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NEW KORKIN–ZOLOTAREV INEQUALITIES∗

R. A. PENDAVINGH† AND S. H. M. VAN ZWAM†

Abstract. Korkin and Zolotarev showed that if∑
i

Ai

(
xi −

∑
j>i

αijxj

)2
is the Lagrange expansion of a Korkin–Zolotarev (KZ-) reduced positive definite quadratic form,
then Ai+1 ≥ 3

4
Ai and Ai+2 ≥ 2

3
Ai. They showed that the implied bound A5 ≥ 4

9
A1 is not attained

by any KZ-reduced form. We propose a method to optimize numerically over the set of Lagrange
expansions of KZ-reduced quadratic forms using a semidefinite relaxation combined with a branch
and bound process. We use a rounding technique to derive exact results from the numerical data.
Applying these methods, we prove several new linear inequalities on the Ai of any KZ-reduced form,
one of them being Ai+4 ≥ ( 15

32
− 2 · 10−5)Ai. We also give a form with A5 = 15

32
A1. These new

inequalities are then used to study the cone of outer coefficients of KZ-reduced forms, to find bounds
on Hermite’s constant, and to give better estimates on the quality of k-block KZ-reduced lattice
bases.
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1. Preliminaries and overview. The Geometry of Numbers is a field of math-
ematics initiated and named by Minkowski. The main objects studied are lattices,
discrete subgroups of R

n. Good introductions to the subject are the book by Cas-
sels [2] and the excellent survey paper by Ryškov and Baranovskĭı [13]. Typical
problems are the search for a shortest vector within a given lattice and the search
for a lattice with a dense sphere packing. Hermite’s constant γn is a measure for
the density of the densest lattice sphere packing in dimension n. This constant has
been determined exactly for n ≤ 8 and n = 24. Since Blichfeldt [1] determined γn
for n = 6, 7, 8, no further low-dimensional cases have been computed. For example,
the best known bounds for n = 9 are 512 ≤ γ9

9 < 913, where the lower bound is
the density of a specific lattice (see, for example, [4]), and the upper bound is the
Cohn–Elkies bound [3].

Most of the early research in this subject was not in terms of lattices but in terms
of quadratic forms. This approach proved very useful for our research, so in all but
the last section we will talk exclusively about positive definite quadratic forms.

An n-ary positive definite quadratic form q can be written uniquely as

(1.1) q(x1, . . . , xn) =

n∑
i=1

Ai

(
xi −
∑
j>i

αijxj

)2
.

This is the Lagrange expansion of q; the numbers Ai are the outer coefficients and
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the αij the inner coefficients. We write

(1.2) qk(xk, . . . , xn) :=

n∑
i=k

Ai

(
xi −
∑
j>i

αijxj

)2
.

A positive definite quadratic form q in n variables with Lagrange expansion (1.1)
is Korkin–Zolotarev (KZ-)1 reduced if

|αij | ≤
1

2
for all i, j, and αi,i+1 ≥ 0 for all i;(S)

and

Ak ≤ qk(x) for all nonzero x ∈ Z
n−k+1, k = 1, . . . , n− 1.(M)

We say that two forms q, q′ are equivalent if there is a unimodular matrix U , i.e.,
U ∈ GLn(Z), such that q′(x) = q(Ux). It can be shown that any form is equivalent
to a KZ-reduced form (see, for example, [13]).

Korkin and Zolotarev proved that the outer coefficients of a KZ-reduced form sat-
isfy A2 ≥ 3

4A1 (the first KZ-inequality) and A3 ≥ 2
3A1 (the second KZ-inequality) [7].

If q is KZ-reduced, then so is the quadratic form qk for k ≥ 1, and hence the inequal-
ities

(1.3) Ak+1 ≥ 3

4
Ak and Ak+2 ≥ 2

3
Ak, k = 1, 2, . . . ,

hold for the outer coefficients of any KZ-reduced form.

For each n ∈ N, Hermite’s constant is defined as

(1.4) γn := max

{
m(q)

det(q)
1
n

| q is an n-ary positive definite quadratic form

}
,

where m(q) := min{q(x) | x ∈ Z
n, x �= 0} is the minimum of the form q and det(q) :=

det(Q), where Q is the symmetric matrix such that q(x) = xtQx. Equivalent forms
have the same minimum and the same determinant, so we may as well restrict the
feasible set of (1.4) to KZ-reduced forms. Also, if A1, . . . , An are the outer coefficients
of a form q, then det(q) =

∏
i Ai, and if q is KZ-reduced, then m(q) = f(1, 0, . . . , 0) =

A1. Hence

(1.5) γn
n = max

{
An

1∏
i Ai

| (A1, . . . , An) = A(q) for some KZ-reduced form q

}
,

where A(q) := (A1, . . . , An) denotes the sequence of outer coefficients of the quadratic
form q. Using (1.3), this implies the bound

(1.6) γn
n ≤ max

{
An

1∏n
i=1 Ai

| Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, A1 = 1

}
,

1In the literature one encounters several different ways of writing the names of Korkin and
Zolotarev. We decided to follow some of the more recent publications (notably [5]) and have kept
the original spelling in the references to facilitate the search for these papers.
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which is tight for n = 2, 3, 4, as was shown in [6, 7]. In the right-hand side of (1.6) we
have removed the scale invariance by requiring A1 = 1. The right-hand side is equal
to the inverse of

(1.7) min

{
n∏

i=1

Ai | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, A1 = 1

}
,

which is the minimum of a concave function on a polyhedron. It is a basic fact of
convex optimization that this minimum is attained at one of the vertices. Enumerating
all vertices now suffices to determine the bound.

The proof of the first KZ-inequality is elementary. The proof of the second KZ-
inequality also uses elementary techniques but is already quite involved. To prove
an upper bound on γ5, Korkin and Zolotarev developed other techniques [8]: they
characterized the local optima of the objective function of (1.4), which enabled them
to enumerate all local optima for n = 5. This line of investigation has been continued
and is still actively pursued [10].

In this paper, we return to the first approach and focus on the feasible set of (1.5).
We develop a method to prove linear inequalities that hold for the outer coefficients of
KZ-reduced forms. Our method is numerical and uses recently developed polynomial
optimization techniques. We apply our method in particular to forms in five variables
and obtain inequalities (Theorems 6.1 and 6.2) that imply, through (1.5), an upper
bound on γn that is very close to the known value for n = 5, 6, 7, 8.

The structure of the paper is as follows. In the next section, we give prelimi-
naries on KZ-reduced forms. In particular, we describe results of Novikova [11] that
imply that the set of KZ-reduced forms can be defined by finitely many polynomial
inequalities. Proving that a linear inequality on the outer coefficients holds for KZ-
reduced forms thus amounts to minimizing the value of a polynomial under finitely
many polynomial constraints.

Through recent developments in convex optimization it is possible to find lower
bounds for such polynomial optimization problems using semidefinite optimization
methods. We describe such a semidefinite relaxation in section 3.

We improve on the lower bound that results from simply computing the semidef-
inite relaxation by performing a branch and bound procedure, which is familiar from
integer programming. By splitting the semialgebraic set over which we are optimizing
we obtain a number of problems on smaller sets. The relaxation for each of these
smaller problems is stronger than the original relaxation and will yield a higher lower
bound. Then the smallest of these lower bounds is again a lower bound for the original
problem. The branch and bound procedure is described in section 4.

Although we use a numerical method, our final results are exact in the sense
that their validity does not depend on the accuracy with which the floating point
computations were performed. Each of the many lower bounds we have computed is
determined by a convex optimization problem which has a well-defined convex dual.
By rounding each optimal dual solution to a nearby rational and feasible solution, an
exact lower bound is obtained. Its validity can be verified independently, using only
elementary rational arithmetic. The rounding method is described in section 5.

In section 6 we derive, using these tools, several new linear inequalities on the
outer coefficients of KZ-reduced forms. We study the relation between these inequali-
ties and the cone of outer coefficients of KZ-reduced forms. The most striking result is
that only three of these new inequalities suffice to give very good bounds on Hermite’s
constant up to dimension 8.
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Finally, in section 7 we show how our new inequalities on the outer coefficients
lead to better quality estimates for the block KZ-reduction algorithm.

The implementation and verification of our numerical method is worked out in
detail in [17].

2. A finite characterization of KZ-reduced forms. A positive definite qua-
dratic form q of two or more variables is KZ-reduced if (S) holds, if q2 is KZ-reduced,
and if

A1 ≤ q(x) for all nonzero x ∈ Z
n.(2.1)

In [11], Novikova stated the following.
Theorem 2.1. For each n ≥ 2, there is a finite set Xn ⊆ Z

n such that an n-ary
form with Lagrange expansion (1.1) is KZ-reduced if and only if q2 is KZ-reduced, (S)
holds, and

A1 ≤ q(x) for all x ∈ Xn.(2.2)

The proof boils down to the fact that if q2 is KZ-reduced, q(0, 1, 0, . . . , 0) ≥ A1,
and (S) holds, then q(x) ≥ A1 is implied for all but finitely many x ∈ Z

n. This
argument yields highly redundant sets Xn. But the theorem implies the existence
of a unique irredundant set Xn, which we will denote by X∗

n. In [11], Novikova
gives finite sets Xn for n ≤ 8 and claims irredundancy of these sets for n ≤ 5. It
is unfortunate that the proofs were omitted from her paper, as it appears to be a
significant challenge to determine these irredundant sets. We were only able to verify
her claims for n ≤ 4. For n ∈ {5, 6} we find sufficient sets that are slightly larger, and
for larger n the sets we compute are much smaller [16]. We have proven necessity for
all vectors up to dimension 4 and all of Novikova’s vectors in dimension 5.

It is easy to see that X∗
n = {x ∈ Z

n | (x, 0) ∈ X∗
n+1} for any n ≥ 2. Let

X̄ := {(x, 0) | x ∈ X}. One has

(2.3) X∗
2 =

{[
0
1

]}
,

(2.4) X∗
3 \ X̄∗

2 =

⎧⎨⎩
⎡⎣00

1

⎤⎦ ,
⎡⎣01

1

⎤⎦ ,
⎡⎣11

1

⎤⎦⎫⎬⎭ .

Moreover, X∗
4 \ X̄∗

3 is a set of 12 vectors, and according to Novikova X∗
5 \ X̄∗

4 is a set
of 52 vectors [11].

Using Theorem 2.1 we find that in the definition of KZ-reducedness, the require-
ment (M) is equivalent to

Ak ≤ qk(x) for all x ∈ X∗
n−k+1, k = 1, . . . , n− 1.(N)

Thus (A1, . . . , An, α12, . . . , αn−1,n) are the outer and inner coefficients of a KZ-reduced
form if and only if they satisfy finitely many linear inequalities (S) and finitely many
cubic inequalities (N). The number of inequalities of the second kind seems to grow
much faster than that of the first kind as n increases.

It is possible to characterize the KZ-reduced forms using only linear and quadratic
inequalities by using a different parametrization of the set of quadratic forms. Let Q
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be a positive definite n×n matrix and let q(x) := xtQx. Then the Lagrange expansion
(1.1) yields a decomposition

(2.5) Q =

n∑
i=1

atiai = CtC,

where

(2.6) ai =
√
Ai(0, . . . , 0, 1,−αi,i+1, . . . ,−αin)

is a row vector for i = 1, . . . , n and C is the matrix whose ith row is ai.
Thus C is upper triangular, and Q = CtC is the Cholesky decomposition of Q.
Let Si := [0, 1

2 ] × [− 1
2 ,

1
2 ]n−i−1. Then

(2.7)
{√

Ai(0, . . . , 0, 1,−αi,i+1, . . . ,−αin) | Ai ≥ 0, (αi,i+1, . . . , αin) ∈ Si
}

is a polyhedral cone, so there is a finite set of column vectors, which we call Di, such
that (2.7) equals

(2.8) {a ∈ R
n | ad ≥ 0 for all d ∈ Di} .

For x ∈ Z
m, m ≤ n, we write x̃ := (0, . . . , 0, x1, . . . , xm) ∈ Z

n. Now q(x) = xtQx is
KZ-reduced if and only if there are row vectors ai ∈ R

n such that Q =
∑

i a
t
iai and

akd ≥ 0 for all d ∈ Dk for k = 1, . . . , n;(S’)

and

n∑
i=k

(aix̃)2 ≥ a2
kk for all x ∈ X∗

n−k+1, k = 1, . . . , n− 1.(N’)

3. A semidefinite relaxation. The characterizations above describe the coeffi-
cient domain of KZ-reduced forms as a semialgebraic set. There is by now a standard
machinery for constructing semidefinite relaxations for the problem of minimizing a
polynomial over a semialgebraic set; see [9, 12]. We describe a semidefinite formu-
lation that has the virtue of yielding a reasonable lower bound while using only a
moderate number of variables and constraints.

Theorem 3.1. Let Q be an n × n positive definite matrix and let q(x) = xtQx.
Then q is KZ-reduced if and only if there are n × n matrices B1, . . . , Bn such that
Q = B1 + · · · + Bn and

Bk has rank 1 for k = 1, . . . , n;(r)

Bk is positive semidefinite for k = 1, . . . , n;(p)

dt1B
kd2 ≥ 0 for all d1, d2 ∈ Dk, for k = 1, . . . , n; and(s)

n∑
i=k

x̃tBix̃ ≥ Bk
kk for all x ∈ X∗

n−k+1, for k = 1, . . . , n− 1.(n)

Proof. To see necessity, let q be KZ-reduced and let Ai, αij be its outer and inner
coefficients. Put

(3.1) ai =
√
Ai(0, . . . , 0, 1,−αi,i+1, . . . ,−αin).
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Then a1, . . . , an ∈ R
n are row vectors satisfying (S’) and (N’), and such that Q =∑n

i=1 a
t
iai. Let

(3.2) Bi = atiai = Ai

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
0 1 −αi,i+1 · · · −αin

0 −αi,i+1 αi,i+1αi,i+1 · · · αi,i+1αin

...
...

...
. . .

...
0 −αin αinαi,i+1 · · · αinαin

⎤⎥⎥⎥⎥⎥⎦ .

(Here the 0’s are zero matrices and vectors of appropriate sizes.) Then (B1, . . . , Bn)
satisfies (r), (p), (s), and (n).

For sufficiency, let B1, . . . , Bn be such that Q = B1 + · · ·+Bn and such that (r),
(p), (s), and (n) hold. As B′ has rank 1, we may write Bi = atiai, where aii ≥ 0.
Then ai satisfies (N’). To see that ai satisfies (S’), let ei be the ith unit vector in
R

n. Note that ei ∈ coneDi and that hence

(3.3) eid
t ∈ cone{d1d

t
2 | d1, d2 ∈ Di}

for any d ∈ Di. From the fact that Bi satisfies (s) it follows that (atiai) ·D ≥ 0 for
all D ∈ cone{d1d

t
2 | d1, d2 ∈ Di}, and in particular that (aiei)(aid) ≥ 0 for all d ∈ Di.

Thus aid ≥ 0 for all d ∈ Di.
So, for (c1, . . . , cn) ∈ R

n, the minimum

(3.4) min

{ n∑
i=1

ciAi |
∑
i

Ai(xi −
∑
j>i

αijxj)
2 is KZ-reduced for some αij , An = 1

}
equals

(3.5) min

{∑
k

ckB
k
kk | (B1, . . . , Bn) satisfies (r), (p), (s), (n), and Bn

nn = 1

}
.

Here the extra condition at the end is added to remove scale invariance from the
problem. Dropping the rank-1 constraint (r) yields a lower bound that is a semidefinite
optimization problem:

(3.6) z(c) := min

{ n∑
k=1

ckB
k
kk | (B1, . . . , Bn) satisfies (p), (s), (n), and Bn

nn = 1

}
.

Note that it is possible to determine the value of (3.6) without knowing the
Novikova sets X∗

i in advance, by using a cutting plane algorithm as follows. Replace
in (3.6) the constraints (n) by the following for certain small sets Xi (for example,
take X2 = X∗

2 and the other Xi empty):

n∑
i=k

x̃tBix̃ ≥ Bk
kk for all x ∈ Xn−k+1, for k = 1, . . . , n− 1.(n’)

Repeatedly refine these constraints by solving the relaxation and finding, for some
k, a nonzero vector x ∈ Z

n−k+1 with
∑n

i=k x̃
tBix̃ < Bk

kk for the optimal solution to
the relaxation. Add this x to Xn−k+1. Eventually no such x will be found, and then
the optimal solution to this relaxation will be equal to the optimal solution to (3.6).
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One can use the techniques in the proof of Theorem 2.1 to bound the search space
for these vectors.

A cutting plane algorithm may even be the only practical way to solve the re-
laxation for n > 5, since the cardinality of X∗

n seems to increase very rapidly with
n. The following theorem, similar to Theorem 2.1, implies that such a cutting plane
algorithm will finish.

Theorem 3.2. Let (B1, . . . , Bn) satisfy (p), (s), and suppose that

n∑
i=1

et2B
ie2 ≥ B1

11,(3.7)

n∑
i=k

x̃tBix̃ ≥ Bk
kk for all nonzero x ∈ Z

n−k+1, k = 2, . . . , n− 1.(3.8)

Then there are only finitely many x ∈ Z
n \ {0} such that

∑n
i=1 x

tBix < B1
11.

Compared to the method of Lasserre [9], in particular to a second-order moment
relaxation of our polynomial optimization problem, our relaxation contains variables
Bk

ij corresponding to products akiakj but no variables corresponding to products
akialj when k �= l. Accordingly, we do not take products of linear inequalities akd1 ≥
0, ald2 ≥ 0 into account.

4. Branch and bound. In this section we give an overview of the branching
process. We refer to [17] for further details and a full implementation. In the definition
of KZ-reducedness, the size-reduction requirement (S) asks that for i = 1, . . . , n − 1
we have

(4.1) (αi,i+1, . . . , αin) ∈ Si :=
[
0,

1

2

]
×
[
− 1

2
,
1

2

]n−i−1

.

There is nothing particular about the polyhedra Si that makes the semidefinite relax-
ation (3.6) possible. Taking any set of polyhedra P i instead of the Si, a semidefinite
lower bound z(c, P 1, . . . , Pn−1) analogous to (3.6) for

min

{∑
ciAi |

∑
i

Ai(xi −
∑
j>i

αijxj)
2 satisfies (N),(4.2)

(αi,i+1, . . . , αin) ∈ P i for i = 1, . . . , n− 1, and An = 1

}
may be constructed. This new relaxation differs from (3.6) in the constraints (s). If
the diameter of these polyhedra P i is small, then the matrix Bi is close to a rank-1
matrix in the following sense. Suppose the width of P i is small, i.e., for all j,

(4.3) max{αij | (αi,i+1, . . . , αin) ∈ P i} − min{αij | (αi,i+1, . . . , αin) ∈ P i} < ε,

where we assume ε < 1 and max{αij | (αi,i+1, . . . , αin) ∈ P i} ≤ 1/2. Let (B1, . . . , Bn)

be any feasible solution corresponding to z(c, P 1, . . . , Pn−1). Let (B̃1, . . . , B̃n) be any

feasible solution corresponding to z(c, P 1, . . . , Pn−1) such that B̃i has rank 1. Then
for all j, k ∈ {i, . . . , n},

(4.4) |Bi
jk/B

i
ii − B̃i

jk/B̃
i
ii| ≤ 2ε.
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If we have a set of (n−1)-tuples of polyhedra N = {(P 1
s , . . . , P

n−1
s ) | s = 1, . . . , t}

so that

(4.5) S1 × · · · × Sn−1 =
⋃

(P 1,...,Pn−1)∈N

P 1 × · · · × Pn−1,

then

(4.6) min{z(c, P 1, . . . , Pn−1) | (P 1, . . . , Pn−1) ∈ N}

is again a lower bound for (3.4). If we partition S1 × · · · × Sn−1 so that in each part
the diameter of each of the P i is small, then we would obtain a good lower bound.
However, this would make the cardinality of N very large, even for moderately small ε.
Therefore, we take an iterative approach. Initially we choose N = {(S1, . . . , Sn−1)}.
Then we repeat the following. Suppose that the minimum of (4.6) is attained at
(P 1, . . . , Pn−1) ∈ N . Then we choose an i ∈ {1, . . . , n−1} and replace (P 1, . . . , Pn−1)
in N by the two tuples

(4.7) (P 1, . . . , P i−1, Q, P i+1, . . . , Pn−1) and (P 1, . . . , P i−1, Q′, P i+1, . . . , Pn−1),

where Q,Q′ are polyhedra such that P i = Q∪Q′—so N retains property (4.5). This
process of refining N continues until (4.6) is sufficiently close to the desired value or
some other stopping criterion applies.

We choose i, Q,Q′ with the aim of reducing the “distance” of an optimal solution
to a rank-1 solution, as follows. If this optimal solution of the problem with optimum
z(c, P 1, . . . , Pn−1) is (B1, . . . , Bn), then we take i, j so that

(4.8)

n∑
k=i

1

Bi
ii

(Bi
iiB

i
jk −Bi

ijB
i
ik)

is maximal. Then we put

Q = {(αi,i+1, . . . , αin) ∈ P i | αij ≤ β},
Q′ = {(αi,i+1, . . . , αin) ∈ P i | αij ≥ β},

(4.9)

where β is (a rational number with modest denominator near) −Bi
ij/B

i
ii.

We have tried other methods for picking i, Q,Q′, but this turned out to work best
in practice, in the sense that the cardinality of N required to obtain a certain bound
was the smallest we could attain. Only by constructing N by hand did we achieve a
smaller set for one problem.

5. Rounding to obtain exact bounds. Every feasible solution y to the dual
of (3.6) gives a lower bound on z(c) and hence on the optimal solution to (3.4). A
dual solution is feasible if and only if a number of matrices, say, M1(y), . . . ,Mk(y), is
positive semidefinite. In fact, in our computations we work only with solutions y that
are strictly positive definite. This simplifies the verification of feasibility, but the cru-
cial advantage is that it helps to counter the imprecision inherent in the computation
with limited-precision floating point numbers.

In the dual of (3.6) such solutions can be obtained by replacing a dual constraint
Mi(y) � 0 with Mi(y) � εI, where I is an identity matrix of suitable dimension and
ε is a small positive constant. Bringing this matrix to the other side, we get the
perturbed constraint

(5.1) Mi(y) − εI � 0,
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which corresponds to a perturbation of the function that is being optimized in the
primal problem. Again we refer the reader to [17] for further details.

A floating-point solution y to the perturbed problem can be approximated by a
continued fraction expansion, a technique recently used in [15]. If this approximation
ỹ is sufficiently close to y, it might violate some of the perturbed dual constraints
slightly, but it will be strictly feasible for the original problem. Positive definiteness
can then be ascertained by evaluating

∑k
i=1 rank(Mi(ỹ)) determinants.

Note that this approach can also be applied to find feasible solutions of the primal
semidefinite problem but is quite useless when it comes to deriving an optimal solution
of the original problem (3.4) or (4.2), that is, a solution that also satisfies the rank-1
constraints (r). This is of no concern when one is interested in lower bounds, but it
is also interesting to find KZ-reduced forms that give a good upper bound. We do
not have a very reliable automated method to obtain such forms—not even from the
optimal solution of our branch and bound procedure, which is nonetheless close to
rank 1 in the sense that (4.8) is small for all i, j.

6. New linear inequalities on the outer coefficients of KZ-reduced qua-
dratic forms. We define

(6.1) Kn := cone{A(q) | q is an n-ary KZ-reduced form}.

We have

(6.2) Kn = {x ∈ R
n | (0, x) ∈ Kn+1}

and

(6.3) Kn = {x ∈ R
n | (x, y) ∈ Kn+1 for some y ∈ R}.

Table 6.1 gives several KZ-reduced forms, some of which come from [13], whereas
others were found by manually rounding and tweaking primal solutions to (4.2) for
suitably chosen c and polyhedra P i. The format is as follows: the columns labeled
“Outer” and “Inner” hold the vector and matrix

(6.4)

⎡⎢⎣A1

...
An

⎤⎥⎦ ,
⎡⎢⎢⎢⎢⎣

1 −α12 · · · −α1n

0 1
. . .

...
...

. . .
. . . −αn−1,n

0 · · · 0 1

⎤⎥⎥⎥⎥⎦ ,

respectively.

By the first KZ-inequality, K2 is contained in

(6.5) K ′
2 :=

{
(A1, A2) ∈ R

2
+ | A2 ≥ 3

4
A1

}
.

It follows from Table 6.1 that K2 contains
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Table 6.1

Some KZ-reduced forms.

Name Outer Inner Form

E1
[
1
] [

1
] [

1
]

E2

[
1

3/4

] [
1 −1/2
0 1

]
1

2

[
2 1
1 2

]

E3a

⎡⎣ 1
3/4
2/3

⎤⎦ ⎡⎣1 −1/2 1/2
0 1 −1/3
0 0 1

⎤⎦ 1

2

⎡⎣ 2 −1 1
−1 2 −1
1 −1 2

⎤⎦
E3b

⎡⎣ 1
8/9
2/3

⎤⎦ ⎡⎣1 −1/3 −1/3
0 1 −1/2
0 0 1

⎤⎦ 1

3

⎡⎣ 3 −1 −1
−1 3 −1
−1 −1 3

⎤⎦

E4a

⎡⎢⎢⎣
1

3/4
2/3
1/2

⎤⎥⎥⎦
⎡⎢⎢⎣
1 −1/2 1/2 1/2
0 1 −1/3 −1/3
0 0 1 −1/2
0 0 0 1

⎤⎥⎥⎦ 1

2

⎡⎢⎢⎣
2 −1 1 1
−1 2 −1 −1
1 −1 2 0
1 −1 0 2

⎤⎥⎥⎦

E4b

⎡⎢⎢⎣
1

8/9
2/3
5/8

⎤⎥⎥⎦
⎡⎢⎢⎣
1 −1/3 −1/3 1/3
0 1 −1/2 1/2
0 0 1 −1/4
0 0 0 1

⎤⎥⎥⎦ 1

6

⎡⎢⎢⎣
6 −2 −2 2
−2 6 −2 2
−2 −2 6 −3
2 2 −3 6

⎤⎥⎥⎦

E4c

⎡⎢⎢⎣
1

15/16
45/64
5/8

⎤⎥⎥⎦
⎡⎢⎢⎣
1 −1/4 −1/4 −1/4
0 1 −1/2 −1/2
0 0 1 −1/3
0 0 0 1

⎤⎥⎥⎦ 1

32

⎡⎢⎢⎣
32 −8 −8 −8
−8 32 −13 −13
−8 −13 32 2
−8 −13 2 32

⎤⎥⎥⎦

E5a

⎡⎢⎢⎢⎣
1

3/4
2/3
1/2
1/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 −1/2 1/2 1/2 1/2
0 1 −1/3 −1/3 −1/3
0 0 1 −1/2 1/4
0 0 0 1 −1/2
0 0 0 0 1

⎤⎥⎥⎥⎦ 1

2

⎡⎢⎢⎢⎣
2 −1 1 1 1
−1 2 −1 −1 −1
1 −1 2 0 1
1 −1 0 2 0
1 −1 1 0 2

⎤⎥⎥⎥⎦

E5b

⎡⎢⎢⎢⎣
1

8/9
2/3
5/8

15/32

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 −1/3 −1/3 −1/3 −1/3
0 1 −1/2 7/16 −1/2
0 0 1 −3/8 −1/4
0 0 0 1 −1/2
0 0 0 0 1

⎤⎥⎥⎥⎦ 1

6

⎡⎢⎢⎢⎣
6 −2 −2 −2 −2
−2 6 −2 3 −2
−2 −2 6 −2 1
−2 3 −2 6 −2
−2 −2 1 −2 6

⎤⎥⎥⎥⎦

E5c

⎡⎢⎢⎢⎣
1

3/4
2/3
5/8

15/32

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 −1/2 1/2 −1/2 −1/2
0 1 −1/3 1/3 1/3
0 0 1 −1/4 −1/4
0 0 0 1 −1/2
0 0 0 0 1

⎤⎥⎥⎥⎦ 1

16

⎡⎢⎢⎢⎣
16 −8 8 −8 −8
−8 16 −8 8 8
8 −8 16 −8 −8
−8 8 −8 16 1
−8 8 −8 1 16

⎤⎥⎥⎥⎦

E5d

⎡⎢⎢⎢⎣
1

3/4
3/4
9/16
1/2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 −1/2 1/4 −1/4 1/2
0 1 −1/2 −1/2 0
0 0 1 −1/2 1/2
0 0 0 1 −1/3
0 0 0 0 1

⎤⎥⎥⎥⎦ 1

4

⎡⎢⎢⎢⎣
4 −2 1 −1 2
−2 4 −2 −1 −1
2 −2 4 −1 2
−1 −1 −1 4 −2
2 −1 2 −2 4

⎤⎥⎥⎥⎦

(6.6) K ′′
2 := cone

{[
0
1

]
,

[
1

3/4

]}
.

Since K ′
2 = K ′′

2 , we have equality throughout in K ′
2 ⊇ K2 ⊇ K ′′

2 .

Also, K3 is contained in

(6.7) K ′
3 :=

{
(A1, A2, A3) ∈ R

3
+ | A2 ≥ 3

4
A1, A3 ≥ 3

4
A2, A3 ≥ 2

3
A1

}
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by the first and second KZ-inequalities, and K3 contains

(6.8) K ′′
3 := cone

⎧⎨⎩
⎡⎣00

1

⎤⎦ ,
⎡⎣ 0

1
3/4

⎤⎦ ,
⎡⎣ 1

3/4
2/3

⎤⎦ ,
⎡⎣ 1

8/9
2/3

⎤⎦⎫⎬⎭ .

Again we have equality throughout in K ′
3 ⊇ K3 ⊇ K ′′

3 , as K ′
3 = K ′′

3 .
For n = 4 the classical KZ-inequalities no longer suffice to determine Kn. By the

first and second KZ-inequalities, K4 is contained in

(6.9)

{
(A1, A2, A3, A4) ∈ R

4
+ | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai

}
.

But the extremal vector (1, 8
9 ,

2
3 ,

16
27 ) of this cone cannot be realized as the sequence

of outer coefficients of a KZ-reduced form.
Theorem 6.1. Let A1, . . . , A4 be the outer coefficients of a KZ-reduced form in

four variables. Then

(6.10) −25A1 − 36A2 + 48A3 + 40A4 ≥ −7 · 10−6A4.

This theorem was proven by the branch-and-bound and rounding processes de-
scribed in the previous sections. The data required to verify this theorem can be
found in [17].

Thus K4 ⊆ K ′
4, where

(6.11) K ′
4 :=

{
(A1, A2, A3, A4) ∈ R

4
+ | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, (6.10)

}
.

We conjecture that in the above theorem we even have

(6.12) −25A1 − 36A2 + 48A3 + 40A4 ≥ 0.

By Table 6.1, K4 contains the cone

(6.13) K ′′
4 := cone

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

0
0
0
1

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

0
0
1

3/4

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

0
1

3/4
2/3

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

0
1

8/9
2/3

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

1
3/4
2/3
1/2

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

1
8/9
2/3
5/8

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

1
15/16
45/64
5/8

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,

and we have

(6.14) K ′′
4 =

{
(A1, A2, A3, A4) ∈ R

4
+ | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, (6.12)

}
.

Hence K4 is nearly determined by K ′′
4 ⊇ K4 ⊇ K ′

4, and our conjecture would imply
K4 = K ′′

4 .
In dimension 5, we prove the following linear bounds.
Theorem 6.2. Let A1, . . . , A5 be the outer coefficients of a KZ-reduced form in

five variables. Then

(6.15) −5A1 + 2A4 + 8A5 ≥ −3 · 10−4A5

and

(6.16) −4A1 − 3A3 + 4A4 + 8A5 ≥ −5 · 10−5A5.
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Table 6.2

Incidences between some inequalities and elements of K5. The rightmost column gives the
dimension of the face of K5 defined by the inequality.

Inequality “Tight” forms Rank

−3A1 + 4A2 ≥ 0 E1, E2, E3a, E3b 4
−3A2 + 4A3 ≥ 0 E1, E2, E4a, E5b 4
−3A3 + 4A4 ≥ 0 E1, E3a, E4b, E4c 4
−3A4 + 4A5 ≥ 0 E2, E3b, E4a, E5b 4

−2A1 + 3A3 ≥ 0 E1, E2, E5a, E5b 4
−2A2 + 3A4 ≥ 0 E1, E4a, E4b, E5a 4
−2A3 + 3A5 ≥ 0 E3a, E3b, E5b ≥ 3

−25A1 − 36A2 + 48A3 + 40A4 ≥ 0 E1, E5a, E5b ≥ 3
−25A2 − 36A3 + 48A4 + 40A5 ≥ 0 E4a, E4b, E4c ≥ 3

−5A1 + 2A4 + 8A5 ≥ 0 E5a, E5b, E5c ≥ 3
−4A1 − 3A3 + 4A4 + 8A5 ≥ 0 E5a, E5d ≥ 2

Of course, we conjecture

(6.17) −5A1 + 2A4 + 8A5 ≥ 0

and

(6.18) −4A1 − 3A3 + 4A4 + 8A5 ≥ 0.

As before, these inequalities describe a superset K ′
5 of K5, and the forms of Table

6.1 generate a subset K ′′
5 of K5. But there is now a fundamental discrepancy between

K ′
5 and K ′′

5 . Table 6.2 lists the known and conjectured inequalities for K5 and with
each inequality gives the forms of Table 6.1 that satisfy these inequalities with equality.
Experimentation suggests that both inclusions in K ′′

5 ⊆ K5 ⊆ K ′
5 are strict (even if

we replace, in the definition of K ′
5, the inequalities proven in Theorem 6.2 by their

conjectured counterparts).
As an example, the four forms E5a, E5b, E5c, and E5d satisfy the following

inequality:

(6.19) −8A1 − 3A3 + 4A4 + 16A5 ≥ 0.

One could conjecture that this is a facet of K5. This is false, however; it is violated
by the KZ-reduced form

(6.20)

⎡⎢⎢⎢⎢⎣
134 −54 −40 −54 54
−54 134 −40 67 −67
−40 −40 134 −40 −27
−54 67 −40 134 −67
54 −67 −27 −67 134

⎤⎥⎥⎥⎥⎦ .
We could obtain several other extreme forms in five variables and more valid inequal-
ities, but we never reached a close approximation of K5. Therefore, we publish only
the two inequalities that seemed most relevant to the applications here. We maintain
a list of certified inequalities at our website,2 where our software [17] can also be
found.

2http://www.win.tue.nl/kz/
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Table 6.3

Relation between Hermite’s constant and the approximation found. The first row gives the exact
value of γn

n for n ≤ 8, and the best known lower bound for n = 9. The second row gives the upper
bound found using our approximation of Kn.

Dimension 1 2 3 4 5 6 7 8 9

(Lower bound on) γn
n 1 4/3 2 4 8 64/3 64 256 512

Upper bound 1 4/3 2 4 8.00005 21.3336 64.0012 256.008 1024.11

Even though we do not have a close approximation of K5, we do have enough
inequalities on the outer coefficients to bound Hermite’s constant for n ≤ 8 very well.
Assuming the conjectured inequalities (6.12), (6.17), and (6.18), the upper bound on
γn
n that would follow from the corresponding strengthening of (1.6) is exact for n ≤ 8.

Table 6.3 gives for n = 1, . . . , 8 the known values of γn
n , and the upper bound on γn

n

that follows from the proven inequalities (6.10), (6.15), and (6.16). In dimension 9
there is suddenly a huge gap between our upper bound and the best known lower
bound. This gap is also larger than the gap obtained by the Cohn–Elkies bound. One
or more new inequalities are needed to close this gap.

Blichfeldt observed in [1] that a tight upper bound on γn would follow for n =
6, 7, 8 from the two KZ-inequalities and “a certain inequality that we would reasonably
expect to be true, namely, Ai+4 ≥ 1

2Ai.” But he immediately exhibits a set of forms
showing that this inequality is false (the forms E5b and E5c of Table 6.1 are also
counterexamples). Note that the inequalities we conjecture/approximate come near
to this key inequality Blichfeldt suggests: (6.18) would imply that if A4 = 3

4A3, then
A5 ≥ 1

2A1, and (6.17) would imply that if A5 ≤ ( 1
2 − ε)A1, then A4 ≥ ( 1

2 + 4ε)A1.

7. The quality of block KZ-reduced lattice bases. If L ⊆ R
n is a full-

dimensional lattice and b1, . . . , bn ∈ L are linearly independent vectors such that

(7.1) L = {x1b1 + · · · + xnbn | x1, . . . , xn ∈ Z},

then b1, . . . , bn is a basis of L. A basis of a lattice determines a positive definite
quadratic form

(7.2) q(x1, . . . , xn) := ‖x1b1 + · · · + xnbn‖2.

A lattice basis b1, . . . , bn is said to be KZ-reduced if the associated form (7.2) is KZ-
reduced.

Let b∗1, . . . , b
∗
n be the Gram–Schmidt orthogonalization of b1, . . . , bn; that is, let

b∗1, . . . , b
∗
n be pairwise orthogonal vectors so that

(7.3) bk = b∗k −
k−1∑
i=1

αikb
∗
i for k = 1, . . . , n,

for some αij . Then these αij are exactly the inner coefficients of the associated form
(7.2); and the outer coefficients of (7.2) satisfy

(7.4) Ak = ‖b∗k‖2.

So the classical KZ-inequalities and Theorems 6.1 and 6.2 can be read as inequalities
relating the ‖b∗i ‖2 of a KZ-reduced lattice basis.
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Block KZ-reduced lattice bases were introduced in [14] as a generalization of
Lenstra–Lenstra–Lovasz (LLL-) reduced lattice bases. Such a basis gives a better
estimate of the length of the shortest lattice vector and can still be computed in
polynomial time when k is fixed. We say that a form

(7.5) q(x1, . . . , xn) =

n∑
i=1

Ai

(
xi −
∑
j>i

αijxj

)2
,

is k-block KZ-reduced (k-BKZ-reduced) if the derived forms

(7.6) qm+k−1
m (xm, . . . , xm+k−1) :=

k+m−1∑
i=k

Ai

(
xi −

k+m−1∑
j=i+1

αijxj

)2

are KZ-reduced for m = 1, . . . , n − k + 1. Then a lattice basis is k-BKZ-reduced if
the associated form is. In the remainder of this paper we will give some improved
bounds on constants used in [14] for the analysis of the quality of k-BKZ-reduced
lattice bases.

Let

(7.7) βk,n := max
‖b∗1‖2

‖b∗n‖2
,

where the maximum ranges over all k-BKZ-reduced lattice bases. Many of the useful
properties of k-BKZ-reduced lattice bases are derived through upper bounds on βk,n.
As k increases toward n, βk,n is expected to decrease. Schnorr [14] defines αk := βk,k

and shows that

(7.8) βk,1+m(k−1) ≤ αm
k .

In terms of quadratic forms, one has

(7.9) βk,n = max

{
A1

An
| (A1, . . . , An) = A(q), q a k-BKZ-reduced form

}
and

(7.10) αk = max

{
A1

Ak
| (A1, . . . , Ak) = A(q), q a KZ-reduced form

}
.

It is immediate from the first KZ-inequality that α2 = 4
3 and from the second KZ-

inequality that α3 = 3
2 . A nonnegative combination of the inequalities (6.15) and

− 3
4A4 + A5 ≥ 0 (the first KZ-inequality) is

(7.11) −15A1 + 32A5 ≥ −9 · 10−4A5,

which implies

(7.12) α5 ≤ 32

15
+ 6 · 10−5.

Since there exist KZ-reduced forms with A1/A5 = 32/15, we also have α5 ≥ 32
15 . For

k = 4, 5, the bounds on βk,n that follow from (7.8) are only slightly weaker than those
that follow directly from Theorems 6.1 and 6.2 by linear programming.
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The limit

(7.13) β̃k := lim
n→∞

β
1

n−1

k,n

also gives an indication of the relative effectiveness of k-BKZ-reduction. Observe
that if an inequality c1Ai + · · · + ckAi+k−1 ≥ 0 with c1 < 0 holds for the outer

coefficients of a KZ-reduced form in k variables, then β̃k is bounded from above by
the largest root of the polynomial c1x

k−1 + · · · + ck. Thus the first KZ-inequality
implies β̃2 ≤ 4/3 ≈ 1.3333, the second KZ-inequality implies β̃3 ≤

√
3/2 ≈ 1.2247,

Theorem 6.1 implies β̃4 ≤ 1.2172, and Theorem 6.2 (in particular (6.15)) implies

β̃5 ≤ 1.2010.
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