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Abstract

This paper is the first of three in which I study the moduli space of
isometry classes of (compact) globally hyperbolic spacetimes (with bound-
ary). I introduce a notion of Gromov-Hausdorff distance which makes this
moduli space into a metric space. Further properties of this metric space
are studied in the next papers. The importance of the work can be situated
in fields such as cosmology, quantum gravity and - for the mathematicians
- global Lorentzian geometry.

1 Introduction

The aim of this paper is to make first steps in the construction of a convergence
theory for partially ordered spaces equipped with a Lorentz distance, which we
shall refer to as Lorentz spaces. Typical examples of such spaces are Lorentz
manifolds, which constitute the geometrical playground for general relativity.
The field of application should in the end be quantum gravity and in partic-
ular the path integral formulation thereof. In this application, the purpose is
twofold: on one hand a convergence theory will serve as a tool for taking a con-
tinuum limit, on the other hand it will provide a mechanism to control which
geometrical objects to sum over and which not. It is my hope that in a later
stage, we shall be able to link this rather abstract control theory with statistical
Lorentzian geometry, in order to be able to make this passage to the former
application.
At the moment, the main background-independent attempts to quantize general
relativity are canonical quantum gravity and the resulting spin foam models,
which are structural extensions of the causal sets introduced by Rafael Sorkin.
The main difficulty in all these approaches consists in making precise what it
means for such a Lorentz space (in fact, causal sets are not Lorentz spaces in
the above sense since the Lorentzian distance is not accounted for) to be close
to a Lorentz manifold. Other difficult questions with respect to these objects
concern a good definition of dimensionality and relativistic scale. In these three
papers we shall present an abstract solution to all these problems in the way
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Gromov did for locally compact metric spaces. The Lorentzian analogue is not
just a copy of the 23 year old Gromov theory [8] [10]: some intermediate results
have to be stated differently and the proofs are considerably more difficult.
In section two, we generalize the Lipschitz notion of distance between two com-
pact metric spaces to a notion of distance between two globally hyperbolic com-
pact Lorentz manifolds with spacelike boundary. It turns out that we can only
measure a distance between conformally equivalent structures, and in this sense
this chapter is only a warm-up. The most important result is a Lorentzian ana-
logue for the Ascoli-Arzela theorem which guarantees convergence to isometry.
The most important lesson, however, is that we have found a class of mappings
that is rich enough to compare conformally equivalent structures and which
is poor enough to keep a good control over. In section three we introduce a
Lorentzian notion of Gromov - Hausdorff distance dGH. I will give some exam-
ples to show that the Lorentzian theory is rather different from the Riemannian
one.
Previous attempts in the literature to construct a metric on the modulo space
of isometry classes of Lorentzian spacetimes can be found in [11], [4] , [5] , [6].
But all these attempts failed since one could only prove that one had obtained
a pseudo distance. Moreover, I do not agree with the philosophy behind them,
since in all these papers (including mine) the canonical volume measure has
been used. In particular, this means that I take the point of view that the
construction of a statistical Lorentzian convergence theory should follow a geo-
metrical Lorentzian convergence theory and not the other way around.
The readers not familiar with the following notions and results concerning
causality are, if not mentioned otherwise referred to the bible of general rel-
ativity, [2].

2 A Lipschitz distance

Our aim is to define a Lorentzian analogue of the classical Riemannian Lipschitz
distance between (locally) compact (pointed) metric spaces. Let (X, dX) and
(Y, dY ) two compact metric spaces and f : X → Y be a bi-Lipschitz mapping,
i.e., there exist numbers 0 < α < β such that

αdX(x, y) ≤ dY (f(x), f(y)) ≤ βdX(x, y) ∀x, y ∈ X

The minimal such β is the dilatation dil(f) of f and the maximal such α the
co-dilatation of f ( or the inverse of the dilatation of f−1 if f−1 exists). The Lip-
schitz distance dL(X,Y ) between X and Y is the infimum over all bi-Lipschitz
homeomorphisms of the expression:

|ln(dil(f))|+ ∣∣ln(dil(f−1))
∣∣

The key result is that dL(X,Y ) = 0 iff (X, dX) is isometric to (Y, dY ), which is
a direct consequence of the Ascoli-Arzela theorem [1].
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Theorem 1 (Ascoli-Arzela) Let X and Y be second countable, locally com-
pact spaces, moreover (Y, dY ) is assumed to be metrically complete. Assume that
the sequence {fn} of functions fn : X → Y is equicontinuous such that the sets⋃
n {fn(x)} are bounded with respect to dY for every x ∈ X. Then there exists

a continuous function f : X → Y and a subsequence of {fn} which converges
uniformly on compact sets in X to f .

Let us now make some analogy and discrepancy with the Lorentzian case. For
now we restrict to spacetimes, i.e., pairs (M, g) whereM is a C∞, paracompact,
Hausdorff manifold and g is a Lorentzian metric on it, such that (M, g) is time
orientable. Abstract Lorentzian spaces will be defined later on in analogy with
Seifert and Busemann. We will make now a convention in terminology which is
not standard in the literature, but is somehow necessary to keep the discussion
clear.

Definition 1 Let X be a topological space with a partial order ≺. A Lorentzian
distance is a function d : X ×X → R

+ ∪ {∞} which satisfies

• d(x, x) = 0

• d(x, y) > 0 implies d(y, x) = 0 (antisymmetry)

• if x ≺ y ≺ z then d(x, z) ≥ d(x, y) + d(y, z) (reverse triangle inequality)

It is well known that every chronological spacetime (with partial order �) de-
termines a canonical Lorentzian distance by defining dg(x, y) as the supremum
over all lengths of future oriented causal curves from x to y if such curves exist
and zero otherwhise. One has that dg is continuous and finite if (M, g) is glob-
ally hyperbolic and, vice versa, that if dg is continuous then (M, g) is causally
continuous. More equivalences between properties of dg and causality restric-
tions can be found in [9]. We shall only be interested in globally hyperbolic
spacetimes since the continuity of dg is a desirable property if one wants to
work out a comparison theory according to Lipschitz. Note immediately that a
compact globally hyperbolic spacetime does not exist unless we consider mani-
folds with a boundary. We assume the boundary is spacelike and that M and
N are locally extendible across their boundary (all the results in this paper are
also valid when an extra timelike boundary is allowed, it is up to the reader to
fill in the details in the proofs). Remark first that every point of the boundary
is contained in a neighborhood U which is diffeomorphic to a hypercube in R

n,
where exactly one side hyperplane, say t = 0, belongs to U and no other points
of any other side hyperplane belong to U . By local extendibility I mean that
there exists an isometric embedding of (U , g|U) in a open spacetime (V , g|V)
such that the image of U has compact closure in V . We stress that this does not
correspond to the usual notion of causal local extendibility to which we come
back later on.
First we have to contemplate which mappings between two spacetimes need to
be considered for comparison. To this purpose, let (M, g) and (N , h) denote
globally hyperbolic spacetimes. A mapping f : M → N is said to be timelike
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Lipschitz if and only if it has bounded timelike dilatation tdil(f), i.e. there
exists a (smallest) number β such that

dh(f(x), f(y)) ≤ βdg(x, y), ∀x, y ∈M.

The above construction for the Riemannian case suggests that we consider time-
like bi-Lipschitz homeomorphisms. However, a slight generalization of a classical
result for homotheties teaches us that a surjective timelike bi-Lipschitz map is
automatically a homeomophism (see Appendix A). Indeed, a result of Hawking,
Mc Carthy and King [3], proves that such mapping is a C∞ conformal diffeo-
morphism. One might be concerned that such maps are too restrictive in the
sense that they only allow conformally equivalent spacetimes to be compared
but as mentioned before, this section is meant as a warm-up to get used to the
techniques needed for the next section. The next logical step is formulating and
proving a Lorentzian version of a suitably modified Ascoli-Arzela theorem.

Theorem 2 (Lorentzian Ascoli-Arzela) Let fn : M → N be onto bi-
Lipschitz mappings such that

⋃
n {fn(x)} and

⋃
n

{
f−1
n (y)

}
are precompact1 in

N respectively M for all x ∈ M and y ∈ N . Moreover, let (cn)n∈N be a de-
scending sequence (cn < 1) converging to zero such that tdil(fn) ≤ 1 + cn and
tdil(f−1

n ) ≤ 1
1−cn

; then there exists a subsequence (nk)k∈N and a isometry f
such that fnk

converges to f pointwise.

We recall that x ≺ y means that x is in the causal past of y and x� y indicates
that y is in the chronological future of x. Note also that we did not specify
that � is a partial order relation induced by a metric tensor g since this would
unnecessarily complicate the notation. It should be clear from the context by
which metric the particular partial order relation is defined. We shall also not
denote the distinction between dg and dh.
Proof
Let C be a countable dense subset of M. By a diagonalization argument one
obtains a subsequence {fnk

} such that fnk
(p) k→∞→ f(p) ∀p ∈ C. Let r be

any interior point of M which is not in C, we show now that the definition of
f can be extended to r such that limk→∞ fnk

(r) = f(r). Let U be a causally
convex normal neighborhood of r and choose a point p1 ∈ C ∩ I−(r) ∩ U close
enough to r. Let γ be the unique timelike geodesic from p1 through r and
define p̃i, q̃i ∈ γ by d(p̃i, r) = d(p1,r)

i and d(r, q̃i) = d(p1,r)
i . Hence d(p̃i, p̃i+j) =

jd(p1,r)
i(i+j) = d(q̃i+j , q̃i) and d(p̃i, q̃i) = 2d(p1,r)

i . Define now sequences pi, qi ∈ C
such that p̃i � pi � p̃i+1, q̃i+1 � qi � q̃i with the exception that p1 = p̃1. We
shall now prove the following claims:

• the sequence (f(pi))i is contained in the compact set A(f(p̃1), f(q1))2 and
has exactly one accumulation point f↑(r) which turns out to be a limit
point.

1A subset A of a topological space X is precompact iff the closure of A is compact.
2A(p, q) = {r|p ≤ r ≤ q}.
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• f↑(r) is independent of the choice of (pi)i∈N

The first claim is an easy consequence of the observation that for all i one has
that :

d(f(p̃1), f(pi)) = lim
k→∞

d(fnk
(p̃1), fnk

(pi))

= d(p̃1, pi),

where we used the continuity of d in the target space and the property of the
convergence of the timelike dilatation and co-dilatation of the mappings fn. The
above also proves that d(f(pi), f(pi+j) = d(pi, pi+j) and hence f(pi) � f(pi+j).
This in turn implies that any accumulation point of the sequence (f(pi))i must
lie to the future of all f(pi), hence it is a limit point which must be unique.
The second claim follows from the observation that if p̂i is another such sequence
with corresponding f̂↑(r) then one has that

pi � p̂i+1 � pi+2 � p̂i+3 � . . .� r.

Hence
0 < d(f(p̂i+1), f↑(r)) ≤ d(f(pi), f↑(r)) − d(f(pi), f(p̂i+1))

However, the first term on the rhs. converges to zero for i→∞ and the second
term is estimated by d(f(pi), f(p̂i+1)) ≤ 2d(p̃1,r)

i(i+2) . Hence f̂↑(r) ∈ E−(f↑(r)).
The reverse is proven similary and this concludes the second claim.

The same result is of course also true for p replaced by q, and we denote the
corresponding accumulation point by f↓(r). Note that d(f(p̃1), f↑(r)) = d(p̃1, r),
d(f↓(r), f(q1)) = d(r, q1) and d(f(p̃1), f(q1)) = d(p̃1, q1), which all follow from
continuity of d and the present properties of f . f↑(r) = f↓(r) follows from
the observation that changing q1 by a point in the future of q1, so that we
can come arbitrary close to q̃1, does not change the point f↓(r). For the same
reasons as before such a sequence of points q1 will define a sequence f(q1) which
converges to a point, say, f↑(q̃1) in the future of all points f(q1). Hence due
to continuity we have that d(f↓(r), f↑(q̃1)) = d(r, q̃1) and d(f(p̃1), f↑(q̃1)) =
d(p̃1, q̃1). But this implies that d(f↓(r), f↑(r)) = 0 and more strongly f↑(r) =
f↓(r) otherwise by ”rounding off the edges” we could find a timelike curve with
length larger than d(f(p̃1), f↑(q̃1)), which is a contradiction. It is now easy to
see that fnk

(r) converges to f(r), since for every i we can find a k0 such that
for all k ≥ k0 one has that f(pi) � fnk

(pi+1) � f(r) � fnk
(qi+1) � f(qi),

which implies (because of the properties of fnk
) that f(pi) � fnk

(r) � f(qi).
This concludes the proof when r is an interior point, since the open Alexandrov
sets int(A(f(pi), f(qi))) form a basis for the topology around f(r). The case
when r is a past boundary point is rather different, since then we cannot squeeze
the point r anymore in an Alexandrov set (the case of a future boudary point
is identical). Obviously, fnk

(r) belongs to the past boundary of N . Let γ be

5



the unique geodesic segment orthogonal to the past boundary in r, and choose
the sequences (q̃i)i∈N and (qi)i∈N as before. Then we can find a subsequence
fnkl

such that fnkl
(r) l→∞→ f(r), where f(r) belongs to the past boundary and

fnkl
(γ|[r,q̃1]) → f(γ|[r,q̃1]) in the C0 topology of curves. It is easy to see that

f(γ|[r,q̃1]) is the unique geodesic segment in N orthogonal to the past boundary
in f(r). But in this case, we have that

f(qi) � fnk
(qi+1) � fnk

(r),

and since the I−(f(qi)) form a basis for the topology around f(r), we have that
limk→∞ fnk

(r) = f(r), which concludes the proof. It is not difficult to see that
f is continuous by construction. As a matter of fact, we should still prove that
f is onto. Performing the same construction for f−1

nk
we find (by eventually

taking a subsequence) a limit mapping f−1. We now show that f−1 ◦ f = idM,
f ◦ f−1 = idN . We shall prove the former, the proof of the latter is identical.
Suppose there exists an interior point x such that limk→∞ f−1

nk
◦ f(x) 6= x, then

there exist points p1, p2, p3, q1, q2, q3 such that

p1 � p2 � p3 � f−1 ◦ f(x) � q3 � q2 � q1

and x /∈ A(p1, q1). Then for k big enough:

• p3 � f−1
nk
◦ f(x) � q3

• fnk
(p1) � f(p2) � fnk

(p3)

• fnk
(q3) � f(q2) � fnk

(q1),

hence
fnk

(p1) � f(p2) � f(x) � f(q2) � fnk
(q1),

but fnk
(x) /∈ A(fnk

(p1), fnk
(q1)), which implies that f(x) cannot lie between

f(p2) and f(q2), which is a contradiction. Hence f−1 ◦ f equals the identity
on the interior of M, and therefore it equals the identity everywhere since it is
continuous. The conclusion that f is an isometry follows from the discussion in
appendix A. �

Remark first that in the proof of the theorem we needed the requirement that⋃
n

{
f−1
n (y)

}
is precompact inM for all y ∈ N only to guarantee the surjectivity

and hence the smoothness of f . Sensible questions are the following:

• Is f not surjective a priori? If not give a counterexample.

• Is the convergence uniform on compact sets with respect to some Rie-
mannian metric d̃ on N ? In either case, is the family of mappings {fn}
equicontinuous with respect to d̃?

• Give a counterexample to the conclusion of Ascoli-Arzela in case the space-
times are not globally hyperbolic, but, say, causally continuous. One might
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expect that such counterexample exists since we made use of all properties
of global hyperbolicity, that is the compactness of the Alexandrov sets to
guarantee the convergence of the sequence (f(pi))i∈N and the continuity
of d.

• Can one extend the theorem to the case where the timelike dilatation
and co-dilatation of the mappings are only bounded and not necesserily
convergent to 1?

I shall only examine the last question. Remark first that the proof made crucial
use of the fact that one has convergence to isometry. The key argument was
that the continuous timelike extension of f maps 3 points on a distance maxi-
mizing geodesic in M to 3 points on a distance maximizing geodesic in N . This
argument will clearly not be valid anymore when the limit mapping (if it exists)
is not an isometry. One could however invoke earlier the construction of f−1

in the proof which is not a priori preferable considering the above questions.
However, such a strategy leads towards the following stronger result:

Theorem 3 Let α < 1 < β, fn : M → N be as in Theorem 2 with the
difference that tdil(fn) ≤ β and tdil(f−1

n ) ≤ 1
α . Then there exists a subsequence

fnk
and an f such that fnk

converges pointwise to f . Moreover one has that
tdil(f) ≤ β and tdil(f−1) ≤ 1

α .

Proof
Let C and D be countable dense subsets in M and N respectively. By a di-
agonalization argument we find a subsequence fnk

such that fnk
(p) converges

to f(p) and f−1
nk

(q) converges to f−1(q) for all p ∈ C and q ∈ D respectively.
Suppose r is an interior point and let γ, (pi)i∈N and (p̃)i∈N be as before. Take
q ∈ D arbitrarily close in the chronological future of f↑(r), we have then that

d(r, f−1(q)) = lim
i→∞

d(pi, f−1(q))

= lim
i→∞

lim
k→∞

d(pi, f−1
nk

(q))

≥ 1
β

lim
i→∞

lim
k→∞

d(fnk
(pi), q)

≥ d(f↑(r), q)
β

.

Hence r � f−1(q). Take now q1, q2 ∈ D such that f↑(r) � q1 � q2 with q2
arbitrarily close to f↑(r). Choose i > 0, then for k sufficiently large one has

r � f−1
nk

(q1) � f−1(q2)

and
f(pi) � fnk

(pi+1) � f↑(r).

Hence
f(pi) � fnk

(pi+1) � fnk
(r) � q1,
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which proves limk→∞ fnk
(r) = f↑(r).

Let r be a point of the ”past” boundary (the future situation is dealt with
identically). Let γ be a distance maximizing geodesic with past endpoint r and
let (q̃i)i∈N, (qi)i∈N be sequences of points as before where now the ”futuremost”
point q̃1 is sufficiently close to r and q1 can be chosen equal to q̃1. Without loss
of generality, we can assume that q̃1 � q ∈ D such that J−(q) is compact. For
k sufficiently large we have that

fnk
(q) � f(q1) � f(q2) � . . .

Since fnk
is continuous J−(fnk

(q)) = fnk
(J−(q)) is compact, therefore the

sequence (f(pi))i∈N has an accumulation point f↓(r), which is as usual also
a limit point. Suppose f↓(r) is not on the past boundary, then we can find a
point p ∈ D such that p� f↓(r). The calculation above shows that f−1(p) � r,
which is impossible. Hence f↓(r) belongs to the past boundary. Since the past
light cones I−(f(pi)) constitute a local basis for the topology around f↓(r), the
result follows.
The other conclusions of the theorem are obvious. �

Having this theorem in the pocket, the theorem which guarantees convergence
to isometry follows immediately.

Theorem 4 Let (M, g) and (N , h) be compact globally hyperbolic spacetimes
with boundary, then dL((M, g), (N , h)) = 0 iff (M, g) and (N , h) are isometric.

The notion of Lipschitz distance however is too severe and does not give rise to
a rich comparison theory since there is too much geometric control. A result of
Defrise-Carter [12] shows that every Lie algebra L3 of local conformal diffeo-
morphisms of four dimensional Lorentz manifolds are all, with two exceptions,
essentially isometries. By this, I mean that for every spacetime (M, g) not
conformally equivalent to Minkowski or a plane-wave spacetime with parallel
rays, there exists a conformal factor Ω such that L constitutes a r dimensional
Lie algebra of isometries for the spacetime (M,Ωg), with r ≤ 10. In Minkowski
spacetime, there is a 15-dimensional group of proper conformal transformations4

and in the latter only a 6 or 7 dimensional group or homotheties5. Hence, there
are ”not many” infinitesimal conformal diffeomorphisms, and there are even
fewer which can be integrated. Note that the result of Defrise-Carter does not
mention anything about discrete conformal diffeomorphisms. However, the re-
sults of this section are still very important, since:

• we shall be forced to generalize this Lipschitz theory to abstract globally
hyperbolic Lorentzian spaces, which will be done in the next paper.

• the proofs give a hunch how to prove convergence to isometry in case the
family of mappings gets enlarged, such as will happen in the next section.

3The assumption in the paper of Defrise-Carter that the group needs to be finite dimen-
sional, is not necessary.

4Generators consist of the 10 Poincare transformations, 1 dilatation and 4 accelerations.
55 respectively 6 generators form an isometry group, and 1 generator forms a dilatation.
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In a complete Riemannian manifold which is not locally flat, Kobayashi and
Numizu have proven that there are no homotheties which are not isometries.
As stated before, this is not true in the Lorentzian case as the next plane wave
spacetime shows [9].

Example Consider R
3 with the metric ds2 = exzdxdy + dz2. (R3, ds2) is not

flat and the mappings φt(x, y, z) = (etx, e−3ty, e−tz) are proper homothecies
with factor e−2t.

Moreover, we will see that for every compact globally hyperbolic spacetime
(M, g) there exists a Riemannian metric dM such that all dg isometries are dM
isometries. Suppose (M, g) is not a compact piece cut out of Minkowski or a
plane-wave spacetime (with parallel rays), then there exists a Riemannian metric
d̃M such that ”most” (apart from eventual discrete conformal diffeomorphisms)
g-conformal diffeomorphisms are d̃M isometries6.

3 A Gromov-Hausdorff distance

As in the previous chapter we recall the notion of Gromov-Hausdorff distance
in the Riemannian case. For this purpose define the Hausdorff distance dH
between subsets U, V of a metric space (X, dX) as

dH(U, V ) = inf{ε|U ⊂ B(V, ε), V ⊂ B(U, ε)}
where B(U, ε) = {x ∈ X |∃a ∈ U : dX(x, a) < ε}. Gromov had around 1980 the
following idea [8] : consider two compact metric spaces (X, dX) and (Y, dY ),
define a metric d on the disjoint union X∪Y to be admissible iff the restrictions
of d to X and Y equal dX and dY respectively. Then

dGH((X, dX), (Y, dY )) = inf{dH(X,Y )|all admissible metrics onX ∪ Y }.
In other words the Gromov-Hausdorff distance between two metric spaces is the
infimum over all Hausdorff distances in X ∪ Y with respect to metrics which
extend the given metrics on X and Y . Suppose d is an admissible metric on
X∪Y ; then there exist mappings f : X → Y , g : Y → X such that d(x, f(x)) ≤
dH(X,Y ) and d(y, g(y)) ≤ dH(X,Y ) for all x ∈ X , y ∈ Y respectively. The
triangle inequality and the properties of d imply that :

|dY (f(x1), f(x2))− dX(x1, x2)| ≤ 2dH(X,Y ) (1)
|dX(g(y1), g(y2))− dY (y1, y2)| ≤ 2dH(X,Y ) (2)

dX(x, g ◦ f(x)) ≤ 2dH(X,Y ) (3)
dY (y, f ◦ g(y)) ≤ 2dH(X,Y ) (4)

Observe that the last two inequalities imply that in the limit for dH(X,Y ) to
zero, f becomes invertible. But for compact metric spaces, invertibility also

6We know there exists a global conformal factor Ω such that essentially all g conformal
diffeomorphisms are Ωg isometries, hence the claim follows.
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follows from the observation that in the limit for dH(X,Y ) to zero, f and g
become distance-preserving maps. Hence g ◦ f and f ◦ g are distance-preserving
maps on X and Y respectively. The compactness assumption then implies that
they are both bijections and, as a consequence, so are f and g. We shall first
prove a similar result in the Lorentzian case.

Theorem 5 Let f : M→M be continuous and Lorentzian distance preserving
on the interior of M; then f maps the interior onto itself.

Proof Remark that an interior point is mapped by a distance-preserving map
to an interior point. Suppose p is an interior point not in f(M), then there
exists a neighborhood U of p for which f(M) ∩ U = ∅. For suppose not, then
we can find a sequence rn

n→∞→ r such that f(rn) n→∞→ p. Hence r is not an
interior point and without loss of generality we can assume it belongs to the
future boundary. But then f(M) ∩ I+(p) = ∅, otherwise there would exist an
interior point to the future of all rn, which is impossible.
Hence we may assume that there exist points r � p � s such that f(M) ∩
I+(r) ∩ I−(s) = ∅ and dg(r, p) = dg(p, s) > 0. Since fk(p) /∈ I+(r) ∩ I−(s)
for all k, we get that fk(p) /∈ I+(f l(r)) ∩ I−(f l(s)) for all k ≥ l. By taking
a subsequence if necessary, we can assume that fn(p) n→∞→ p̃, fn(r) n→∞→ r̃,
fn(s) n→∞→ s̃. Hence r̃ � p̃ � s̃, but this is impossible since this implies that
for n big enough p̃ ∈ I+(fn(r)) ∩ I−(fn(s)). �

Let us now make the following definition.

Definition 2 (Lorentzian Gromov-Hausdorff ) We call (M, g) and (N , h)
ε-close iff there exist mappings ψ : M→N , ζ : N →M such that

|dh(ψ(p1), ψ(p2))− dg(p1, p2)| ≤ ε ∀p1, p2 ∈ M (5)
|dg(ζ(q1), ζ(q2))− dh(q1, q2)| ≤ ε ∀q1, q2 ∈ N . (6)

The Gromov-Hausdorff distance dGH((M, g), (N , h)) is defined as the infimum
over all ε such that (M, g) and (N , h) are ε-close.

Suppose we are given sequences (ψn)n∈N, (ζn)n∈N of -possibly discontinuous -
maps which make (M, g) and (N , h) 1

n close. Then, because of the previous
theorem, any limit mapping is necessarily an isometry.

Theorem 6 dGH((M, g), (N , h)) = 0 iff (M, g) and (N , h) are isometric.

Proof
Let C and D be countable dense subsets of M respectively N , and take subse-
quences (ψnk

)k∈N and (ζnk
)k∈N such that

• ψnk
(p) k→∞→ ψ(p) for all p ∈ C

• ζnk
(q) k→∞→ ζ(q) for all q ∈ D

10



Obviously dh(ψ(p), ψ(p̃)) = dg(p, p̃) for all p, p̃ ∈ C and dg(ζ(q), ζ(q̃)) = dh(q, q̃)
for all q, q̃ ∈ D, which is an easy consequence of the global hyperbolicity and
the limiting properties of the sequences (ψnk

)k∈N and (ζnk
)k∈N.

We shall now prove that the limit map ψ exists and is distance-preserving. Let
r be an interior point of M and take sequences (p̃i)i∈N , (q̃i)i∈N, (pi)i∈N and
(qi)i∈N in M as before. In exactly the same way as in the proof of theorem 2,
we obtain that ψ↑(r) = ψ↓(r). Also ψ(r) = limk→∞ ψnk

(r) since for arbitrary i
we can find a k0 such that ∀k ≥ k0

• 1
k < min{d(pi+1, r), d(r, qi+1)}

• ψ(pi) � ψnk
(pi+1) � ψnk

(qi+1) � ψ(qi)

hence
ψ(pi) � ψnk

(pi+1) � ψnk
(r) � ψnk

(qi+1) � ψ(qi)

which proves the case. From this it is easy to prove that ψ is continuous on the
interior points.
In exactly the same way one constructs a continuous limit map ζ on the interior
of N .
The previous theorem now shows that ψ and ζ are distance preserving home-
omorphisms from the interior of M to N and from the interior of N to M
respectively. Using this, it is not difficult to show that one can continuously
extend ψ to the boundary so that limk→∞ ψnk

(r) = ψ(r) for every boundary
point r. Hence the result follows.

Furthermore, it is obvious that dGH is symmetric and satisfies the triangle in-
equality. We will now discuss some properties of dGH . Let us start with an
obvious one which is similar to the Riemannian case.

Theorem 7 dGH((M, g), (N , h)) ≤ max{tdiam(M), tdiam(N )} where tdiam(M)
denotes the timelike diameter, ie.

tdiam(M) = max
p,p̃∈M

dg(p, p̃).

We shall now give an example that might feel strange in the beginning for peo-
ple used to Riemannian geometry, although the result itself is what one should
expect from Lorentzian geometry.

Example
As mentioned before, a need will present itself for abstraction of the concept
of Lorentzian manifold. Therefore it is not hard to imagine that a Riemannian
manifold is a Lorentzian space where every point is null-connected with itself
and not causally related to any other point (imagine that the Riemannian man-
ifold serves as a spacelike Cauchy surface in a globally hyperbolic spacetime).
The previous theorem shows then that any two Riemannian manifolds are a
distance zero apart since their timelike diameters are zero. This is very much
different from the usual Riemannian theory but in a purely Lorentzian theory

11



this result is obvious from the fact that the causal distance does not provide us
with any information whatsoever. Hence the manifold would be unobservable,
so how could one compare two things which cannot be observed? This result
shows that, if one wants the moduli space to be a complete metric space, the
timelike diameter needs to be controlled, i.e., bounded away from zero as the
next example shows.
Consider cylinders CT = S1 × [0, T ] with Lorentz metric ds2 = −dt2 + dθ2. A
Gromov-Hausdorff limit for T → 0 is S1, but it could equally well be any other
Riemannian manifold. �

Now we shall show that we can construct a metric dM such that every dg isom-
etry is a dM isometry. In order to achieve this, I construct a uniformity (using
the causal structure alone) from which a metric can be constructed by choice
of a particular algorithm. This is in contrast to the usual extra assumption of
a preferred class of observers in the major part of the literature. Such a pre-
ferred class of observers is for example given if the energy momentum tensor
satisfies the type I weak energy condition [2], i.e., determines a preferred time-
like eigenvectorfield. However, our approach is purely geometrical and matter
is not assumed to determine geometry through the Einstein equations. This is
moreover the only sensible strategy if

• one wants to construct a theory of vacuum quantum gravity

• one considers spacetime not to be a manifold. What would the analogue
be of the Einstein-Hilbert action on something like a causal set [14] or a
spin network [13], anyway?

We shall find the metric by constructing a uniformity. Readers not familiar with
this topological concept are referred to Appendix C. For the sake of clarity we
introduce the following definition.

Definition 3 Denote by T−1M the bundle of all timelike vectors of norm −1.
Let p be an interior point of M. Then we introduce the following concept :

• M−(p) = {v ∈ T−1(M)(p)|v is past oriented and the geodesic determined by v
maximizes the distance of p to the past boundary}

M+(p) is defined dually. Define now the following open sets

Oε(p) = {r|∃v ∈M−(p), w ∈M+(p) : expp(εv) � r � expp(εw)}
if the timelike distances from the past boundary to p and from p to the future
boundary are greater than or equal to ε. If, for example, the former is not the
case then Oε(p) is simply defined as

Oε(p) = {r|∃w ∈M+(p) : r � expp(εw)},
and the dual if the latter is not satisfied. This definition extends in a trivial way
to both boundaries.

12



It is obvious to see that M±(p) is compact for every p ∈ M, moreover we have
the following result.

Theorem 8 The mappings p → M±(p) are continuous in the compact open
topology on the space of all closed subsets of T−1M in every interior point
p ∈M.

Proof
We shall only prove the + case, the other one being similar. Suppose there exists
an interior point p ∈ M, a neighborhood U of M+(p) in T−1M and sequences
pn → p, vn ∈M+(pn) such that vn /∈ U for all n ∈ N. The sequence of distance
maximizing geodesics s → exppn

(svn) from pn to the future boundary has a
subsequence that converges to a distance-maximizing geodesic from p to the
future boundary. Hence the set of unit directions vnk

of this subsequence has
an accumulation point v ∈M+(p), which is a contradiction. �

This theorem has as consequence that p→ Oε(p) is continuous for all p except
those which are exactly a distance ε apart from the past and future boundary.
This leads to the following theorem.

Theorem 9 For any ε there exists a δ > 0 such that q ∈ Oδ(p) implies that
p ∈ Oε(q).
Proof

Choose any p of M and suppose there does not exist a δ > 0 such that
q ∈ Oδ(p) implies that p ∈ Oε(q). Then there exists a sequence qn → p such that
p /∈ Oε(qn), but then p /∈ Oε(p). This is obviously true because of the preceding
remark when p is a distance different from ε apart from both boundaries. When
p is a distance ε apart from, say, the past boundary, then the result is also
true since the obvious continuous extension q → Õε(q) of q → Oε(q) restricted
to points which are a distance greater or equal than ε apart from the past
boundary to points which are not is contained in the latter. By this we mean
that Õε(q) ⊂ Oε(q) for q a distance smaller than ε apart from the past boundary.
Choose γ smaller than δ and the distance of p to both boundaries if p is an
interior point (if p is a boundary point then γ must be smaller than ε and
the distance to the other boundary), if we show that p has a neighborhood
U such that p̃ ∈ U and q̃ ∈ Oγ(p̃) imply that p̃ ∈ Oε(q̃) then we are done
since M is compact. Suppose we find sequences pn → p and qn ∈ Oγ(pn)
and pn /∈ Oε(qn). Then by passing to a subsequence if necessary, one has that
qn → q ∈ Oγ(p) ⊂ Oδ(p) and p /∈ Oε(q), which is a contradiction. The former
is true since q → Oγ(q) is continuous in p. The latter is certainly true when ε is
different from the distance of q to both boundaries, if not then the continuous
extension argument concludes the proof. �

We now finish the proof that the open sets Oε(p) define a uniform neighborhood
system by proving a generalization of the triangle inequality.

Theorem 10 For any ε there exists a δ > 0 such that r ∈ Oδ(q) and q ∈ Oδ(p)
imply that r ∈ Oε(p).
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Proof If p is any point and ε > 0, it is easy to see that there exists a δ > 0
which satisfies the above conditions. For suppose not, then there exist sequences
pn ∈ O1/n(p) and qn ∈ O1/n(pn) but qn /∈ Oε(p). Choose n0 sufficiently large
such that 1

n0
is smaller than ε and the distances from p to both boundaries if p is

not a boundary point (and the distance to the other boundary if p is a boundary
point), then q → O 1

n0
(q) is continuous in a neighborhood of p. Moreover, let

U be a neighborhood of p such that r ∈ U implies that O 1
n0

(r) ⊂ Oε(p), then
n > n0 implies that O1/n(r) ⊂ Oε(p), which is a contradiction. We finish the
proof in the same way as in the previous theorem. Let p be an interior point and
choose γ < δ small enough such that q ∈ O2γ(p) implies that the distance of q to
both boundaries is greater than γ. Suppose that we can find sequences pn → p,
qn ∈ Oγ(pn), rn ∈ Oγ(qn) such that rn /∈ Oε(pn). By if necessary passing to
subsequences, we can assume that qn → q ∈ Oγ(p) and rn → r ∈ Oγ(q), but
r /∈ Oε(p), which is a contradiction. The case when p is a boundary point is left
to the reader. �

Hence we have proven that the Oε(p) define a Hausdorff7 uniform neighborhood
system, and as such theorem 12 tells us that we can construct a metric dM. Let
us say a bit more about the metrics dM, dN . Suppose ψ is an isometry from
(M, g) onto (N , h), then ψ(Oε(p)) = Oε(ψ(p)) for all p ∈ M and ε > 0. Hence
dN (ψ(p), ψ(p̃)) = dM(p, p̃) for all p, p̃ ∈ M, which means that every Lorentzian
isometry is a Riemannian isometry, which is intuitively a very nonsurprising
result! The reverse however is not necesserily true. Notice also that dM(p, p̃) ≤
tdiam(M) for all p, p̃ ∈M.
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5 Appendix A

The next theorem is a slight generalization of the result in [9].

Theorem 11 If (M, g) is strongly causal, then every onto map f : M → N
with finite, strictly positive timelike dilatation and co-dilatation is a homeomor-
phism

Proof

7Hausdorff since
⋂

ε>0Oε(p) = {p} for all p ∈ M.
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Observe first that for all p, q ∈ M one has that d(f(p), f(q)) > 0 if and
only if d(p, q) > 0. Hence f(I±(x)) = I±(f(x)) (since f is onto) and f(I+(p) ∩
I−(q)) = I+(f(p)) ∩ I−(f(q)). Since (M, g) is strongly causal, the Alexandrov
topology coincides with the manifold topology, hence f is an open mapping.
f is also injective, since if p 6= q and f(p) = f(q), we arrive to the following
contradiction. Let U be a locally convex neighborhood of p which does not
contain q and satisfies the condition that every causal curve intersects U exactly
once. Take then r � p � s with r, s ∈ U then I+(r) ∩ I−(s) ⊂ U . A fortiori
f(r) � f(p) = f(q) � f(s) which is a contradiction since q /∈ I+(r) ∩ I−(s).
We are done if we prove that f−1 is open. For this it is sufficient to prove
that (N , h) is strongly causal. Suppose that strong causality is not satisfied at
f(p). First choose a locally convex neighborhood U of f(p) such that (U , h|U ) is
globally hyperbolic. Let W be a neighborhood of f(p) of compact closure in U .
If strong causality is not satisfied at f(p) then there exist points qn � f(p) � rn
in W such that qn, rn

n→∞→ f(p) and causal curves λn from pn to qn which leave
U . Denote by zn the first intersection with ∂W of λn. Then there exists a
subsequence znk

such that znk

k→∞→ z. Obviously p = f−1(z) otherwhise the
continuity of f−1 would contradict the strong causality of (M, g). But on the
other hand p = f−1(z) contradicts the injectivity of f . �
We show now that f takes null geodesics to null geodesics. Take a small enough
convex normal neighborhood U of p which no causal curve intersects more than
once and such that (U , g|U ) is globally hyperbolic. Moreover we assume that
the closure of f(U) belongs to a convex normal neighborhood V of f(p) which
no causal curve intersects more than once with (V , h|V) globally hyperbolic. Let
α(q, r) be a null geodesic in U and take sequences qn → q, rn → r with qn � rn
for all n. f takes timelike geodesics α(qn, rn) with length d(qn, rn) to timelike
curves γ(f(qn), f(rn)) with length at most βd(qn, rn); moreover f(qn) → f(q)
and f(rn) → f(r). The geodesics α(qn, rn) converge to the null geodesic α(q, r).
Because of the global hyperbolicity of (V , h|V) a subsequence of the timelike
curves γ(f(qn), f(rn)) converges to a causal curve from q to r. This causal curve
need to be an unbroken null geodesic α(f(q), f(r)) since d(f(q), f(r)) = 0. In
fact it is easy to see that the whole sequence γ(f(qn), f(rn)) converges in the
C0 topology of curves to α(f(q), f(r)), which concludes the proof.
It is easy to check that if (M, g) is a strongly causal spacetime with spacelike
boundary, then the above results are still valid, ie. the homeomorphism extends
to the boundary. A well known result of Hawking, King and McCarthy [3]-
which is the Lorentzian equivalent of an earlier theorem by Palais- states that
every homeomorphism which maps null geodesics to null geodesics must be a
conformal diffeomorphism.

6 Appendix B

In this appendix we sketch how to locally extend a conformal diffeomorphism
across the boundary. Let r be a boundary point ofM and choose a neighborhood
U of r diffeomorphic (under ψ) to the open hypercube union one side hyperplane
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H . Let (V , gV) be a local extension in R
n of (H,ψ∗g). Choose (W,φ∗h) to

be a similar hypercube neighborhood of f(r) and interpret f as a conformal
mapping of (H,ψ∗g) to (W,φ∗h) with conformal factor Ω. Obviously f can
be C∞ locally extended over the boundary around ψ(r), as can Ω such that
Ω has almost vanishing normal first derivative 8. Then we can construct an
extension of (W,φ∗h) by defining the extension φ̃∗h of φ∗h around φ(f(p)) as
φ̃∗h = (f◦ψ)∗g

Ω . Now the real question is the following: let z be a conformal C∞

diffeomorphism from (H,ψ∗g) to (W,φ∗h); does there exist an extension z̃ from
(V , gV) to (f(V), φ̃∗h) ? Clearly, if such a local extension extension exists, it
must be unique. This can be seen as follows. Take x ∈ V ∩Hc close enough to
the boundary t = 0 ↔ Σ such that E+(x)∩Σ is diffeomorphic to the 2 - sphere
and such that the null geodesics can be pushed over the boundary a bit (ie.
there are no cut points in a neighborhood of Σ wrt. ψ∗g for x sufficiently close
to it). Denote by TnullΣ the bundle of null vectors over Σ, hence x determines
a unique (discontinuous) section ρx with support in E+(x) ∩ Σ such that

exp(−ρx(y)) = x ∀y ∈ E+(x) ∩ Σ.

The push forward under z of the section ρx determines uniquely the point z(x)
as the first past intersection point of the null rays defined by z∗ρx - if it exists.
Now, since f−1 ◦ z is a conformal diffeomorphism if only if z is, it is sufficient to
prove the existence of the unique conformal extension of the former. Clearly, in
two dimensions, such intersection point exists and therefore also the conformal
extension. However, I have no argument for now which proves the result in
dimension greater than 2.

7 Appendix C

Let (X, d) be a topological space where d is a (pseudo) distance and denote by
τ the corresponding locally compact topology. It is an elementary fact that the
open balls B1/n(p) with radius 1/n : n ∈ N0 around p define a countable basis
for τ in p. In this chapter I, J will denote index sets. A (X, τ) cover C is defined
as follows:

C = {Ai|Ai ∈ τ, i ∈ I}
such that ⋃

i∈I
Ai = X.

If C = {Ai|Ai ∈ τ, i ∈ I}, D = {Bj|Bj ∈ τ, j ∈ J} are (X, τ) covers then we say
that C is finer than or is a refinement of D, C < D if and only if

∀i ∈ I ∃j ∈ J : Ai ⊂ Bj .

Next we define a few operations on the set of covers C(X, τ):
Operations on covers

8remember that we have chosen our coordinates in such a fashion that the boundary
corresponds to a part of the hypersurface t = 0.
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• Let C,D be as before,

C ∧D = {Ai ∩Bj |Ai, Bj ∈ τ i ∈ I, j ∈ J}
C ∧D is obviously a cover, moreover the doublet C(X, τ),∧ is a commu-
tative semigroup.

• For A ⊂ X the star of A with respect to C is defined as follows:

St(A,C) = ∪Ai∈C:A∩Ai 6=∅Ai

• The star of C,C∗ is then defined as:

C∗ = {St(Ai, C)|Ai ∈ C}
Remark that C < C∗ < C∗∗ . . . and that if I is finite then there exists a
n ∈ N such that after n star operations C has become the trivial cover.

Using the topological basis of open balls, we can define elementary covers
Cn n ∈ N0 as follows:

Cn = {B1/n(p)|p ∈ X}
These elementary covers now define a subset U of C(X, τ) :

U = {C ∈ C(X, τ)|∃Cn : Cn < C}
The set U satisfies the following obvious properties:

1. If C ∈ U and C < D then D ∈ U
2. If C,D ∈ U then C ∧D ∈ U
3. If C ∈ U then ∃D ∈ U : D∗ < C

From now on we take the above properties as a definition for a uniformity:

Definition 4 Let X be a set, a cover C is defined as:

C = {Ai|Ai ⊂ X, i ∈ I}
such that ⋃

i∈I
Ai = X

A collection of covers U is called a uniformity for X if and only if

1. If C ∈ U and C < D then D ∈ U
2. If C,D ∈ U then C ∧D ∈ U
3. If C ∈ U then ∃D ∈ U : D∗ < C

where all definitions of <,∧ and ∗ are independent of τ .
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It has been proven that any uniformity can be generated by a family of pseu-
dodistances [7]. This indicates a uniformity defines a topology. For our appli-
cations we need a different ingredient.

Definition 5 Let I be a directed net, and suppose Bi(x) ⊂ X satisfy the fol-
lowing properties:

1. x ∈ Bi(x) ∀x ∈ X, i ∈ I
2. If i ≤ j then Bi(x) ⊂ Bj(x) ∀x ∈ X
3. ∀i ∈ I, ∃j ∈ I such that ∀y ∈ Bj(x) : x ∈ Bi(y)
4. ∀i ∈ I, ∃j ∈ I such that if z ∈ Bj(y), y ∈ Bj(x) then z ∈ Bi(x).

then we call the family of all Bi(x) a uniform neighborhood system.

Now it has been proven that if {Bi(x)|x ∈ X, i ∈ I} is a uniform neighborhood
system then the family of covers:

Ci = {Bi(x)|x ∈ X}

i ∈ I is a basis for a uniformity on X . On the other hand every uniformity can
be constructed from a uniform neighborhood system.
The topology τU defined by a uniformity U , the uniform topology, is con-
structed as follows:

O(x) ∈ τU ⇐⇒ ∃C ∈ U : St(x,C) ⊂ O(x)

so {St(x,C)|x ∈ X,C ∈ U} defines a basis for the topology. The topology is
Hausdorff if and only if

⋂
O(x)∈τU

O(x) = {x} but it is not difficult to see that
this is equivalent with: ⋂

i∈I
Bi(x) = {x}

where {Bi(x)|i ∈ I, x ∈ X} is the uniform neighborhood system which generates
U . We state a few facts about quotient uniformities. Terminology

• Let (X,U) and (Y, V ) be uniform spaces, a map f : X → Y is uniformly
continuous if and only if

∀C ∈ V : f−1(C) ∈ U

where for C = {Ai|i ∈ I} , f−1(C) = {f−1(Ai)|i ∈ I}.
• A uniformity Ũ on X is finer than U if and only if every cover in U belongs

to Ũ .

• Let π : X → X̃ be a surjective map and (X,U) a uniform space, the
quotient uniformity Ũ on X̃ is the finest uniformity which makes π
uniformly continuous.
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Notice that the existence of a quotient uniformity is guaranteed by the lemma
of Zorn, the uniqueness is immediate. The obvious question now is if τŨ is equal
to the quotient topology of τU . The answer is in general no, but under some
special circumstances it works.

Definition 6 A uniform neighborhood system {Bi(x)|x ∈ X, i ∈ I} is compat-
ible with an equivalence relation on X if and only if

∀i ∈ I, x′ ∼ x and y ∈ Bi(x) ∃y′ ∼ y : y′ ∈ Bi(x′)
As envisaged, compatibility implies that τŨ is equal to the quotient topology of
τU .

Theorem 12 If U is generated by {Bi(x)|i ∈ I, x ∈ X} which is compatible
with ∼ which is for example defined by a surjective map, then the quotient
uniformity Ũ on X̃ = X/ ∼ is generated by the uniform neighborhood system
defined by:

B̃i(x̃) = {ỹ|∃x ∈ x̃ and y ∈ ỹ : y ∈ Bi(x)}
∀x̃ ∈ X̃, i ∈ I. Moreover τŨ is equal to the quotient topology of τU and a basis
of neighborhoods of x̃ ∈ X̃ is {B̃i(x̃)|i ∈ I}
As mentioned, every uniformity can be generated by a family of pseudodis-
tances. In the case that the uniformity is generated by a countable uniform
neighborhood system, the topology is defined by one pseudodistance, which is
a distance when the uniformity is Hausdorff. Suppose Cn = {Bn(x)|x ∈ X},
n ∈ N , is a countable basis for a uniformity U , then we can find a subsequence
(nk)k such that:

∀k, w ∈ Bnk
(z), z ∈ Bnk

(y), y ∈ Bnk
(x) ⇒ w ∈ Bnk−1(x)

Assume Cn is such a basis.

Theorem 13 Let Cn be a countable basis of U , then with

ρ(x, y) = inf
{n≥0,y∈Bn(x)}

2−n

the function

d(x, y) = inf
K∈N,xk

K∑
k=1

1
2
(ρ(xk−1, xk) + ρ(xk, xk−1))

is a pseudodistance which generates U . {x0, . . . , xK} with x0 = x, xK = y is a
path in X. If U is Hausdorff then d is a distance.

Note that the function d depends on the choice of basis Cn and is therefore not
canonical.
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