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Abstract

This article presents magnetic field uniformity design data for several alter'

native current loop systems. Universal field symmetry properties of the class

of current loop systems that is being considered are elucidated. A common

property of the five loop systems that are investigated in detail is that they

are all in a sense optimal. This 'Nth older' optimality criterion is defined and

discussed. Parameters of selected JVth order current loop systems are quoted.

Computations of the field uniformity of these loop systems are presented in

graphical form, as 'isogauss' contours, and in tabular form, as the 'normalised

volumes' enclosed by the isogauss contours. Information is provided about a

current loop system that was actually constructed on the basis of the design

data presented here.
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I. INTRODUCTION

There is a widely recognised need in contemporary science for large volume, easily ac-

cessible, spatially uniform and low to moderate strength magnetic fields. One example from

biology and medicine is controlled investigations of the physiological effects of magnetic

fields (Kirschvink [1]). From the earth and planetary sciences one has the use of extremely

sensitive (~ 10"9T) proton precession magnetometers to measure planetary magnetic fields

(Serson [2]). An example from physics and chemistry is the requirement for cancellation of

the terrestrial magnetic field in sensitive electron spectrometers (Storer et al [3]).

Such uniform magnetic fields are produced by systems of current loops. This article

presents a quantitative and comparitive survey of the magnetic field uniformity of several

optimal current loop configurations. The designs considered here were candidates for the

terrestrial magnetic field cancellation coils for the electron coincidence spectrometer de-

scribed by Storer et al [3]. A similar survey, motivated by biological applications, has been

undertaken by Kirschvink [1]. Serson [2] undertakes a formal analysis of the magnetic field

uniformity, distinguished by the inclusion of an analysis of current loop perturbations and

nonidealities.

II. GENERAL SYMMETRIC CURRENT LOOP SYSTEMS

Bloom et al [4] and Garrett [5,6] have articulated techniques for devising systems of

coaxial current loops that produce an arbitrarily uniform local magnetic field.

Consider a system of coaxial, circular current loops that are symmetrically disposed

about a plane normal to the axis of the loops, the origin being defined as the intersection of

the axis and plane of symmetry. Such a system of two identical current loops is illustrated

in Figure 1, where the axis of symmetry is chosen to be the z-axis. A system with the

same symmetry properties consisting of an arbitrary even number of current loops can be

constructed by superimposing the required number of such two loop systems, all with the



same orientation and centre, but otherwise disparate parameters. By collapsing one of the

two loop systems so that the two loops coincide in the plane of symmetry (this corresponds to

setting h = 0 in Figure 1), a system with the required symmetry consisting of an arbitrary

odd number of current loops can also be constructed from the basic two loop system of

Figure 1.

One may deduce the following universal symmetry properties of the magnetic field of •

current loop systems with the symmetry extant in Figure 1. The <j> component of the

magnetic field vanishes everywhere, that is,

S*(r) = 0 Vr . (1)

For arbitrary azimuthal angle <j>0,

B,(pJ,z) = B^p^-^z) .

Since the rotation angle <j>o is arbitrary, (2) implies that the cylindrical components of the

magnetic field do not depend on the azimuthal angle coordinate *}>• Any point on the 2-axis

(p = 0) is invariant under a rotation about the s-axis, and since the magnetic field vector at

that point is invariant under that rotation, it follows that the magnetic field on the 2-axis

must be in the z-direction, that is,

B(<U,2) = Bz(p = 0,z)z . . (3)

Corresponding components of the magnetic field at equal but opposite z values are related

by,

BP(P,4>,-*) = -BAP,4>,Z) , ...
W

Bz{p,<!>,-z) = B,(p,<f>,z) .

Equation (4) expresses the property that B,,(v) is an odd function of z, whereas Bz[r) is an

even function of 2. It therefore follows that in the ij-plane (z = 0) only the z component

of the magnetic field is non-zero, that is,

3



B(p,<t>,0) = B,(p,z = O)z . (5)

Since jB»(r) is an even function of z, all of its odd partial derivatives with respect to z

are odd functions of z, vanishing at z — 0, that is,

= 0 , m = 1,3,5,7,... . (6)

o

Furthermore, (3) implies that the p component of the magnetic field is identically zero

everywhere along the z-axis ((1) states that there is no <j> component anywhere to consider),

so all partial derivatives of Bf(r) with respect to z at p = 0 vanish. This much is deducible

from symmetry considerations alone, and applies to a general current loop system that has

the requisite symmetry properties.

III. CURRENT LOOP SYSTEMS OF DEFINITE ORDER

Specialising beyond the universal property (6), Bloom et al [4] indicate that the param-

eters of the current loop system can be specifically chosen so that all of the axial derivatives

of the magnetic field at the origin, up to the (N — l)th derivative, where N is an even

number that depends upon the number of free parameters, can be made identically zero, the

lowest non-zero derivative being the iVth derivative of the field component along the axis of

symmetry. One can therefore introduce the following definition:

Definition 1 An Nth order loop system is one for which the lowest non zero axial

derivative of the magnetic field at the centre of symmetry is the Nth, that is,

B,(0) ? 0 ,

" ' o

where the axis of symmetry is the z-axis and the centre of symmetry is the point 0.



Garrett [5] contends that for an Nth order current loop system,

m = 1,2,3,4,... , (7)
dp"

which, by Definition 1, implies that the lowest non-zero derivative of the magnetic field with

respect to p at 0 is also the Nth derivative of the z field component. This is suggestive

of the tendency of the magnetic field at the centre of symmetry to be equally uniform in

all directions. Bloom et al [4] demonstrate the theoretically interesting and practically

useful property that an jVth order loop system can be constructed to satisfy the 'isotropy'

condition (7), from regular polygonal current loops with at least N sides . If the polygons

have fewer sides, although Definition 1 can be satisfied, condition (7) will not simultaneously

be satisfied, thereby producing a prolate region of uniform magnetic field (longer along z,

shorter along pi). Garrett [6] tabulates the parameters for a multitude of optimal circular

iVth order loop systems for many (even) values of N.

Smythe [7, Section 7.10] derives the formula for the cylindrical components of the mag-

netic field of a single circular current loop in vacuum, in terms of complete elliptic integrals

of the first and second kind (Abramowitz and Stegun [8, Chapter 17]). The magnetic field

of a system of current loops is a superposition of the field of individual current loops. Thus,

the computational apparatus for the magnetic field distribution of any system of circular

current loops is available.

Every current loop system to be considered in this article has specific numerical values

for all physical dimensions and loop currents. Denote the magnetic field of the current

loop system as directly considered, by ~B6inci(p,<j>,z). Scale the current loop system by

multiplying all characteristic distances by <y, and multiplying all characteristic currents by

cy. It follows directly from the Biot-Savart law, that the magnetic field scales according to

the relation,

J < f , *)_ • (8)
Consequently, any generic current loop system can be made arbitrarily large, with an arbi-

trarily large central magnetic field.
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Various Nth order current loop systems are to be considered, with the intention of

assessing the extent of field uniformity associated with each loop system. A quantitative

measure of the magnetic field uniformity is provided by the scalar expressing the magnitude

of the discrepancy between the vector field at an arbitrary point and the vector field at the

centre of symmetry, that is,

(9)

It follows from equations (3) and (4) that,

BdiK"pinC5'(p)fli,-z) = Bd"c"p"'cy(p,<j>,z) . (10)

The scalar field £}'i'"c™p«ncy(r) j s calculated as a function of the cylindrical coordinates p

and z (independent of <j>) for every current loop system that is considered. Selected 'isogauss'

contours in the pz-plane are extracted from this field, and the results for each of the current

loop systems that are investigated are graphed in Figure 2. The isogauss contour values in

Figure 2 are 0.100%, 0.215%, 0.464%, 1.000%, 2.154%, 4.642% and 10.000%, of the central

field value B(0). The (p, z) coordinates of each constituent current loop forming the system

are indicated on the graphs by a ' ® ' symbol. Contours and current loops are only plotted

for z > 0, since the resultant graph is reflected in the p-axis and rotated about the z-axis

to give the complete isogauss surface, and the complete current loop system.

For each isogauss surface, the enclosed volume is expressed relative to the volume of the

figure of revolution formed by rotating about the z-axis the polygon whose vertices are the

loop positions in the pr-plane. This normalises the volume of a region of given uniformity

relative to the volume of the current loop system that produces it, thereby enabling fairer

comparison between different current loop systems. These 'normalised volumes', together

with the central magnetic field magnitude, are tabulated in Table I.



IV. SPECIFIC Nth ORDER LOOP SYSTEMS

Helmholtz coils (Helmholtz [9]), which are the ubiquitous paradigm for uniform mag-

netic field production by current loops, are a 4th order current loop system consisting of

two symmetrical loops with the following characteristic parameter values (Figure 1 defines

the parameters): I

7, = 1.0A

a, = 1.0m (11)

/ii=0.5m .

Maxwell coils {Maxwell [10, Article 715]) are a 6th order current loop system consisting

of three loops with the prescribed symmetry of Section II, and the following characteristic

parameter values:

/, = 1.0A 72 = 49/64A

a, = 1.0m a2 = v/i77m (12)

Ai=0.0m A2

where I\ is the total current through the loop lying in the plane of symmetry (z = 0), and is

not subject to doubling although the mirror image of the loop coincides with the loop itself.

Garrett coils (Garrett [6, Table IV]) are an 8th order current loop system consisting

of four loops with the required symmetry properties. Characteristic parameter values are:

J, = 1.0A /2 = 0.024533 A

a, = 1.0 m a2 = 0.265226 m (13)

A, = 0.434681m A2 = 0.434681m .

The distinctive feature of Garrett coils is that both loop pairs have the same axial coordinate

(fcl = *2 ) .

Barker coils (Barker [II], Garrett [6], also attributed to Sauter and Sauter [12]), are

an 8th order current loop system composed of four loops with the requisite symmetry.

Characteristic parameter values are:
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/ , = 1.0A 72 = 2.26044 A

ai = 1.0m aj = 1.0m (14)

ft, = 0.243186 m h7 = 0.940733 m .

Barker coils ate distinguished by the equal radii of both constituent loop pairs [a\ = a2).

Braunbek coils (Braunbek [13], Garrett [6]) are an 8th order current loop system

composed of foui loops with the required symmetry, and with the following characteristic

parameter values:

A = 1.0 A 72 = 1.0A

ai = 1.0m a3 = 0.763899 m (15)

hi= 0.278028 m Aj = 0.845664 m .

The notable feature of Braunbek coils is the equal currents through both loop pairs (7t = 72).

V. CONCLUSION

The regions of magnetic field uniformity, to within prescribed tolerances, of these five

optimal current loop systems, may be ascertained from the isogausa contours graphed in

Figure 2, and the tabulated normalised volumes enclosed by isogauss surfaces of Table I.

On the basis of these quantitative results, the Braunbek coil configuration was chosen to

cancel the terrestrial magnetic field in the electron coincidence spectrometer of Storer tt

al J3).

Specifications for the Braunbek coil current loop system that is implemented for the

spectrometer, are obtained by applying the scaling factors a — 0.943 and c,- = 32.60 of (8),

to the characteristic parameter values in (15), to give the following parameter values for the

constructed current loop system:

7i = 32.60A 72 = 32.60A

a, = 0.943 m a2 = 0.720 m (16) I

Ai= 0.262 m ft2 = 0.797 m .
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The loop currents are achieved by winding each loop with 36 turns of enamelled copper

wire (diameter=0.76mm), with the wire current being 0.906 A. The frame of the coil system

is constructed entirely of extruded aluminium rod. From (8) and Table I, the resulting

central magnetic field is 5.60 x 10~5 Testa, which is the magnitude of the Earth's magnetic

field at the site of the spectrometer. The axis of the loop system is skewed fiom the vertical

by 19°, thus bringing it into alignment with the Earth's field.

The residual magnetic field present in the sensitive areas of the spectrometer was reduced

to below 2.0 x 10"6 Tesla. Experience has shown that this is sufficiently low for effective

operation of the electron spectrometer. Furthermore, the Braunbek coils are particularly

compact, being only slightly larger than the spectrometer vacuum chamber. In summary, the

Braunbek coils proved to be a compact, efficient and satisfactory solution to the terrestrial

magnetic field cancellation problem.
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FIGURES

FIG. 1. Two identical coaxial current loops and their coordinate system.

FIG. 2. BiiKnf*c>'(p,z) = 0.100%, 0.215%, 0.464%, 1.000%, 2.154%, 4.642% and 10.000% of

5(0), isogauss contours, progressing contiguously from the innermost to the outermost contour, for

(a)Helmholti, (b)Maxwell, (c)Garrett, (d)Barker and (e)Braunbek optimal current loop

configurations. The positions of the symmetrical current loop pairs are also indicated. A plane of

symmetry is normal to the z-axis and includes the p-axis; the z-axis is an axis of symmetry.
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TABLES

system

no. of loops

order

B(0) (10"7T)

vol. (m3)

0.100% n.v.

0.215% n.v.

0.464% n.v.

1.000% n.v.

2.154% n.v.

4.642% n.v.

10.000% n.v.

Helmholtz

2

4

8.992

3.14

1.3%

2.3%

4.0%

7.1%

12.4%

21.6%

37.4%

Maxwell

3

6

11.78

3.19

4.8%

7.0%

10.2%

14.8%

21.4%

30.9%

44.6%

Garrett

4

8

9.857

2.73

5.7%

7.6%

10.4%

14.2%

19.7%

28.1%

41.9%

Barker

4

8

22.50

5.91

9.7%

12.9%

17.0%

22.5%

29.9%

39.8%

53.5%

Braunbek

4

8

16.19

4.54

9.8%

13.0%

17.2%

22.7%

30.0%

39.6%

52.3%

TABLE I. Characteristics of various optimal current loop systems. ux% n.v." is the volume

enclosed by the B6iKnpla":y(p, z) = x% of B(Q) isogauss surface, normalised to the volume enclosed

by the loop system (this volume is "vol. (m3)").
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