use factory method to create tires
 lf_tire = app->car_factory->MakeTire();
 lb_tire = app->car_factory->MakeTire();
 rf_tire = app->car_factory->MakeTire();
 rb_tire = app->car_factory->MakeTire();
}

void App::run() {
 // use factory methods to create tires
 // and engine
 Car *car = new Car(
 app->car_factory->MakeTire(),
 app->car_factory->MakeTire(),
 app->car_factory->MakeTire(),
 app->car_factory->MakeTire(),
 app->car_factory->MakeEngine());
 while (car->miles < 1000000) {
 car->Drive(1000);

 // use factory method to create tires
 if (car->TireMiles() >=
 car->MaxTireMiles())
 car->ReplaceTires(
 app->car_factory->MakeTire(),
 app->car_factory->MakeTire(),
 app->car_factory->MakeTire(),
 app->car_factory->MakeTire());
 else if (car->TireMiles() %5000 == 0)
 car->RotateTires();

 // use factory method to create the
 // engine
 if (car->EngineMiles >=
 car->MaxEngineMiles)
 car->ReplaceEngine(
 car_factory->MakeEngine());
 }
 cout << "Total miles driven: " <<
 car->miles << "\n";
}

Figure 5.2e: Add concrete factory

class CarFactory {
public:
 // virtual method added
 virtual Tire *MakeTire();

 // virtual method added
 virtual Engine *MakeEngine();
};

// PreludeFactory is now a subclass of
// CarFactory
class PreludeFactory : public CarFac-
tory {
 ...
};

Figure 5.2f: Create abstract factory

class App {
public:
 ...
 // instance variable changed from
 // PreludeFactory to CarFactory
 CarFactory *car_factory;
 ...
}

Figure 5.2g: Generalize App class

50

App

Car

GY184_HR14 VTEC2_2

EngineTire

App

Car

Figure 5.3: Initial class diagram Figure 5.4: Tire and Engine
superclasses created

EngineTire

miles
max_miles
Drive()

miles
max_miles
Drive()

App

Car

GY184_HR14 VTEC2_2

Figure 5.5: : Variables and methods
moved to superclass

GY184_HR14 VTEC2_2

Engine

App

Car

GY184_HR14 VTEC2_2

Tire

Figure 5.6: Car dependency on
GY184_HR14 and
VTEC2_2 is removed

Figure 5.7: Concrete factory added

App

Car

GY184_HR14 VTEC2_2

Engine

PreludeFactory

Tire
MakeTire()
MakeEngine()

new GY184_HR14;

new VTEC2_2;

51

The resulting code changes and class diagram are displayed in Figure 5.2b

and Figure 5.4.

2. Move variables and methods to the superclasses. We can now move

variables and methods common to all tires and engines from the

GY184_HR14 and VTEC2_2 classes to the Tire and Engine classes using

pull_up_variable and pull_up_method (Figure 5.2c and Figure 5.5).

Figure 5.8: Abstract factory created

App

Car

GY184_HR14 VTEC2_2

Engine PreludeFactoryTire

CarFactory

MakeTire()
MakeEngine()

App

Car

GY184_HR14 VTEC2_2

Engine PreludeFactoryTire

CarFactory

Figure 5.9: App reference to prelude factory is removed.
App still creates a PreludeFactory object.

52

Classes derived from Tire and Engine can now inherit state and behavior

originally belonging to the GY184_HR14 and VTEC2_2 classes.

3. Generalize the Car class to use any Tire or Engine. We take advantage of

the new Tire and Engine superclasses by substituting them for GY184_HR14

and VTEC2_2 respectively using the substitute refactoring. The Car class

can then operate with any classes derived from Tire and Engine

(Figure 5.2d and Figure 5.6).

Note that this transformation can only be applied if the enabling

conditions are satisfied. In this example, the Car class must not reference

any subclass specific instance variables or methods from GY184_HR14 or

VTEC2_2. We know this to be true because we moved the instance

variables and methods referenced by Car to the Tire and Engine classes in

Step 2.

4. Add a concrete factory for creating the tires and engines used to construct

Honda Preludes. add_variable is called to add an instance variable to App

which stores the concrete factory to be used for constructing all parts (in

this case PreludeFactory). Factory methods are added to PreludeFactory to

create the appropriate tires and engines using add_factory_method. The

resulting code changes and class diagram is displayed in Figure 5.2e and

Figure 5.7. The concrete factory guarantees that the correct tires and

engine will be created when constructing a Prelude.

5. Create an abstract factory. Next we create the abstract factory CarFactory

as a superclass of the concrete factory PreludeFactory (Figure 5.2f and

Figure 5.8). CarFactory is used as a base class for deriving concrete

factories to produce other types of cars.

6. Generalize App to use CarFactory. Using substitute, we generalize the App

class to change its dependency on PreludeFactory to a dependency on

53

CarFactory (Figure 5.2g and Figure 5.9). App will now run for any type of

car. Note that in Step 4, we added an instance variable to App which points

to a PreludeFactory instance. We will later show that the type of car created

and driven by App can be changed by pointing to a different concrete

factory.

The program now contains the abstract factory CarFactory with concrete

factory PreludeFactory. CarFactory objects produce objects of the Tire and Engine

classes. PreludeFactory produces the GY184_HR14 and VTEC2_2 objects required by

a Prelude. The original program was 136 lines and the final version was 171 lines.

65 lines of code were added or changed through automated refactorings.

5.3 Benefits of the refactored system

The transformed program now employs the Abstract Factory design pattern which

guarantees that only coordinated car components will be produced. A comparison

of the initial (Figure 5.3) and final (Figure 5.9) class diagrams reveals that the

transformed program is more complex. In exchange for increased complexity, the

new program is more general and offers a number of advantages over the original:

• Other tire and engine subclasses can be added which inherit state and behav-

ior from the original tire and engine classes.

• Switching the engine or tires for a Prelude requires modification of only one

factory method in PreludeFactory.

• Other factories can be added to create other cars.

• Once another concrete factory has been implemented, it is easy to reuse the

program to drive this new car.

The following sections illustrates the benefits achieved.

54

5.3.1 Adding other tire and engine classes

Under the transformed design, new tire and engine classes inherit state and behav-

ior from Tire and Engine respectively (Figure 5.10). This inherited state and behav-

ior originally belonged to the GY184_HR14 and VTEC2_2 classes. This example

adds the Bridge184_SR14 tire and AccordEngine engine classes.

// adding engine used in Honda Accord which inherits from new
// Engine superclass
class AccordEngine : public Engine {
 AccordEngine {
 max_miles = 120000;
 miles = 0;
 }
}

// adding tire used in Honda Accord which inherits from new Tire super-
class.
class Bridge184_SR14 : public Tire {
 Bridge184SR_13 {
 max_miles = 30000;
 miles = 0;
 }
}

GY184_HR14 Bridge184_SR14

VTEC2_2 AccordEngine

Tire

Engine

Figure 5.10: Abstract factory created

55

5.3.2 Switching classes

Switching the tires for a Prelude requires that only one factory method be modified

in PreludeFactory. The original program would have required more than one dozen

changes. The code change below switches the Prelude tire from GY184_HR14 to

Bridge184_SR14 (Figure 5.11).

class PreludeFactory : public CarFactory {
 Tire *MakeTire() {

// tire produced by factory method changed from GY184_HR14 to Bridge184_SR14

 return new Bridge184_SR14;
 }
...

}

5.3.3 Adding factories

Other concrete factories can be defined to create new cars. This example creates a

factory for producing Honda Accords (Figure 5.12).

PreludeFactory

MakeTire() new Bridge184_SR14;

new VTEC2_2;

MakeEngine()

Bridge184_SR14 VTEC2_2

Figure 5.11: PreludeFactory altered to produce Bridge184_SR14 tires

PreludeFactory AccordFactory

CarFactory

Figure 5.12: Concrete factory added

56

class AccordFactory : public CarFactory {
 Tire *MakeTire() {
 return new Bridge184SR_14;
 }
 Engine *MakeEngine() {
 return new AccordEngine;
 }
}

5.3.4 Application reuse

Once other concrete factories have been implemented, it is easy to reuse the appli-

cation for driving other cars. Modifying the transformed program to create and

drive an Accord (instead of a Prelude) involves a change to a single statement in

the App class initializer (Figure 5.4):

car_factory = new AccordFactory;

5.4 Summary

This chapter introduces a method for application evolution which first transforms

the design while preserving behavior, and then extends the better designed system.

Refactorings can automate the design transformation process. Automation signifi-

cantly reduces, if not eliminates, the burden of identifying and modifying source

code to affect design changes. Modifications are done correctly, thereby reducing

AccordFactory

App

Figure 5.13: App class changed to use AccordFactory

57

costly and tedious debugging and testing that would otherwise have to be per-

formed. In the example presented, refactorings automated all design changes and

the newer design is shown to be more extensible and reusable than the original.

The next chapter explores whether the results from this example can scale to

tackle the complexities of real-world applications whose code size can exceed

100K lines.

58

Chapter 6

Evolving real world applications

Our research evaluates whether refactoring technology can successfully transform

mainstream applications. In this chapter, we present results on using refactorings

to replicate the design evolution of two non-trivial C++ applications. Observations

and conclusions are noted and the potential impact of refactorings on design evolu-

tion is assessed.

Since refactorings have been shown to support many common forms of design

evolution (Chapter 4), the expectation was that many design changes reflected on

application class diagrams would be automatable. We did not know if the changes

would be localized to a class or block of code in which case they might be easily

performed by hand, or if the changes would have a widespread impact on

application source code and might be tedious and error-prone if performed

manually. Answers can be found by applying refactorings to real C++

applications.

6.1 Unique features

The following features make this study unique:

Replication of design evolution. Designs were extracted from two versions of

the same application. The older design became the initial state and the newer

59

design became the target state. Our objective was to determine if a sequence of

refactorings could be applied to transform the initial state to the target state. This

correspondence makes comparison of automation versus hand-coding valid and

provides us with a key indicator: how often refactorings could be used.

Non-trivial software systems. Refactoring scalability is tested by

transforming large systems. Ideas that appear to be effective on small applications

of fewer than one thousand lines of code may ultimately fail for real world

applications whose size can exceed one hundred thousand lines.

Mainstream object-oriented language. C++ was chosen as the target

language for experimentation. It is by far the most widespread object-oriented

programming language for many practical reasons such as backward

compatibility with C, portability, availability of third party compilers and tools,

legacy system compatibility, and availability of trained personnel. It was expected

that C++’s complexity might introduce problems which would not appear for less

popular object-oriented languages. A side benefit of this choice is that most

claims for C++ can also be made for the increasingly popular Java programming

language.

6.2 Application selection

Applications were selected based on the following criteria:

• Access to source code so that designs could be extracted and code could be

transformed.

• Application size measured in thousands of lines. The first system studied is

relatively small at only 3K lines of source code, however, it undergoes a

major design change as a class hierarchy is split in two. The second system is

large by most standards with approximately 500K lines of code.

60

• Availability of multiple versions of the application so that designs between

old and new versions could be compared.

• Expectation that some design changes between versions were automatable.

The three major types of change we searched for were schema evolutions,

design patterns, and hot-spot meta patterns.

The final criteria, expectation that some design changes were automatable,

deserves further discussion. A number of development activities can occur

between versions which may not impact an application’s class diagram: other

aspects of the design may change (e.g. state diagrams, object interaction

diagrams, and scenarios), algorithms may be changed, functionality can be added

within the framework of the existing design, etc. One software system we

considered met the first three criteria but not the last.1

6.3 Evolving CIM Works

The SEMATECH Computer Integrated Manufacturing (CIM) Framework is an

industry-wide initiative to define a standardized object-oriented framework for

writing semiconductor manufacturing execution systems [Ste95]. CIM Works is a

Windows application created to demonstrate and test the SEMATECH CIM

Framework specification [McG97].

CIM Works provides a graphical user interface for creating, connecting, and

testing objects used in the production of semiconductors. Major design changes in

CIM Works occur between Version 2 and Version 4. The Version 2 design shown

in Figure 6.1 stores data and its graphical representation in the same object. For

1. This was the Interviews user interface toolkit [Lin92] whose design did not change significantly
between the two versions studied (Version 3.0 and Version 3.1). Note that toolkit designs need to
be relatively stable between versions so that applications using the toolkit will be minimally
impacted when upgrades are made.

61

example, CEquipmentManager contains methods for adding and removing pieces of

equipment to be managed as well as methods for building a GUI menu. The

Version 4 design shown in Figure 6.2 separates data and graphics into two class

hierarchies. For example, class CEquipmentManager was split into classes

CIcEquipmentManager and EquipmentManager. This separation gave Version 4 the

freedom to create different views of the same data as with the model-view-

controller paradigm [Kra88]. Version 2 was approximately 3K lines of source

code. The actual size of the program transformed (including Microsoft header

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM

NamedEnt

Resource

CompMgr MoveResFactory Person

PersonMgr MachineEquipMgr

m_objptr

CFWObject

CNamedEnt

CResource

CCompMgr CMoveResCFactory CPerson

CPersnMgr CMachineCEquipmentManager

Figure 6.1: Version 2 Architecture

Figure 6.2: Version 4 Architecture

62

files and preprocessing) was 11K lines of code.

6.3.1 Refactoring steps

The transformation between designs is accomplished in seven steps, each of which

is realized by applying a sequence of primitive refactorings:

1. Rename the class hierarchy to match the GUI classes in the new design.

Classes are renamed using rename_class. The original classes retain the

GUI aspects of objects, whereas their corresponding “split” classes —

created in Step 2 through 5 — encapsulates object data.

2. Create the new data class hierarchy. Factory, Person, EquipmentManager,

etc. are created using create_class. Inheritance relationships between the

classes are added with inherit (Figure 6.3). The newly created data classes

will contain the data portion of the split hierarchy. Note that at this point,

the classes are empty.

3. Link each concrete GUI class to its corresponding data class. m_objptr

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM PersonMgr MachineEquipMgr

Figure 6.3: Original classes renamed and Data Classes created

Factory Person

NamedEnt

Resource

CompMgr MoveRes

63

instance variables are added to the concrete GUI classes using

add_variable. m_objptr is of the corresponding data class type

(Figure 6.4).

4. Move data instance variables and methods from concrete GUI classes to

their corresponding data classes. Variables and methods are moved from

GUI classes to data classes using move_variable_across_object_boundary

and move_method_across_object_boundary. For example, the instance

variables shift and dept and the methods getShift() and getDept() in

CIcPerson are moved to Person (Figure 6.5). Data is accessed through the

m_objptr instance variable. For the shift instance variable, a reference to

(CIcPerson *) person_ptr->shift is transformed to (CIcPerson *)

person_ptr->m_objptr->shift.

5. Move common instance variables and method declarations up the data

class hierarchy. Methods and variables are moved using pull_up_variable

and declare_virtual_method (Figure 6.6).

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM PersonMgr MachineEquipMgr

m_objptr

m_objptr m_objptr
m_objptr

m_objptr

Figure 6.4: Connect GUI and Data classes

Factory Person

NamedEnt

Resource

CompMgr MoveRes

64

6. Change m_objptr from a structure to a pointer (Figure 6.7). m_objptr is

initially created as a structure to guarantee a 1:1 correspondence between a

GUI object and a data object. This allows instance variables and methods

of a GUI class to be safely moved to their corresponding data class.

structure_to_pointer converts m_objptr from a structure to a data object

pointer which is initialized in the GUI constructor.

7. Declare the reference between GUI objects and data objects in the

abstract classes. References to data objects are made abstract2

(Figure 6.2). This completes the design transformation.

CIcPerson

Person

shift
dept
GetShift()
GetDept()Person

CIcPerson

shift
dept
GetShift()
GetDept()

m
_
o
b
j
p
t
r

m
_
o
b
j
p
t
r

Figure 6.5: Instance variables and methods moved to data classes

Figure 6.6: Instance variables and method declarations moved to abstract classes

ComponentMgr

EquipmentMgr

status
IsStopped()
IsStarting()

PersonMgr

status
IsStopped()
IsStarting()

ComponentMgr
status
IsStopped()
IsStarting()

EquipmentMgr

IsStopped()
IsStarting()

PersonMgr

IsStopped()
IsStarting()

65

6.3.2 Lessons learned

The design evolution of CIM Works was accomplished using 81 individual refac-

torings resulting in a total of 486 lines of source being modified. The transformed

software was tested and performed identically to the original software. In the pro-

cess of using refactorings to duplicate the design evolution of CIM Works, we

made the following observations and conclusions:

Automating design changes. The most important result of this experiment is

to establish that refactorings can automate significant design changes in a real

world application. Between Version 2 and Version 4, the CIM Works class

2. In this step, the generalization is made that all CIcon objects point to a Resource object through
the m_objptr instance variable. This requires that casts to the appropriate data class are made
whenever data object instance variables are referenced through GUI objects. For example:

CIcPerson *p = new CIcPerson;

p->m_objptr->f_name = "John";

is transformed to:
CIcPerson *p = new CIcPerson;

((Person *)p->m_objptr)->f_name = "John";

It is unclear if this was the correct design decision since the GUI classes are specific to a single
data class. This step was not automated although it would be possible to do so.

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM

NamedEnt

Resource

CompMgr MoveResFactory Person

PersonMgr MachineEquipMgr

m_objptr m_objptr

m_objptr m_objptr
m_objptr

Figure 6.7: m_objptr changed from a structure to a pointer

66

hierarchy was split into two connected hierarchies requiring code changes spread

throughout the code base. All changes were automatable with refactorings,

although as noted, no refactoring was created to support step 7.

It is of interest to compare the effort required to perform these changes

manually versus the effort when aided by refactorings. We estimate that the CIM

Works changes would take us two days to implement and debug by hand versus

two hours when aided by refactorings. We estimate that the majority of the

refactoring time savings would result from automating the location of affected

code and reducing the testing time for the new design.

Granularity of transformations. The refactorings developed for this research

were intended to be primitive and composable to perform more complex

refactorings. We did not attempt to minimize the number of refactorings required.

In this example, the number of refactorings was large although the conceptual

number of transformation steps was small. One way to reduce the number of

refactorings would be to provide larger grain refactorings. In this example, the

number of refactorings would be significantly reduced if refactorings to move

multiple variables and methods were available (see discussion on Granularity of

Transformations in Section 9.2).

Preprocessor directives. One of our early realizations was that a C++

program transformation tool cannot deal with preprocessor directives because

preprocessor directives are not part of the C++ language. CIM Works uses

Microsoft Windows constants which must be preprocessed to produce a

compilable program. Partial solutions which would solve the problems for this

example are proposed in Section 8.2, however, we do not see a general way to

handle all occurrences of preprocessor information embedded in C++ code.

Computer formatting. Under our program transformation model, source code

is parsed into an intermediate representation, transformed, and unparsed to

67

produce a new version of the source code. The original formatting information is

not preserved in the intermediate representation, thus, all formatting is computer

generated.

Source file access. In transforming this Windows application, it occurred to us

that enabling conditions are currently written with the assumption that all source

code for a program is transformable. This may not be the case. For example, a

user may attempt to move an instance variable from a user-defined subclass to a

Microsoft Foundation Class which has a read-only header file and no available

source. This was not an issue here because the design changes being replicated

with refactorings were limited to developer code. For a transformation system

targeting a mainstream development environment however, checks must be made

to determine if any files affected by a transformation are read-only.

Generality and scalability. We believe that the results obtained from

refactoring CIM Works are not at all unusual. Breaking classes into pieces is

common in the evolution of a design as is the creation and population of abstract

classes. It is also our belief that if CIM Works were to grow to tens of thousands

of lines before applying the same design changes, the lines of code affected would

approach linear growth proportional to the size of the application. This assumes

that new code added to CIM Works would continue to use the data instance

variables and methods from the original class hierarchy and would need to be

refactored when the hierarchy was split.

Uniqueness of derivation. Some transformations are ordered — instance

variables and methods must be moved to the new data classes before they can be

moved up the inheritance hierarchy. In general, however, the derivation of a new

design is not unique. For CIM Works, instance variables and methods could have

been moved to the new data classes before their superclasses were created. It may

be appropriate to provide large grain transformations to replace a recurring series

68

of primitive transformations (such as those that might implement a design

pattern). This would simplify the refactoring selection process and reduce the total

number of refactorings required to execute a design change.

6.4 Evolving the Andrew User Interface
System

The Andrew User Interface System (AUIS) from CMU is an integrated set of tools

that allows users to create, use, and mail documents. Documents are constructed

using an extensible compound document architecture. This architecture combines

everything from text to pictures and graphs to spreadsheets to figures into a single

document [Mor85].

The two versions under study were Version 6.3 written in C and Version 8.0

converted to C++. Version 6.3 stores actions on AUIS objects as function

pointers. No class diagram is shown for this version because it is written in C and

has no classes or inheritance. Version 8.0 shown in Figure 6.8 supports and

ATK

PlayKbdMacro(s, ...);

Command

Execute()

PlayKbdMacroCmd
Execute(...)

View

Observable

Traced

Im

Path Instance()

return unique_instance;

Figure 6.8: Software microarchitecture for AUIS Version 8.0

69

recommends creation of a separate subclass for each action (similar to the

Command design pattern3 [Gam95]).

6.4.1 Refactoring steps

AUIS is approximately 500K lines of code. The change from function pointers to

commands affects ninety classes using almost 800 actions. The transformation is

accomplished in four steps, each of which is realized by applying a sequence of

primitive refactorings:

1. Convert Version 6.3 C structures to C++ classes. Structures are converted

to classes using structure_to_class. We can now display a class diagram

for the application Figure 6.9.4

2. Add abstract classes to the class hierarchy. Classes ATK and Command are

created using create_class. Inheritance relationships between classes are

added using inherit (Figure 6.10).

3. The Command design pattern objectifies an action. The action is triggered by calling an Exe-
cute() method implemented in each derived class [Gam95].

4. Version 6.3 is written in C with preprocessor extensions to support classes. Refactorings which
convert structures to classes and functions to methods were not applied whenever possible
because these transformations are atypical and would affect almost every function call in the pro-
gram. Only structures needed to support the Command pattern were transformed.

View

Observable

Traced

im

Path

Figure 6.9: Structures converted to classes

ATK

View

Observable

Traced

im

Path

Command

Figure 6.10: Class hierarchy created

70

3. Derive command classes for each action. Command classes are created

from each action procedure using procedure_to_command. Figure 6.11

displays the result of transforming the procedure PlayKbdMacro() into a

command class. The newly created PlayKbdMacroCmd class contains an

Execute() method which calls PlayKbdMacro(). It also contains an

Instance() method which returns a unique instance of the class. Using

Instance() instead of new to create objects guarantees that a pointer to a

PlayKbdMacroCmd object is unique.

4. Convert procedure pointers to commands. Procedure pointers are

converted to commands using procedure_ptr_to_command. In this step,

the data types for structures using procedure pointers are converted to use

Command pointers, procedure calls are converted to use Execute()

methods, and procedure assignments are converted to use the Instance()

method. Figure 6.12 displays the transformation of the bind_Description

structure. The proc instance variable is converted to a Command pointer,

(*e->proc)(...) is converted to e->proc->Execute(...), and the function

pointer PlayKeyboardMacro is converted to

PlayKeyboardMacroCmd::Instance().5

PlayKbdMacro(s, ...);

PlayKbdMacroCmd
Execute(...)
Instance()

return unique_instance;

Figure 6.11: PlayKbdMacro converted to a command class

71

6.4.2 Lessons learned

The design evolution of AUIS was accomplished using 800 refactorings resulting

in 14K lines of code changes. In the process of using refactorings to duplicate the

design evolution of AUIS, we made the following observations and conclusions:

Automating design changes. The most important result of this experiment is

to establish that refactoring technology can scale to applications greater than

100K lines of code. We believe that AUIS is the largest application to be

refactored to date. All changes were automatable.

5. The Version 8.0 implementation differs from the result obtained with refactorings. In Version 8.0,
reference counts were used to track the number of pointers to each action object and it was possi-
ble to have multiple objects representing the same action. Because the action objects were replac-
ing function pointers with unique identities, we imposed the Singleton design pattern on each
action to guarantee that there would be at most one copy of any action object.

bind_Description

procName
doc
void (*proc)();

bind_Description

procName
doc
Command *proc;

Figure 6.12: Convert procedure pointer to Command pointer

long event__HandleTimer(...)
{
...
(*e->proc)
(e->procdata, currentTime);

...
}

static struct bind_Description
imBindings[]={

{"im-play-keyboard-macro",
"Obsolete",
PlayKeyboardMacro},

...};

long event__HandleTimer(...)
{
...
e->proc->Execute
(e->procdata, currentTime);

...
}

static struct bind_Description
imBindings[]={

{"im-play-keyboard-macro",
"Obsolete",
PlayKeyboardMacroCmd::Instance()},

...};

72

We estimate that the AUIS changes would take us two weeks to implement

and debug by hand versus one day when aided by refactorings. In the CIM Works

experiment the majority of the refactoring time savings would result from

automating the location of affected code and reducing the testing time for the new

design. For the AUIS experiment, we believe that the majority of the refactoring

time savings would result from the automated execution of changes since there

are over 800 actions and the conversion of a single action to a command class

requires the addition or modification of eighteen lines of code.

Experimentation. More than one implementation of command classes is

possible. With refactorings, it is possible to change the choice of refactorings or

refactoring arguments to produce different implementations. With manual coding,

it is very difficult and tedious to make even the smallest change to a command

class implementation since there are over 800 actions spread through ninety

classes.

Granularity of transformations. As with CIM Works, we did not attempt to

minimize the number of refactorings required. Despite the large number of

refactorings and the large number of lines of code affected, the design changes to

AUIS are conceptually simpler (only four steps) than the design changes to Car

Factory and CIM Works. Larger grain refactorings could significantly reduce the

number of refactorings required (see discussion on Granularity of

Transformations in Section 9.2). In this example, most of the refactorings take

place in Step 3 — converting action procedures to commands. A larger grain

refactorings which converted a list of procedures to commands could execute Step

3 in a single transformation. This would reduce the total number of refactorings to

fewer than twenty.

Program families. Parnas argued that software developers should design each

program as a member of a family of programs [Par79]. AUIS is a toolkit delivered

73

with multiple target applications. We recognized that when you transform a file

used by more than one program, it would be desirable for the transformations

system to check enabling conditions for all programs which use that file.

Otherwise, a file might be transformed safely for one program while causing

another program which uses the same file to break.

Code placement. Issues may arise about where generated code should be

placed. Code placement is currently done automatically, however, it may be

preferable to give the user options in a production system. For example, a default

behavior may be to create a new header and source file whenever a new class is

created but the user may prefer to define the class in the same file as some other

existing class. For AUIS, we may have defined the command subclasses in the

file containing the action executed by the command.

Conditional compilation. The CIM Works example introduced the C++

preprocessor problem. The AUIS example complicates this problem with

function-like macros and conditionals compilation flags:

#define macro(x) F(x) − function-like macros can sometimes be replaced by

an inline function whose return type must be known. However, for function-like

macros which used the # and ## operators, it was not be possible to create an

equivalent inline function and the call sites to the macro were changed.

#define FLAG and #ifdef − conditionally compiled information is difficult to

maintain. Our implementation chooses a single set of compiler flags in the

preprocessing stage. Conditionally compiled code which is removed by the flags

is thus permanently lost. Preserving this code is a difficult problem discussed

further in Section 8.2.

Preserving comments. A requirement for any source to source transformation

system is that source code comments must be preserved. In the Andrew example,

comments accounted for more than 20% of all non-blank lines. The Sage++

74

toolkit used in this research demonstrates that it is possible to preserve comments

while refactoring C++ programs [Bod94]. Comments can also be automatically

inserted to document changes resulting from refactorings.

Opdyke’s invariants for behavior preservation. A significant discovery

while refactoring AUIS is that the refactorings from Opdyke do not preserve

behavior in all cases. Opdyke identifies seven invariants to be preserved by each

transformation, however, there is no guarantee that preserving these invariants

preserves behavior. The following is a counterexample based on an actual failure

when attempting to transform AUIS:

Calling the add_variable refactoring to add instance variable z to testclass

causes the above code fragment to core dump because the initializer list assigns

the string "bye" to the integer z.6 Exceptions are more likely to appear in a

language such as C++ with its complex syntax and in large software systems such

as AUIS. This discovery has far reaching implications from the definition of a

refactoring as a behavior-preserving transformation (Do refactorings even exist

6. Opdyke states that the footnote in Section 5.1 of [Opdyke 92] should be generalized from "pro-
grams that *test* the physical size of objects could see their behavior change" to "programs that
depend upon the physical layout of objects could see their behavior change" to correct this
problem. Initializer lists were not addressed in Opdyke’s work. In general, a refactoring from
[Opdyke 92] which transforms a class from an aggregate to a non-aggregate will not be behavior
preserving for programs which use initializer lists because C++ does not allow you to use initial-
izer lists on non-aggregates [Ellis 90].

The main point remains that there is no mathematical guarantee that a refactoring preserving
Opdyke’s invariants will preserve behavior.

//addition of z iv causes core dump
class testclass {
public:
 char * x;
 int y;
// int z;
};

testclass bs[] = {"spit", 3, "bye", 5};

75

since they are defined to be behavior-preserving but there is no proof of this

property?) to questions about the claims of reduced testing requirements (Don’t

you still have to test since you can’t guarantee that behavior is preserved?) Our

views on the issue of behavior-preservation are discussed in Section 8.2 and

related work on this topic is presented in Section 2.5.

Generality and scalability. We believe that the results obtained from

refactoring AUIS are typical of applying a design pattern solution regarding the

number of classes affected (90) although few patterns would affect as many

functions (800). The number of lines of code affected by the type change in

bind_Description may be atypically small because this structure was only set and

accessed in two places whereas it is possible for the number of accesses to grow

linearly with the size of the program.

It is interesting to note that although the action class is supported and

recommended for all new changes to AUIS, the existing code base was never

migrated to this new mechanism. Thus, in Version 8 there are actually two

different representations for actions: the original code used function pointers

while all new additions to AUIS used command classes. Our transformed version

of AUIS converted all source to use action classes. The volume of changes might

explain why Version 8.0 code was never fully converted to use its newly defined

action class. Concomitantly, this also suggests an advantage of refactorings to

perform large edits automatically, which people might not undertake by hand.

6.5 Summary

Given that refactorings can automate many common forms of design evolution, the

expectation was that many design changes experienced by the applications under

study would be automatable. In fact, all changes except for Step 9 of the CIM

Works example were automated and as noted on this step, automation appeared

76

possible (although not necessarily desirable). These results are encouraging

because there is an obvious benefit if refactorings can automate a majority of all

design changes.

Refactorings automated changes which were not localized to a single class or

block of code. In the CIM Works example, all lines of code which accessed

instance variables moved to the data hierarchy were changed. In the AUIS

example, the conversion of function pointers to commands required thousands of

lines of changes spread throughout ninety classes in the source hierarchy.

Refactorings are more likely to be used if they perform non-localized changes

because non-localized changes tend to be more time-consuming and error-prone.

On the issue of practicality, we found refactorings for C++ to be difficult if not

impractical to implement because of the presence of preprocessor information

commonly found in most real world applications. Other key issues related to

technology transfer include transforming program families, source file access,

formatting, and comment preservation. Finally, it was our experiment on a half-

million line C++ software system which uncovered a flaw in Opdyke’s model for

behavior preservation.

77

Chapter 7

Implementation details

Our experiments transformed legal C++ programs to equivalent C++ programs

with an evolved design. This chapter discusses the design considerations for our

refactoring implementation, the implementation of individual refactorings, the

transformation of applications through a series of refactorings, and an evaluation

of the tools we used.

7.1 Design considerations

The research was focused on mainstream development environments. The most

popular C++ development environments are Microsoft Visual C++TM for the PC

and vi/emacs with sccs (source code control system) for Unix. Rational RoseTM

and OMT Professional WorkbenchTM are the most popular tools for object model-

ing although they are not currently considered to be essential for an object-oriented

development environment. Given the desire to support both PC and Unix develop-

ment (CIM Works is a PC application and AUIS runs on Unix), we chose to imple-

ment refactorings as command line executables. The only requirement placed on

an environment is that is must provide direct access to source code. The over-

78

whelming majority of all C++ development environments provide this access. It

was our intent to use a publicly available C++ parser/code generator to aid in the

refactoring implementation. We considered four tools:

• Indiana University’s Sage++ toolkit [Bod94]. Sage++ provided the advan-

tages of a semantic analyzer and an object-oriented programmer’s interface

for modifying programs.

• Edison Design Group’s C++ Front End1. Edison offered a commercial

quality implementation but no semantic analyzer.

• Microsoft Research’s Intensional Programming tool (IP) [Sim98]. IP pro-

vides a powerful environment for implementing program transformations,

however, at the time of our selection, only the C language was supported

and support for C++ was not planned for another six months2.

• Brown University’s CPPP [Rei94]. CPPP offered a semantic analyzer but

no code generator.

The Sage++ toolkit was chosen for its semantic analysis and object-oriented

programmer’s interface. It was used to successfully transform the Car Factory

example presented in Section 5.2. Further work with this toolkit, however,

revealed that it was not robust enough to support the transformation of real-world

programs. We noted two major deficiencies:

• The Sage++ process of parsing immediately followed by code generation

may introduce errors for some legal C++ programs. The expectation is that

parsing followed by code generation should have no effect.

• Parsing and analyzing a large program can cause Sage++ to hang or crash.

This discovery was made when attempting to transform the 500K AUIS

example.

1. For further information on this tool, see the Edison Design Group web site http://www.edg.com.

2. Since that time, support for C++ was removed as a priority goal for the IP project.

79

Based on these deficiencies and the preprocessor directive problem identified

in Section 6.3.2, it was determined that refactorings would be developed only to

further the research goal of replicating the design evolution performed by humans

and not for the purpose of general public release.

With no plans for a public release, we opted to use the compiler when possible

to verify that refactoring invariants had been preserved. Six of Opdyke’s seven

invariants can be verified by a compiler [Opd92]. In a commercial refactoring

implementation, recompiling an application after each refactoring would be too

time consuming to be practical. For our purpose of determining whether

refactorings can perform design changes previously executed by humans,

recompilation after each refactoring was tolerable and saved significant

development effort3.

7.2 Evolving applications

To evolve an application, the original source files are first manipulated to produce a

single application file app.C and a .dep file app.dep. The .dep representation is a

proprietary format used internally by the Sage++ toolkit which stores the parse tree

and semantic analysis of the original program. Sage++ provides utilities to convert

a C++ program to a .dep file. A series of refactorings placed in a refactoring script

is then applied to app.C and app.dep. Figure 6.1 depicts the complete refactoring

process:

• The application is prepared for transformation (see details in Section

7.2.1). The output of the process is a C++ application file with its corre-

sponding .dep file.

3. In practice, we used the Sage++ conversion to the .dep format to perform compiler checks. This
operation is faster than compiling but still requires that all source code be parsed and analyzed at
each step.

80

• The refactoring script takes a C++ application file with its corresponding

.dep file as input and outputs a refactored C++ application file with its cor-

responding .dep file. The script transforms an application by calling a

series of refactorings (see details in Section 7.2.2).

The refactoring script checkpointed the application after each refactoring to

allow for comparison with the original program. Checkpointing also made it

possible to recover from an enabling condition violation by changing the script

and continuing from the last successfully applied refactoring. The script used to

evolve CIM Works is displayed in Figure 6.2a and Figure 6.2b.

7.2.1 Preparing the application

In their original form, the applications we evolved were distributed among many

source files: they contained preprocessor information, they were formatted by

humans, and in many cases they could not be read properly due to limitations of

the Sage++ toolkit. Applications were prepared for transformation with the follow-

ing steps (Figure 6.3):

1. Pack source files into a single file — app_a.C. Ideally, a refactoring

should take a makefile target as an argument. For simplicity, we

eliminated the need for a makefile by packing all source files into a single

app.C Refactoring
script

Prepare
application

Section 7.2.1

refactored_app.C
app.dep refactored_app.dep

Refactor
Section 7.2.2app.C

app.dep

Figure 6.1: Evolving an application

81

refactor rename CNamedEntity CIcon
refactor rename CResource CIcResource
refactor rename CComponentManager CIcComponentManager
refactor rename CEquipmentManager CIcEquipmentManager
refactor rename CPersonManager CIcPersonManager
refactor rename CFactory CIcFactory
refactor rename CMovementResource CIcMovementResource
refactor rename CMachine CIcMachine
refactor rename CPerson CIcPerson

refactor movedown CIcResource M nameQualifiedTo M
showNameQualifiedTo V owner V qualLevel

refactor movedown CIcComponentManager M nameQualifiedTo M
showNameQualifiedTo V owner V qualLevel

refactor movedown CIcMovementResource M nameQualifiedTo M
showNameQualifiedTo V owner V qualLevel

refactor add_class NamedEntity
refactor add_class Resource
refactor inherit NamedEntity Resource
refactor add_class ComponentManager
refactor inherit Resource ComponentManager
refactor add_class EquipmentManager
refactor inherit ComponentManager EquipmentManager
refactor add_class PersonManager
refactor inherit ComponentManager PersonManager
refactor add_class Factory
refactor inherit Resource Factory
refactor add_class MovementResource
refactor inherit Resource MovementResource
refactor add_class Machine
refactor inherit MovementResource Machine
refactor add_class Person
refactor inherit Resource Person

refactor createiv CIcEquipmentManager m_objptr EquipmentManager
refactor createiv CIcPersonManager m_objptr PersonManager
refactor createiv CIcMachine m_objptr Machine
refactor createiv CIcFactory m_objptr Factory
refactor createiv CIcPerson m_objptr Person

refactor moveclasspos EquipmentManager CIcEquipmentManager
refactor moveclasspos PersonManager CIcPersonManager
refactor moveclasspos Machine CIcMachine
refactor moveclasspos Factory CIcFactory
refactor moveclasspos Person CIcPerson

refactor moveivtoclass CIcEquipmentManager owner m_objptr
refactor moveivtoclass CIcEquipmentManager qualLevel m_objptr
refactor movemethod CIcEquipmentManager nameQualifiedTo m_objptr
refactor movemethod CIcEquipmentManager showNameQualifiedTo m_objptr
refactor moveivtoclass CIcEquipmentManager machineList m_objptr
refactor movemethod CIcEquipmentManager addMachine m_objptr
refactor movemethod CIcEquipmentManager removeMachine m_objptr
refactor movemethod CIcEquipmentManager allMach m_objptr

Figure 6.2a: Script to transform CIM Works

82

refactor moveivtoclass CIcPersonManager owner m_objptr
refactor moveivtoclass CIcPersonManager qualLevel m_objptr
refactor movemethod CIcPersonManager nameQualifiedTo m_objptr
refactor movemethod CIcPersonManager showNameQualifiedTo m_objptr

refactor moveivtoclass CIcMachine owner m_objptr
refactor moveivtoclass CIcMachine qualLevel m_objptr
refactor movemethod CIcMachine nameQualifiedTo m_objptr
refactor movemethod CIcMachine showNameQualifiedTo m_objptr
refactor moveivtoclass CIcMachine description m_objptr
refactor moveivtoclass CIcMachine vendor m_objptr
refactor moveivtoclass CIcMachine modelNumber m_objptr
refactor moveivtoclass CIcMachine serialNumber m_objptr
refactor moveivtoclass CIcMachine softwareVersionNumber m_objptr
refactor movemethod CIcMachine getSoftwareVersionNumber m_objptr
refactor movemethod CIcMachine getSerialNumber m_objptr
refactor movemethod CIcMachine getModelNumber m_objptr
refactor movemethod CIcMachine getVendor m_objptr
refactor movemethod CIcMachine getDescription m_objptr
refactor movemethod CIcMachine setSoftwareVersionNumber m_objptr
refactor movemethod CIcMachine setSerialNumber m_objptr
refactor movemethod CIcMachine setModelNumber m_objptr
refactor movemethod CIcMachine setVendor m_objptr
refactor movemethod CIcMachine setDescription m_objptr
refactor movemethod CIcMachine isMaterialTransporter m_objptr
refactor movemethod CIcMachine isProcessingMachine m_objptr
refactor movemethod CIcMachine isStorageUnit m_objptr

refactor moveivtoclass CIcFactory owner m_objptr
refactor moveivtoclass CIcFactory qualLevel m_objptr
refactor movemethod CIcFactory nameQualifiedTo m_objptr
refactor movemethod CIcFactory showNameQualifiedTo m_objptr
refactor moveivtoclass CIcFactory equipmentManager m_objptr
refactor moveivtoclass CIcFactory personManager m_objptr
refactor movemethod CIcFactory startup m_objptr
refactor movemethod CIcFactory goToStandby m_objptr
refactor movemethod CIcFactory shutdownImmediate m_objptr
refactor movemethod CIcFactory shutdownNormal m_objptr
refactor movemethod CIcFactory registerManager m_objptr
refactor movemethod CIcFactory removeRegistrationForManager m_objptr
refactor movemethod CIcFactory componentStartupComplete m_objptr
refactor movemethod CIcFactory componentShutdownComplete m_objptr
refactor movemethod CIcFactory allMachines m_objptr
refactor movemethod CIcFactory allStorageUnits m_objptr
refactor movemethod CIcFactory allMaterialTransporters m_objptr
refactor movemethod CIcFactory getPersonManager m_objptr
refactor movemethod CIcFactory getEquipmentManager m_objptr

Figure 6.2b: Script to transform CIM Works

83

application file. This issue is discussed further in Section 8.3.

2. Make any changes required for Sage++ to read app_a.C and save the

modified file in app_b.C. For example, Sage++ does not support

initilization of class variables as presented in Ellis and Stroustup [Ell90

page 150]. Initializations of this kind had to be rewritten. app_b.C

represents the base program being transformed.

3. Run app_b.C through the preprocessor to produce app_c.C. This version

of the program is expressed entirely in C++ and contains no preprocessor

information.

4. Convert app_c.C to the Sage++ .dep format to produce app_d.dep. This is

a version of the program readable by the Sage++ toolkit.

5. Use Sage++ to read app_d.dep and generate a C++ file app_e.C. This

version of the program is theoretically equivalent to app_c.C from Step 3

except for its computer formatting. In practice, the Sage++ code

file_1.C

app_a.C

app_c.Capp_d.dep

app_e.C app.C

Make code
readable by

Sage++
file_2.C

file_n.C

Pack source
files app_b.C

Run the
preprocessor

Convert to a
.dep file

Parse and
generate C++

Fix errors

Figure 6.3: Generating the program to be refactored

app.dep
Convert to a

.dep file

...

84

generation process may introduce errors.

6. As a postprocess, run a program specific clean-up script called

fix_errors.exe on app_e.C to produce a legal program app.C. This version

of the program is equivalent to app_c.C from Step 3 except for its

computer formatting.

7. Create a .dep version of app.C using Sage++ utilities.

The resulting app.C possesses three properties:

• It is equivalent to app_b.C, the base version created in Step 2.

• It can be successfully converted to a .dep file using Sage++ utilities.

• It is formatted using the Sage++ code generation routines so that the Unix

“diff” utility can be used to compare this base version and other refactored

versions of the program. The changes identified by diff were used to assess

the impact of design changes on refactored code.

7.2.2 Implementation of refactorings

The input to a refactoring was defined to be a C++ program with its corresponding

.dep representation. The output of a refactoring was defined to be a semantically

equivalent transformed C++ program with its corresponding .dep representation.

When a refactoring succeeds, a program is transformed as prescribed by the

refactoring. When a refactoring fails, it implies that some refactoring enabling

condition has been violated. The steps to perform an individual refactoring are

shown in Figure 6.4:

1. Verify all enabling conditions which are not checked automatically. If

enabling conditions are not met, then the refactoring fails. Enabling

conditions which were checked by hand in our refactoring implementation

are noted for each refactoring in Appendix A.

2. Run a routine written for each refactoring. The routine takes a .dep file and

85

refactoring arguments as input, and outputs a transformed C++ program. If

this routine fails, then the refactoring fails.

3. Run fix_errors.exe to fix any errors introduced by Sage++’s parsing and

code generation process to produce a legal refactored C++ program.

Ideally, the program output from the previous step should be legal,

however, it is possible for Sage++ to introduce program errors which need

to be corrected. An example is that under some conditions, a single

occurrence of the “typedef” keyword in the original program would

appear twice as “typedef typedef” in the generated code leading to a

compiler error4.

4. Convert the repaired program to a .dep file with Sage++ utilities. In the

process of creating a .dep file, Sage++ performs a semantic analysis of the

program. This step replaces a compiler pass for the purpose of determining

if invariants have been violated (as discussed in Section 7.1 — Design

Considerations). If a .dep file cannot be produced, then the refactoring

fails. Note that when a refactoring has been successfully completed, both

4. The two other leading sources of error were the failure to preserve enum typedefs and the addi-
tion of extra levels of parenthesis to certain expressions (e.g. converting “cmd” to “(cmd)”).

transformed_with_errors.C

app.C

Manually verify
enabling

conditions
Run

transformation

Convert to a
.dep file

Fix errors

Figure 6.4: Refactoring steps

app.dep

app.dep

app.C

86

the transformed C++ program and its .dep are representation are

generated. These outputs match the refactoring input requirements when

performing a series of refactorings.

The routine for each refactoring from Step 2 is written in C++ using Sage++’s

programmer interface to read, transform, and generate code. As an example, the

event trace for the inherit refactoring is displayed in Figure 6.5. The vertical lines

of the event trace represent objects which participate in the inherit refactoring.

Lines between objects represent method calls.

1. The main App object takes a .dep file as input and creates a Program

object. When Program is initialized, it reads and initializes all class

objects in the .dep file including Derived.

2. App searches the Program for the Derived class.

3. Base is added as a superclass of Derived using the add_superclass method.

4. C++ is generated for the transformed program.

This trace illustrates the benefit of the Sage++ toolkit. The input .dep file is

converted to a program object which contains C++ objects including class objects.

The three other transformation tools considered (C++ Front End, IP, and CPPP)

create(app.dep)

find Derived

Derived

add superclass Base

generate C++

App Program Derived

Figure 6.5: Event trace for inherit

create

87

all require the transformation developer to perform surgery on a tree

representation of a program being transformed. To use these tools, the refactoring

writer must know the details of how inheritance is represented in a tree. Sage++

provides an add_superclass method for class objects. Thus, a transformation

developer can add a superclass without knowledge of how Sage++ represents

inheritance internally.

7.3 Sage++ for transformation developers

Our experience with Sage++ provides some insight on tools which support source

code transformations. We offer the following observations on Sage++ in particular

and on transformation support tools in general:

• A commercial quality refactoring tool requires a robust parser implementa-

tion. Sage++ is a university project which is clearly not a starting point for

a commercial tool. A list of known bugs can be found at the Sage++ web

site http://www.extreme.indiana.edu/sage/sage-bugs/

maillist.html.

• A commercial quality refactoring tool requires a full implementation of the

language specification. The Sage++ toolkit attempted to hide the abstract

syntax tree but did not provide, for example, an interface for declaring a

pure virtual function or support for some forms of class variable initializa-

tion. One version of the toolkit did not provide a way to create a public

function.

• Sage++ does not provide a pattern matching capability to aid in locating

code to be transformed. An example where this capability would have been

useful is in the structure_to_pointer refactoring which required that code of

the form struct.variable be identified. Sage++ can have up to five differ-

88

ent representations of this pattern embedded in the abstract syntax tree. To

identify affected code, the internal Sage++ tree representation for all five

forms must be known and searched for using low-level primitives.

• Generation of new code was generally very tedious. Sage++ requires the

transformation developer to define or search for individual elements of a

program statement and to compose them together. A more convenient

method for generating code is demonstrated by the Jakarta Tool Suite

[Bat98] which supports insertion of program fragments written in the

native language.

89

Chapter 8

Introspection and lessons learned

This chapter presents refactoring benefits, limitations, and requirements.

8.1 Refactoring benefits

Automating Modes of Object-Oriented Software Evolution. Opdyke

proposed refactorings to automate the OODBMS schema transformations

identified by Banerjee and Kim. More recent work in the object-oriented

community seeks to identify recurring patterns in the designs of experienced

object-oriented designers. Chapter 4 demonstrates that many of Gamma’s design

patterns and Pree’s hot-spot meta patterns can be viewed as program

transformations applied to an evolving design. Furthermore, these transformations

can be automated with refactorings.

Our research also recognizes patterns which are fundamental to a software

design. Fundamental patterns cannot be added with refactorings and should be

considered for inclusion in the initial software design to avoid expensive design

evolution costs.

Evolving Applications. In Chapters 5 and 6, refactorings were used

successfully to evolve three applications. For Car Factory, the Abstract Factory

design pattern was added to support multiple car classes and multiple component

90

classes. For CIM Works, the main class hierarchy was split into two connected

hierarchies in an automated way. For AUIS, procedure pointers were converted to

use the Command design pattern generating over 14K lines of code. Based on

their ability to replicate the design evolution of the two real world applications,

we continue to believe that the design evolution of object-oriented applications

can greatly benefit from refactorings. The results for both real world applications

are argued to be both general and scalable (Section 6.3.2 and Section 6.4.2).

Reduced Testing. Testing is one of the most significant costs resulting from

the evolution of a design. In principle, refactorings can reduce testing because

they are behavior-preserving. Initially, however, we would expect users to run a

full slate of tests on refactored code given that there is no proof of behavior

preservation. Successful applications of refactorings will lead to trust in their

design and implementation. This is analogous to our trust in compiler technology:

we believe that compilers will safely transform our code to assembly despite the

fact that there is no proof of behavior preservation.

Validation Assistance. The target designs achieved in our experiments were

known to be valid, however, this will not be true for most evolving designs.

Enabling condition checks can help to establish that a new design is legal or they

can point out conflicts between a code level implementation and a desired design

change. For example, a programmer may decide to move an instance variable

from a base class to a derived class without realizing that objects of the base class

type access the instance variable being moved. Enabling condition checks will

detect this error. Refactorings are capable of detecting errors resulting from a long

series of changes which would be costly to perform and undo manually.

Ease of Exploration. Refactorings allow designers to experiment with new

designs. While schema transformations and patterns are manually coded into

applications today, it is clear that automating their introduction will allow

91

designers to more easily explore a design space without major commitments in

coding and debugging time. This is analogous to the benefit gained from the

introduction of WYSIWYG GUI editors. GUI editors transitioned user interface

development from a time consuming batch job to an interactive point-and-click

task. Similarly, refactorings have the potential to transition the batch-oriented

design evolution process to an interactive point-and-click task. Ultimately, it may

be the ability to evolve and explore new designs that will attract designers to this

technology.

8.2 Refactoring limitations

This section identifies limitations of refactoring systems operating in a

mainstream environment. Experiments with large applications revealed

limitations which were not issues in previous work on small proof-of-concept

programs. While admittedly we anticipated a number of points raised below, we

didn’t anticipate them all, nor did we realize how significant these points actually

were. We discuss our most important observations to alert future researchers to

the problems that they will face.

Preprocessor Directives. Our C++ program transformation tool cannot deal

with preprocessor directives because preprocessor directives are not part of the

C++ language. The programs in our experiments were preprocessed before being

transformed and at that point, preprocessor information could no longer be

recovered. In this section, we examine the different types of preprocessor

information and note workarounds when possible.

#include <filename> − special comments are inserted to mark the beginning

and end of each included file so the files can be unincluded after all refactorings

are completed.

#define <constant> n − in some cases these declarations can be replaced by a

92

statement of the form ‘const <type> <constant> n’ or a list of #define’s can be

replaced by an enumerated type. Otherwise, this preprocessor information cannot

be maintained.

#define macro(x) F(x) − function-like macros can sometimes be replaced by

inline functions, however, macros which use the # and ## string substitution

operators may require changes to all sites which call the macro.

#define FLAG and #ifdef − one possible way to retain code that would be

removed by #ifdef statements is to store it as a comment which is later

uncommented after the source has been refactored. This solution would allow a

program to be transformed correctly given one set of compiler flags but it could

not guarantee correctness for a different set of flags.

A preferable solution may be for a refactoring to support sets of compilation

flags for which behavior should be preserved. Besides introducing the difficulty

of maintaining behavior across multiple versions of an application, this solution

can suffer from exponential complexity given that for n flags, there are 2n

possible sets of flags for which behavior may need to be preserved.

We found that while much of the preprocessor information can be dealt with

automatically, it is generally not possible to handle all cases that arise in large

software applications.1

Computer formatting. Source code is parsed into an intermediate

representation, transformed, and unparsed to produce a new version of the source

code. In our implementation, original formatting information is not preserved in

the intermediate representation, thus, all formatting is computer generated. Many

programmers regard computer formatting to be undesirable. Recent tools

demonstrate that it is possible to preserve a source’s original formatting

1. Recent but unpublished work on Microsoft Research’s IP project (to our knowledge) embodies
the most advanced attack to date on this problem [Sim98].

93

information, however, newly generated code must necessarily be computer

formatted [Bax972, Bat98]. This is one possible disadvantage of automated

program transformations over hand-coding.

Conservative Enabling Conditions. Refactorings have been found to be

useful even when predicated on conservative enabling conditions. For example,

the inherit transformation is conservatively limited to single inheritance systems

by Opdyke’s first invariant. While support for multiple inheritance systems is

possible, it was not necessary for transforming the applications described in this

paper or for adding numerous design patterns and hot-spot meta patterns

presented in Chapter 4. The alternative is non-conservative conditions which may

be difficult to design and implement or may require manual verification.

Automated Verification of Enabling Conditions. Some enabling conditions

such as those ensuring that a program is not affected by object size or layout are

verified manually (Section 3.4). Size and layout were not issues with the

applications transformed in our experiments, however, users of refactorings must

be aware of this limitation3.

Since it is possible to design very conservative enabling conditions to guard

against dependencies on object size and layout changes, a solution may be to

implement these conservative conditions and allow the refactoring user to check

the program manually if the conditions are violated.

Behavior Preservation. The AUIS example presented in Section 6.4

established that preservation of Opdyke’s invariants is not sufficient to guarantee

preservation of behavior. In light of this discovery, we take the following position

on the important issue of behavior preservation:

2. Based on personal communication with Baxter.

3. Many applications use binary I/O which is often subject to size and layout constraints. This code
must be carefully examined before being refactored.

94

• Refactorings are behavior-preserving due to good engineering and not

because of any mathematical guarantee. It is the responsibility of the refac-

toring designer to identify all enabling conditions necessary to ensure that

behavior is preserved.

• Given a mature refactoring implementation, refactorings should be treated as

trusted tools much as compilers are trusted to transform source code to

assembly even when there is no mathematical proof to guarantee their cor-

rectness.

• We believe that the development of this trust will take time. The initial

expectation is that refactoring users will retest transformed software to

ensure that no errors are introduced. As refactorings continue to perform reli-

ably, trust will grow and the benefit of reduced testing can be fully realized.

8.3 Refactoring requirements

Roberts identified three requirements for a Smalltalk refactoring implementation

[Rob97]:

Integration. Refactorings must be integrated into the standard development

tools. In Smalltalk, the standard development tool is the browser. Initially,

Roberts added menu items to the browser for each refactoring. Eventually they

implemented an entirely new browser. The integration of refactorings with other

tools is discussed further in Section 9.2.

Efficiency. Refactorings must be fast. Smalltalk programmers are used to

being able to immediately see the results of a change. Roberts argues that

refactorings which are slow will not be used since Smalltalk programmers are

likely to make the change by hand and live with the consequences. Based on our

AUIS example which generated thousands of lines of C++, we believe that the

specification of refactorings to be performed should be much faster than the time

95

required to manually code changes and that the elapsed time for executing

refactorings is less important. Reduced testing of refactoring changes should also

be taken into account to even further reduce the importance of refactoring

execution times. An efficient representation for handling source-to-source

transformations is discussed by Griswold [Gri91].

Naming. In Smalltalk, names are very important since that is one of the

fundamental ways of determining what a class, method, or variable is used for.

Reorganization tools that have to create entities often name them. These names do

not have any meaning in the problem domain and serve to obfuscate the code.

Roberts argues that whenever something is named, the user should always be

prompted. We believe that default naming should be provided for many design

pattern transformations for which classes are named after their roles, however, the

user should be able to override any defaults.

Based on our refactoring implementation and experiments, we identify the

following additional requirements:

Source File Access. Checks must be made to determine if any files affected

by a transformation are read-only.

Code Placement. For C++, there may be multiple code placement options.

The ability to place code has two important implications. First, if code is placed

within an existing file, refactorings must support some method of selecting a

position within a file where the new code should be placed. Although this could

be done by specifying a file and a line number, ease of use dictates some form of

visual interface. Second, choice of placing code in a new file implies that

refactorings must have knowledge about the file structure and makefiles.

Makefiles. Refactorings intended for use in mainstream C++ development

environments must accept a makefile or its equivalent as an argument. Makefiles

define the set of files for a target application and specify what compilation flags

96

are set. Makefile compatibility minimizes the cost of integrating refactorings into

a development environment.

Preserving Comments. Refactorings must preserve comments. One difficulty

is determining which comments apply to a body of source code. For example, at

the beginning of a file, one might find comments describing the purpose of the

file, followed by comments describing the implementation of a method, followed

by the source code for the method. If the method is moved to another class located

in another file, there is no way to distinguish between the comments which are

specific to the method and those which describe the entire file. User interaction

may be required.

97

Chapter 9

Conclusions

Design evolution is a costly yet unavoidable consequence of a successful applica-

tion. One method for reducing cost is to automate aspects of the evolutionary cycle

when possible. For object-oriented applications in particular, there are regular pat-

terns by which designs evolve. These patterns can be recognized as program trans-

formations which are automatable with object-oriented refactorings. Refactorings

are superior to hand-coding because they check enabling conditions to ensure that

a change can be made safely, identify all lines of source code affected by a change,

and perform all edits. Refactorings allow design evolution to occur at the level of a

class diagram and leave the code-level details to automation.

Before the invention of graphical user interface (GUI) editors, the process of

evolving a GUI was to design, code, test, evaluate, and redesign again. With the

introduction of editors, GUI design has become an interactive process allowing

users to design, evaluate, and redesign an interface on-screen and to output

compilable source code that reflected the latest design.

We believe that a similar advance can occur for evolving object-oriented

designs. Editing a design can be as simple as adding a line on a class diagram to

represent an inheritance relationship or moving a variable from a subclass to a

superclass. However, such changes must now be accompanied by painstakingly

identifying lines of affected source code, manually updating the source, testing

98

the changes, fixing bugs, and retesting the application until the risk of new errors

is sufficiently low. Furthermore, designs can require a great deal of

experimentation. Multiple iterations of the design-implement-test cycle may be

required to achieve a satisfactory final design.

Just as GUI editors revolutionized GUI design, we believe that refactoring-

powered class diagram editors (where changes to an application’s diagram

automatically trigger corresponding changes to its underlying source code) may

one day revolutionize the evolution of software designs.

9.1 Contributions

Our work makes the following contributions:

• Automating design evolution. Three kinds of design evolution in object-

oriented systems are: schema transformations, the introduction of design pat-

tern microarchitectures, and the hot-spot-driven-approach. All three can be

viewed as transformations applied to an evolving design. Opdyke proposed

refactorings for automating schema transformations. We extended the scope

of what is automatable to include additional schema transformations, design

patterns and hot-spot meta patterns. Our support of patterns in noteworthy

because patterns are recognized as reusable elements of design. Based on the

broad scope of changes supported, we believe that the majority of all object-

oriented applications undergoes some form of automatable evolution.

• Refactorings. We designed and implemented a set of refactorings which

automate the suite of schema transformations, design patterns, and hot-spot

meta patterns identified in Chapter 4. Refactorings were implemented as

command line executables which could be integrated into the majority of all

C++ development environments. We added to Opdyke’s list of invariants for

preserving behavior but note that there is no formal proof that the list of

99

invariants identified is complete. We argued that refactorings preserve behav-

ior because of good engineering and not because of any mathematical guar-

antee.

• Scalability. We showed that general-purpose refactorings can automate sig-

nificant design changes on large, real-world applications. The changes auto-

mated involved thousands of lines of code previously modified by hand.

• Benefits, limitations, and requirements. Our research clearly showed the

benefits that could result from a refactoring tool. Refactorings can reduce the

cost of evolutionary maintenance by performing design changes that would

otherwise be tedious or error-prone to accomplish by hand. Refactorings also

reduce the need for overly complex designs and facilitate exploration of the

space of possible designs.

Our experiments also revealed requirements and limitations that must be

acknowledged before refactoring technology can be transitioned beyond aca-

demic prototypes. A refactoring tool must preserve comments, handle certain

preprocessor directives (e.g., constant declarations and inlined functions),

have the ability to read makefiles (or their equivalent) to understand the set of

source files that are to be transformed, provide options on code placement,

and deal with restricted access to source code. There are limitations that

users of a refactoring tool may need to observe: users must work with com-

puter formatted code, some preprocessor directives (e.g., function-like mac-

ros which use ##) cannot be supported, refactorings often have conservative

enabling conditions and some enabling conditions must be verified manually.

100

9.2 Future directions

Our work focused on the practicality of applying primitive refactorings to evolving

object-oriented applications. Beyond implementation of required functionality, we

identify three issues which require further research.

Granularity of transformations. Our research proposes a basis set of

primitive refactorings. Larger grain refactorings up to the size of design patterns

are likely to be more convenient in practice. In both experiments, the number of

refactorings could be significantly reduced with larger grain refactorings (Section

6.3.2 and Section 6.4.2).

Large grain refactorings can also simplify the check for enabling conditions. It

is sometimes easier to verify enabling conditions for a large grain refactoring

instead of verifying enabling conditions for an equivalent series of primitive

refactorings [Rob97].

Program families. Transformation systems must recognize that many files

may be included by multiple programs. When transforming a file used by more

than one program, it is desirable for the transformations system to check enabling

conditions for all programs which use that file. Otherwise, a file might be

transformed safely for one program while causing another program which uses

the same file to break.

A refactoring supporting program families could accept a list of makefile

targets for which the transformation must be valid. The situation is complicated

for C++ by conditional compilation flags which imply that different preprocessed

versions of a single file should be considered when checking if a transformation

can be performed safely.

Integration with other tools. Refactorings packaged as individual

executables which take a makefile target as an argument are not dependent on the

presence of other tools. In this form, refactorings can be integrated into most

101

mainstream development environments because most environments support

command-line access to source code.

Higher levels of integration are still possible. We envision integration with an

object-oriented modeling tool such as Rational RoseTM which would allow many

refactorings to be invoked as operations on a UML diagram. Integration with a

source code control system could allow appropriate files to be checked out,

transformed, and checked back in with comments describing the refactorings.

Attempts to transform protected files would block the refactoring and notify the

user. Integration with an IDE such as Microsoft Visual C++TM would allow

transformed code and updated makefiles to be displayed immediately in open

windows.

Java as a target language. Java inherits all of C++’s refactoring benefits

while avoiding many of its limitations. First, it has no preprocessor which

removes a major barrier to a successful C++ implementation. Second, it does not

use makefiles which simplifies the process of piecing together the source files to

be transformed. Third, code placement is simplified since methods are stored in a

file belonging to the class. Java has no free-floating procedures as with hybrid

object-oriented languages such as C++. For these reasons, coupled with its

growing popularity as an internet language, we believe that Java is the best

vehicle for transferring refactoring technology to the mainstream.1 Tools are now

being developed to aid in this process [Sim95, Bax97, Bat98].

1. When we began our work, the future for Java appeared uncertain, tool support was not available,
and large Java applications were nonexistent. This is no longer true today.

102

Appendix A: Refactorings

This appendix defines the new refactorings contributed by our research (refactor-

ings in italics from the list in Chapter 3, Table 1). Invariants preserved by each

enabling condition are noted in parenthesis. Enabling conditions which were veri-

fied by hand are denoted with a (*)1.

1. Note, however, that it is possible to automate conservative checks for any of the enabling condi-
tions. Thus, the decision of which checks to automate and the conservatism of each refactoring is
implementation dependent.

103

Add factory method

Name:
add_factory_method[Product, Ptype, Factory, method]

Purpose:
To create a factory method for a class.

Arguments:
Product - the class of the object which is created
Ptype - the return type of the factory method. Ptype must be Product or

a superclass of Product.
Factory - the class to which the factory method is added
method() - the name of the method added

Description:
add_factory_method adds a class method() to Factory. method()

returns a Product object and has a return type of Ptype. Occurrences of
“new Product” are replaced by a call to Factory::method().

Enabling Conditions:
1. method() must not clash with a method of Factory.

(a) Initial State (b) Target state

method()

Factory Product

return new Product;

Product

104

Add variable

Name:
add_variable[C, iv, type, access, init_expression]

Purpose:
To add an instance variable to a class.

Arguments:
C - the class to which the variable is added
iv - the new instance variable
type - the type of the variable

access - PUBLIC, PRIVATE, or PROTECTED1

<init_expression> - a legal C++ expression used in C’s constructor to
initialize iv

Description:
add_variable adds instance variable iv to class C.

Enabling Conditions:
1. iv must not clash with an existing member or global variable.

2. If type is a class, then it cannot be pure virtual.

3. If access is PRIVATE or PROTECTED, then C cannot be initialized
with initializer lists.

4. <init_expression> cannot have any side effects when evaluated to
initialize iv.*

5. If type is a class, then its constructor cannot have any side effects
beyond initializing the object created.*

6. Program behavior must not depend on the size or layout of C.*

1. We describe a general add_variable which can add a public, private, or protected
instance variable, however, our implementation always adds a public variable.

(a) Initial State (b) Target state

C

iv

C

105

Composite

Name:
composite[C, iv, method]

Purpose:
To add a method which forwards messages through a chain of objects.

Arguments:
C - the class to which iv and method() are added
iv - the name of the instance variable to be created. iv is a collection of

C objects.
method() - the method to be created that forwards messages through all

objects in iv

Description:
composite adds iv and method() to class C. method() forwards a
message to all objects in iv. Subclasses of C may call method() to
forward a message to objects stored in iv. This refactoring is based on
the Composite design pattern [Gam95].

Enabling Conditions:
1. iv must not clash with an existing member or global variable.

2. method() must not clash with a method of C.

3. Program behavior must not depend on the size or layout of C.*

(a) Initial State (b) Target state

C

method()

foreach (iv)
iv->method()

iv

C

106

Create iterator

Name:
create_iterator[C, List, ListIterator]

Purpose:
To provide classes for storing a list of objects and for accessing this list.

Arguments:
C - the class whose objects are being stored in a list
List - a list of C objects
ListIterator - a class for traversing the elements of a List

Description:
create_iterator creates a two classes. The first is a List class which
stores a list of C objects. The second is the ListIterator class which is
used to traverse List. Separation of the iterator from the list class allows
different iterators to traverse the list in multiple ways. This refactoring

is based on the Iterator design pattern [Gam95].1

Enabling Conditions:
1. List must be a unique class.

2. ListIterator must be a unique class.

1. Note that multiple implementations of the list and iterator classes are possible.
Budinsky explores this issue in [Bud96].

(a) Initial State (b) Target state

Count()

List

Append(e)
Remove(e)
...

ListIterator

First()
Next()
IsDone()
CurrentItem()
index

list

C

C

107

Create method accessor

Name:
create_method_accessor[C, iv, iv_method, accessor]

Purpose:
To create an accessor which replaces a method called through an
instance variable.

Arguments:
C - the class containing iv

iv - an instance variable whose type is an object pointer.
iv_method - a method which must be supported by the object pointed to

by iv

accessor - a method which replaces a call to iv->iv_method()

Description:
create_method_accessor creates the method accessor() in class C
which replaces all calls to iv->iv_method().

Enabling Conditions:
1. accessor must not clash with existing functions.

2. Program behavior must not depend on the size or layout of C.*

(a) Initial State (b) Target state

accessor()

C ivType
iv

iv_method()

C ivType
iv

iv_method()

iv->iv_method();

108

Declare abstract method

Name:
declare_abstract_method[Base, Derived, method(type_signature)]

Purpose:
To declare a method defined in a derived class in a base class.

Arguments:
Base - the class in which the method will be declared
Derived - the class in which the method will be declared
method(type_signature) - the method to be declared. The type signature

uniquely identifies the method since the same method name can

have multiple type signatures.1

Description:
declare_abstract_method declares method() implemented in class
Derived as a pure-virtual function in Base.

Enabling Conditions:
1. All subclasses of Base must support method().

2. method() must not clash with an existing method in Base.

3. Base cannot be initialized with an initializer list.

4. The program cannot instantiate Base.

1. Type signature matching was not implemented because the applications we
evolved allowed us to assume that the methods could be uniquely identified
without specifying the type signature.

(a) Initial State (b) Target state

Base

Derived

method()

Base

method()

Derived

method()

109

Decorator

Name:
decorator[C, iv, method]

Purpose:
To add a method which forwards messages to a collection of objects.

Arguments:
C - the class to which iv and method() are added
iv - the name of the instance variable to be created. iv is a pointer to a

C object.
method() - the method to be created that forwards messages through iv

Description:
decorator adds iv and method() to class C. method() calls itself
through iv whenever iv is non-null. Subclasses of C may call method()
to forward a message through a chain of objects linked through iv. This
refactoring is based on the Decorator design pattern [Gam95].

Enabling Conditions:
1. iv must not clash with an existing member or global variable.

2. method() must not clash with a method of C.

3. Program behavior must not depend on the size or layout of C.*

C

method()

iv->method()

(a) Initial State (b) Target state

if (iv)

iv

C

110

Inherit

Name:
inherit[Base, Derived]

Purpose:
To establish a superclass-subclass relationship between two existing
classes.

Arguments:
Base - superclass name
Derived - subclass name

Description:
inherit makes Base a superclass of Derived.

Enabling Conditions:
1. Base must not be a subclass of Derived and Derived must not have

a superclass.

2. Member variables of Derived must have distinct names from
member variables of Base and its superclasses.

3. A member function of Derived which overrides a function must
have the same type signature as the function it overrides.

4. Subclasses of Base must implement any pure virtual methods if
objects of that class are created.

5. Initializer lists must not be used to initialize Derived objects.

6. For all inherited instance variables whose type is a class, the
constructors for those classes cannot have any side-effects outside
of object initialization if Derived is instantiated.

7. Program behavior must not depend on the size or layout of Derived.

Derived

Base

(a) Initial State (b) Target state

Derived

Base

111

Move variable across object boundary

Name:
move_variable_across_object_boundary[C, iv, iv_target]

Purpose:
To move an instance variable of a class to one of its components.

Arguments:
C - the class containing the variable to be moved
iv - the instance variable to be moved
iv_target - iv is moved to the object stored in this variable. This

variable must be an object and not an object pointer.

Description:
Given iv_target is of class T,
move_variable_across_object_boundary moves instance variable iv

to class T. iv is then accessed through iv_target.

Enabling Conditions:
1. iv must not clash with an existing member or global variable in T.

2. The constructor of T cannot have any side effects beyond
initializing the object created.*

3. Program behavior must not depend on the size or layout of C and
T.*

(a) Initial State (b) Target state

iv

C T
iv_target iv_target

C

iv

T

112

Procedure to method

Name:
procedure_to_method[proc(type_signature), arg]

Purpose:
To convert a procedure which takes an object as an argument to a
method on that object.

Arguments:
proc(type_signature) - a procedure uniquely identified by its type

signature
arg - an argument of proc() whose type is a pointer to an argType

object. argType must be a class.

Description:
procedure_to_method converts proc() to a method of argType. arg is
removed from the type signature of proc() and references to arg within
proc() are converted to references to this. Calls to proc() are
converted to invocations of the method on arg.

Enabling Conditions:
1. proc() must not clash with a method of argType.

2. The program must not use proc as a function pointer.

proc()

argType

(a) Initial State (b) Target state

proc(argType *arg)
{

//implementation
}

113

Procedure pointer to command

Name:
procedure_ptr_to_command[C, iv, Command, ((procedure1,

Command1), (procedure2, Command2), ...)]

Purpose:
To convert the type of a variable from a function pointer to a Command
class pointer.

Arguments:
C - the class containing iv

iv - an instance variable whose type is to be converted from a function
pointer to a Command pointer

Command - the base class for all commands
(procedure1, Command1) - an association list of function pointers and

their corresponding commands

Description:
procedure_ptr_to_command converts the type of iv from a function
pointer to a Command pointer. Function pointers assigned to iv are
replaced by their corresponding commands specified in the association
list of (procedure, command) pairs. Expressions which dereference iv

are converted to calls to iv’s Execute() method.1

Enabling Conditions:

1. All assignments must be type safe2.

2. Procedures and their corresponding commands must be equivalent.*

1. See Section 6.4.1 for code-level example of changes.

2. This is actually a postcondition which can be tested by a compiler check for
“type mismatch” errors. An example violation would occur in a program in
which an automatic variable is initialized by Cobj.iv. When iv is converted to a
Command, the variable initialization would flag a type mismatch. It is possible
to write a refactoring which would also convert the types of automatic variables
and procedure arguments.

(a) Initial State (b) Target state

C

void (*iv)();

C

Command *iv;

114

Procedure to command

Name:
procedure_to_command[ProcName, Command]

Purpose:
To objectify a procedure.

Arguments:
ProcName() - the procedure to be converted to a command
Command - the name of the command class to be created

Description:
procedure_to_command converts ProcName() from a procedure to a
Command class [Gam95]. The Execute() method executes
ProcName(). The arguments to Execute() and ProcName() are
identical allowing calls to ProcName through pointer dereferencing to be
replaced by calls to Execute(). To preserve a function pointer’s
identity, the Command class is created as a Singleton [Gam95]. The

Instance() method returns the single instantiation of Command class.1

Enabling Conditions:
1. Command must be a unique class.

1. Another option would have been to combine procedure_to_command which creates com-
mands and procedure_ptr_to_command which performs the type change, into a single
refactoring. This would eliminate the need to check if function pointers and commands
matched since the commands would be created directly from the function pointers. This is
an example where it is easier to verify preconditions for a larger grain refactoring rather
than for a series of equivalent lower-level refactorings.

ProcName(s, ...);

Command
Execute(s,...)
Instance()

return unique_instance;

(a) Initial State (b) Target state

void
ProcName(s,...)
{

...
}

115

Singleton

Name:
singleton[C]

Purpose:
To create a class that has only one instance.

Arguments:
C - the name of the singleton class to be created

Description:
singleton creates a class C that has only one instance. The Instance()

method returns the single instantiation of C. This refactoring and its
source level implementation are based on the Singleton design pattern
[Gam95].

Enabling Conditions:
1. C must be a unique class.

(a) Initial State (b) Target state

Instance()

C

return unique_instance;

116

Structure to pointer

Name:
structure_to_pointer[C, iv]

Purpose:
To convert an instance variable from a class structure to an object
pointer.

Arguments:
C - the class containing iv

iv - the instance variable of type ivType which is converted to a pointer
to ivType

Description:
structure_to_pointer converts iv from an ivType to a pointer to an
ivType. All references to iv are also converted. iv is initialized to point
to a new ivType object in C’s constructor.

Enabling Conditions:
1. C cannot be initialized with an initializer list.

2. ivType’s constructor cannot have any side effects beyond initializing
the object created.*

3. Program behavior must not depend on the size or layout of C.*

(a) Initial State (b) Target state

C()

C ivType
iv

iv = new ivType;

C()

C ivType
iv

117

Structure to class

Name:
structure_to_class[structName]

Purpose:
To convert a structure to a class.

Arguments:
structName - a C++ structure

Description:
structure_to_class converts struct to a class called structName.

Enabling Conditions:
None

structName

(a) Initial State (b) Target state

typedef struct {
// definition

} structName;

118

Substitute

Name:
substitute[C, Base, Derived]

Purpose:
To change a classes dependence on a derived class to a dependence on
its base class.

Arguments:
C - the class in which the substitution occurs
Base - the class being inserted
Derived - the class being replaced

Description:
substitute substitutes class C’s references to class Derived with
references to class Base. All structures and pointers in class C including
instance variables, method return types, method arguments, method
local variables, etc. are converted.

Enabling Conditions:
1. Base must support Derived’s interface to C. Automated checking of

this condition is equivalent to performing the substitution,
recompiling, and checking for ‘undefined variable’ or ‘undefined
method’ errors. Derived cannot override any part of this interface.

2. Assignment, argument passing, and return values involving Derived
objects must accept objects of type Base. Automated checking of
this condition is equivalent to performing the substitution,
recompiling, and checking for ‘type mismatch’ errors.

3. If Derived is instantiated, then the constructors for Base and Derived
must be semantically equivalent.*

4. If Derived is instantiated, then Base cannot be pure-virtual.

5. Program behavior must not depend on the size or layout of
Derived.*

(a) Initial State (b) Target state

Base

C Derived

Base

C Derived

119

Appendix B: Supported patterns

This appendix provides derivations for the additional design patterns and hot-spot

meta patterns whose introduction can be automated with refactorings.

B.1 Design patterns

B.1.1 Builder

Builder separates the construction of a complex object from its representation so

that the same construction process can create different representations. In the

example from [Gam95], the rich text format reader class RTFReader points to a

builder class which supports conversion to different text formats (only the ASCII

converter class is displayed in Figure B.1). A design originally supporting a single

format (Figure B.2) can be transformed to use the builder design pattern in five

steps:

1. Create the builder classes. Create the ASCIIConverter and TextConverter classes

using create_class. Make ASCIIConverter a subclass of TextConverter using

inherit (Figure B.3).

2. Link the original class to the new builder class. Add instance variable

builder to RTFReader using add_variable (Figure B.4).

3. Move instance variables and methods to the builder class. In this example,

120

the original design stores converted text in RTFReader’s buffer instance

variable. Move buffer to ASCIIConverter using

move_variable_across_object_boundary.1 Create an accessor for the buffer

instance variable called GetASCIIText() using create_variable_accessor.

Create_variable_accessor replaces direct access to an instance variable

1. The instance variable “buffer” and the methods ConvertCharacter(), ConvertFontChange(), and
ConvertParagraph() are not a part of the public interface of RTFReader in the example from
[Gam95]. Thus, no accessors are created when the members are moved to ASCIIConverter.

builderRTFReader

ParseRTF()

TextConverter

ConvertCharacter()

while (t = get token) {

switch t.Type {
CHAR:

FONT:

PARA

} }

builder->ConvertCharacter(t.Char);

builder->ConvertCharacter(t.Font);

builder->ConvertParagraph();

ConvertFontChange()
ConvertParagraph()

ASCIIConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()
GetASCIIText()

Figure B.1: Builder design pattern example

RTFReader

ParseRTF()

while (t = get token) {

switch t.Type {
CHAR:

FONT:

PARA

} }

ConvertCharacter(t.Char);

ConvertCharacter(t.Font);

ConvertParagraph();

buffer
ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

Figure B.2: Design for a single text format

121

with methods created to get and set the variable. Move methods

ConvertCharacter(), ConvertFontChange(), and

ConvertParagraph() to ASCIIConverter using

while (t = get token) {

switch t.Type {
CHAR:

FONT:

PARA

} }

ConvertCharacter(t.Char);

ConvertCharacter(t.Font);

ConvertParagraph();

ASCIIConverter

TextConverter

RTFReader

ParseRTF()
buffer
ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

Figure B.3: Builder classes created

builder

while (t = get token) {

switch t.Type {
CHAR:

FONT:

PARA

} }

ConvertCharacter(t.Char);

ConvertCharacter(t.Font);

ConvertParagraph();

ASCIIConverter

TextConverter

RTFReader

ParseRTF()
buffer
ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

Figure B.4: Builder instance variable added to RTFReader

122

move_method_across_object_boundary (Figure B.5).

4. Declare methods in the builder superclass. Declare ConvertCharacter(),

ConvertFontChange(), and ConvertParagraph() in TextConverter using

declare_virtual_method (Figure B.6).

5. Generalize the original class to accept any builder class. Change the type

of the builder instance variable from ASCIIConverter to TextConverter using

substitute (Figure B.1).

B.1.2 Strategy

Strategy defines a family of algorithms, encapsulates each one, and makes them

interchangeable. In the example from [Gam95], a Composition class is responsible

for maintaining and updating the linebreaks of text displayed in a text viewer (Fig-

ure B.7). Linebreaking strategies are implemented in subclasses of Compositor. A

Composition maintains a reference to a Compositor and forwards the linebreaking

Figure B.5: Converter methods moved to XWindow class

builderRTFReader

ParseRTF()

TextConverter

while (t = get token) {

switch t.Type {
CHAR:

FONT:

PARA

} }

builder->ConvertCharacter(t.Char);

builder->ConvertCharacter(t.Font);

builder->ConvertParagraph();

ASCIIConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()
GetASCIIText()

return buffer;

123

responsibility to this class. A design supporting a single linebreaking strategy (Fig-

ure B.8) can be transformed to use the strategy design pattern (Figure 7) in six

steps:

1. Encapsulate the strategy as a method. Replace the linebreaking algorithm

with a Compose() method using extract_code_as_method (Figure B.9).

Extract_code_as_method replaces a block of code with a function call

while (t = get token) {

switch t.Type {
CHAR:

FONT:

PARA

} }

builder->ConvertCharacter(t.Char);

builder->ConvertCharacter(t.Font);

builder->ConvertParagraph();

ASCIIConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()
GetASCIIText()

return buffer;

TextConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

builderRTFReader

ParseRTF()

Figure B.6: Virtual methods declared in TextConverter

compositorComposition

Traverse()
Repair()

compositor->Compose()
TeXCompositor

Compose()

Compositor

Compose()

Composition

Traverse()
Repair()

//repairs
linebreaking algorithm
//more repairs

Figure B.7: Strategy design pattern example Figure B.8: Strategy for a single
linebreaking algorithm

124

which executes the block.

2. Create the strategy classes. Create the Compositor and TeXCompositor classes

using create_class. Make TeXCompositor a subclass of Compositor using inherit

(Figure B.10).

3. Link the original class to the strategy class. Add the compositor instance

variable using add_variable (Figure B.11).

4. Move the strategy method to the strategy class. Move the Compose()

method to TeXCompositor using move_variable_across_object_boundary

(Figure B.12).

5. Declare the strategy method in the strategy superclass. Declare Compose()

in Compositor using declare_virtual_method.

Figure B.9: Linebreaking algorithm
extracted as a method

Composition

Traverse()
Repair()

//repairs
Compose()
//more repairs

Compose()
linebreaking algorithm

Composition

Traverse()
Repair()

Compose()

Compose() TeXCompositor

Compositor

Figure B.10: Strategy classes created

Figure B.11: Strategy instance variable added to Composition

Composition

Traverse()
Repair()

Compose()Compose()

TeXCompositor

Compositor

compositor

125

6. Generalize the original class to accept any strategy class. Change the type

of the compositor instance variable from TeXCompositor to Compositor using

substitute (Figure B.7).

B.2 Hot-spot meta patterns

For convenience, the meta pattern transition diagram from Section 4.3.2 is pre-

sented again in Figure B.13. Derivations for transitions 1 and 2 were given in Sec-

tion 4.3.2. Derivations for the remaining transitions follow.

Composition

Traverse()
Repair()

compositor->Compose()

Compose()

TeXCompositor

Compositor

compositor

Figure B.12: Compose() method moved to strategy class

Figure B.13: Hot-spot meta pattern transitions enabled by refactorings

No meta pattern

1:1 connection

Unification 1:1 recursive unification

1:1 recursive connection

1:N recursive unification

1:N recursive connection

1

2

3

4

5

6

126

B.2.1 No meta pattern to 1:1 recursive unification

Figure B.14 displays the transformation of a class and method with no recursion to

use the 1:1 recursive unification composition (transition 3 from Figure B.13). In

1:1 recursive unification, there is one template-hook method which calls itself

recursively by default (Figure B.14, right hand side). Subclasses containing meth-

ods which override the template-hook method can call the superclass method to

forward messages along a chain of objects. The 1:1 recursive unification meta pat-

tern can be added in three steps:

1. Create a superclass of the template-hook class. Create class S using

create_class. Make S a superclass of T using inherit (Figure B.15).

2. Declare the template-hook method in the superclass. Declare M() in S

S

M()

if (ref)
ref->M()

ref

Figure B.14: Class and method to 1:1 recursive unification

T

M()

T

M()

S

T

M()

S

M()

T

M()

Figure B.15: Superclass S created Figure B.16: Method M() declared in S

127

using declare_virtual_method (Figure B.16).

3. Add the recursive template-hook method to the superclass. Apply the

decorator refactoring to S and M()(Figure B.14, right hand side). Decorator

adds instance variable ref of type S and creates a method M() which

forwards the message to ref. Subclasses of S which override M() can then

call S::M() to pass messages down a chain.

B.2.2 1:1 recursive unification to 1:1 recursive connection

Figure B.17 displays the transition from 1:1 recursive unification to 1:1 recursive

connection (transition 4 in Figure B.13). In 1:1 recursive connection (Figure B.17,

right hand side), the template and hook methods have the same name. An object of

type T can be a single object or a chain of objects of subtype H. The transformation

from 1:1 recursive unification to 1:1 recursive connection can be accomplished in

two steps:

1. Create the hook class as a subclass of the template class. Create class H

using create_class. Make T a superclass of H using inherit (Figure B.18).

2. Move methods and variables to the hook class. Move M() from T to H

using push_down_method. Declare M() in T using declare_virtual_method

(Figure B.19). Move ref from T to H using push_down_variable (Figure

B.17, right hand side).

Figure B.17: 1:1 recursive unification to 1:1 recursive connection

T

M()

if (ref)
ref->M()

ref

H

M()

T

M()

if (ref)
ref->M()

ref

128

B.2.3 No meta pattern to 1:N recursive unification

Figure B.20 displays the transformation of a class and method with no recursion to

use the 1:N recursive unification composition (transition 5 from Figure B.13). In

1:N recursive unification, there is one template-hook method which calls itself

recursively by default (Figure B.20, right hand side). Subclasses containing meth-

ods which override the template-hook method can call the superclass method to

forward messages along a tree of objects. The 1:1 recursive unification meta pat-

tern can be added in three steps:

1. Create a superclass of the template-hook class. Create class S using

create_class. Make S a superclass of T using inherit (Figure B.21).

Figure B.18: Superclass S created Figure B.19: Method M() declared in S

T

M()

if (ref)
ref->M()

ref

H

M()

S

M()

if (ref)
ref->M()

ref

T

S

M()

foreach (ref)
ref->M()

ref

Figure B.20: Class and method to 1:N recursive unification

T

M()

T

M()

129

2. Declare the template-hook method in the superclass. Declare M() in S

using declare_virtual_method (Figure B.22).

3. Add the default recursive template-hook method to the superclass. Apply

the composite refactoring to S and M()(Figure B.20, right hand side).

Composite adds an instance variable ref which stores a collection of

objects of type S and creates a method M() which forwards the message to

all objects in the collection. Subclasses of S which override M() can then

call S::M() to pass messages through a tree.

B.2.4 1:N recursive unification to 1:N recursive connection

Figure B.23 displays the transition from 1:N recursive unification to 1:N recursive

connection (transition 6 in Figure B.13). In 1:N recursive connection, (Figure

B.23, right hand side), the template and hook methods have the same name. An

S

T

M()

S

M()

T

M()

Figure B.21: Superclass S created Figure B.22: Method M() declared in S

Figure B.23: 1:N recursive unification to 1:N recursive connection

T

M()

foreach (ref)
ref->M()

ref

H

M()

T

M()

foreach (ref)
ref->M()

ref

130

object of type T can be a single object or a tree of objects of subtype H. The trans-

formation from 1:N recursive unification to 1:N recursive connection can be

accomplished in two steps:

1. Create a hook class as a subclass of the template class. Create class H

using create_class. Make T a superclass of H using inherit (Figure B.24).

2. Move methods and variables from the template class to the hook class.

Move M() from T to H using pull_down_method. Declare M() in T using

declare_virtual_method (Figure B.25). Move ref from T to H using

pull_down_variable (Figure B.23, right hand side).

Figure B.24: Superclass S created Figure B.25: Method M() declared in S

T

M()

foreach (ref)
ref->M()

ref

H

M()

T

M()

foreach (ref)
ref->M()

ref

H

131

Bibliography

[And94] B. Anderson. Patterns: Building Blocks for Object-Oriented Software

Architectures. In Software Engineering Notes, January 1994.

[Ban87] J. Banerjee and W. Kim. Semantics and Implementation of Schema Evolution

in Object-Oriented Databases. In Proceedings of the ACM SIGMOD

Conference, 1987.

[Bat94] D. Batory et.al. Scalable Software Library. In Proceedings of ACM SIGSOFT,

December 1993.

[Bat98] D. Batory et. al. JTS: Tools for Implementing Domain-Specific Languages. In

5th International Conference on Software Reuse, Victoria, Canada, June

1998.

[Bax90] I. Baxter. Design Maintenance Systems. In Communications of the ACM

35(4), April, 1992.

[Bax97] I. Baxter. and C. Pidgeon. Software Change Through Design Maintenance. In

Proceedings of the International Conference on Software Maintenance ‘97,

IEEE Press, 1997.

[Bec94] K. Beck, R. Johnson. Patterns Generate Architectures. In Proceedings

ECOOP ’94, Springer-Verlag, 1994.

[Ber91] P. Bergstein. Object-Preserving Class Transformations. In Proceedings of

OOPSLA ’91, 1991.

132

[Bod94] F. Bodin. Sage++: An Object-Oriented Toolkit and Class Library for Building

Fortran and C++ Restructuring Tools. In Proceedings of the 2nd Object-

Oriented Numerics Conference, Sunriver, Oregon 1994.

[Boo94] G. Booch. Object-Oriented Analysis and Design with Applications.

Benjamin/Cummings, Redwood City, California, 1994.

[Bos98] J. Bosch. Design Patterns as Language Constructs. In Journal of Object-

Oriented programming, Vol. 11, No. 2, pp. 18-32, May 1998.

[Bud96] F. J. Budinsky et.al., Automatic Code Generation from Design Patterns. In

IBM Systems Journal, Volume 35, No. 2, 1996.

[Cas91] Eduardo Casais. Managing Evolution in Object-Oriented Environments: An

Algorithmic Approach. PhD thesis, University of Geneva. 1991.

[Cha98] E. Chan, J. Boyland, and W. Scherlis. Promises: Limited Specifications for

Analysis and Manipulation. In Proceedings of ICSE ’98, 1998.

[Coa92] P. Coad. Object-Oriented Patterns. In Communications of the ACM, V35 N9,

pages 152-159, September 1992.

[Ell90] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-

Wesley, Reading, Massachusetts, 1990.

[Flo97] G. Florijn, M. Meijers, and P. van Winsen. Tool Support for Object-Oriented

Patterns. In Proceedings, ECOOP ’97, pages 472-495, Springer-Verlag, 1997.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Reading, Massachusetts, 1984.

[Gam93] E. Gamma et. al. Design Patterns: Abstraction and Reuse of Object-Oriented

Design. In Proceedings, ECOOP ’93, pages 406-421, Springer-Verlag, 1993.

[Gam95] E. Gamma et.al. Design Patterns Elements of Reusable Object-Oriented

Software. Addison-Wesley, Reading, Massachusetts, 1995.

133

[Gam96] E. Gamma et. al. TUTORIAL 29: Design Patterns Applied. OOPSLA ’96

Tutorial, 1996.

[Gol84] A. Goldberg. Smalltalk-80: The Interactive Programming Environment.

Addison-Wesley, Reading, Massachusetts, 1984.

[Gri91] W. Griswold. Program Restructuring as an Aid to Software Maintenance.

PhD thesis. University of Washington. August 1991.

[Gri93] W. Griswold. Direct Update of Data Flow Representations for a Meaning-

Preserving Program Restructuring Tool. In SIGSOFT ’93, December 1993.

[Hun95] H. Huni, R. Johnson and R. Engel. A Framework for Network Protocol

Software. In Proceedings of OOPSLA ’95, 1995.

[Hur96] W. Hursch and L. Seiter. Automating the Evolution of Object-Oriented

Systems. International Symposium on Object Technologies for Advanced

Software. Springer-Verlag, March 1996.

[Joh88] R. Johnson and B. Foote. Designing Reusable Classes. In Journal of Object-

Oriented Programming, pages 22-35, June/July 1988.

[Joh92] R. Johnson. Documenting Frameworks with Patterns. In OOPSLA ’92

Proceedings, SIGPLAN Notices, 27(10), pages 63-76, Vancouver BC,

October 1992.

[Kem92] Chris F. Kemerer. How the Learning Curve Affects CASE Tool Adoption. In

IEEE Software, pages 23-28, May 1992.

[Kim96] J. Kim and K. Benner. An Experience Using Design Patterns: Lessons

Learned and Tool Support, Theory and Practice of Object Systems, Volume 2,

No. 1, pages 61-74, 1996.

[Kra88] G. E. Krasner and S. T. Pope. A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. In Journal of Object-

Oriented Programming, pages 26-49, August 1988.

134

[LaL91] W. LaLonde and J. Pugh. Subclassing != Subtyping != Is-a. In Journal of

Object-Oriented Programming, pages 57-62, January 1991.

[Lie89] K. Lieberherr and I. M. Holland. Assuring good style for object-oriented

programs. In IEEE Software, September 1989.

[Lie88] K. Lieberherr, I. M. Holland, and A. Riel. Object-oriented programming: An

objective sense of style. In Proceedings OOPSLA ’88, September 1988.

[Lie91] K. Lieberherr, W. Hursch, and C. Xiao. Object-Extending Class

Transformations. Techinal report, College of Computer Science, Northeastern

University, 360 Huntington Ave., Boston, Massachusetts, 1991.

[Lin92] M. Linton. Encapsulating a C++ Library. In Proceedings of the 1992 USENIX

C++ Conference, pages 57-66, Portland, Oregon, August 1992.

[May89] P. Maydany et.al. A Class Hierarchy for Building Stream-Oriented File

Systems. In Proceedings of ECOOP ’89, Nottingham, UK, July 1989.

[Mey88] Ware Meyers. Interview with Wilma Osborne. In IEEE Software 5 (3), pages

104-105, 1988.

[McG97] P. McGuire. Lessons Learned in the C++ Reference Development of the

SEMATECH Computer-Integrated Manufacturing (CIM) Applications

Framework. In SPIE Proceedings, Volume 2913, pages 326-344, 1997.

[Mor85] Morris, J. H., M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S.H.

Rosenthal, and F.D. Smith. Andrew: A Distributed Personal Computing

Environment. Communications of the ACM, March, 1986.

[Opd92] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,

University of Illinois, 1992.

[Opd93] W. F. Opdyke and R. E. Johnson. Creating abstract superclasses by

refactoring. In ACM 1993 Computer Science Conference. February 1993.

135

[O’Sh86] Tim O'Shea, Kent Beck, Dan Halbert, and Kurt J. Schmucker. Panel on: The

learnability of object-oriented programming systems. In Proceedings of

OOPSLA '86. pages 502-504. November 1986.

[Pre94] W. Pree. Meta Patterns — A Means for Capturing the Essentials of Reusable

Object-Oriented Design. In Proceedings, ECOOP ’94, Springer-Verlag, 1994.

[Pree95] W. Pree and H. Sikora. Application of Design Patterns in Commercial

Domains. OOPSLA ’95 Tutorial 11, Austin, Texas, October 1995.

[Pre92] R. Pressman. Software Engineering A Practitioner's Approach, McGraw Hill,

1992.

[Rea86] Reasoning Systems. REFINE User’s Guide, Reasoning Systems Inc., Palo

Alto, 1986.

[Rei94] S. Reiss. CPPP 1.61 (software package), Brown University, 1994. Available

via anonymous ftp from ftp.cs.brown.edu:/pub/cppp.tar.Z.

[Rob97] D. Roberts, J. Brant, R. Johnson. A Refactoring Tool for Smalltalk. In Theory

and Practice of Object Systems, Vol. 3 Number 4, 1997.

[Roc86] R. Rochat. In search of good Smalltalk programming style. Technical Report

CR-86-19, Tektronix, 1986.

[Rum91] J. Rumbaugh et. al. Object-Oriented Modelling and Design. Prentice Hall,

Englewood Cliffs, New Jersey, 1991.

[Sch98a] W. Scherlis. Systematic Change of Data Representation: Program

Manipulations and Case Study. In Proceedings of ESOP ’98, 1998.

[Sch98b] B. Schulz et. al. On the Computer Aided Introduction of Design Patterns into

Object-Oriented Systems. In Proceedings of the 27th TOOLS Conference,

IEEE CS Press, 1998.

[Sim95] C. Simonyi, “The Death of Computer Languages, the Birth of Intentional

Programming”, Microsoft Corporation, Sept 1995.

136

[Ste95] S. Stewart. Roadmap for the Computer-Integrated Manufacturing Application

Framework. NISTIR 5697, June, 1995.

[Tok95] L. Tokuda and D. Batory. Automated Software Evolution via Design Pattern

Transformations. In Proceedings of the 3rd International Symposium on

Applied Corporate Computing, Monterrey, Mexico, October 1995.

[Tok99a] L. Tokuda and D. Batory. Automating Three Modes of Object-Oriented

Software Evolution. In Proceedings of COOTS ’99, May 1999.

[Tok99b] L. Tokuda and D. Batory. Evolving Object-Oriented Architectures with

Refactorings. To appear in ASE ’99.

[Win96] Pieter van Winsen. (Re)engineering with Object-Oriented Design Patterns.

Master’s Thesis, Utrecht University, INF-SCR-96-43, November, 1996.

[Wei88] A. Weinand, E. Gamma, and R. Marty. ET++ -- An Object-Oriented

Application Framework in C++. In Object-Oriented Programming Systems,

Languages, and Applications Conference, pages 46-57, San Diego,

California, September 1988.

[You79] E. Yourdon and L. Constantine. Structured Design. Prentice Hall, 1979.

36

Vita

Lance Tokuda was born in Kaneohe, Hawaii, the son of George and Janet Tokuda.

After graduating from Castle High School, he entered the University of Hawaii at

Manoa where he received a Bachelor of Science with Distinction in Electrical

Engineering in August 1986, and Master of Science in Electrical Engineering in

August 1987. Lance worked a year at ESL in Sunnyvale before being recruited as

employee number four and principal engineer at Resumix Inc. In September of

1993, he entered the Graduate School of the University of Texas at Austin. A list of

publications follows:

1. L. Tokuda and D. Batory. Automated Software Evolution via Design Pattern

Transformations. In Proceedings of the 3rd International Symposium on

Applied Corporate Computing, Monterrey, Mexico, October 1995.

2. L. Tokuda and D. Batory. Automating Three Modes of Object-Oriented

Software Evolution. In Proceedings of COOTS ’99, May 1999.

3. L. Tokuda and D. Batory. Evolving Object-Oriented Architectures with

Refactorings. To appear in ASE ’99.

Permanent Address: 46-237 Heeia Street

Kaneohe, Hawaii 96744

This dissertation was typed by the author.

