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Abstract— Per-flow network traffic measurements are needed
for effective network traffic management, network performance
assessment, and detection of anomalous network events such as
incipient DoS attacks. Explicit measurement of per-flow traffic
statistics is difficult in backbone networks because tracking the
possibly hundreds of thousands of flows needs correspondingly
large high-speed memories. To reduce the measurement over-
head, many previous papers have proposed the use of random
sampling and this is also used in commercial routers (Cisco’s
NetFlow). Our goal is to develop a new scheme that has very
low memory requirements and has quick convergence to within
a pre-specified accuracy. We achieve this by use of a novel
approach based on sampling two-runs to estimate per-flow traffic.
(A flow has a two-run when two consecutive samples belong
to the same flow). Sampling two-runs automatically biases the
samples towards the larger flows thereby making the estimation
of these sources more accurate. This biased sampling leads to
significantly smaller memory requirement compared to random
sampling schemes. The scheme is very simple to implement and
performs extremely well.

I. INTRODUCTION

In this paper, we address the problem of accurate measure-
ment of traffic in a packet network. Measurement of traffic is
an important component for traffic management, accounting,
detecting DoS attacks, and in traffic engineering [2], [3], [6].
The traffic in the network can typically be classified into
flows, and measurements are required on a per-flow basis. The
definition of flows can be very flexible. Examples are specific
application to application traffic characterized by 5-tuples in
the IP packet header, all traffic destined toward a a destination
network (characterized by a destination address prefix), etc.

The standard approach used for measuring traffic is to
sample the traffic arriving at the router, keep counts of the
traffic arrivals on a per-flow basis and then use this counter
to estimate the traffic. This approach has been suggested
by the Real-Time Flow Measurement Working Group of the
IETF. The main problem with this approach is scalability. If
the number of flows are large, then keeping per-flow counts

consumes considerable memory as well as processing power.
In fact, measurements [5] have shown that there might be as
many as a 0.5-1.0 million flows in the backbone. These traffic
studies [2] [5] have also shown that even though there are a
large number of flows in the network, a significant fraction of
the traffic is carried by only a small number of flows. These
heavy hitters, which may only be a few hundreds of flows,
can constitute as much as 80-90 % of the traffic at a router
[5]. Therefore, detecting and measuring these heavy hitters is
an important aspect of traffic measurement. Further, measuring
sudden increase in activity towards a given destination can be a
sign of a denial of service attack. Therefore, monitoring traffic
is a very important component in network security system.
Another application area where per-flow measurements are
needed is for active queue management [8] for providing
fairness in networks. The main idea is to isolate large flows
to reduce their impact on the rest of the flows in the network.
This is especially important if the large flows are misbehaving
open loop UDP sources or TCP sources with short round-trip
delays. However, to track these small number of misbehaving
sources, we have to wade through tens of thousands (if not
hundreds of thousands) of small sources. As pointed out by
Van Jacobson [10], we should not have to track millions of
ants to track a few elephants. There has been recent work
in this direction of keeping track of heavy hitters without
consuming too much memory or processing time [4]. The work
that clearly delineates this problem and provides a solution
is the paper by Estan and Varghese [4]. They also provide
an excellent summary of previous work in this area. They
exploit the fact that there are a few heavy hitters to reduce the
amount of memory required to measure these heavy sources.
The basic idea is to sample packets with some probability
and if the flow to which the packet belongs is not already
in memory, then the flow is added to the memory, and from
that point on, all packets arriving to this flow are counted.
Since every packet is counted, the sampled flows are kept
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in a hash table and at every packet arrival, its flow id has
to be hashed into this hash table in order to increment the
appropriate counter if it is already in the table. Therefore
there is increased processing at each packet arrival compared
to random sampling. However, since the size of the memory
is reduced, they show that this scheme is easier to implement.
They also give a more processing intensive multistage filter
scheme to track large flows. Our approach is not to do random
sampling as in all the earlier schemes but rather measure the
number of two-runs that each flow generates. A flow has a
run if there are consecutive arrivals from that source. As we
will show in this paper, this is a very powerful technique for
estimating traffic rates especially when the number of flows is
large. In [4] the number of bits is used as a measure of the
amount of traffic sent by a flow and the number of packets is
used as a measure of the size of the flow. We can extend our
approach to include this definition of traffic and flow sizes.
Though there is a large body of literature in statistics dealing
with the probability of runs, to our knowledge the inverse
problem of determining probabilities based on observing runs
has been addressed for the first time in this paper. The reason
this approach works well is that

• It is very easy to detect runs.
• Measuring runs, automatically eliminates detecting and

tracking small sources (ants) and automatically picks the
large sources (elephants).

• The amount of memory required is reduced drastically
compared to the straightforward sampling scheme.

– For example if we want to detect the proportion of
the traffic sent by a source to within an accuracy
of 0.001, then the memory requirement for our
approach is a factor of 1000 lower.

There are some previous papers that use coincidences to
recognize large flows. For example, in CHoke [12] as well as
in SRED [11], the flow id of an incoming packet is compared
with the flow id of the packets in the buffer in order to bias
the drop probabilities towards large flows. However neither
of these explicitly estimate the traffic rate. We believe that
it is possible to improve the performance of packet dropping
algorithms by explicitly estimating per-flow rates.

II. PROBLEM DEFINITION

We consider a node in a network processing arrivals from
multiple flows. An example is a router processing arrivals for
multiple destination IP-addresses. Any field or combination
of fields in the packet header can be defined to be a flow.
We assume that the node is processing a large number of
flows at any point in time. The objective of this paper is

to design a traffic rate estimator to estimate the number of
packets processed for each flow to a desired level of accuracy.
There are many different schemes that can be used to estimate
the traffic rates for the different flows. These schemes can be
compared based on several metrics. The two metrics that we
consider in this paper are:

• Sample Size
Sample size is defined to be the number of samples
needed to achieve a desired level of accuracy. The larger
the sample size, the longer is the time needed to estimate
the traffic rates. If the traffic characteristics changes over
time, we would like the time scale needed to estimate the
rates to be smaller than the time scale in which the traffic
varies. Therefore, we would prefer a scheme with a low
sampling size.

• Memory Requirement
During the process of rate estimation, the estimation
scheme keeps in memory traffic counts per-flow or a
subset of the flows that is processed by the nodes.
The memory requirement for the estimation scheme is
proportional to the size of this subset of flows for which
counts are maintained. We therefore use the number of
flows for which counts are maintained as surrogate for
the memory requirement. Keeping memory requirements
low also leads to improved running time and ease of
implementation. Keeping track of the arrivals for each
flow, often referred to as per flow information, is clearly
far more expensive and we argue that our scheme can be
an effective substitute for accurate traffic estimation.

A. Notation

We assume that each arrival belongs to one of F flows. The
rate of arrivals to flow i ∈ F will be denoted by ri and let
λ =

∑
i∈F ri denote the total arrival rate (packets/second) to

the node. Let pi = ri

λ denote the proportion of traffic to the
node that belongs to flow i ∈ F . The objective of this paper
is to design an efficient scheme to estimate ri for each i ∈ F .
Since it easy to measure λ, instead of directly estimating ri,
we solve the equivalent problem of getting an estimate p̂i of pi

for each i ∈ F . We then use λp̂i to estimate ri. We can view
pi as the probability that an arriving packet belongs to flow
i. We assume that pi is stationary over the time in which the
estimation is done. We also assume that the probability that an
arriving packet belongs to a given flow is independent of all
other packets. If the arrivals to a given node are dependent,
i.e., if the flow id of the next packet arriving at a node is
dependent on the flow id of the current packet, then we can
sample the arriving stream randomly in order to mitigate this
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effect. The analysis in this paper does not assume that we
look at all packets in order to count the number of runs.
The analysis carries over, if packets are sampled at random
from the arriving stream. This of course, will increase the
time needed to accumulate the needed number of samples.
Accuracy Requirement
We want to design a sampling scheme that for any given
flow i ∈ F , will determine an estimate p̂i for pi such that
p̂i ∈

(
pi − β

2 , pi + β
2

)
with probability greater than α. In

other words, we are willing to tolerate an error of ±β
2 with

probability less than α. For example, the requirement on the
sampling scheme can be the following: At the end of the
sampling period, given any user i determine pi within an
error of ±0.0001 with a probability greater than 99.99%.
This requirement translates to β = 0.0001 and α = 0.9999.
Throughout this paper, we use N [a, b] to represent a normal
distribution with mean a and variance b. We use Zα to
denote the α percentile for the unit normal distribution. If
α = 99.99% then Zα = 4.0. In the next section, we outline
a straightforward sampling scheme that maintains a count
for each class that is seen by the node. The proportion of
traffic sent by each class is estimated from these counts. We
will refer to this scheme as the naive sampling scheme. We
then outline RATE (Runs bAsed Traffic Estimator) which is
based on sampling two-runs, in Section 4 and analyze the
sample size for this scheme. We then analyze the memory
requirements for the two schemes in Section 5 and show that
for the same level of accuracy, the memory requirement for
RATE is significantly lower. We give some applications of
RATE and some numerical results in Section 6.

III. NAIVE SAMPLING SCHEME

We now outline a straightforward sampling scheme to
estimate the arrival rate for all the flows. The node maintains
a table of all the flows that it has seen so far, along with the
number of packets for each of these flows. When a packet is
processed at a node, the sampling scheme first determines the
flow to which the packet belongs. It then determines whether
the flow is already in the table of flows that it maintains . If
this flow is already in the list, then the count for that flow
is incremented by one. If the flow is not on the list, then
the flow is added to the list and the count is initialized to one.
Once a sufficient amount of sampling has been done, the node
determines the proportion of traffic for each flow in the list
based on the count for that flow. For any flow not in the list,
the node estimates its rate to be zero. The estimation of the
proportion of traffic for each flow is based on the following
result.

Theorem 1: Let M(i, T ) represent the number of arrivals
for flow i ∈ F after T samples. For large T ,

√
T

[
M(i, T )

T
− pi

]
∼ N [0, pi(1− pi)]

where N [a, b] represents a normal distribution with mean a
and variance b.

Proof: This follows directly from the facts that M(i, T )
is a binomial random variable with probability of success pi

and using a normal approximation for a binomial random
variable with a large number of trails.
This result can now be used to determine the sample size that
is needed to ensure that the estimates have the desired level
of accuracy.

A. Estimating the Sample Size

Let M(i, T ) denote the total number of arrivals to flow i
after T samples. It is easy to show that

p̂i =
M(i, T )

T

is the maximum likelihood estimator for pi. The α percentile
confidence interval is given by

p̂i ± Zα

√
p̂i (1− p̂i)

T
.

Since we do not know the value of pi apriori, we need an
upper bound on the variance in order to determine the sample
size. Note that the maximum value of p(1 − p) = 0.25 is
attained when p = 1

2 . The minimum sample size T ′ needed
for the naive sampling scheme in order to satisfy the accuracy
requirement is given by

T ′ =
4Z2

α 0.25
β2

=
Z2

α

β2
.

IV. DESCRIPTION AND ANALYSIS OF RATE

In this section, we outline the Runs bAsed Traffic Estimator
(RATE) for determining the proportion of traffic sent by each
flow. The scheme is based on sampling only a subset of the
arriving traffic at the node but it picks this subset carefully
so that flows that send a larger proportion of the traffic are
sampled more frequently. This is achieved by sampling two
runs. A flow i ∈ F is defined to have a two-run if two
consecutive samples belong to flow i. Since small sources
are sampled with very low probability, the list of sources
that are detected will be quite small. This leads to memory
efficient implementation of the rate detector. RATE detects and
measures two-runs by maintaining the following information:
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• Two-Run Detecting Register R: This register needs to hold
only one flow id. The register typically holds the flow id
of the last sample. If the flow id of the current flow is
the same as the content of the register, then a two-run is
detected, the Two-run Count Table (described below) is
updated and the run detecting register R is set to null.
If the flow id of the current sample is different from the
content of R, then R is reset to the flow id of the current
sample.

• Two-Run Count Table TCT: The Two-run Count Table
maintains counts for the number of two-runs for each
flow that has had a two-run. When a two-run is detected
for a particular flow and if the flow is already in TCT
then the two-run count for the table is incremented by
one. If the flow for which a two-run has been detected is
not in TCT , then this flow id is added to TCT and its
count is initialized to one.

A. Overall Approach

The implication of setting the register to null when a two-
run is detected is the following: Consider the case where
there are 3 flows at the node. Assume the following arrival
sequence .....21113...... When a two-run is detected for flow
id 1, the register will be reset. Therefore, there is only one
two-run. If the register is not reset after a two-run, then three
consecutive arrivals will be counted as two two-runs. The
register is reset in order to ensure that the two-runs forms a
regenerative process that is easy to analyze. The relationship
between the proportion and the number of runs has been
studied extensively in the statistics literature but the main
concentration is on determining the characteristics of the runs
based on the probability. We consider the inverse problem, i.e.,
one of determining the probability by measuring the number
of runs. The overall approach that we use is the following:

• Since the two-runs form a renewal process, we first
characterize the first two moments of the inter-arrival time
between two-runs. (Theorem 2).

• Since we measure the number of two-runs (and not the
inter-arrival time), We use a standard result in renewal
theory to relate the first two moments of the number of
renewals to the first two moments of the inter-arrival time
between renewals. (Theorem 3)

• We use the result of Theorem 2 and Theorem 3, to derive
the first two moments for the number of two-runs in any
given time. (Theorem 4).

• The number of renewals (two-runs) for flow i is a non-
linear function of the proportion of traffic pi that is
sent by flow i. We can solve this non-linear (quadratic)

equation in closed form to determine and estimator for
pi. In order to determine the variance of the estimator,
we use a standard result in statistics (Theorem 5). This
variance of the estimator is given in Theorem 6.

We now characterize the first two moments of the inter-
arrival time between two-runs. It is easy to use a generating
function approach to get the generating function for the inter-
arrival time. However, we only need the first two moments for
our paper.

Theorem 2: Let Zi represent the inter-arrival time between
two-runs for flow i. Then

E[Zi] =
1 + pi

p2
i

.

V ar[Zi] =
(1− pi)(p2

i + 3 pi + 1)
p4

i

.

Proof: The inter-arrival time Zi between two-runs for
flow i is a renewal process. We will characterize the first two
moments of Zi. Note that we get a two-run, if there is an
arrival for flow i followed immediately by another arrival from
the same flow i. Let X1 represent the random variable that
represents the time to get the first arrival for flow i. If the
next arrival is from flow i, then there is a two-run. Else the
process starts all over again and let X2 represent the time until
we get the next arrival from flow i, and so on. Note that Xk

is a geometric random variable and

E[Xk] =
1
pi

and V ar[Xk] =
1− p

p2
.

Let Wk = Xk + 1. Note that

Zi = W1 + W2 + . . . + WN

where N is a random variable that is the time until we get a
two-run. Note that N itself is geometrically distributed with
parameter pi. We now compute the first two moments of Z.
By Wald’s result [9], we get,

E[Zi] = E[W1]E[N ]

V ar[Zi] = V ar[W1]E[N ] + E2[Y1].V ar[N ].

Note that E[W1] = E[X1] + 1 and V ar[W1] = V ar[X1].
Substituting these values in expressions for the moments of
Z, we get

E[Zi] =
1 + pi

p2
i

and

V ar[Zi] =
(1− pi)(p2

i + 3 pi + 1)
p4

i

.
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Instead of measuring the time between two-runs for a given
source, it is easier to measure the number of two-runs. We
now state an asymptotic result on renewal process that relates
the first two moments of the number of arrivals in a given
time to the first two moments of the inter-arrival time for the
renewal process.

Theorem 3: Let E be a renewal event where the time
between renewals has a finite mean m and variance ν2. Then
the number of renewals in n trials is asymptotically normal
with mean

n

m

and variance
nν2

µ3
.

Proof: The proof of this theorem is outlined in Feller
[7].

In the next theorem we give the mean and variance of the
number of two-runs in time T for flow i ∈ F .

Theorem 4: Let pi represent the probability that an arriving
packet is from flow i ∈ F . Let N2(i, T ) denote the number
of two-runs in T samples for flow i ∈ F . For large T ,

√
T

[
N2(i, T )

T
− µ2(pi)

]
∼ N [

0, σ2
2(pi)

]
where N [a, b] represents a normal distribution with mean a
and variance b and

µ2(pi) =
p2

i

1 + pi

and

σ2
2(pi) =

(1− pi) p2
i

(
1 + 3 pi + p2

i

)
(1 + pi)

3 .

Proof: Substituting the values of m = E[Zi] and ν2 =
V ar[Zi] from Theorem 2 to the result in Theorem 3, gives the
mean and the variance for the number of renewals.

We plot the µ2(pi) and σ2
2(pi) versus pi in Figure 1. Note

that for small values of pi the mean and the variance are
equal. In fact, for small values of pi, the two-runs come as
Poisson process with rate p2

i . We use this fact in Section V,
to characterize the memory requirements of the system.

Ultimately, we want to measure N2(i, T ) and use that to get
an estimate on pi. Note that the mean of N2(i, T ) is a non-
linear function of pi. We use the following standard inversion
result from statistics to get error bounds on the estimate of pi.

Theorem 5: Let Xn be a sequence of statistics such that

√
n

[
Xn

n
− θ

]
→ X ∼ N [0, σ2(θ)].
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Fig. 1. Mean and Variance for the Number of two-runs

Let f be a differentiable function of one variable. Then

√
n

[
f

(
Xn

n

)
− f(θ)

]
→ f(X) ∼ N [0, σ2(θ)(f ′(θ))2].

Proof: See Rao [13] for the details of the proof.
Since

µ2(pi) =
p2

i

1 + pi

is monotone and increasing for pi ∈ [0, 1], it has an inverse.
We represent the inverse by g() where g(µ2(pi)) = pi. We
now apply Theorem 5, to our case.

Theorem 6: Let N2(i, t) be the number of two-runs for flow
i in T samples and let g() be the inverse function of µ2(pi).
Then

√
T

[
g

(
N2(i, T )

T

)
− g (µ2(pi))

]
∼ N [0, δi] .

where

δi =
(1− pi) (1 + pi)

(
1 + 3 pi + p2

i

)
(2 + pi)

2 . (1)

Proof: From Theorem 5,

√
T

[
g

(
N2(i, T )

T

)
− g (µ2(pi))

]
∼ N

[
0, σ2

2(pi) [g′(µ2(pi))]
2
]
.

From the definition of g(), note that

g(µ2(pi)) = pi.

Differentiating this equation with respect to pi we get,

g′(µ2(pi))µ′
2(pi) = 1.
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Therefore,

g′(µ2(pi)) =
1

µ′
2(pi)

.

Therefore, the variance of the estimator of pi,

σ2
2(pi) [g′(µ2(pi))]

2 =
σ2

2(p1)
[µ′

2(pi)]
2 .

Performing the algebra, gives the result.
In the case of naive sampling scheme the variance of the
estimator for pi is pi(1 − pi) and for the two-run sampling
scheme the variance of the estimator for pi is δi in Theorem
6. In Figure 2, we plot the theoretical variance of the estimators
as well as the variance of the estimator from an experimental
run. We considered a fixed source whose proportion was varied
from 0 to 1 in steps of 0.01. The experiment was run for a
sample size of 10, 000. In other words, the experiment was run
until there were 10000 arrivals into the system and the number
of two-runs was measured for this source. This experiment
was run 300 times and in each case, the proportion of the
traffic from this distinguished source was estimated (This is
outlined in the next section). The plot shows the variance of
the estimate over these 300 trials. As the sample size increases
the experimental results gets closer to the theoretical value.
Note that the variance of the estimator from the two-runs
goes to 0.25 as the proportion goes to zero. In the case of the
naive sampling scheme the variance attains its maximum value
of 0.25 when pi = 0.5. For the two-run sampling scheme,
differentiating δ with respect to pi and equating to zero, it is
easy to see that the variance attains a maximum value of 0.345
when p = 0.362. This fact is used to determine the sample
size for the two-run sampling scheme.

B. Estimating the Proportion and Sample Size

The point estimate for p̂i of pi can be obtained by solving
the following equation:

N2(i, T )
T

=
p̂2

i

1 + p̂i
.

We get

p̂i =
1
2


N2(i, T )

T
+

√
4
N2(i, T )

T
+

(
N2(i, T )

T

)2

 .

Since we measure the N2(i, T ), we can estimate the value for
p̂i. An estimate for the variance of the p̂i is given by

(1− p̂i) (1 + p̂i)
(
1 + 3 p̂i + p̂i

2
)

T (2 + p̂i)
2 .
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Fig. 2. Comparison of Variance

The larger the number of samples, the less is the variance
of the estimator and the more accurate the estimate of pi.
The α percentile confidence interval for the point estimate
is computed as follows: Let Zα denote the α percentile of
a standard normal distribution. The α percentile confidence
interval for pi is

p̂i ± Zασ̂i. (2)

Let us assume that it is desired that the α percentile confidence
interval should not be wider that β. As stated in Theorem 6,
δi represents the estimate for the variance and this takes on
a maximum value of 0.345. Therefore the confidence interval
by Equation will not be greater than

2

√
Zα0.345

T
.

We set this quantity to be less than β and solve for T to
determine the length of time we have to sample to reach the
objective that the α percentile confidence interval is less than
β. The minimum sampling time T is given by

T =
4Z2

α 0.345
β2

=
1.38Z2

α

β2
.

The overall algorithm for RATE is shown below:
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INPUT
Confidence Interval Width β and
error probability α

INITIALIZATION

• Compute the sample size

T =
1.38Z2

α

β2
.

• Two-run Count Table TCT ← ∅.
• Two-run Register R← ∅

PROCESSING AT EACH ARRIVAL

Flow id of current arrival is i.
If i = R then

Set R← ∅
If i /∈ TCT then

Add i to TCT and set the count for i to one.
If i ∈ TCT then

Increment the count for i.
If i �= R then

Set R← i.

PROPORTION ESTIMATION

• Number of two-runs for user i is N2(i).
• Compute p̂i which is an estimate for pi.

p̂i =
1
2


N2(i)

T
+

√
4
N2(i)

T
+

(
N2(i)

T

)2

 .

• Compute δ̂i, the estimate for the variance δi as

δ̂i =
(1− p̂i) (1 + p̂i)

(
1 + 3 p̂i + p̂i

2
)

T (2 + p̂i)
2 .

• Compute the confidence interval of the user(
p̂i − 1

2
Zα

√
δ̂i , p̂i +

1
2
Zα

√
δ̂i

)
.

Complete Description of RATE

V. MEMORY REQUIREMENTS FOR THE SAMPLING

SCHEMES

We now compare the size of the list in the case of naive
sampling sampling versus 2-run sampling. As we stated at the

end of Theorem 1, the mean and the variance of the inter-
arrival time are the equal when pi is not too large. This is true
in most practical situations where the proportion of traffic from
any given source is expected to be not too large (less that about
20 %). In fact, it is known that the number of two-runs forms
a Poisson process. This result is formally stated in the next
theorem. The heuristic proof of this result is given in Aldous
[1]. The proof can be made rigorous as outlined in [1].

Theorem 7: Let pi be small and let X(i) denote the time
between successive two-runs. Then

Pr[X(i) ≥ t] ≈ exp(−p2
i t)

Proof: See Aldous [1] for a proof of this theorem.
The implication of the Poisson process that we are exploit
is the fact that the inter-arrival time between two-runs is
exponentially distributed. It is possible to derive this result
directly from the approach followed in Theorem 2. Let ξi(T )
represent the indicator random variable that is set equal to
one if there is at least one two-run for flow i by sample T .
We want to estimate the expected memory requirement for
the two-run sampling scheme. The amount of memory needed
to store the results of T samples is equal to the number of
different flows that have at least one two-run upto t samples.
Let L(T ) represent the number of flows that have had at least
one two-run upto T samples. Then,

E[L(T )] = E[
n∑

i=1

ξi(T )] =
n∑

i=1

1− exp(−p2
i T ). (3)

In the case of naive sampling, let L′(t) denote the number of
sources that have had at least one arrival upto sample T . Note
that

E[L′(T )] =
n∑

i=1

1− (1− pi)T . (4)

If pi is small then we can write this as

E[L′(T )] =
n∑

i=1

1− exp(−piT ).

A. Worst Case Memory Requirements

Given a sample size T , we now want to determine the
expected amount of memory required in the worst case. In
other words, we want to find an allocation of pi that maximizes
the expected number of flows in TCT . We solve this problem
in two steps.

• First, we fix the number of sources n and then determine
the distribution of the probabilities across these n sources
in order to maximize the expected memory requirement.
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• We then determine the number of sources n that maxi-
mizes the memory requirement.

We first consider the memory requirement for two-run sam-
pling case. Fix the number of sources n.

Maximizing the memory requirement can now be formu-
lated as the following maximization problem.

max E[L(T )] =
n∑

i=1

1− exp(−p2
i T ).

∑
f∈F

pi = 1.

pi ≥ 0 ∀i.

Let p∗i denote the probability allocation for flow i that maxi-
mizes the the list length. We assume that there are atmost n
flows present.

Theorem 8: Let S1 = {i : p∗i < 1
2T } and let S2 = {i :

p∗i ≥ 1
2T }. Then

• p∗i = p∗j for any i, j ∈ S2.
• |S1| ≤ 1.

Proof: We use OBJ(x) to denote 1 − exp(−x2T ).
The objective function is convex in the interval [0, 1

2T ) and
is concave in the interval [ 1

2T ,∞). The objective function is
shown in Figure *.

ConcaveConvex x

O
B

J 
(x

)

2 T

1

Fig. 3. Objective Function

Let p∗i > p∗j for some i, j ∈ S2. Let p̄ = 0.5
(
p∗i + p∗j

)
.

Since the function is concave in this interval,

2OBJ(p̄) ≥ OBJ(p∗i ) + OBJ(p∗j ).

This proves the first part of the result. To see the second fact,
note that if |S1| > 1 then there exist i, j ∈ S1. Assume that
p∗i ≥ p∗j . Since the function is convex in the interval,

OBJ(p∗i + δ) ≥ OBJ(p∗i ) + δOBJ ′(p∗i )

OBJ(p∗j − δ) ≥ OBJ(p∗j )− δOBJ ′(p∗j )

Adding these two inequalities and using the fact that
OBJ ′(p∗i ) ≥ OBJ ′(p∗j ), gives

OBJ(p∗i + δ) + OBJ(p∗j − δ) ≥ OBJ(p∗j ) + OBJ(p∗j ).

This process can be repeated until one of the variables goes
to zero or the other goes to 1

2T . This elimination can be done
repeatedly until there is only one variable in S1.

Ignoring the (at-most) one flow that belongs in |S1|, we now
only consider the variables in S2 which are all equal. It is easy
to make the analysis exact at the expense of more notation.

Theorem 9: Let L(T ) represent the number of flows in
TCT after T samples. Then

E[L(T )] ≤ 0.638
√

T

in the worst case.
Proof: From Theorem 9 , the objective function is

maximized when

pi =
1
n
∀i.

Therefore for a fixed value of n, the maximum expected list
length is

n

(
1− exp(− T

n2
)
)

.

We now want to determine the value of n for which this
function is maximized. Assuming that n is continuous, and
differentiating this expression with respect to n we get

1− exp(− T

n2
)
(

2T

n2
+ 1

)
= 0.

If we set T
n2 = w we can rewrite the expression as

1− e−w (2w + 1) = 0.

Solving for w we get w = 1.255. Therefore,

n =

√
T

1.255
= 0.89

√
T .
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Setting this value of n in the objective function, the maximum
expected memory requirement is given by

E[L(T )] ≤ 0.638
√

T .

Corollary 10: Given the width of the confidence interval β
and the error probability α, the maximum expected memory

[L(T )] =
0.74Zα

β
.

Proof: The sample size in the case of two-run sampling
is

1.38Z2
α

β2
.

Substituting this result in the above theorem gives the required
result.

In fact, using standard inequalities on the tail of the binomial
distribution it is easy to show that in the case of equal 0.89

√
t

sources, that with very high probability

L(T ) ≤ 3
√

T .

Note that this expression is independent of the number of
sources or their characteristics and just depends on the number
of samples. The number of samples, in turn depends on the
amount of accuracy needed in the estimation. Therefore once
the desired accuracy is known, then it is easy to estimate the
amount of memory needed as about

γZα

β

where γ ≈ 3. This ensures that with a very small probability
there will be an overflow of the two-run counting table.

B. Discussion

Consider the case where β = 0.002 with the error proba-
bility α = 99.75 with a corresponding Zα = 3.0 The sample
size for the naive sampling is 2.25 × 106 and for RATE is
3.1×106. Assume that there are 100000 flows. These memory
requirement for RATE compared to naive sampling can be
interpreted in one of two ways:

• For a given value of β, say β = 0.001, the memory
requirement in the case of RATE is about a factor of
1000 less than the naive sampling scheme.

• If the amount of memory M is fixed, then the accuracy of
RATE is proportional to 1

M whereas the the accuracy of
the naive sampling scheme is proportional to 1√

M
. Note

the similarity of this interpretation to the results in [4].

VI. EXPERIMENTAL RESULTS

In this section, we assess the performance of RATE by
simulations. We compare the performance of RATE to the
naive sampling scheme. We considered a system with 100000
flows. Most of the flows send small amounts of traffic and a
few sources, varying from a few tens to a few hundred sources
are larger sources. In general, the larger the source, the easier
it is for RATE to detect and estimate the rate for this source.
The general conclusions are the following:

• RATE performs extremely well in detecting and estimat-
ing the traffic sent by the different flows.

• The number of samples needed to get the desired level
of estimation accuracy is typically far less than the
theoretical sample size.

• The memory requirement in practice is less than the
theoretical values.

• RATE detects the large flows very quickly and the longer
time is needed to estimate the rates.

• RATE is robust with dependent arrivals. This seems to
be the case because the intermingling of a large number
of sources reduces the dependencies between different
arrivals. In the case where there are a small number of
sources, the dependency can be reduced by randomly
sampling the incoming stream to detect and count runs.
(We only monitor runs and use random sampling only to
reduce dependencies).

We now give some results to show the performance of the
algorithm. In the example that follows there were 100000
flows. The accuracy level β = 0.0002 with α = 99.99%.
In other words, we want to estimate the proportion ±0.0001
with error probability less than 0.0001. This corresponds to a
Zα ≈ 4.0. The sample size for two-runs is 550 × 106. We
assumed that except for about 100 sources that are relatively
large (see the Figure 3 for the proportions) the remaining traffic
is about evenly distributed across the remaining sources.

• In the Figure 3 we show the actual and estimated propor-
tions after 100000 samples. The + in the plot is the actual
proportion and × is the estimated value. The estimated
value will be in the same vertical line as the proportion.
The closer these two are, the closer is the estimate. We
only plot the proportions for sources that send more than
0.0001 proportion of the traffic. All source that have not
had two-runs are estimated to be zero. Note that even at
this stage RATE has identified the large sources pretty
effectively. The memory size (number of different flows
in memory) is 92.
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• Figure 4 shows the same quantities after 10 × 106.
samples. Note that in this case the estimated values are
closer to the actual values than the first plot. The memory
size at this stage is 101.

• The x-axis in Figure 5 is the actual proportion and the
y-axis is the estimated proportion after all the sampling
is done. The fact that the points lie on the 45 degree
indicates that the quantities are estimated accurately. (We
also show the 0.001 band around the values, the actual
accuracy is 0.0001 but showing this on the plot obfuscates
the points).The memory size is 108. Note that counts are
maintained for only 108 out of the 100000 flows.

• In the case of naive sampling the sample size is ≈ 400×
106. The memory size (the number of elements in the
list) at the end of the sampling interval is 82453.

• Note that the two-run sampling scheme needs three orders
of magnitude less memory space.
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Fig. 4. Performance of RATE After 100000 Samples

VII. SOME COMMENTS

One natural question that arises from the analysis in the
paper is the following: Will there be any additional memory
savings if we use higher order runs, for example 3-runs. It
turns out that the variance of the estimate of the proportion
in the case of k-runs for k > 2 goes to infinity as pi goes
to zero. If we derive results analogous to Theorem 4 and
7, we can show that, unlike two-runs where the number of
samples is 1.38 times the number of samples in the naive
sampling case, the number of samples in the case of 3-runs
or more increases the number of samples exponentially while
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Fig. 6. Performance of RATE at the end of the Sampling Process

not having a significant impact on the memory size. We
do not describe this effect in more detail here. We want to
emphasize again that if the arrivals are correlated then it is
easy to get rid of this by sampling for two-runs randomly. This
will increase the sampling time but all the results still hold.
We presented a new sampling mechanism for estimating per-
flow traffic using the idea of counting runs. This leads to a
significant savings both in per packet processing as well as in
the amount of memory required to perform the estimation. We
theoretically bounded the amount of sampling as well as the
memory requirement for our system. We are currently testing
a practical implementation of the system as well as comparing
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the performance of the system to other sampling schemes.
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