
Static Program Analysis of Embedded Executable Assembly Code

Abstract

We consider the problem of automatically checking if coding standards have been followed
in the development of embedded applications. The problem arises from practical considerations
because DSP chip manufacturers (in our case Texas Instruments) want various third party soft-
ware developers to adhere to a certain coding standard to facilitate system integration during
application development. Checking for compliance with coding standards, in general, is undecid-
able. Moreover, only machine code of the system components is available since for proprietary
reasons vendors of various components do not want to share their source code. In this paper,
we describe an approach based on static analysis of embedded assembly code to check for com-
pliance with such coding standards. This static analysis rests on an abstract interpretation
framework. We illustrate our approach by showing how we statically analyze the presence of
hard-coded pointer variables in embedded assembly code. Hard coded pointer variables are those
that are assigned a fixed memory address by the programmer instead of being assigned a value
via proper operations in the source language (e.g., malloc/calloc/realloc and & operator in C).
Our analyzer takes object code as input, disassembles it, builds the flow-graph, and statically
analyzes the flow-graph for the presence of dereferenced pointers that are hard coded. The
analyzer is currently being extended to check for compliance with other rules adopted by TI as
part of its coding standards.

1 Introduction

The Texas Instruments’ (TI) Express DSP Algorithm Interoperability Standard (XDAIS) [11] defines

a set of requirements for DSP code (for TI TMS320 family of DSP processors) that, if followed,

will allow system integrators to quickly assemble production quality embedded systems from one or

more subsystems. The standard aims to provide a framework that will enable the development of a

rich set of Commercial Off-The-Shelf (COTS) marketplace for the DSP components technology for

the the TI TMS320 family of DSP chips. This will significantly reduce the time to market for new

DSP based products and that will encourage reuse. There are 34 rules and 15 guidelines defined

by the standard that program code developed by a third party DSP software vendor should follow.

Rules 1 through 6 in the standard fall under the category of “general programming rules” and

pertain to standards that should be followed during program coding. Tools are available from TI

that check for the compatibility of a program code with most of the non-programming rules (i.e.,

rules other than 1 through 6).

The non-programming rules are relatively straightforward and hence easy to check automat-

ically (e.g., rule 11 states that all modules must have an initialization and finalization method).

Compliance of a program code with general programming rules, in contrast, is much harder. In
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fact, this compliance checking is undecidable in general (this constitutes the reason why the DSP

industry has found it hard to develop tool for checking compliance of a program code with rules

2 through 6 [11]). As a result, no tool has been developed for checking compliance of a program

code with rules 1 through 6. We propose to use static analysis to perform this compliance check.

However, static analysis of the program code is complicated by the fact that the source code of the

program is not available—vendors generally just ship their binaries that can be linked with other

codes. Thus, to check for compliance assembly code has to be analyzed. However, the source code

is usually written in C; this information, coupled with our knowledge of how the TI C compiler

compiles and assembles code, helps in the analysis of the assembly code.

This paper describes our approach to checking a program’s binary code for compatibility with the

“general programming rules” defined by the standard. Our approach is based on statically analyzing

the disassembled code. Static analysis of assembly code is quite hard, as no type information is

available. Thus, for example, distinguishing a pointer variable from a data value becomes quite

difficult. Also, most compilers take instruction level parallelism and instruction pipelining provided

by modern processors into account while generating code. This further exacerbates the automatic

static analysis of assembly code.

Our static analysis framework is based on abstract interpretation. Thus, assembly code is

abstractly interpreted (taking instruction level parallelism and pipelining into account) to infer

program properties. A backward analysis is used since in most cases data type of a memory location

has to be inferred by how the value it stores is used. Once a point of use is determined, the analysis

proceeds backwards to check for the desired property.

We illustrate our approach by considering how we statically analyze the presence of hard-coded

pointers (rule 3 of the TI XDAIS [11] standard), i.e., how we check whether a pointer variable has

been assigned a constant value by the programmer. We give details of the tool that we have built

for this purpose. Other rules can be checked in a similar manner. Note that our goal in this project

has been to produce an analyzer that can be used to check for compliance of large commercial

quality program codes. Thus, all (nasty) features of C that may impact the analysis have been

considered. For example, in hard-codedness analysis, we have to consider cases where pointers are

implicitly obtained via array declarations, pointers with double or more levels of indirections (e.g.,

int **p), pointers to statically allocated global data area, etc.

The main contribution of this paper is to show that embedded machine code can be success-

fully analyzed via abstract interpretation based techniques, even in the presence of instruction

level parallelism and pipelining. We show that abstract interpretation based static analysis can be

successfully used to check compliance with coding standards for improving code reuse and inter-

operability. Indeed, our work has resulted in a practical tool for doing hard-codedness analysis of

embedded DSP software.

We assume that the reader is familiar with abstract interpretation; tutorial introduction can be

found in chapter 1 of [15].
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1.1 General Programming Rules

The coding standard rules, published by TI for software vendors of its DSP chips, that fall under

the category of “general programming rules” [11] are the following:

1. All programs must follow the runtime conventions imposed by TI’s implementation of the C

programming language.

2. All programs must be reentrant within a preemptive environment including time sliced pre-

emption.

3. All data references must be fully relocatable (subject to alignment requirements). That is,

there must be no “hard coded” data memory locations.

4. The code must be fully relocatable. That is, there can be no hard coded program memory

locations.

5. Programs must characterize their ROM-ability; i.e., state whether they are ROM-able or not.

ROM-ability means that if part of the executable is placed in the DSP ROM, it would still

function; this restricts the way global data can be accessed, etc. [11].

6. Programs must never directly access any peripheral device. This includes but is not limited

to on-chip DMA’s, timers, I/O devices, and cache control registers.

There are a number of advantages to DSP software vendors writing programs that comply with

the published standards. Compliance to standards (i) allows system integrators to easily migrate

between TI DSP chips; (ii) enable host tools to simplify a system integrators tasks, including

configuration, performance modeling, standard conformance, and debugging; (iii) subsystems from

multiple software vendors can be integrated into a single system; (iv) programs are framework-

agnostic, that is, they are reusable: the same program can be efficiently used in virtually any

application or framework; and, (v) programs can be deployed in purely static as well as dynamic

run-time environments (due to code relocatability).

2 Analysis of Hard-coded Pointers

We illustrate our static analysis based approach to compliance checking by showing how we check

compliance for rule #3, which states that there should be no hard-coded data memory locations.

A data memory locations is hard coded in the assembly code if a constant is moved into a register

Ri, and Ri is then used as a base register in a later instruction. The constant value may of course

be transferred to another register Rj directly or indirectly, and then Rj used later in dereferencing.

Since most of the TI’s DSP code is written in C, data memory locations can be hard coded either

in assembly code embedded in a C program, or by using pointers provided in the C language.
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Thus, the problem of detecting hard coded references is to check whether a pointer variable that

is assigned a constant value is dereferenced or not in the program. Thus, using the ‘C’ syntax for

illustration purposes, given a variable p of type ‘(int *)’, we want to check if there is an execution

path between a statement of the type p = k, where k is an expression that yields a constant value,

and a later statement containing *p (that dereferences a pointer). Of course, the dereferencing

may take place directly or indirectly, i.e., we might have an intervening statement (int *)q = p

followed by a later statement containing *q.

Note that if a program only hard codes a pointer variable but never dereferences it, the program

is deemed safe. It is only after such a pointer variable is dereferenced during subsequent execution,

that the program is deemed unsafe.

Clearly, the problem of detecting hard coded references is undecidable in general [51]. So we

employ static analysis for detection of hard codedness (from this point on, we’ll call the analysis

hard-codedness analysis). Our hard-codedness analysis is conservative in that if it declares a data

memory location to be hard coded (HC), we are certain that it is hard coded. However, if it says

that a data memory location is not hard coded (NHC) then we cannot be sure—it may be hard

coded or it may not be hard coded, we just don’t have enough information.1 We could also organize

our analysis so that if it determines a location to be NHC, then we can be sure that indeed it is

NHC; if it determines a location to be HC, then we are not certain and it could be either. However,

the latter kind of analysis will detect very few pointers to be NHC, since in a language like C there

are far too many ways in which memory locations can be aliased and hard coded indirectly.

Note also that the problem of detecting dereferencing of hard-coded pointers subsumes the prob-

lem of detecting dereferencing of NULL pointers. This is because a NULL pointer is a pointer that

has been assigned a special constant (usually 0x0). Thus our analysis will also detect NULL pointer

dereferences. Similarly, hard-codedness analysis subsumes analysis for checking if un-initialized

pointer variables are dereferenced. This is because hard-codedness analysis attempts to check if

a pointer dereference is reachable from a point of initialization; and thus will detect any pointers

that are dereferenced but not initialized. Thus, our hard-codedness analysis performs two of the

checks proposed by the UNO project [53] at the assembly level. The UNO project claims that

NULL pointers, un-initialized pointers, and array out of bounds reference are three most common

run-time programming errors.

When analyzing at the assembly level, all the type information is unavailable, and distinguishing

between constants stored in integer variables from constant addresses stored in pointer variables is

hard. The only way to distinguish between the two is to check if a register is dereferenced or used

as a base register at some program point, and if so, we can go backwards from that program point

and check to see if this register was directly or indirectly assigned a constant value.

We use an abstract interpretation [14, 15] based framework for static analysis. The abstract
1Our experience running the analyzer we have developed (described later), however, shows that in most cases an

HC or an NHC determination can be made with nearly 100% certainty.
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domain is quite simple and consists of four values: ⊥, >, HC and NHC. Abstract operators are

defined for pointer arithmetic based on this abstract domains, and the abstract values propagated

in the flowgraph of the program (obtained by disassembling the machine code, and analyzing the

control flow). The abstraction is shown to be safe (by constructing a Galois connection [14, 15]).

Abstract semantics of the program are defined via recursive equations. The “collecting semantics”

of the flow-graph is then computed via fix-points, which then allows us to check for hard codedness.

A static analyzer has been implemented and used for analyzing a suite of DSP program codes

obtained from Texas Instruments. Performance results on this suite of programs are reported. For

most programs, our system is able to detect occurrences of hard-codedness with good accuracy.

This is primarily because most practical DSP program codes use pointers in non-convoluted ways,

and our static analyzer is able to detect such cases with good precision.

3 Abstract Interpretation based Static Program Analysis

Static program analysis (or static analysis for brevity) is defined as any analysis of a program carried

out without completely executing the program. Static analysis provides significant benefits and is

increasingly recognized as a fundamental tool for analyzing programs. The traditional data-flow

analysis found in compiler back-ends is an example of static analysis [13]. Another example of static

analysis is abstract interpretation, in which a program’s data and operations are approximated and

the program abstractly executed (abstraction is done in a way to ensure termination) to collect

information [14, 15].

In abstract interpretation based static analysis, domains from which variables draw their values

are approximated by abstract domains. The original domain is called a concrete domain. Further,

for each operation over these domains, a corresponding abstract operation is defined over the

abstract domain. A program is represented by a flow chart, and its semantics is given via a

mapping from arcs that connect nodes of the flow chart to environments, where an environment

is a mapping from variables to values in the concrete domain. In the abstract semantics, the

environment is abstracted as a mapping from variables to values in the abstract domain. A state is

defined as a pair 〈arc, env〉 where arc is an arc in the flow chart and env is the environment that

exists along that arc at a given moment. The same arc may be in different states (depending on

the values of the variables), at different moments during the execution. The function next maps a

given state to the next state that will be reached in the execution. The meaning of the program P

is solution to the recursive equation:

P = next • P

which is given by:

fix(λf.next • f)

In the abstract interpretation framework [14], a collecting semantics is used, i.e., we consider the

set of all the abstract environments that might be associated with a program point (an arc in
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Figure 1: Lattice Abstraction

the flowgraph). This set of abstract environments is called a context. The collecting semantics

thus associates a context with each arc. A context is a member of the powerset of the set of all

environments.

Contexts = 2Env

The context associated with a particular arc is the set of all environments that can exist along that

arc, if we started execution from any of the initial nodes of the flow graph.

The collecting semantics is not computable because it gives exact information, it is therefore

approximated. Given a pointer variable that is dereferenced, we are only interested in whether this

pointer was hard coded earlier or not. Let A be the set of all memory addresses. An environment

maps a pointer variable to an address in the setA (for hard codedness analysis we are only interested

in pointer variables). A can be divided into two sets Anhc and Ahc, where Anhc represents legitimate

(i.e., not hard coded) memory addresses (those that might be returned by systems calls malloc,

calloc or realloc, or returned by address-of operation, e.g., & operator in C), and Ahc represents the

rest of memory addresses. Thus, Anhc∪Ahc = A and Anhc∩Ahc = φ. We approximate the domain

of addresses by an abstract domain, Aα where Aα = {⊥, hc, nhc,>}. Note that hc abstract the

elements in the set Ahc while nhc abstracts the elements of the set Anhc; the value ⊥ represents

complete lack of information, while > denotes that we cannot decide whether the value is hc or

nhc. Aα forms a lattice as shown in Figure 1.

Note that we assume that NHC addresses are those that are derived from calls to memory

allocation routines (malloc, etc.), and we also assume that any offset from an NHC address is also

NHC. Thus, the sets Ahc and Anhc are determined by each program and may vary from execution

to execution depending on where the heap and stack are allocated. Our analysis is able to cope

with this, since it regards any address derived from malloc, calloc, realloc and the & operator to be

safe, while any address directly assigned in the program is regarded as unsafe.

Following the abstract interpretation approach, we define the abstraction and the concretization

functions, α and γ, respectively.

α : Contexts → Abstract Contexts, where Abstract Contexts consists of abstract environments

which map pointer variables to values in Aα.
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α(C) = ⊥, C = {};
= nhc, C ⊆ Anhc;
= hc, C ⊆ Ahc;
= > otherwise;

γ : Abstract Contexts→ Contexts

γ(S) = {}, S = ⊥,;
= Ahc, S = hc;

= Anhc, S = nhc;

= A, otherwise
It is easy to see that α and γ constitute a Galois connection [14], i.e., x = α(γ(x)) and γ(α(y)) ⊇

y. The existence of a Galois connection guarantees that our analysis is sound.

We next have to abstract the operators involving pointers(Table 1). Pointers can be involved in

pointer arithmetic expressions that use + and - operations. Given a statement p = q + i where p

and q are pointers to integers and i an integer, then if q is hard-coded, our analysis should infer

that p is also hard-coded. Likewise, if q is NHC, our analysis should infer that p is also NHC.

However, given pointers p, q, and r, and p = q + r, then for p to be inferred as hard-coded, both

q and r must be hard-coded. If, say, q is hard coded but r is not, then q must be treated as an

offset from the safe pointer r, and our analysis should infer that p is not hard coded. With this in

mind the definition of abstracted + and - operations for pointers is shown in the table below:

+/- hc nhc ⊥ >
hc hc nhc ⊥ >
nhc nhc nhc nhc nhc
⊥ ⊥ nhc ⊥ ⊥
> > nhc ⊥ >

Table 1: Pointer Arithmetic

Once the abstract operators are defined, we can compute the abstract semantics of the program

by computing the fix point of the recursive equation:

Pα = next • Pα

where Pα is the abstract program (the abstract program ignores instructions that are determined

to not affect a pointer value). Note that the abstract contexts (Abstract Contexts) forms a lattice

under the subset relation, ⊆, where the join (t) and meet (u) operations correspond to the set

union and set intersection operations respectively. The join operation is used to merge the abstract

contexts of multiple arcs leading into a common node. The abstract semantics once computed, tells

us which pointer references are hard coded.

Finally, we have to show that our analysis is sound. The soundness of the analysis follows if we can

show that α and γ are mutually consistent and that Abstract Contexts form a lattice.
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Figure 2: Activity Diagram for our tool

Theorem: The Hard-codedness Analysis formulated above is sound.

Proof Sketch: Consistency of α and γ functions is established by showing that they constitute a

Galois connection [14]. That is:

x = α(γ(x)) ...(1)

γ(α(y)) ⊇ y ...(2)

It is easy to check that both (1) and (2) hold. Given the way Abstract Contexts are defined, it

is also easy to see that the set of Abstract Contexts forms a lattice under the subset (⊆) relation.

Thus, our analysis is indeed sound. �

4 The Analysis Algorithm

4.1 Overview

As discussed earlier, the analyzer has access only to the object (binary) code which is to be checked

for compliance with the standard. So, the given object code is disassembled and the corresponding

assembly language code is obtained. The disassembly is performed using TI Code Composer Studio

[9, 10]. The disassembled code is provided as input to the static analyzer which produces a result

which indicates whether the code is compliant with the rule.

To check for compliance with the standard, the binary code that is given as input is never

executed. The analyzer scans through the disassembled code statically and checks whether there

are any hard coded addresses. The basic aim of the analysis is to find a path from the point in which

the dereferencing of a pointer occurs to the point at which an address is assigned to the pointer and

then check whether that address is legitimate or not.

In the following discussion when we use the term “safe” it means that the program has no hard

coded addresses. We use the term “unsafe” to mean the opposite.

Figure 2 shows the various steps involved in the analyzer we have developed. After the disas-

sembly of object code, the assembly code is split into functions. The analysis is first done function

by function (corresponds to individual functions in the source code). For each function, the ana-

lyzer computes its basic blocks and constructs the flow graph. The flow graph is then statically

analyzed. Once information for various functions (including main) has been collected, an inter-

procedural analysis is carried out, to analyze the entire program. The functions may have to be

re-analyzed (until a fix-point is reached) during this interprocedural analysis.
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It should be noted that there are advantages as well as disadvantages of performing static

analysis at the assembly level. W.r.t. advantages, note that (i) parsing of source code is replaced

by parsing of assembly instructions, which is considerably easier; (ii) in the source code pointers

may occur in complex expressions (e.g., a pointer in a struct inside another struct), which makes

the analysis complex at the source code level; at the assembly level all pointers manipulations

are handled via registers, and thus all occurrences of pointers appear very similar, regardless of

how they were expressed in the source code; (iii) since we analyze assembly code, which is source

language independent, many of the nasty features of C get handled by the compiler and appear in

considerably sanitized form in the assembly code.

W.r.t. disadvantages, (i) all type information is lost at the assembly level, so addresses are

indistinguishable from data, thus abstracting information becomes harder, complicating the analy-

sis. (ii) Registers are repeatedly reused, for holding values of different variables, and thus a lot of

analysis is involved in figuring out which occurrences of a register in various instructions refers to

the same value; (iii) Assembly code is much more verbose than source code, as well as it heavily

employs pipelining and instruction level parallelism; thus, a very good understanding of the pro-

cessor architecture is needed which needs to be then modeled in the abstract semantics. As an

example, consider the following C code:

void main(){

int a=1, b=2, c=3;

}

which translates to the assembly code shown below:
000007A0 main:

000007A0 07BE09C2 SUB.D2 SP,0x10,SP

000007A4 02002042 MVK.D2 1,B4

000007A8 0200012B MVK.S2 0x0002,B4

000007AC 023C22F6 || STW.D2T2 B4,*+SP[0x1]

000007B0 020001AB MVK.S2 0x0003,B4

000007B4 023C42F6 || STW.D2T2 B4,*+SP[0x2]

000007B8 023C62F6 STW.D2T2 B4,*+SP[0x3]

000007BC 00002000 NOP 2

000007C0 008C8362 BNOP.S2 B3,4

000007C4 07800852 ADDK.S2 16,SP

000007C8 00000000 NOP

000007CC 00000000 NOP

The presence of the ‖ characters denotes instruction level parallelism. We can see the usage of

register B4 in line 5 and a value assigned to it in the line 4. But, the content of B4 used in line 5

is not the one assigned in line 4. This is due to the presence of parallelism. Note that our analyzer

takes care of parallelism and instruction pipelining while computing the abstract semantics.
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4.2 Phases in the Analysis

The analyzer functions in two phases. In the first phase, it scans through the flowgraph and detects

all the register dereferencing that correspond to the dereferencing of pointer variables in the source

code. It stores this information in the various basic blocks in a set. We call such a set an unsafe set.

The unsafe sets represent the abstract contexts discussed earlier. There is an unsafe set for each

pointer that is dereferenced. This unsafe set records all the registers that may potentially hold the

address corresponding to this pointer. In the second phase the unsafe sets are iteratively refined,

until a fixpoint is reached.

Phase1: Detecting dereferencing of pointers: To detect the dereferencing of pointers, the

analyzer starts from the entry nodes in the flow-graph and visits every reachable node in the

flow-graph. While visiting any node in the flow-graph, it checks for the occurrences of pointer

dereferencing. Dereferencing of a pointer is detected in the disassembled code when a register other

than the stack pointer(SP) is used as the base register. Dereferenced registers are recorded in the

unsafe sets. There is an unsafe set for each dereferencing operation in the program.

Phase 2: Checking if dereferencing is safe: In the second phase, the analyzer uses the

information gathered in the first phase and ascertains the safety of each of the unsafe sets. This

is done by analyzing the safety of the pointer across all possible paths through which the pointer

might have got its value at the point of its dereferencing. That is, if there are multiple locations at

which the same pointer may be hard coded (which may correspond to multiple paths in the flow

graph), the analyzer will be able detect and report all such locations.

Refining Unsafe Sets: The unsafe sets are built iteratively, via a fix point computation, as

described earlier in the presentation of abstract interpretation framework. Initially, the unsafe set

is empty; once phase 1 detects the dereferencing of a register, it adds that register to the set. So, if

register “Reg” is seen as being dereferenced, it is added into the unsafe set, which will now appear

as {Reg}.
In phase 2, the analyzer looks for statements in which an element from the unsafe set (in this

case “Reg”) is used as the destination register. That is, the analyzer is trying to find what is the

most recent value that was assigned to the register “Reg”. When it detects such an occurrence,

say, which corresponds to a statement like “Reg = Reg1 + Reg2”, it deletes the element “Reg” from

the unsafe set and inserts the elements “Reg1” and “Reg2” into the unsafe set. Now the unsafe set

becomes {Reg1,Reg2} .

In phase 2, the analyzer continues with the current unsafe set (looking for the occurrence of

both Reg1 and Reg2 as the destination registers in this case). Phase 2 terminates when the status

of each of the unsafe set has been determined. As discussed earlier, the status of an unsafe set is

deemed to be HC if all the elements in a given unsafe set are hard coded. If at least one of the

elements in the unsafe set is not hard-coded, then the corresponding pointer is safe.

Note that if no pointers are dereferenced, the analyzer does not even enter phase 2. In phase 1,
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Figure 3: Need for Merging Unsafe Sets

the analyzer inspects each line of the assembly code only once. This is achieved by maintaining a

set of unsafe sets (SOUS) which is carried through as various instructions in the flow graph.

Merging Information: During phase 2 of the analysis, the analyzer builds and populates the

unsafe set. Consider figure 3 which represents part of some control flow graph. If a basic block has

multiple successors, then the instructions of that basic block will be analyzed after merging of all

the SOUS of all the successors. If the analyzer does not perform this merging operation then the

analysis will be of exponential complexity. This is true especially if loops are also involved. The

unsafe sets (abstract contexts) form a lattice under subset ordering, the merging involves a join (t)

operation, which is simply a set union operation in this case. Static Analysis based approximation

and merging of information makes the complexity of the analysis O(n ∗m) where n is the measure

of the size of the flowgraph, and m a measure of the size of (finite) lattices involved. Merging results

in information loss. That is, since the common predecessor will be analyzed using a merged set,

the information about the source paths of these merged SOUS are lost. But, merging information

does not make the analyzer give incorrect results as the integrity of the individual unsafe sets is

preserved.
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5 Handling Complex Programming Constructs

5.1 Handling Loops

A loop is detected when the predecessor of the current block is a block that has already been

encountered in the analysis. Loops, if not properly handled, will result in the formation of wrong

unsafe sets and incorrect results. So, as soon as the analyzer detects a loop, a new set called a

loop-set, which is a set of set of unsafe sets, is created. That is, each element of the loop-set is a

set of unsafe sets (thus, a loop-set is a set of SOUS). The analyzer also remembers the starting and

the ending points (blocks) of the loop.

The first element added to the loop-set is the SOUS that the analyzer has computed when it

detects the cycle. The analyzer then uses the current SOUS to analyze all the blocks forming the

cycle including all the possible paths involving those blocks in the control flow graph. When the

end block for the loop is reached, the analyzer checks if the current SOUS is already a member of

the loop-set.

If the current SOUS is already a member, then the analyzer has reached a fixed point for the

loop. That is, the analyzer has collected all the information from the loop and additional cycles

through the loop will not add any new information to the sets. At this point the analyzer can safely

exit the loop and continue the analysis of other unvisited blocks.

If the current SOUS is not already a member of the loop-set, then the analyzer merges (through

the t operation in the lattice) the current SOUS and loop-set and continues to cycle through the

loop with the current SOUS, until a fixed-point is reached.

Loops can be nested and in that case, the above procedure is performed for the each of the

inner loops. The fixed point is re-calculated for each of the inner loops for each cycle through the

outer loop until the outer loop reaches a fixed point.

5.2 Handling Arrays

Operations on arrays, e.g.,

...

int a[] = {...};

...

a[..] = ....;

...

exactly resemble pointer operations at the assembly level. That is, if statically allocated array

elements are accessed, then the corresponding assembly code will resemble the dereferencing of

pointer variables. The analyzer handles these cases by looking at what the destination location of

the access corresponds to, i.e., whether it is in the stack or in the heap.
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5.3 Pointers and Global Variables

There are two cases in which global variables influence the analysis. The first case arises when a

pointer (local variable) is assigned a value from (say an integer after typecasting) a variable which

is declared as global. The second case arises when a pointer which is declared as a global variable

is dereferenced. In both cases interprocedural analysis is needed.

Consider that we have a pointer p dereferenced in a function and assigned a global variable. Since

the variable is global, it could be modified by any part of the program. If there is no assignment

to that global variable in the current function prior to dereferencing, then its value is coming from

outside the function, and a global interprocedural analysis has to be performed. Similarly when a

pointer, declared as global, is dereferenced, a similar situation arises. Interprocedural analysis is

addressed in the next section.

5.4 Handling Functions

As already discussed, the analyzer first splits any given program into functions and analyzes each

function for safety. However, inter-procedural analysis is needed to detect hard-coding in the

following cases: (i) return values of functions may be hard coded pointers that are later dereferenced

in the calling function; (ii) arguments can be passed as a reference to functions and the called

function hard codes the arguments and the calling function uses the hard coded values; and (iii)

function bodies have statements involving either a globally declared pointer or a pointer that is

assigned an expression involving global variables.

We compute and keep track of the calling and return context for each function in a memo table.

Thus, for each function, values are set in the memo table to denote whether the function arguments

or return values are hard-coded. This memo table is built iteratively (since functions may be

mutually recursive) until it reaches a fix point, during the analysis of the program. Similar iterative

inter-procedural analysis is used in analyzing hard codedness of global pointers and pointers whose

value depends on global variables.

Our analyzer pre-processes the flow graph to determine if some of the functions can be analyzed

“stand alone.” These are analyzed and their resulting contexts stored in the memo-table in advance.

Other functions are iteratively analyzed as outlined above.

5.5 Pointers requiring multilevel dereferencing

The usage of double pointers (**) or multilevel pointers that are hard coded complicates the

analysis. This is because double pointers can be used to indirectly hard-code other single level

pointer variables.

When single level pointers (say int *p) is used for hard coding, the typical sequence of operations

for hard-coding are as shown below:

... somefunction(...)
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{

declare pointer variables;

hard code the pointer variables;

create aliasing between the pointers;

dereference the pointers;

}

Aliasing two pointers before hard coding one of them, will not affect the analysis, since after

hard coding, the two pointers will no longer be aliased. However, in the case of doubly (or more)

indirected pointers there can be sequences such as the following.

... somefunction(...)

{

declare pointer variables;

create aliasing between the pointers;

hard code the pointer variables;

dereference the pointers;

}

A concrete example is shown below:

void main()

{

int *p, val;

int **q = &p;

//p is hard-coded via q

*q = (int*)0x8000;

val = *p;

}

Detection of hard-coding in these indirect cases involves analyzing each line of the code multiple

times or carrying huge sets of aliases, making the analysis very costly.

The analyzer that we have built flags a warning when it sees multilevel pointer dereferencing.

Note that the analyzer will detect hard-coding for double pointers that are hard-coded directly,

i.e., occurrences such as (int **)p=90; **p; will be detected without any extra effort. Multilevel

pointers cause problems in analysis only if we have these pointers used in hard-coding other pointers

indirectly.

5.6 Handling Parallel Instructions

The || characters in the disassembled code signify that an instruction is to execute in parallel with

the previous instruction[12].
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instruction A

|| instruction B

|| instruction C

For example, if a code sequence as shown is encountered, where instructions A, B, C are some

assembly level instructions then it means that instructions A, B and C are executed in parallel.

That is, the instructions A, B and C in the fetch packet correspond to the same execute packet

and are executed in the same cycle. Moreover, instructions A, B and C do not use any of the same

functional units, cross paths, or other data path resources.

Static analysis of disassembled code needs to make sure that it handles such kind of parallelism.

Our analyzer does take care of such parallelism. As soon as dereferencing of a base register or

occurrence of an element in the unsafe set (as the destination register) is found to occur in parallel

with other instructions, the analyzer continues analysis with the instructions that occur in the

previous cycle for that register or matched element.

6 Illustrative Examples

In this section, we include some illustrative examples to show the capabilities of the analyzer

developed.

Example 1:

void main()

{

p = ...;

q = 0;

for(i=0;i<p;i++)

q++;

*q;

}

In example 1, q is a NULL pointer that is dereferenced after being modified in the ‘for’ loop.

The analysis is able to detect that q is hard coded. Note that the analysis would have detected q

to have dereferenced a null pointer if q had not been updated in the ‘for’ loop.

Example 2

void main()

{

int *p, *q, i;

q = malloc(sizeof(int));

i = (int) q;
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p = (int*) i;

*p;

}

In example 2, though p is assigned an int value, that value was derived from a safe pointer. Our

analyzer will also detect p to be safe.

Example 3

Void main()

{

p = hard coded;

q = good pointer;

r = q + p - q;

*r;

}

In example 3, though the dereferenced pointer r is derived as a function of a good pointer and a

hard coded pointer, in reality we are assigning to r the hard coded pointer p. But since all pointer

operations are abstracted, our static analyzer will not be able to detect this hard coding of pointer

r.

7 Performance Results

t read timer1 mcbsp1 figset m hdrv dat gui codec codec stress demo
Num fns 1 2 1 2 6 5 8 7 16 16
Num lines 80 126 196 292 345 950 1139 1188 1202 1350
Num BB 7 2 15 30 22 72 48 49 28 78
Num *ptr 3 17 0 19 6 10 102 109 105 82
Num HC 0 6 0 10 2 8 40 28 0 47
Max US size 0 1 0 2 1 3 1 1 1 2
Avg US size 0 1 0 2 1 2 1 1 1 1
Max SOUS size 0 13 0 8 1 5 9 4 4 13
Avg SOUS size 0 13 0 4 1 2 3 3 4 5
Max Chain Len 0 1 0 2 1 12 1 1 1 9
Avg Chain Len 0 1 0 2 1 3 1 1 1 2
RT (ms) 1280 1441 1270 1521 2262 2512 3063 3043 4505 4716

Table 2: Performance Results for the analyzer

The performance figures for our analyzer are given in Table 2. The first column corresponds to

the metrics that are used to guage the performance of the analyzer, the subsequent columns show

the performance for each of the selected DSP program.
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The programs that were used to test were taken randomly from the TI’s distribution of CCS[10].

We took the a.out files of the randomly selected programs, disassembled it, and then fed the

assembly code to the analyzer. The analyzer produced a log file that contained the results of

analysis and Table 2 was generated from the log file.

The value ‘Num fns’ corresponds to the number of functions in the program, ‘Num lines’ is the

number of lines in the input file subject to analysis, while ‘Num BB’ is the number of basic blocks

in the input file. ‘Num *Ptr’ is the number of pointers that were dereferenced in the file. ‘Num

HC’ is number of hard coded occurrences in the program detected by the analyzer. ‘Max US size’

and ‘Avg US size’ are the maximum number and the average number of elements respectively in

the unsafe sets created by the analyzer. ‘Max SOUS size’ and ‘Avg SOUS size’ are the maximum

and average number of elements in the set of unsafe sets respectively. ‘Max Chain Len’ is the max

path length from the point at which dereferencing occurs to the point at which the analyzer detects

that the pointer is assigned a value. ‘RT (ms)’ is the running time of our analyzer in milliseconds.

From Table 2, we find that the average number of elements in the unsafe set at any point of

time is small. One of the reasons is that modifications to the unsafe set always involve the deletion

followed by the addition of one or more elements that got related to the deleted element. This also

means that the number of elements to which a pointer gets related to through pointer arithmetic,

assignment and other pointer operations is always small. Also, note that the number of element

in the SOUS was a maximum of 13. This means that the maximum number of pointers that the

analyzer was analyzing simultaneously is 13. The maximum chain length was 12 and in most cases

the chain length is either 1 or 2. This means that most pointers were dereferenced immediately after

getting hard coded. The amount of time that the analyzer takes to run depends on the number of

hard coded pointers, the number of basic blocks in the disassembled code and the number of lines

of code in the input file. The maximum time that the analyzer spent on analysis was less than 5

seconds on code with 1350 lines.

The results were produced by the prototype implementation of the analyzer without any fine

tuning. The main aim of building the current prototype was to prove the efficacy and viability

of static analysis based tools to perform these checks in commercial software when source code is

not available. While the largest program we have tried was only 1350 lines long, the sizes of the

unsafe sets are relatively small causing the fix-point computation to converge rapidly. Thus, we

are reasonably confident that our analyzer will scale up for larger code sizes (work is in progress to

obtain larger benchmarks to test our system). Also, it should be noted that a component binary

needs to be statically analyzed only once before being integrated into an application.

8 Related Work

There is a wealth of literature on static program analysis. These static analyses either analyze

data-flow or control-flow [13] of the program or employ an abstract interpretation based framework
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[14, 15]. However, much of this work has been done in a scenario where source code is available. Not

as much attention has been levied on analyzing machine code. Several researchers have looked at

link time optimization [16, 17, 18, 19, 20, 21], where machine code has to be analyzed, however, as

pointed out by Debray et al [8], they are “limited to fairly simple local analysis.” There is a wealth

of literature on pointer analysis [1, 2, 3, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 8, 5, 6, 7]. However, only a limited number of these [8, 5, 6, 7] consider analyzing machine

code statically. Most of these efforts are concentrated on doing aliasing analysis of machine code,

i.e., detecting whether two instructions will access the same memory location or not. Many of the

issues that arise are similar to the ones that arise in our analysis, since these analyses have to keep

track of use-def chains as well (i.e., given a use of a register, check where it was modified).

Debray et al [8] use a mod k abstraction in which no distinction is made between two addresses

that have the same lower k bits. An interprocedural, context-sensitive data flow analysis is per-

formed to see if two instructions access the same abstract address. Fernandez and Espasa [6] extend

this analysis a little further by also analyzing if a memory reference is to the heap, stack or global

memory. Amme at al [5] perform a similar analysis to aid parallelizing compilers. They symbolically

abstract the values of registers which are then propagated in the flow graph; dependence informa-

tion is then gathered via data-flow analysis. Analysis of assembly code via data-flow analysis has

also been used for other applications, these include estimating memory use and execution time for

interrupt driven software [4] and verifying security properties [7].

Static analysis has been recognized as an important technology for software quality assurance

[48, 46], however, the limited efforts described in the literature primarily analyze the source code

[47, 45, 46, 53, 48, 52]; none of them deal with standard compliance. Those that analyze assembly

code are only interested in security properties [7, 42, 43, 44] and not in software programming

standard compliance. Thus, to the best of our knowledge there is no existing work that statically

analyzes embedded assembly code to check for software standard compliance.

Other related work includes work done by software groups at Texas Instruments to develop

tools for automatic compliance check. Static analysis based approach was considered too costly

for the benefits obtained, and instead a testing-based approach was resorted to where a program

code is run in different scenarios (for example, different parts of the memory) and checked to see if

erroneous output is obtained. Of course, this method is not complete either. It also cannot pinpoint

the problem (for example, the pointer that is hard coded cannot be automatically identified; all we

can conclude that the code has some compliance problem). Our results in this papers show, that

contrary to belief, a static analysis based technique is effective, practical, and useful.

9 Conclusions and Future Work

In this paper, we presented an abstract interpretation based static analysis framework for analyzing

hard-codedness of pointer variables in embedded assembly code. Our results show that static analy-
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sis based approaches are viable in industrial settings for checking for coding standards compliance.

Code compliance checking is critical for code reuse and COTS compatibility in applications. A

complete analyzer has been developed for pointer hard-codedness analysis and shown to run suc-

cessfully on code samples taken from Texas Instruments’ DSP code suite. The prototype system is

currently being refined to provide more accurate results in presence of global pointers and mutually

recursive functions. Future work also includes extending the system to handle rules 1, 2, and 4

through 6 [11] laid out by TI. Note that the analyses needed for rule numbers 4 and 6 are very

similar to hard-codedness analysis. Similarly rules 2 and 5 require analysis that determines if a bi-

nary code is re-entrant. Note that the analysis for determining if the code is re-entrant is similar to

pointer hard codedness analysis. A binary is re-entrant if it does not contain any instructions that

will modify a location in the code area (i.e., where the binary resides in the main memory). Thus,

once again all memory locations can be divided into two sets: those that correspond to the code

area and those that do not. Each instruction then has to be analyzed to ensure that if it performs

a memory-write operation, then the target location is in the latter set. Once again, similar to the

hard-codedness analysis, we can abstract the two sets by constants CA (for code area) and NCA

(non-code area). A lattice can then be built just as was done for the sets corresponding to HC and

NHC, and an abstract interpretation based analysis performed in a manner described in 3. Work

is in progress in this direction.
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