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. . . fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.
Dante Alighieri, Inferno, Canto XXVI.1

Abstract

Very large databases are a major opportunity for science and data analytics is a re-

markable new �eld of investigation in computer science. The e�ectiveness of these tools

is used to support a �philosophy� against the scienti�c method as developed throughout

history. According to this view, computer-discovered correlations should replace under-

standing and guide prediction and action. Consequently, there will be no need to give

scienti�c meaning to phenomena, by proposing, say, causal relations, since regularities in

very large databases are enough: �with enough data, the numbers speak for themselves�.

The �end of science� is proclaimed. Using classical results from ergodic theory, Ramsey

theory and algorithmic information theory, we show that this �philosophy� is wrong. For

example, we prove that very large databases have to contain arbitrary correlations. These

correlations appear only due to the size, not the nature, of data. They can be found in

�randomly� generated, large enough databases, which � as we will prove � implies that most

correlations are spurious. Too much information tends to behave like very little informa-

tion. The scienti�c method can be enriched by computer mining in immense databases,

but not replaced by it.

∗To appear in Foundations of Science.
1Italian: . . . you were not born to live like brutes, but to pursue virtue and knowledge.
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1 Data deluge

Speaking at the Techonomy conference in Lake Tahoe, CA in August 2010, E. Schmidt, then
Google CEO, estimated that every two days humanity creates a quantity of data equivalent to
the entire amount produced from the dawn of time up to 2003 [46].

According to Grossman [23], every day humanity generates 500 million tweets, 70 million
photos on Instagram, and 4 billion videos on Facebook.

Under the title �What is big data?� IBM researchers estimate in [25] that

Every day, we create 2.5 quintillion bytes of data � so much that 90% of the data
in the world today has been created in the last two years alone. This data comes
from everywhere: sensors used to gather climate information, posts to social media
sites, digital pictures and videos, purchase transaction records, and cell phone GPS
signals to name a few. This data is big data.

From scarcity and di�culty to �nd data (and information) we now have a deluge of data.

2 Data science is the end of science

In June 2008, C. Anderson, former editor-in-chief of Wired Magazine, wrote a provocative
essay titled �The End of Theory: The Data Deluge Makes the Scienti�c Method Obsolete�
in which he states that �with enough data, the numbers speak for themselves�. �Correlation
supersedes causation, and science can advance even without coherent models, uni�ed theories�,
he continues. Anderson is not unique in stressing the role of petabytes, stored in the cloud, in
replacing the scienti�c method. Succinctly, George Box's maxim that all models are wrong, but
some are useful is replaced by all models are wrong, and increasingly you can succeed without
them.2

The idea behind this new �philosophy� is that su�ciently powerful algorithms can now
explore huge databases and can �nd therein correlations and regularities. Independently of
any analysis of �meaning� or �content� of such correlations � which are notions very di�cult
to de�ne � rules for prediction and, possibly for action, are then provided by the machine.
The strength and generality of this method relies on the immense size of the database: the
larger the data, the more powerful and e�ective is the method grounded on computationally-
discovered correlations. Consequently, there is no need to theorise, understand, criticise . . . the
sense of the discovered correlations: �No semantic or causal analysis is required�. According to
Anderson, petabytes allow us to say: �Correlation is enough . . . . We can throw the numbers
into the biggest computing clusters the world has ever seen and let statistical algorithms �nd
patterns where science cannot�.

A moderate, yet criticised3, position was taken by the NSF [37]:

Computational and Data-Enabled Science and Engineering (CDS&E) is a new pro-
gram. CDS & E is now clearly recognizable as a distinct intellectual and technolog-
ical discipline lying at the intersection of applied mathematics, statistics, computer

2Anderson attributed the last sentence to Google's research director Peter Norvig, who denied it [36]: �That's
a silly statement, I didn't say it, and I disagree with it.�

3See more in [4].
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science, core science and engineering disciplines . . .We regard CDS&E as explic-
itly recognizing the importance of data-enabled, data-intensive, and data centric
science. CDS&E broadly interpreted now a�ects virtually every area of science
and technology, revolutionizing the way science and engineering are done. Theory
and experimentation have for centuries been regarded as two fundamental pillars of
science. It is now widely recognized that computational and data-enabled science
forms a critical third pillar.

The big target of the �data-enabled, data-intensive, and data centric science� new �philoso-
phy� is science itself. The scienti�c method is built around hypotheses derived from observations
and �insight�. It actually started when humans looking at the stars and the moon tried to un-
derstand the sky by myth and theory, an endeavour which gave us not only knowledge, but
also human sense to our biological life. Theories are then constructed while new objects of
knowledge, such as electromagnetic waves or quanta, are proposed and studied. Experiments
help to falsify hypotheses or their theoretical consequences and, when this is possible, suggest
mathematical models.

The position pioneered by Anderson and his followers explicitly announces the �End of Sci-
ence�. Why? Because, according to them, science founded on models is relatively arbitrary and
often wrong as it is based on adductive and deductive praxis, as well as excessive critical think-
ing that leaves room even for aesthetic judgements (for example, �appreciations of symmetries�
in the broadest sense, from Euclid to H. Weyl and R. Feynman, to modern biology, see [30]).
The conclusion is that

science as we know it will be replaced by robust correlations in immense databases.

3 The power and limits of correlations

In general, �co-relation� denotes phenomena that relate covariantly, that is, they vary while
preserving proximity of values according to a pre-given measure. �Co-relation� is essentially
�co-incidence�, that is, things that occur together.

For example, a correlation can be a relationship between two variables taking (numeric)
values. If one variable value increases, then the other one also increases (or decreases) �in
the same way�. For example, �as the temperature goes up, ice cream sales also go up� or �as
the temperature decreases, the speed at which molecules move decreases� or �as attendance at
school drops, so does achievement� or �as weather gets colder, air conditioning costs decrease�.

Correlations can be useful because of their potential predictive power: use or act on the
value of one variable to predict or modify the value of the other.

From about the 10th century BC onwards, in the region from Korea and China to Mo-
rocco, early astronomers detected various regularities, from which they were able to compute
future observations of astronomical bodies. The observations and computational methods were
gradually improved over the millennia, so that by about 1200 some astronomers could make
reliable predictions of solar eclipses [34]. In the 10th century AC, Chinese doctors remarked
that mild smallpox infection could prevent more severe illnesses. They were later able to con-
�rm this correlation by successfully experimenting with smallpox inoculation on large numbers
of individuals [35, pp. 114�174].

We must acknowledge the extraordinary insights of these very early observations of non-
obvious correlations and their practical relevance. More scienti�c knowledge has been added
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to them: a) Clairaut's mathematical derivation of the orbit of Halley's comet, and its delays,
on the grounds of Newton's laws and equations, in the 18th century, b) the understanding of
microbial infections and vaccines in the 19th century. These works could frame the original
correlations into relatively robust theories that gave them �scienti�c meaning�. This scienti�c
method, which allows uni�cation and generalisation, can also detect correlations that may
be considered spurious � like the relation between the orientation of a comet's tail and the
Emperor's chances of a military victory.

In a 1992 study at the University of Illinois [1] 56,000 students were asked about their
drinking habits and grades. The results indicate a correlation between these two variables: the
more a student drinks, the more her/his GPA goes down. Based on the established correlation
one could predict that a student who drinks a bottle of wine every day would be likely to �unk
out of school.

Pitfalls of exaggerating the value of prediction based on correlated observables have been
discussed in the literature for many years. For example, the conclusion of Ferber's 1956 analy-
sis [14] is:

Clearly the coe�cient of correlation is not a reliable measure for [the practical
problem of selecting functions (hypotheses) for predictive purposes], nor does there
appear to be at the present time any alternative single statistic adequate in this
respect relating to the period of observation. Unsettling as it may seem, there does
not appear to be any statistical substitute for a priori consideration of the adequacy
of the basic hypothesis underlying a particular function.

Even more importantly, it is well-known that correlation does not imply causation. In the
analysis of the Illinois survey referred above, one notes [1]:

However, a correlation does not tell us about the underlying cause of a relationship.
We do not know from the Illinois data whether drinking was correlated with lower
grades because (1) alcohol makes people stupid, or (2) the students who tend to
drink tend to be poorer students to begin with, or (3) people who are hung-over from
a drinking binge tend to skip class, or (4) students in academic trouble drink in order
to drown their sorrows, or some other reason. There can be hundreds of possible
explanations for a correlation: the number is limited only by your imagination and
ingenuity in thinking up possible reasons for a relationship between two variables.

Then the purely syntactic/relational perspective, with no �understanding�, is lucidly spelled
out in [1]:

For purposes of making a prediction, the underlying reason for a correlation may
not matter. As long as the correlation is stable � lasting into the future � one can
use it to make predictions. One does not need an accurate cause-e�ect explanation
to make a prediction. As long as a �pattern� (correlation) continues into the future,
we can use it to make a prediction, whether or not we understand it.

What a correlation does not tell you is why two things tend to go together. Maybe
alcohol consumption is not the root cause of bad grades, in the Illinois study. Per-
haps the students who drank never opened their books and never studied, and that
is why they got bad grades. We do not know. The study did not seek to explore
underlying causes of the correlation.
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The following example quoted from [38] is worrying:4

A 2010 study [44] conducted by Harvard economists Carmen Reinhart and Kenneth
Rogo� reported a correlation between a country's economic growth and its debt-
to-GDP ratio. In countries where public debt is over 90 percent of GDP, economic
growth is slower, they found. The study gathered a lot of attention. Google Scholar
listed 1218 citations at the time of writing, and the statistic was used in US economic
policy debates in 2011 and 2012, [48]5.

The study isn't conclusive, though � in fact, it's far from it. As noted by John Irons
and Josh Bivens of the Economic Policy Institute, it's possible that the e�ect runs
the other way round, with slow growth leading to high debt. Even more worryingly,
the research didn't hold up on replication [53]. But by the time that became clear,
the original study had already attracted widespread attention and a�ected policy
decisions.

As a last example in Figure 1 we present a hilarious high correlation.

Figure 1: A correlation with r = 0.952407 [2].

In spite of long-known facts pointing to the contrary, the core of the recent argumentation
is that because of the possibility of mining huge databases, correlation supersedes causation.
Shortcomings of this position have been discussed in the literature. For example, Poppelaar's
blog from 5 April 2015 titled �Do numbers really speak for themselves with big data?� [41]
concludes that

4This example points to another important issue: no data collecting is strictly objective � see the analysis
in [22] of Reinhart and Rogo�'s bias in their collection of data in several countries for 218 years.

5European policy makers largely referred to that paper till 2013. For example, O. Rehn, EU Commissioner for
Economic A�airs (2009�13) referred to the Reinhart-Rogo� correlation as a key guideline for his past and present
economic views ([51], address to ILO, April 9, 2013) and G. Osborne, British Chancellor of the Exchequer (since
2010), claimed in April 2013: �As Rogo� and Reinhart demonstrate convincingly, all �nancial crises ultimately
have their origins in one thing [the public debt].� [32].
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With data, enough computing power and statistical algorithms patterns will be
found. But are these patterns of any interest? Not many of them will be, as
spurious patterns vastly outnumber the meaningful ones.6 Anderson's recipe for
analysis lacks the scienti�c rigour required to �nd meaningful insights that can
change our decision making for the better. Data will never speak for itself, we give
numbers their meaning, the Volume, Variety or Velocity of data cannot change that.

The nomothetic studies that seek relationships between demographic variables and cultural
traits by mining very large, cross-cultural datasets [45] is another example among many dis-
cussed in the literature, see [15, 16, 28, 5].

Our analysis of the big data-driven �philosophy� will be presented in mathematical terms.
Speci�cally, we will use a) ergodic theory to show that one cannot reliably predict by �analogy�
with the past, even in deterministic systems, chaotic or not, and b) Ramsey theory to prove
that, given any arbitrary correlation on sets of data, there exists a large enough number (size)
such that any data set larger than that size realises that type of correlation. Since this large-
enough data set is arbitrary, it could have been obtained by a random number generator (series
of coin tosses or measurements of quantum �uctuations of the vacuum),7 which, by design,
excludes any underlying structure or rule [6, 7] that could justify action through possible future
extensions. Note that it is exactly the size of the data that allows our result: the more data, the
more arbitrary, meaningless and useless (for future action) correlations will be found in them.

Thus, paradoxically, the more information we have, the more di�cult is to extract meaning
from it. Too much information tends to behave like very little information.

4 The goal of the paper

Our goal is not to criticise the �elds of data science, data mining or data analytics per se. As
discussed in the previous section, the correlational method is a scienti�c praxis with roots going
far back in human history. It is also clear that learning how to analyse extremely large data
sets correctly and e�ciently will play a critical role in the science of the future, and even today.
Rather, our aim is to document the danger of allowing the search of correlations in big data to
subsume and replace the scienti�c approach.

Our analysis will �rst use an argument from dynamical systems in [8], then employ results
from Ramsey theory [20] and algorithmic information theory [6, 12], theories8 which provide
the foundations of the behaviour � power and limits � of the algorithms, in particular of those
dealing with large sets of numbers.

5 Ergodic theory

One of the main ideas supporting data analytics is that a series of correlations will continue
or iterate similarly along the chosen parameter (recurrence). If, for example, time is the main
parameter (as in Figure 1), then the correlation will extend into the future by iterating a similar

6See also the huge collection of spurious correlations [2] and the book [55] based on it, in which the old rule
that �correlation does not equal causation� is illustrated through hilarious graphs.

7This was informally observed also in [50, p. 20]: �With fast computers and plentiful data, �nding statistical
relevance is trivial. If you look hard enough, it can even be found in tables of random numbers�.

8They are branches of �nite combinatorics and the theory of algorithms, respectively.

6



�distance�, typically, between the chosen observables. The recurrence of correlation is a rather
natural phenomenon which applies to many familiar events, like diurnal and seasonal cycles
and their observables consequences. This idea and the belief in determinism � from the same
antecedents follow the same consequents � more or less implicitly justify the prediction methods
based on the recurrence of regularities.

The debate on recurring (time) series has a long history, going back to the end of the 19th
century studies in the geometry of dynamical systems (Poincaré) and statistical physics (Boltz-
mann). Poincaré proved the unpredictability of deterministic non-linear systems: physical
dynamics (orbits) where minor �uctuations (i.e. below measurement) could yield measurable
but unpredictable evolutions (the origin of chaos theory, see [11, 7]). Moreover, he also proved
the fundamental �recurrence theorem� in ergodic theory.9 This theorem roughly states that in
any deterministic system, including chaotic systems, the future, soon or late, will be analogous
to the past (will somehow iterate). More precisely, for every subset A of non-null measure
and for every probability-preserving transformation (dynamics) T , almost every point of A will
return again to A, after a su�ciently long but �nite number of iterations of T � called Poincaré
recurrence time. Probabilities are special types of measures, so we can formally state the result
using the framework of probability theory:

Poincaré recurrence theorem. Let T : X → X be a measure-preserving trans-
formation of the probability space (X,B, µ) and let A be a set in B with measure
µ(A) > 0.10 Then with µ-probability equal to one, the orbit {T n(x)}∞n=0 of an
element x ∈ A returns to A in�nitely often.

This is a �stability� or predictability result, as it guaranties that almost any orbit will
eventually iterate in a similar way (and this for ever, again and again). In other words, every
orbit will come close to a previous value, with probability one (almost certainty), even in
the presence of chaos. This mathematical result seems to con�rm the data science approach:
if the system is believed to be deterministic, one can avoid the mathematical analysis and
just �follow the (implicit) rule or regularity�: by recurrence, it will dictate the future. As
a consequence, in large databases, whose data come from an underlying (though unknown)
deterministic dynamics, one expects that a regularity will show up again and again, hence
allowing prediction and action.

A more subtle detail comes from the following classical result proved in [26]:

Kac's lemma. The average recurrence time to a subset A in Poincaré recurrence
theorem is the inverse of the probability of A.

This means that the �smaller� A is, the lower are its probabilities to be hit by the orbit or
the longer it takes to get back to it.

Consider now a �relational orbit� in a database, that is, a series of values v1, v2, . . . , vp
relating p observables. The analyst does not know or does not want to know the possible law
that determines the underlying dynamics, yet she cannot exclude the possibility that there is
a law (to be given, for example, as a system of equations or an evolution function). In this
case, the probabilities to �nd again values close to the vi's in a small set A containing vi's

9A branch of mathematics which studies dynamical systems with an invariant measure and related problems.
10The measure of A, µ(A), is the probability of A.
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are very small and, thus, the recurrence time is very long.11 Moreover, recent developments of
Kac's lemma in [8] show that in any deterministic system as above, these probabilities decrease
exponentially also with the size (dimension) of the phase space (observables and parameters)
and the recurrence time increases exponentially with that size. Similarly, if the (underlying)
equations or evolution function are non-linear, in particular chaotic and presenting attractors,
then the probability referred above decreases exponentially also with the dimension of the
attractors. [8]12 Actually, the paper [8] proves that the dimension of the phase space is at least
as important as chaos for the unpredictability of deterministic dynamics and concludes:

When the number of e�ective degrees of freedom underlying a dynamical process is
even moderately large, predictions based solely on observational data soon become
problematic, as in the case of weather forecasting.13

In real life problems, both dimensions � of the phase space and attractors � are large. Thus
it is very unlikely or it takes a long recurrence time for an orbit (thus a regularity, a pattern)
to iterate again. Furthermore, in databases one may decide to correlate only a few observables
(for example, n = 2 in Figure 1), yet one cannot exclude that these observables depend on
many more parameters � indeed this happens in cases where (causal) dependence is far from
unique.

In conclusion, there is no way to reliably predict and act by �analogy� with the past, not
even in deterministic systems, chaotic or not, speci�cally if they model real life phenomena.
The data miner may believe that if a regularity shows up, it could have some �e�ective� role
in prediction and action, in particular if the database is �big� as to reach the above recurrence
limits.14 No, this is of no use, as we will show in the following sections: big databases have
regularities, but they are mostly �spurious�, a notion that we will de�ne using algorithmic
randomness. Mathematically, we will show that spurious correlations largely prevail, that is,
their measure tends to one with the size of the database. The proof of this result uses a di�erent
approach which does not need the hypothesis of determinism and is complementary to the one
adopted in this section.

6 Ramsey theory

This theory, named after the British mathematician and philosopher Frank P. Ramsey, studies
the conditions under which order must appear. Typical problems in Ramsey theory are (see
more in [21, 20]):

Are there binary (�nite) strings with no patterns/correlations?

11Ehrenfest's example [56] is a simple illustration. Let an urn U1 contain 100 numbered balls and U2 be an
empty urn. Each second, one ball is moved from one urn to the other, according to the measurement of events
that produce numbers from 1 to 100. By Kac's lemma, the expected return time to (almost) all balls in U1

is of (nearly) 2100 seconds, which is about 3 × 1012 times the age of the Universe. Boltzmann already had
an intuition of this phenomenon, in the study of the recurrence time in ergodic dynamics, of gas particles for
example, see [8].

12The dimension of an attractor is the number of e�ective degrees of freedom.
13Our footnote: see [31, 9].
14For example, with one dimension far exceeding the age of the Universe in seconds, yotta of yottabytes.
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How many elements of some structure must there be to guarantee that a given
regularity holds?

Ramsey theory answers the �rst question in the negative by providing a precise answer to
the second. Signi�cantly, Graham and Spencer subtitled their Scienti�c American presentation
of Ramsey theory [21] with the following sentence:

Complete disorder is an impossibility. Every large set of numbers, points or objects
necessarily contains a highly regular pattern.

Our analysis will use two Ramsey-type results. In both cases correlations � let us call them
Ramsey-type of correlations � appear only because of the size of the data.

Let s1 . . . sn be a binary string. A monochromatic arithmetic progression of length k is a
substring sisi+tsi+2t . . . si+(k−1)t, for 1 ≤ i and i + (k − 1)t ≤ n with all characters equal for
some t > 0. The string 01100110 contains no arithmetic progression of length 3 because the
positions 1, 4, 5, 8 (for 0) and 2, 3, 6, 7 (for 1) do not contain an arithmetic progression of
length 3. However, both strings 011001100, and 011001101 do: 1, 5, 9 for 0 and 3, 6, 9 for 1
and this change was obtained by adding just one bit. In fact, all 512 binary strings of length 9
have a monochromatic arithmetic progression of length 3.

The theorem below states that all su�ciently long strings of digits/colours, taken from a
�nite set, have �long enough� arithmetic progressions of the same digit, i.e. a sequence of equi-
distributed positions of the same digit/colour (monochromatic) of a pre-given length [20]. The
importance of the theorem lies in the fact that all strings display one of the simplest types of
correlation: a sequence of equi-distributed positions of the same value.

Finite Van der Waerden theorem. For any positive integers k and c there is a
positive integer γ such that every string, made out of c digits or colours, of length
more than γ contains an arithmetic progression with k occurrences of the same digit
or colour, i.e. a monochromatic arithmetic progression of length k.

The Van der Waerden number W (k, c) is the smallest γ such that every string, made out of
c digits or colours, of length γ + 1 contains a monochromatic arithmetic progression of length
k. How big is W (k, c)? For binary strings, one has W (3, 2)=9. In [18] it was proved that

W (k, 2) < 22
22

2k+9

, but conjectured to be much smaller in [19]: W (k, 2) < 2k
2
.

In the examples above, for the sake of simplicity, only binary relations (n = 2) have been
considered, such as smallpox inoculation and resistance to infection in a large set of individuals,
or the number of marriages and the number of drowned people, over many years. In what follows
we will use the �nite Ramsey theorem [40] to study the more general case of n-ary relations.
Ramsey theorem deals with arbitrary correlation functions over n-ary relations, as, in principle,
in a database one can correlate sets of n elements, for any �xed n ≥ 2.

First we illustrate the Ramsey theorem with the classic �party problem�.15 Suppose a party
has six people. Consider any two of them. They might be meeting for the �rst time, in which
case we call them mutual strangers, or they might have met before, in which case we call them

15Appeared in Putnam Mathematical Competition in 1953 and in the problem section of the American

Mathematical Monthly in 1958 (Problem E 1321).

9



mutual acquaintances.16 The problem asks whether in every party of six people either: a) at
least three of them are (pairwise) mutual strangers or b) at least three of them are (pairwise)
mutual acquaintances? The problem is equivalent to the statement that in the complete graph
in Figure 2 � which has six vertices and every pair of vertices is joined by an edge � every
colouring of edges with red and blue necessarily contains either a red triangle or a blue triangle.

Figure 2: Party graph [3].

The answer is a�rmative. To prove we just need to choose any vertex in Figure 2, say A,
and note that there are �ve edges leaving A, each coloured red or blue. Then the pigeonhole
principle says that at least three of them must have the same colour, hence a monochromatic
triangle will appear. In Figure 3 the edges are AF,AE,AD,AC,AB, coloured in order with
blue, red, red, red, red, blue: the triangle AEC is monochromatic as is coloured in red.

Figure 3: Red triangle in the party graph [3].

We do not know whether in the party there is a group of three people who are pairwise
mutual strangers or a group of three people who are pairwise mutual acquaintances, but we
know that a group of three people with the same type of pairwise acquaintanceship always
exists. Clearly, this result is true for any party with more than six people.

We continue with a piece of notation. If A is a �nite set then [A]n is the set of all sub-
sets of A containing exactly n elements (n-ary relations or n-sets on A). In order to guide
intuition, the number c may also be viewed as a number of �colours� partitioning a set. For
example, if A = {x, y, z, u} and n = 2 then [A]2 = {{x, y}, {x, z}, {x, u}, {y, z}, {y, u}, {z, u}};

16This is a Ramsey type problem: the aim is to �nd out how large the party needs to be to guarantee similar
pairwise acquaintanceship in (at least) one group of three people.
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an example of partition of [A]2 with c = 3 colours, red, blue and yellow, is
{{{x, y}, {x, z}, {z, u}}, {{y, z}, {y, u}}, {{x, u}}} (if {x, y}, {x, z}, {z, u} are coloured with red
and {y, z}, {y, u} are coloured with blue, then {x, u} is coloured with yellow). Any of the six
permutations of the colours red, blue and yellow produces a valid colouring.

Finite Ramsey theorem. For all positive integers b, n, c there is a positive integer
γ such that for every �nite set A containing more than γ elements and for every
partition P : [A]n → {1, 2, . . . , c} there exists a subset B of A containing b elements
whose n-sets are monochromatic, i.e. P (x) has the same value (colour) for every x
in [B]n.

We note the general framework and the strength of both theorems: the �rst deals with
arbitrary, long enough well-orderings, the second with n-ary relations on arbitrary, large enough
sets. In particular, given any positive integers b, n, c, the �nite Ramsey theorem is valid for all
sets A containing more than γ elements, and for every partition P of the set of subsets of n
elements of A into c colours. In all cases we do not know in advance what colour will be given
to the elements of interest; however, due to the �niteness of both theorems, in every particular
instance we can algorithmically �nd all the monochromatic elements and their colourings.

7 Correlations everywhere

We will �rst use the regularity of arithmetic progressions in the total order analysed by Van
der Waerden theorem, then the colouring of arbitrary sets of arbitrary objects studied by the
�nite Ramsey theorem.

The Van der Waerden theorem shows that in any coding of an arbitrary database of a large
enough size into a string of digits, there will be correlations of a pre-determined arbitrary length:
the same digit sitting on a long sequence of equi-distributed positions. These equi-distributed
positions of the same digit are not due to the speci�c information coded in the data nor to a
particular encoding: they are determined only by the large size of the data. Yet, the regular
occurrence, for a pre-chosen number of times, of an event may be considered by the data miner
as a �law� or as su�cient information to replace a law.

For correlations, assume that the database associates one digit or colour, out of c possible
ones, according to a �xed correlation function (for example, 7 or red is produced for �shermen
the month when marriages and drownings are correlated, 3 or green for cheese producers as it
correlates quarterly cheese consumption with some other statistical data). Then the data miner
can consider the correlation relevant if it occurs at a regular pace (an arithmetic progression)
for at least k times. Of course, the string of length γ, where the arithmetic progression appears,
may be given in time or space or in any countable order.

Thus, by Van der Waerden theorem, for any k and c, the required length k for one of
these occurrences or correlations will be surely obtained in any string of length greater than
γ, whatever (possibly spurious) criteria are chosen for correlating events. Moreover, and this
is very important, as the string of length greater than γ is arbitrary, its values, out of the
c possible colours, may be chosen in any �random� way: by throwing a dice or measuring a
quantum observable. Yet, at least one correlation, as a monochromatic arithmetic progression
of the desired length, will be found in the string. We will discuss later the chances of stepping
on an algorithmic random string.
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Next we use the �nite Ramsey theorem to look in more general terms into this phenomenon.
Instead of dealing with a well-ordering of a pre-given coding by numbers, we search for large
enough regularities in sets of n elements taken from arbitrary, but large enough, sets. So, it is
no more the regularity of appearance in a well-ordering of an arbitrary string that is searched
for, but the structuring, according to an arbitrary partition, of n-ary relations of elements from
an arbitrary set.

Let D be a relational database. In full generality, we may consider that a correlation of
variables in D is a set B of size b whose sets of n elements form the correlation (the set of n-ary
relations on B, or n values that are considered to be correlated, or monochromatic using the
language of colours). In other words, when a correlation function � de�ned according to some
given criteria (proximity or, conversely, apartness of some observable values or whatever) �
selects a set of n-sets, whose elements form a set of cardinality b, then they become correlated.
Thus, the process of selection may be viewed as a colouring of the chosen set of b elements
with the same colour � out of c possible ones. We insist that the criterion of selection � the
correlation function � has no relevance here, it is arbitrary: it only matters that, for some
reason which may be spurious, all n-sets of a set with b elements have the same colour, that
is, turn out to be correlated. Then Ramsey theorem shows that, given any correlation function
and any b, n and c, there always exists a large enough number γ such that any set A of size
greater than γ contains a set B of size b whose subsets of n elements are all correlated � that
is, monochromatic. In other words: Do we want a size b set of values that are correlated by
sets of n elements out of c possibilities, for whatever b, n and c you choose? Ramsey theorem
gives us a large enough number γ such that in any set with more elements than γ if we choose
in any way a partition of n-sets into c classes, we are guaranteed to �nd a correlation of size b
and arity n. We do not know a priori what will be the colour of the monochromatic set, in the
same way as the data miner does not know in advance which correlation will pop out from the
data. However, in every particular instance we can algorithmically �nd all the monochromatic
elements and their colourings.

The analysis above, as well as the one in the following section, are independent of any pos-
sible (or not) law-like origin (determination) of the processes modelled in the database, as it
is only based on cardinality (number of elements in the database). This analysis complements
the one in Section 5. Moreover, the arguments also reinforce each other, as the search for regu-
larities require, by the previous results on the low probabilities of recurrences in deterministic
systems, very large databases.

8 The deluge of spurious correlations

In the previous section we have showed how Ramsey-type of correlations appear in all large
enough databases. How �large� is the set of spurious correlations?

First and foremost, the notion of �spurious correlation� was not (yet) de�ned: how can one
answer then the above questions?

According to Oxford Dictionary [39], the adjective spurious means

Not being what it purports to be; false or fake. False, although seeming to be
genuine. Based on false ideas or ways of thinking.

This (dictionary) de�nition is semantic, hence it depends on an assumed theory: one corre-
lation can be spurious according to one theory, but meaningful with respect to another one. To
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answer the question posed in the beginning of section in the strongest form, we need a de�ni-
tion of �spurious� which is independent of any theory (using formal deductions, mathematical
calculations, computer algorithms, etc.).

In order to satisfy the above broad constraint we de�ne a spurious correlation in a very
restrictive way:

a correlation is spurious if it appears in a �randomly� generated database.

A spurious correlation in the above sense is also �spurious� according to any possible de�ni-
tion because, by construction, its values are chosen at �random�, as all data in the database. As
a consequence, such a correlation cannot provide reliable information on future developments
of any type of behaviour. Of course, there are other reasons making a correlation spurious,
even within a �non-random� database. However, to answer the question posed in this section it
will be enough to show that most correlations are �spurious� even according to our restricted
de�nition, when dealing with large enough sets of numbers (big data). Clearly, this is a fortiori
true if one broadens the de�nition of spurious correlation.

As any database can be seen as a string in Van der Waerden theorem or a set in Ramsey
theorem, our analysis will be based on algorithmic information theory, a mathematical theory
studying (algorithmic) randomness for individual objects, in particular, strings and (�nite) sets
of numbers [6, 12]. This theory is based on classical computability, that is the general theory of
algorithms, the foundation of todays computing [10]. As hinted above and discussed at length
in [7], randomness is de�ned as �unpredictability relative to an intended theory�. Since theories
predict by computing from their formal frames (axioms, equations, evolution functions, . . . ),
algorithmic randomness provides a general notion of randomness which works for any theory.

Using this approach we will answer the question: How �large� is the set of spurious cor-
relations, in the above sense? Surprisingly, spurious correlations form the majority, in fact a
quanti�able majority of correlations.

As the notion of algorithmically randomness is given in terms of �incompressibility�, we start
with a familiar example of �compressibility�. We use compressing/decompressing programs such
as zip, gzip, compress, etc., to obtain a compressed version of a given (arbitrary) �le. These
programs have two tasks: a) to try to obtain � via compression � a shorter variant of the
original �le, and b) to be lossless, that is, to guarantee that no information is lost during both
processes of compression and decompression. How do they work? The answer is important for
our discussion: a compression program searches for regularities in the input �le and uses them
to compute a shorter description of the �le and the decompression program reconstructs the
original �le from its description.

The algorithmic complexity evaluates the size of the compressed �le. For this it is enough
to work only with decompression programs for �nite strings. Here is an axiomatic framework to
introduce this type of complexity. A function K from binary strings to binary strings satisfying
the following three conditions is called an algorithmic complexity.

1. Conservation of information: For every computable function f there exists a constant c
� depending only on f � such that for every string x we have K(f(x)) ≤ K(x) + c.

2. Weak computability: There is a program enumerating all pairs strings and positive inte-
gers (x, n) such that K(x) ≤ n.17

17The function K is incomputable.
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3. Localisation: There exist two constants c and C such that the number of strings x with
K(x) < n is greater than c · 2n and smaller than C · 2n.

Fix U a universal Turing machine and denote by KU(x) = min{y | U(y) = x}. Then KU

satis�es the above three axioms18 and, conversely, if K satis�es the above three axioms, then
there exists a constantM � depending only on U and K � such that for all x, |K(x)−KU(x)| ≤
M .

Let K = KU . A string x is m-compressible if K(x) ≤ |x| −m. This means that there is an
input y of length y| ≤ |x| −m such that U(y) = x. In other words, U was able to �nd patterns
in x to compress it to a shorter description y. It is not di�cult to see that for all non-negative
integers m ≤ n, the number of strings x of length n having K(x) < n −m is less or equal to
2n−m − 1. Taking m = 0 we get the following interesting fact: for every non-negative integer
n there exists a string x of length n such that K(x) ≥ n.19 Such a string is incompressible by
U : there is no y shorter than x such that U(y) = x. One can prove � see [6, 12] � that the
incompressible strings have most properties associated with randomness, hence they are called
algorithmic random.20 The compressibility power of a universal Turing machine U is much
higher than that of any practical algorithm - gzip, compress, etc. �, but by Ramsey theory,
still limited: there are correlations U cannot detect. This is the surprising meaning of Ramsey
type theorems, such as those used in this paper: no matter how one algorithmically de�nes
randomness for strings or �nite sets of numbers, they always contain regularities� since any
long/large enough string/set contains regularities.

Algorithmically random �nite sets can be de�ned naturally [54]. These sets have intriguing
regularities. Here is an illustration for Boolean matrices which are relevant for databases. With
the exception of a �nite set, the rank of every algorithmically random Boolean matrix of size
n × n � thought over the �eld F2 = {0, 1} � is greater than n/2. Otherwise we could select
n/2 columns of the matrix such that all other columns are linear combinations of the selected
ones. Further, based on this observation we could compress the original matrix to a string of
3/4 · n2 +O(n log n) bits instead of n2 required by algorithmic randomness (see [49] for a proof
and [27, 33] for other relevant results).

Fix a real number α in the open interval (0, 1). A string x of length n can be compressed
by αn bits if its complexity K(x) ≤ n − αn. The number of strings x of length n which are
compressible by αn bits is smaller than 2(1−α)n − 1, hence the probability that a string x of
length n has K(x) < n− αn is smaller than 2−αn, a quantity which converges exponentially to
zero when n → ∞. In other words, for large n, very few strings of length n are compressible
or, dually, most strings are algorithmically random.

Here is a simple illustration of this phenomenon. According to [24] the best average rate of
algorithmic compressibility is about 86.4% (i.e. a string x is compressed into a �le Zip(x)21 which
has about 86.4% of the length of x). The probability that a binary string x of (relatively short)

length 2048 is reduced by 13.6% is smaller than 2−
136
1000
·2048 < 10−82, a very small number.22

18Traditionally, KU is called Kolmogorov complexity associated to U .
19The number of strings x of length n having K(x) ≥ n−m is greater or equal to 2n − 2n−m + 1.
20In view of results discussed in Section 6, they cannot have all properties associated with randomness.
21For every x, Zip(x) is an incompressible string for Zip, but for some x, Zip(x) is compressible by U .
221082 is approximately the number of hydrogen atoms in the observable Universe.
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9 Conclusions

The analysis presented in this paper suggests that the slogan or �philosophy� declaring that
correlation supersedes causation and theorising is mathematically wrong. Scientists and philoso-
phers have always worried about fallacies one commits by looking at correlations only: Cum
hoc ergo propter hoc23 and the related Post hoc ergo propter hoc24 fallacies are illustrative. For
example, economists are wary of uncritically using correlations: that's why they perform fur-
ther statistical tests, e.g. the Granger causality test, knowing well that even this is not enough
to yield knowledge of genuine causality.

Our work con�rms the intuition that the bigger the database which one mines for corre-
lations, the higher is the chance to �nd recurrent regularities and the higher is the risk of
committing such fallacies. We �rst showed that if the �world� modelled in a big database is
somehow law-like in the multi-dimensional universe of events it describes, then the probability
that a series of related observable values (regularity) iterates again is non zero, but extremely
low: recurrence may occur, but only for immense values of the intended parameters and, thus,
an immense database.

But, then, one steps into the results in the subsequent sections: given k and c (Van der
Waerden theorem) or (b, n, c) (Ramsey theorem), there is a (large) γ, such that any data set
of size more than γ contains a regularity with the characteristics given by the given param-
eters independently of any law-like assumption on the underlying phenomena described by the
elements of the database. Moreover, as proved in Section 8, the larger is γ, the more prob-
able becomes that the sets larger than γ are �randomly� generated. Even using a restrictive
de�nition of spurious correlation � one that appears in an algorithmically random database �
we showed that the overwhelming majority of correlations are spurious. In other words, there
will be regularities, but, by construction, most of the time (almost always, in the mathematical
sense), these regularities cannot be used to reliably predict and act.

[Natural] �[S]ciences are essentially an exercise in observing correlations, then proposing
explanations for them�, [17]. They operate with three types of correlations: two types of local
correlations, that can be accounted for in terms of either an in�uence of one event on another
(�if it is rainy, then the ground is wet�), or common local causes (�gum disease, oral cancer,
loss of taste, mouth sores and bad breath are likely to a�ect youths with smoking habits�) and
non-local correlations (like quantum correlations of entangled qubits). Non-local correlations
have much more complex physico-mathematical explanations than local correlations. But as
we showed, there are also the �Ramsey-type of correlations�, which abound, and cannot be
accounted for anything else except size. Even worse, the last type of correlations cannot be
algorithmically distinguished from the others.

The theory of algorithms, which gave us computers and algorithmic analyses (of databases,
in particular), also provides the tools for understanding the limits of a pure algorithmic analysis
of big data. Our limiting or �negative� results, as it often happens [29], do not �destroy� data
science, but open the way for more re�ections. Big data correlations do not make causation
obsolete nor do they cause Democritus's type of science to die, but they pose the challenge to
integrate the new algorithmic tools with the classical ones in an extended scienti�c method.

The fundamental Greek practice of scienti�c observation, thinking and debating on di�er-
ent theoretical interpretations of phenomena was enriched by the experimental method (since

23Latin: with this, therefore because of this.
24Latin: after this, therefore because of this.
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Galileo) and mathematics (since Descartes and Newton). Suggestions to narrow down the sci-
enti�c methods to just the collection of �empirical evidences� or to the use of mathematics � �in
a discipline there is as much science as there is mathematics�25 � didn't get much support. The
new �philosophy� proposed by big data is similar. Big data analytics cannot replace science
and, symmetrically, no theory can be so good to supplant the need for data and testing. Im-
plicit or, better, explicit and revisable theorising should accompany meaningful measurements
of �evidences� and mathematical modelling, as well as reliable analyses of databases.26

Despite the looming threat of spurious correlations, there are many examples of successful
use of data analytics in robust scienti�c studies, see [42, 52, 47, 43]. Thus, we interpret Dante's
verse in the epigraph of this paper as �we cannot rely on computational brute-force (�come
bruti�), but we must pursue scienti�c commitment and knowledge (�virtute e canoscenza�).
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