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Abstract. In this paper, we empirically evaluate the predictive power of
eight sports ranking methods. For each ranking method, we implement two
versions, one using only win-loss data and one utilizing score-differential data.
The methods are compared on 4 datasets: 32 National Basketball Associa-
tion (NBA) seasons, 112 Major League Baseball (MLB) seasons, 22 NCAA
Division 1-A Basketball (NCAAB) seasons, and 56 NCAA Division 1-A Foot-
ball (NCAAF) seasons. For each season of each dataset, we apply 20-fold
cross validation to determine the predictive accuracy of the ranking meth-
ods. The non-parametric Friedman hypothesis test is used to assess whether
the predictive errors for the considered rankings over the seasons are statis-
tically dissimilar. The post-hoc Nemenyi test is then employed to determine
which ranking methods have significant differences in predictive power. For
all datasets, the null hypothesis—that all ranking methods are equivalent—is
rejected at the 99% confidence level. For NCAAF and NCAAB datasets, the
Nemenyi test concludes that the implementations utilizing score-differential
data are usually more predictive than those using only win-loss data. For the
NCAAF dataset, the least squares and random walker methods have signifi-
cantly better predictive accuracy at the 95% confidence level than the other
methods considered.

Keywords. sports rankings, cross validation, hypothesis testing, Friedman
test, and Nemenyi test

1 Introduction

In our meritocratic society, the concept of rank is paramount. Consumers seek
the best product, search engines recommend the most relevant document, and
sports fans demand to know the standing of their favorite sports team! The
need for rankings in various contexts has led to the development of many dif-
ferent ranking algorithms. In this paper, we consider several existing ranking
methods and, for several different sports leagues, statistically compare the



predictive power of the rankings. In what follows, we introduce the rank-
ing methods considered, our comparison methodology, summarize our main
results, and give an outline of the paper.

Ranking methods. There are a large number of methods used for sports
ranking today. For example, as of October 31, 2012 the Massey Ratings web-
site1 compares 124 NCAA Division 1 FBS teams, using 101 different ranking
methods. Admittedly the number of official ranking methods used in sports
today is substantially smaller, however the recent survey of Stefani (2011)
comparing the official rating systems of 159 international sports federations
demonstrates that there are many in use. In this work, we compare 8 ranking
methods, which we briefly summarize below. Detailed descriptions and refer-
ences are given in §3. For each method, we consider two versions, labeled (α)
and (β). The (α) version depends on win-loss information only and the (β)
version depends on score differentials (magnitude or “margin” of victory).

WP Winning percentage is the simplest method for rating, evaluating each
team based on the percentage of games won.

RPI The Rating Percentage Index is based on winning percentages; a
team’s RPI score is a weighted average of the winning percentages of
teams, their opponents, and their opponent’s opponents.

L2 The least squares pairwise comparison method seeks a rating such
that the difference in ratings between two teams agrees with the game
outcomes (pairwise comparison data). Depending on the way in which
the pairwise comparison data is chosen, this method has many variations.

MP The maximum posterior rating is obtained by interpreting the L2
method in the Bayesian framework with a prior distribution on the rat-
ing.

K Keener’s direct method for rating is based on the Perron-Frobenius
eigenvector of a matrix describing the relative team strengths.

PR The PageRank rating is the Perron-Frobenius eigenvector of a stochas-
tic matrix describing transition probabilities on a directed graph.

RW The random walker rating is the stationary state for a system of dif-
ferential equations on a directed graph representing the game results.

E Elo’s method updates the rating of a team after a game based on the
difference between the observed game outcome and a prediction of that
outcome based on past performance.

1http://www.masseyratings.com/cf/compare.htm

http://www.masseyratings.com/cf/compare.htm


Comparison methodology. We consider 4 datasets: 32 National Basket-
ball Association (NBA) seasons, 112 Major League Baseball (MLB) seasons,
22 NCAA Division 1 Basketball (NCAAB) seasons, and 56 NCAA Division
1-A Football (NCAAF) seasons. For each season of each dataset, we apply 20-
fold cross validation to determine the predictive accuracy of the above listed
ranking methods. The predictive accuracy is defined to be the proportion of
games in the test data for which the ranking, obtained from the training data,
correctly predicts the victor. The non-parametric Friedman test is then used
to assess whether the predictive error for the considered rankings over the
seasons are statistically dissimilar. To determine which ranking methods are
significantly different from each other, the post-hoc Nemenyi test is used. Our
comparison methodology, which follows Shaffer (1995) and Demšar (2006), is
described in §4.

We exploit several properties of non-parametric hypothesis testing.
First, non-parametric tests do not require assumptions on the probability dis-
tributions of the ratings being assessed. In fact, modeling these distributions
for our datasets would be difficult; some seasons are simply more predictable
than others and thus the predictive error of the ratings is season-dependent.
Secondly, while parametric tests can be used to compare ratings (cardinal
quantities), non-parametric tests are much more convenient when discussing
rankings (ordinal quantities). Although these tests are well-developed tools
for statistical inference and widely used in social sciences and for the design of
experiments, we are unaware of their application to the comparison of sports
ranking methods.

Summary of results. We find that the cross validation scores of the rank-
ing methods vary among sports, seasons, and other ranking methods. This
suggests that some sports are more predictable than others, that some sea-
sons are more predictable than others, and finally that some ranking methods
have greater predictive accuracy than others considered. Applying the Fried-
man test to compare the ranking methods, we find that for all datasets, the
null hypothesis—that all rankings have equivalent predictive power—can be
rejected at the 99% confidence level. That is, the predictive accuracy of the
ranking methods differ. For the datasets considered, we make several obser-
vations on the predictive power of the rankings, including the following. For
the NBA and MLB datasets, the Nemenyi test is unable to identify a ranking
method which has significantly better predictive accuracy, although methods
are identified which have significantly worse predictive accuracy. For NCAAF
and NCAAB datasets, the Nemenyi test concludes that the implementations



utilizing score-differential data are usually more predictive than those using
only win-loss data. For the NCAAF dataset, the least squares and random
walker methods have significantly better predictive accuracy than the other
methods considered.

Outline. In §2, we review previous work on comparing sports ranking meth-
ods. In §3, we discuss several commonly used ranking methods. In §4, we
give a general discussion of hypothesis testing. In §5 we use cross-validation
and hypothesis testing methods to analyze the predictive power of the ranking
methods discussed in §3. We conclude in §6 with a discussion and further
directions.

2 Previous Results

Ranking has an extensive history, with roots in debates between Condorcet and
Borda over elections in the French Academy of Sciences in the late eighteenth
century (David, 1963). With the recent swell of data, ranking methods are
more prominent than ever with applications in web searches, e-commerce,
and, of course, sports. A comprehensive survey of the literature is beyond the
scope of this work; we reference here only a few recent contributions similar
to our own.

Gill (2009) compares the the predictive performance of several least-
squares type methods using leave-one-out cross validation. Using 1930-2007
NCAA football data, models are empirically identified which minimize pre-
diction error. In particular, parameters for a pairwise comparison data model
are found that reduce the effect of large victory margins. The study by Trono
(2010) examines the efficacy of over twenty rating/ranking methods in pre-
dicting the winner and point spread of 1983-2003 NCAA Division 1-A foot-
ball games. In particular, the methods are compared against the “Las Vegas
betting line”, which is a sports prediction used for betting purposes. The
question of whether the rating/ranking methods with the highest predictive
performance could be used profitably in sports betting is addressed. In both
of these works, cross validation scores were used to evaluate the predictive
performance; hypothesis testing is not used.

There are also several analytical comparisons of ranking methods. Chan
(2011) analytically investigates the prediction accuracy of the Bradley-Terry
and Thurstone-Mosteller models for three simple games, where the outcome is



probabilistically known. Tran (2011) constructs datasets for which the least-
squares, PageRank, and tropical eigenvector methods produce arbitrarily dif-
ferent ranking orders.

Closely related to the predictive accuracy of a rating/ranking method is
the sensitivity/stability of the method on the data (game results). Intuitively,
one expects that a method which is robust to changes in the data, i.e., less
sensitive to anomalous games (“upsets”), will have higher predictive accuracy.
In what follows, we give references to several works which further develop these
ideas.

Using perturbative methods, Chartier, Kreutzer, Langville, and Ped-
ings (2011b) analyze the sensitivity of three ranking methods: Massey, Colley,
and PageRank methods. For “perfect seasons” (every team plays every other
team exactly once and there are no upsets), the authors show that the Col-
ley and Massey methods are less sensitive than the PageRank method. The
study is illustrated with examples from sports data. In a closely related study,
(Chartier, Kreutzer, Langville, and Pedings, 2011a) a method is introduced for
weighting game results in sports rankings, allowing for a ranking to be more
sensitive to some games than others. The method was used to produce success-
ful predictions for the 2010 Division 1 NCAA Men’s Basketball tournament
(“March Madness”).

Burer (2012) uses perturbative methods to study the sensitivity of the
Colley ranking method and proposes a variant of the method, motivated by
recent results in robust optimization. The modification is intended to reduce
the impact of “inconsequential games” on the rating/ranking. Using 2006-
2011 regular season NCCA football data, the proposed ranking method is
empirically shown to be more robust then the Colley method.

Osting, Brune, and Osher (2012a) uses the Fisher information of the
least-squares ranking method to characterize the stability of the ranking with
respect to changes in the dataset. Under certain assumptions, this measure of
robustness has a nice graph theoretic interpretation in terms of the algebraic
connectivity of the graph describing the dataset and is easily computable. A
method is proposed for actively scheduling the games to optimally increase
the informativeness of the dataset. This approach differs from previous ap-
proaches, attempting to improve rankings by modifying the dataset (schedule)
rather than the ranking method.



3 Ranking methods

In this section, we describe the ranking methods compared in this paper. These
methods will be compared in §5. As mentioned in the introduction, we are not
attempting to compare all sports methods, but rather a representative subset.
An introduction to ranking methods can be found in Langville and Meyer
(2012). Before discussing individual ratings, we first give a few definitions.

Terminology and notation

Let V be a set of n teams to be rated, which we enumerate V = {i}ni=1. A
rating φ : V → R assigns each team a quantitative “strength”. A ranking is
an ordering of the teams; a rank α team is “stronger” then n−α other teams.
A ranking may be obtained from a rating on V simply by sorting. To be clear,
a team is “good” if it has a large rating and a small ranking.

Consider a set of m games played among the teams in V . For each game
played between teams i and j, we consider one of the following two datasets:

(α) The game result only, i.e., win, loss, and tie information.
(β) The final game score.

The (β) dataset contains more information than the (α) dataset. Thus we
expect that a ranking generated using the (β) dataset will have more predictive
power than one generated using just the (α) dataset. For each of the ranking
methods below, we consider two versions—one which uses the dataset labelled
(α) and the other which uses the dataset labelled (β). In the Elo method
(defined below), the order in which the games are played is also relevant.

Define the matrices W,S ∈ Rn×n, 2

Wij = #{team i beat team j} +
1

2
#{ties between teams i and j} (1)

Sij =
∑

games btwn
teams i and j

# points i scored on j

total points in game
. (2)

Here, W only depends on dataset (α) while S depends on dataset (β). Define
the vectors w, l, d ∈ Rn,

w = W1, l = W t1, and d = (W +W t)1. (3)

The vector element wi (resp. li) is the number of games won (resp. lost) by
team i plus one-half times the number of ties for team i. The vector element

2In equation (2), we take the fraction to be 1
2 if the game results in a 0− 0 tie.



di is the number of games played by team i. Since each game results in a win,
loss, or tie, we have d = w + l. Denote D = diag(d). We’ll assume that each
team has played in at least one game, implying D is invertible. We analogously
define the vectors s, t ∈ Rn,

s = S1 and t = St1. (4)

Note that s+ t = d.
We define the vectors y, z ∈ Rm as follows. For each game g, define

yg =

{
0 game g results in a tie
score of winning team − score of losing team

total points in game g
otherwise

(5)

zg = sgn(yg). (6)

Here the function sgn is 1 if the argument is positive, −1 if the argument is
negative, and 0 if the argument is zero. Note that since y has nonnegative
entries, z does too. Define the matrix B ∈ Rm×n,

Bgi =


1 game g is between teams i and j, i beats j

−1 game g is between teams i and j, j beats i

0 otherwise.

(7)

Here, if a game g between teams i and j results in a tie, we assign a 1 and −1
to i and j arbitrarily. Note the following relationships:

BtB = D − (W +W t), Bty = s− t, and Btz = w − l. (8)

Finally, define the matrix ∆ = BtB.

Remark. Several of the quantities defined above can be interpreted on a
graph (Foulds, 1992). Consider a directed multigraph where each vertex rep-
resents a team and each arc represents a game. If two teams play one another
more than once, then more than one arc joins the two vertices. The arcs are
oriented so that the head of the arc is the vertex representing the winning
team. If there is a tie, we represent it one of two ways: (i) with two ‘half’
arcs with opposing orientations, or (ii) the orientation of arcs representing tied
games are chosen arbitrarily. Note that in the case where there are no tied
teams, the two graph representations are the same. If we represent ties using
(i), the matrix W is the directed adjacency matrix for the directed multigraph
and the vertex vectors w and l denote the in- and out-degrees respectively. If
we represent ties using (ii), the matrix B is the arc-vertex incidence matrix for
the directed multigraph. In both cases, the matrix ∆ is the non-normalized
graph Laplacian.



3.1 Winning percentage (WP)

The winning percentage of team i is defined φWPα
i = wi/di where w and d

are given in (3). Thus the vector of winning percentages φWPα ∈ Rn can be
computed

φWPα = D−1w. (9)

This is perhaps the simplest rating method. A similar quantity using the
dataset (β) which includes the margin of victory can be calculated

φWPβ = D−1s. (10)

Here, s is defined in (4). The ratings (9) and (10) do not take into account
the team’s “strength of schedule”. That is, a team is able to have a large
winning percentage by playing poor teams. To compensate for this, the ratings
percentage index was introduced.

3.2 Ratings percentage index (RPI)

The Ratings Percentage Index (RPI) is generated using the winning percent-
ages of teams, their opponents, and their opponent’s opponents (Pickle and
Howard, 1981). Let φWPα

i be the winning percentage of team i as defined
in (9). Let W be as defined in (1). Team i’s average opponent’s winning
percentage can be computed

(opponent’s winning percentage)i = (di)
−1
∑
j

(Wij +Wji)φ
WPα
j .

Thus, D−1(W +W t)φWPα is the vector of average opponent’s winning percent-
ages and (D−1(W +W t))

2
φWPα is the vector of average opponent’s opponent’s

winning percentages. Each team’s RPI is then computed according to the fol-
lowing weighted average:

φRPIα =
1

4
φWPα +

1

2
D−1(W +W t)φWPα +

1

4

(
D−1(W +W t)

)2
φWPα. (11)

Similarly, we define

φRPIβ =
1

4
φWPβ +

1

2
D−1(W +W t)φWPβ +

1

4

(
D−1(W +W t)

)2
φWPβ. (12)

Remark. There is also a home-adjusted RPI ranking method which weights
home and away games differently. We do not consider this method here.



3.3 Least-squares pairwise comparison method (L2)

Let B be defined as in (7). If f ∈ Rm has elements representing a game
outcome, the pairwise comparison method for ranking is the solution to

φL2 = arg min
φ
‖Bφ− f‖2, (13)

where ‖ · ‖ denotes the `2-norm. Choosing f = y as defined in (5) and f = z
as defined in (6) gives two ranking methods, which we denote as φL2β and
φL2α respectively. Depending on the choice of f , the rating φL2 is sometimes
referred to as the Massey rating (Massey, 1997, Langville and Meyer, 2012),
the Bradley-Terry rating (Bradley and Terry, 1952, David, 1963), Thurstone-
Mosteller (David, 1963), HodgeRank (Jiang, Lim, Yao, and Ye, 2010, Xu,
Yao, Jiang, Huang, Yan, and Lin, 2011), and least squares methods (Hirani,
Kalyanaraman, and Watts, 2011, Osting, Darbon, and Osher, 2012b, Osting
et al., 2012a, Chartier et al., 2011b).

It is well known that the solution to the least squares problem (13) is
given by φL2 = (BtB)†Btf where C† denotes the Moore-Penrose pseudoinverse
of the matrix C. Using (8), we obtain

φL2α = ∆†(w − l) (14a)

φL2β = ∆†(s− t). (14b)

Remark. In Eq. (13), other `p norms have also been considered, see, e.g.,
(Hochbaum, 2010, Osting et al., 2012b).

3.4 Maximum posterior estimate (MP)

It is useful to consider an alternative interpretation of (13). Suppose we model
the probability of witnessing the pairwise comparisons f given a rating φ as

π(f |φ) ∝ exp(−‖Bφ− f‖2)

Then the maximum likelihood estimate arg maxφ π(f |φ) is equivalent to (13).
Additionally, assume a Bayesian prior on φ,

πpr(φ) ∝ exp
(
−γ‖φ‖2

)
.

This states that prior to any games, we assume that all teams have the same
rating, 0. Then, using Bayes Law, the maximum posterior estimate is written

φMP = arg max
φ

π(f |φ)πpr(φ) = arg max
φ

exp(−‖Bφ− f‖2 − γ‖φ‖2).



The maximum is given by the solution to

(BtB + γId)φMP = Btf. (15)

Choosing f = y as defined in (5) and f = z as defined in (6) gives two ranking
methods, which we denote as φMPβ and φMPα respectively. Using (8), we
obtain

φMPα = [∆ + γId]−1 (w − l) (16a)

φMPβ = [∆ + γId]−1 (s− t). (16b)

Note that the matrix ∆ +γId is positive definite for γ > 0 and thus invertible.
This method is related to Tikhonov regularization in inverse problems and
ridge regression in statistics. The ranking φMPα with γ = 2 is related to the
Colley method (Colley, 2002, Langville and Meyer, 2012). In Colley’s method,
f in (15) is taken to be a quantity similar to y, but non-normalized. In all
ranking comparisons, we take γ = 2.

3.5 Keener’s direct method (K)

Let A ∈ Rn×n be a matrix where entry Aij ∈ [0, 1] describes the relative
strength of team i over team j. Consider the normalized matrix, D−1A.
Keener’s direct method interprets the Perron-Frobenius eigenvector3 of D−1A
as a rating (Keener, 1993).

It remains to describe the matrix A. We consider two constructions—
using the datasets (α) and (β). Let φKα be the Perron-Frobenius eigenvector
of D−1W . Following Keener (1993), let K ∈ Rn×n have matrix elements

Kij = h

(
Sij + 1

Sij + Sji + 2

)
where h(x) =

1

2
+

1

2
sgn

(
x− 1

2

)√
|2x− 1|. (17)

Define φKβ to be the Perron-Frobenius eigenvector of D−1K.
Note that the matrices D−1W and D−1K are not necessarily irre-

ducible4. For example, D−1W is not irreducible if there is a winless team.

3Recall that for a matrix with non-negative entries, there exists a positive, real eigen-
value (called the Perron-Frobenius eigenvalue) such that any other eigenvalue is smaller in
magnitude. The Perron-Frobenius eigenvalue is simple and the corresponding eigenvector
(called the Perron-Frobenius eigenvector) has non-negative entries. See, for example, Horn
and Johnson (1991).

4The matrices W and S are irreducible if the corresponding directed graph is strongly
connected. The matrix W is irreducible if there is no partition of the teams V = V1 t V2
such that no team in V1 has beat a team in V2.



3.6 PageRank method (PR)

The PageRank method (Page, Brin, Motwani, and Winograd, 1999) considers
the Perron-Frobenius eigenvector of the matrices

Ξα
p := pW [diag(l)]† + (1− p) 1

n
11t and Ξβ

p := pS[diag(t)]† + (1− p) 1

n
11t.

The matrices Ξα
p and Ξβ

p are column stochastic matrices, i.e., 1tΞ·p = 1t. For
0 < p < 1, Ξα

p and Ξβ
p are irreducible so that the Perron-Frobenius theo-

rem states that the Perron-Frobenius eigenvector has strict positive entries, is
unique and simple, and the Perron-Frobenius eigenvalue is the largest mag-
nitude eigenvalue. Since Ξα

p and Ξβ
p are also stochastic, the Perron-Frobenius

eigenvalue is equal to one. Thus the PageRank rankings, φPRα and φPRβ satisfy

Ξα
p φ

PRα = φPRα and Ξβ
p φ

PRβ = φPRβ (18)

The convex combination parameter p has the interpretation that a random
walker can randomly jump to any other node. In all ranking comparisons, we
use the value p = 0.95.

3.7 Random walker method (RW)

The random walker method of Callaghan, Mucha, and Porter (2007) considers
the system of differential equations

φ̇ = Γαp φ where Γαp :=
[
p (W − diag(l)) + (1− p)(W t − diag(w))

]
. (19)

Here p ∈ (1
2
, 1) is taken to be a bias parameter. This system has the interpre-

tation of a collection of “random walkers” on the directed graph representing
the schedule which transition from node i to node j (i 6= j) with probability
pW + (1 − p)W t. Thus the walkers tend to move toward the teams which
win games with probability p. When p is near 1

2
, the strength of schedule

dominates and when p is near 1, the game results dominate. In all ranking
comparisons, we use the value p = 0.75. The statement that the total number
of walkers is conserved is written 1tΓαp = 0t. Similarly, we consider

φ̇ = Γβp φ where Γβp :=
[
p (S − diag(t)) + (1− p)

(
St − diag(s)

)]
. (20)

Note 1tΓβp = 0t. The rankings, φRWα and φRWβ are defined to be the stationary
state of the equations (19) and (20), i.e., the solutions of

Γαp φ
RWα = 0 and Γβp φ

RWβ = 0. (21)



3.8 Elo’s method (E)

Elo’s method for rating is an iterative method where the ratings are updated
after each game (Elo, 1961, Glickman, 1995). Let φEα

i be the rating of team
i. For each game, the Elo method models the expected outcome as a logistic
function applied to the difference in team ratings. That is, if L(x) = 1

1+10−x/ξ

is the logistic function with parameter ξ > 0, then the expected outcome of
team i in a game against team j is

µij = L(φi − φj).

Note 0 < µij < 1 and µij +µji = 1. For the (α) dataset, the Elo method takes
the outcome for team i against team j to be

oαij =


1 team i beats team j
1
2

teams i and j tie

0 otherwise

The ratings are then additively updated by a factor proportional to the differ-
ence between the observed and expected outcomes of the game, i.e.,

φEα
i ← φEα

i +K(oαij − µij)
φEα
j ← φEα

j +K(oαji − µji).

For the (β) dataset, consider a game where the score between teams i
and j is σi to σj. Then the outcome for the game is taken to be

oβij =
σi + 1

σi + σj + 2
.

The Elo ratings for the (β) dataset are similarly updated according to

φEβ
i ← φEβ

i +K(oβij − µij)
φEβ
j ← φEβ

j +K(oβji − µji).

In all ranking comparisons, we initialize all teams to have rating 1500 and use
K = 32 and ξ = 1000. These parameter choices agree with those of Langville
and Meyer (2012).



Remark. Other implementations of the Elo algorithm treat a teams rating
as provisional until the team has played a fixed number, say 20, games. Some
implementations reduce the parameter K as the number of games increases.
TrueSkill is an adaption of the Elo method by Microsoft for multi-player on-
line gaming where a team’s performance is modeled as a normal distribution
(Minka, Graepel, and Herbrich, 2007). After each game, both the mean and
variance are updated based on the difference between the expected and ob-
served game outcomes.

4 Comparing methods via hypothesis testing

In this section, we give a brief overview of hypothesis testing methods, which
will be used to quantitatively compare the ranking methods described in §3.
Our discussion closely follows Demšar (2006). See also Shaffer (1995).

We consider comparing M methods on D datasets. Let c`d be a perfor-
mance measure for the `-th method on the d-th data set. (In §5, we’ll take c`d
to be a cross validation score, M = 16, and D to be the number of seasons for
a single sport.) Sorting the values of c`d with respect to `, we let r`d be the rank
of the `-th method on the d-th dataset. A rank of r`d indicates that method `
outperformed M − r`d methods on the d-th dataset. In the event that n > 1
methods have the same cross validation score c`d, we assign each of the tied
methods the average ranking. For example, if in a comparison of 4 methods,
the performance measures c = [3.2, 2, 2, 1.5] are obtained for a given dataset,
the corresponding rankings are r = [1, 2.5, 2.5, 4].

Perhaps the simplest method for comparing ranking methods would be
to simply compare the average rank of each algorithm over the datasets,

R` =
1

D

D∑
d=1

r`d. (22)

However, this method of comparison is susceptible to variations in algorithm
performance since excellent performance on a small subset of the dataset may
compensate for a general lackluster performance. (Demšar, 2006).

The Friedman test takes as null hypothesis (H0) that all ranking meth-
ods are equivalent. The alternative is that at least two of the methods differ
in predictiveness. For each dataset, d, the sum of the ranks of the algorithms
is given by

∑M
`=1 r

`
d = M(M+1)

2
. The average of the ranks over all datasets is



then given by R = M+1
2

. Define the “sum of squares” quantities

SSt = D

M∑
`=1

(R` −R)2 = D

(
M∑
`=1

R2
`

)
−DM(M + 1)2

4

SSe =
1

D(M − 1)

M∑
`=1

D∑
d=1

(
r`d −R

)2
=
M(M + 1)

12
.

Here, SSt is proportional to the variance of the average rank of the algorithms
over the datasets and SSe is proportional to the sample variance of the ranks.
If H0 holds, then we would expect that SSt to be small compared to SSe.
Friedman considered the statistic

χ2
F =

SSt
SSe

=
12D

M(M + 1)

(
M∑
`=1

R2
`

)
− 3D(M + 1). (23)

If M and D are large, then the null distribution of χ2
F can be approximated

by the chi-square distribution with M − 1 degrees of freedom. For smaller
datasets, the null distribution can be computed (Demšar, 2006).

A less conservative statistic is given by

FF =
(D − 1)χ2

F

D(M − 1)− χ2
F

. (24)

The statistic FF follows the F distribution with M − 1 and (M − 1)(D − 1)
degrees of freedom. Thus, if FF exceeds the critical value for the chosen
significance level, α, then we can reject the null hypothesis, H0. Critical values
for the chi-squared and F cumulative distribution functions can be computed
in Matlab using chi2cdf and fcdf.

If the Friedman test rejects the null hypothesis, then the post-hoc Ne-
menyi test can be applied. If the difference in average rank between two algo-
rithms i and j exceeds a critical difference ∆α,M,D, i.e., Ri−Rj > ∆α,M,D, then
the performance of algorithm i is better than the performance of algorithm j
with confidence α. The critical difference is given by

∆α,M,D = qα,M

√
M(M + 1)

6D
(25)

where qα,M is drawn from the studentized range distribution and depends on
the significance level α as well as M , the number of methods compared. We
obtained values of qα,M from Miwa (2012).



mean mean mean
sport years # teams # games alg. conn. source

NBA 1980-2011 27 1093 52.5 NBA (2012)
MLB 1997-2012 29.7 1621 33.24 MLB (2012)

MLB-NL 1901-1996 9.4 730.1 163.9 MLB (2012)
MLB-AL 1901-1996 9.8 757.5 166.7 MLB (2012)
NCAAB 1991-2012 320.0 4,625 4.27 CBB (2012)
NCAAF 1956-2011 125.6 645.6 1.09 CFB (2012)

Table 1: Description of datasets analyzed. The algebraic connectivity, defined
in (26), is a measure of the rankability of the dataset. See §5.1

5 Comparison of Ranking Methods

In this section, we describe the datasets, a cross-validation based measure of
ranking error, and the results of hypothesis testing.

5.1 Data

We consider data from 4 sports leagues: 32 National Basketball Association
(NBA) regular seasons, 112 Major League Baseball (MLB) regular seasons,
22 NCAA Basketball (NCAAB) Division 1 regular seasons, and 56 NCAA
Football Division 1-A or FBS (NCAAF) seasons. In Table 1, we include a
description of each dataset, including the mean number of games, mean num-
ber of teams, and algebraic connectivity of the directed graph representing
the schedule, and source information. The algebraic connectivity of a directed
graph with arc-vertex incidence matrix B is defined

algebraic connectivity = min
vt1=0

‖Bv‖2

‖v‖2
. (26)

Algebraic connectivity is a measure of the informativeness of the schedule rep-
resented by the graph (Osting et al., 2012a). Intuitively, a schedule with large
algebraic connectivity has an associated ranking which is robust to anomalous
games (“upsets”).

In what follows, we comment on the general structure of each sports
league.

NBA. For NBA, since 1968 each team has generally played 82 games during
the regular season, 41 each home and away. Exceptions include the 1999



NBA lockout, where teams played only 50 games each. Although the teams
are subdivided into conferences and divisions, the teams all play one another.
Overtime prevents ties in the NBA. In the NBA, winning percentages are used
to rank teams (and decide which teams will enter the postseason playoffs).

MLB. In MLB, the teams are subdivided into two leagues: the American
League (AL) and the National League (NL). Prior to 1997, teams only played
within their own league during the regular season. Consequently, for these
years we consider the AL and NL separately. For the years considered, teams
played on average 157 games. The variance in games is due to rain or player
strikes. In MLB, rules allowing for “extra innings” reduce the number of ties,
but they have occurred. In MLB, winning percentages are used to rank teams
(and decide which teams will enter the postseason playoffs).

NCAAB. Our dataset includes only regular season games. For each season
considered, we (recursively) prune the dataset by removing all teams which
play less than 10 games. On average, we remove 65.4 teams and 94.0 games
per year from the dataset. Overtime prevents ties in NCAAB. In NCAAB, the
home-adjusted RPI method is used to rank teams (and decide which teams
will enter the postseason “March madness” playoffs).

NCAAF. Our dataset includes both regular season and postseason “bowl”
games. In NCAAF, Division 1-A teams mostly play ≈ 12 games per season
against both Division 1-A and 1-AA teams. However, if one considers only
games played between two Div. 1-A teams, then one finds that some teams
play very few games. For each season considered, we (recursively) prune the
dataset by removing all teams which play less than 4 games. On average, we
remove 42.4 teams and 53.2 games per year from the dataset. On average, the
remaining teams play 10 games each. The game to team ratio for the NCAAF
is much lower than for NBA or MLB. In 1996, overtime was introduced to
eliminate ties. The current ranking method used in NCAAF is to aggregate
several rankings—some (proprietary) “computer-generated” methods and oth-
ers based on expert opinion.

5.2 Ranking Error

To evaluate the prediction accuracy of ranking methods, we require a notion
of error for a ranking. One can conceive of many possible ways of doing this.
For example, if the goal of the ranking is to predict margin of victory in a



game, the error could be defined as the difference between the predicted and
observed victory margins. Here, we simply try to predict which team wins
each game. To evaluate this, we use cross validation. Each dataset is broken
into two subsets: a training set and a test set. A ranking φ is generated by
applying one of the methods described in §3 to the training set. We define
the prediction error, E`(t), of a ranking, `, for a given test set, t, to be the
proportion of games in the test set such that the lower rated team beats the
higher rated team, i.e.,

E`(t) =
#{team i beats j in the dataset t and φ

(`)
i ≤ φ

(`)
j }

#{games in dataset t}

+
#{teams i and j tie and φ

(`)
i 6= φ

(`)
j }

#{games in dataset t}
. (27)

The best performing ranking method is the one that has the lowest expected
predictive error.

We use k-fold cross-validation where k = 20 to evaluate the prediction
error for each method described in §3. More specifically, the data is partitioned
into k = 20 disjoint subsets, and each subset is used once to test the accuracy
of a ranking generated from the other k− 1 subsets. The average error across
the k subsets is used as a cross-validation score. This process is repeated
ρ = 100 times to average over the choice of partitions. We label the partitions
Pj, for j = 1, . . . , ρ. Thus, for each dataset d, taken to be one season, we
define the cross validation score for ranking method `,

c`d =
1

ρ

ρ∑
j=1

1

k

∑
t∈Pj

E`(t)

 . (28)

To generate a sensible ranking on each training set, we require that the
partitions be chosen such that, for each training set, each team plays at least
one game. We find that for k = 20, a randomly chosen partition will usually
have this property, and we find that for each dataset considered, the property
can be obtained by randomly selecting partitions and discarding partitions
which do not satisfy this property. The same partitions are used to evaluate
the cross validation score for each ranking method, `.

In Fig. 1, for each dataset (sport), we plot c`d, defined in (28), for each
method ` as a function of season, d. In Fig. 2, for each dataset and each
ranking method `, we give a box and whisker plot for the distribution of cross
validation scores, c`d over the seasons d.



From Figs. 1 and 2, we observe that the cross validation scores are
generally smallest for the MLB dataset and interpret this to mean that MLB
games are generally less predictable than the other sports considered. From
Fig. 1, we observe that the cross validation scores of all of the methods vary
from season to season together, i.e., have high correlation. We interpret this
to mean that some seasons are more predictable than others. For the NCAAB
dataset, the cross validation scores have much less inter-season variability than,
for example, the NCAAF dataset.

From Figs. 1 and 2, we observe that the cross validation scores for some
sports (NCAAB and NCAAF) have higher inter-method variability than others
(MLB and NBA). The sports with high inter-method variability are precisely
those with schedules represented by graphs with small algebraic connectivity
as defined in (26), (see Table 1).

We observe that the PRβ ranking method has a considerably smaller
cross validation score for the NBA dataset than the other methods. This is
because score differentials in the NBA tend to be small compared to the score
magnitudes and thus the matrix S, as defined in (2), is almost symmetric.
Consequently, the matrix Ξβ

p in (18) represents a walk on a directed graph
where walkers are only weakly directed toward the winning team.

To measure the similarity of rankings generated by the considered rank-
ing methods, we use the Kendall tau distance. Given two rankings, σ1 and σ2

for n teams, the Kendall tau distance is defined

dK(σ1, σ2) :=
#{teams i and j : (σ1

i > σ1
j and σ2

i < σ2
j ) or (σ1

i < σ1
j and σ2

i > σ2
j )}

1
2
n(n− 1)

.

Note that for all rankings σ1 and σ2, 0 ≤ dK(σ1, σ2) ≤ 1. Let πd(`) be the
ranking generated by rating method ` on the dataset d. Define the matrix

Φd
`1,`2

= dK
(
πd(`1), π

d(`1)
)
.

We then compute the average Frobenius norm of Φd over the seasons d,

γ =
1

D

D∑
d=1

‖Φd‖F .

For each sport, we tabulate the value γ as follows:

NBA MLB NL AL NCAAB NCAAF
γ 1.02 1.94 1.44 1.40 2.23 2.70

.



Comparing NBA and NCAAF, it appears that a small variance in the cross val-
idation scores might imply that the rankings themselves are similar. However,
the cross validations scores across rankings for MLB has very small variance,
but the rankings are fairly dissimilar compared to NBA. This is caused by
the low cross validation scores for MLB for all rankings. Thus, similar cross
validation scores across rankings for a given sport does not necessarily imply
that the ranking methods produced similar rankings.

Finally, Fig. 1 illustrates the difficulty in describing the probability
distribution of the cross validation score for each individual rating method. A
parametric method for comparing cross validation scores would require many
assumptions on these distributions and a method for taking into account inter-
season variability; this is one of the primary motivations for employing non-
parametric hypothesis testing methods.

5.3 Hypothesis testing

In this section, we apply the hypothesis testing method described in §4 to the
datasets. The average rank of each algorithm over the seasons, given in (22),
is computed using the cross validations scores, (28). For each dataset (sport),
the average rank of each algorithm is indicated by the blue bar in Fig. 3. For
each dataset, the Friedman statistics χ2

F and FF , defined in Eqs. (23) and
(24), exceed their respective critical values at the 99% c.l. (confidence level).
Thus, in all cases we reject the null hypothesis—that each of the compared
methods (described in §3) have equivalent predictive power.

Proceeding to the Nemenyi test, we compute the critical value given
in (25) for each sport league. The red bar in Fig. 3 represents the Nemenyi
critical value at the 95% c.l.. If the difference between the average ranks (blue
bars) for two methods exceeds the distance indicated by the red bar, then the
Nemenyi test concludes that the method with the smaller average ranking has
statistically better predictive accuracy (at this confidence level). The Nemenyi
critical values for comparing M = 8 and M = 16 methods at the 95% and
99% c.l.s are reported in Table 2.

In Fig. 3, we observe that the methods utilizing score-differential data
(β) are usually more predictive than those utilizing win-loss data (α) only,
although not always significantly more predictive. We also observe that there
is no clear “most predictive” method for all sports considered. For the NBA
dataset, we observe that the PRβ method is less predictive at the 99% c.l.
than all but the PRα method. For each of the three MLB datasets, the
ranking methods perform relatively similarly. For the MLB-NL dataset, the



PRβ method has less predictive accuracy at the 99% c.l. than 4 other methods.
For the MLB-NL dataset, the Kβ method is less predictive at the 99% c.l. than
4 other methods. For the MLB-AL dataset, only the Eα method has worse
predictive accuracy at the 99% c.l. than any of the other methods. For the
NCAAB dataset, the RPIβ, L2β, MPβ, and RWβ methods each have higher
predictive accuracy at the 99% c.l. than 8 other methods. In particular, the
L2β and RWβ methods are more predictive at the 95% c.l. than the RPIα
method. This is interesting because the official ranking method for NCAAB is
home-adjusted RPI, a variant of the RPIα method. For the NCAAF dataset,
the L2β and RWβ methods have higher predictive accuracy at the 99% c.l.
than 10 and 9 other methods respectively.

Comparison of restricted methods. We repeat the Friedman and Ne-
menyi tests except only comparing ranking methods which utilize dataset (β)
and plot the results in Fig. 4. For the NBA dataset, the PRβ method has
lower predictive accuracy at the 95% c.l. than all other methods. For the
MLB dataset, the Kβ method has the highest predictive accuracy and is more
predictive at the 99% c.l. than the PRβ and Eβ ranking methods. For the
MLB-NL dataset, the PRβ method has worse predictive accuracy at the 99%
c.l. than all but the Eβ ranking method. For the MLB-AL dataset, only the
WPβ ranking method is more predictive at the 95% c.l. than the PRβ and
Eβ ranking methods. For the NCAAB dataset, the WPβ and Eβ methods
are less predictive at the 95% c.l. than 5 other ranking methods. For the
NCAAF dataset, the L2β method has the highest predictive accuracy and is
more predictive at the 99% c.l. than all other β rankings considered, except
RWβ. For the NCAAF dataset, the L2β and method RWβ methods are more
predictive at the 95% c.l. than all other β rankings considered.

Cases where the Friedman test fails to reject H0. By excluding some
methods we found several examples where the Friedman test can fail to reject
the null hypothesis, H0, including the following. For the NBA dataset, if the
PRβ, Eβ, and all α ranking methods are excluded, than the Friedman test
does not reject H0. For the MLB-AL dataset, if PRβ is excluded, the p-value
for both the χ2

F and FF statistics is 0.043. Thus, the Friedman test rejects H0

at the 95% c.l., but accepts H0 at the 99% c.l..



6 Discussion

In this paper, we empirically evaluated the predictive power of eight sports
ranking methods, described in §3, and labelled WP, RPI, L2, MP, K, PR,
RW, and E. For each ranking method, we implement two versions, one using
only win-loss data (α) and one utilizing score-differential data (β). The meth-
ods were compared on data from four different sports leagues, NBA, MLB,
NCAAF, and NCAAB. For each season of each dataset, we applied 20-fold
cross validation to evaluate the predictive accuracy of the ranking methods.
The non-parametric Friedman hypothesis test and post-hoc Nemenyi tests
were used to assess whether the predictive error for the considered rankings
over the seasons were statistically dissimilar and which ranking methods had
significantly superior predictive accuracy. We found in all cases that the null
hypothesis—that all ranking methods are equivalent—is rejected at the 99%
confidence level. For NCAAF and NCAAB datasets, the Nemenyi test con-
cludes that the implementations utilizing score-differential data (β) are usu-
ally more predictive than those using only win-loss data (α). For the NCAAF
dataset, the least squares (L2β) and random walker (RWβ) methods have
significantly better predictive accuracy than the other methods considered.

Our primary goal in this work was to demonstrate how hypothesis
testing methods can be used for comparing sports ranking methods, not for
finding the “best ranking method”. We reiterate that we have only considered
a small sample of ranking methods and have not incorporated all available
information into the rankings, for example, home/away information, separate
offensive/defensive ratings, etc. . . . Additionally, we have not “tuned” any
method parameters for the individual datasets considered, although this would
certainly improve the predictive accuracy of the methods. A natural future
direction is to use the comparison methodology described here to compare
a larger sample of rating methods or develop new rankings with improved
predictive accuracy. It would also be interesting to consider the predictive
power of a ranking obtained by rank aggregation (Dwork, Kumar, Naor, and
Sivakumar, 2001a,b), especially as compared to the predictive power of its
constituents.
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Figure 1: For each dataset (sport), we plot the cross validation scores, c`d, as
defined in (28), for each method, `, as a function of season, d. The dataset
for each sport is described in Table 1. A large cross validation score indicates
that the method has good predictive accuracy. See §5.2.
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Figure 2: For each dataset (sport) and each ranking method `, we give a box
and whisker plot for the distribution of cross validation scores c`d, defined in
(28), over the seasons d. The median is indicated by the red line, the first
and third quartile are indicated by the blue box, and the ‘whiskers’ extend to
the most extreme data points not considered outliers. The outliers are plotted
individually by red (+) markers. See §5.2.
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Figure 3: For each dataset, the blue bars indicate the average rank of each
algorithm over the seasons, as defined in (22). Lower average rank indicates
that the method has better predictive accuracy. The red bars indicate the
Nemenyi critical distance at the α = 0.05 significance level, defined in (25). If
the difference between the average ranks for two methods exceeds the distance
indicated by the red bar, then Nemenyi test concludes that the method with
the smaller average ranking has statistically better predictive accuracy. See
§5.3.
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Figure 4: This figure is similar to Fig. 3, except only rankings depending on
the score differential data, labelled (β), are compared. See §5.3.



M = 8

NBA MLB NL AL NCAAB NCAAF
D = 32 D = 16 D = 96 D = 96 D = 22 D = 56

∆α,M,D, α = 95% 1.86 2.62 1.07 1.07 2.24 1.40
∆α,M,D, α = 99% 2.16 3.05 1.25 1.25 2.60 1.63

M = 16

NBA MLB NL AL NCAAB NCAAF
D = 32 D = 16 D = 96 D = 96 D = 22 D = 56

∆α,M,D, α = 95% 4.08 5.77 2.35 2.35 4.92 3.08
∆α,M,D, α = 99% 4.62 6.54 2.67 2.67 5.58 3.49

Table 2: Nemenyi test critical values, ∆α,M,D, for comparing M ranking meth-
ods among D seasons at the α confidence level. See §5.3 and Fig. 3.
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