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Abstract  This paper proposes further developments of band-regression models for forecasting purposes, namely a 
simple method for shrinking the parameter estimates as well as a method for the automatic selection of the 
underlying frequency band. In combination with a method for downweighting older data, the improved band-
regression model is used to forecast real GDP growth across nine industrialized economies. The results of this 
empirical study show that this forecasting approach outperforms conventional forecasting methods. As a secondary 
finding, the empirical results also raise doubts whether the yield-curve spread is really a valuable leading indicator of 
GDP growth. 
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1. Introduction 
A robust and often successful forecasting strategy is to 

combine forecasts from different models, either by 
averaging [1] or by weighted averaging [2]. Combining 
forecasts can also be beneficial in situations where there is 
only one model, but there is uncertainty about the optimal 
time period used for forecasting [3,4]. In the absence of 
structural breaks, the use of the full sample period is 
clearly the method of choice. But if there are breaks, the 
forecast based on the full sample will be biased. In this 
case, one could try to estimate the locations of the breaks 
[5,6,7,8] and use only data from the most recent regime 
for prediction. Unfortunately, it is often very difficult to 
obtain precise estimates of the locations and the sizes of 
the breaks [9]. The problem intensifies when predictions 
have to be made shortly after some parameter has changed. 
In general, the forecast based on a recent subsample will 
have a smaller bias and a higher variance than that based 
on the full sample. Trying to balance the trade-off between 
bias and variance, Pesaran and Timmermann [3] proposed 
to combine forecasts based on subsamples of different 
lengths. In the context of forecasting random walks with 
breaks in the drift, Pesaran and Pick [10] obtained Monte 
Carlo results as well as empirical results indicating that 
averaging forecasts over estimation windows can improve 
the forecasting performance compared to a single 
estimation window when the break size is not too small 
compared to the volatility. However, Steinberger [11] 
showed that, depending on the specification of the 
volatility process, single-window forecasting is 
asymptotically as good as average-window forecasting or 

even better. Pesaran et al. [12] derived “robust optimal” 
weights, which do not require knowledge of the break 
dates, and applied them to forecast real GDP growth 
across nine industrialized economies using the yield-curve 
spread as a predictor. In this application, their weights 
outperformed other weights in different settings. 

The GDP forecasts in [12] are obtained in two steps. 
First, the observations are weighted and then conventional 
regression models are applied to the weighted 
observations. The main focus of our paper is on the 
second step. We modify conventional regression models 
by imposing frequency-domain restrictions which are 
plausible for economic data and are also supported by 
empirical evidence. Our approach is related to the band-
regression approach which is based on the assumption that 
linear relationships between several variables exist only in 
certain frequency bands [13,14]. For example, band 
regression is used for the analysis of relationships in the 
presence of seasonal patterns or for the estimation of 
cointegrating relationships (e.g. [15]). In the former case, 
narrow bands around all seasonal frequencies must be 
excluded and, in the latter case, the focus should be on a 
narrow band close to frequency 0. However, band 
regression can - in contrast to our approach - not be used 
for prediction in the time domain. 

Section 2.1 derives a shrinkage version of the 
conventional least squares (LS) estimator under certain 
frequency-domain restrictions. In addition, fractional 
degrees of freedom are defined, which are later used in 
Section 3 for the automatic choice of the frequency-
domain restrictions. Section 2.2 discusses different 
weights which are intended to take care of parameter 
instability. Section 3 combines the methods discussed in 
2.1 and 2.2 and applies them to the economic data set used 
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in [12]. All methods required for this empirical analysis 
were programmed in R [16]. Section 4 concludes. 

2. Methods 

2.1. Band Regression 

2.1.1. Deterministic Regressors 
Let 

 ,y X uβ= +  (1) 

where 0Eu = , 2( )Var u Iσ= , and X  is a 
nonstochastic n k×  matrix with full column rank k n< . 
Pre-multiplication of both sides of this equation by the 
matrix '

rH , / 2r k> , which consists of the first 2r  rows 
of the matrix 
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where 2 /j j nω π= , 1,..., [( 1) / 2]j m n= = − , gives 

 
  

' ' '
r r r

y X ur r r

H y H X H uβ= +  (3) 

with 0rEu =  and 

 ' 2 ' 2( ) .r r r r rVar u EH uu H H H Iσ σ′= = =  (4) 

We assume that all variables are mean-corrected, hence there is 
no need to include a constant dummy variable which would 
produce a column of zeroes in rX . Alternatively, this 
singularity could be avoided by including frequency zero, i.e., 
adding the row 

 ( )1 1 .n n  (5) 

In case of odd n , the matrix H  would then have 
n columns. In case of even n , this can also be achieved 
by including additionally frequency π , i.e., adding also 
the column 

 ( )1 1 1 1 .n n n n− −   (6) 

While the estimator  

 ' 1 'ˆ ( )r r r r rX X X yβ −=  (7) 

is best linear unbiased, it will be inefficient relative to  

 1ˆ ( )X X X yβ −′ ′=  (8) 

if the rank of rH ′  is less than n . Hence, the latter 
estimator should always be preferred to the former unless 
it is suspected that some model assumptions are violated.  

Replacing both the dependent variable and all 
regressors by their projections onto the span of the 

columns of rH  also leads to the band-regression 
estimator, i.e., 
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where 

 ' 1 ' '( ) .r r r r r r rP H H H H H H−= =  (10) 

The covariance matrix of rP u  is given by 

 ' ' 2( ) .r r r r r rVar P u EH H uu H H Pσ′= =  (11) 

Now assume that the linear regression model (1) is 
misspecified because a linear relationship exists only 
between rry P y= and rrX P X= , but not between 

( )r ry I P y= −  and ( )r rX I P X= − , i.e., 

 rrrE y X β=  (12) 

for some k
rβ ∈ℜ , whereas  

 0.rEy =  (13) 

Under (13), it seems natural to modify the conventional 
LS estimator  
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by setting 

 ' 0.r rX y =  (15) 

The resulting estimator 
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−
= +  (16) 

is a compromise between the band-regression estimator 
ˆ
rβ , which is suitable for ry , and the trivial estimator 

0 0β = , which is suitable for ry . 

2.1.2. Jointly Stationary Series 
If 1k = , i.e., 1( ,..., , ) 'nX x x= , the band-regression 

estimator (7)can be written as  
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where 
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is the discrete Fourier transform of the series 1,..., , nx x  
and  

 1
2( ) ( ( ) ( ))( ( ) ( ))xy x x y ynI A iB A iBπω ω ω ω ω= − −  (19) 

is the cross periodogram of the series 1,..., , nx x  and 

1,..., , ny y . 
If the regressor is not deterministic but the two series 

are rather jointly stationary, the real part of the cross 
periodogram is an estimator of the cospectrum, the 
integral of which is just the covariance between tx  and 

ty . However, cospectra of economic time series rarely 
appear to be constant over all frequencies. If the integral 
of the cospectrum over the interval 1( , )rω π+ is negligible 
compared with that over the interval 1(0, )rω + and the goal 
is to find an appropriate linear predictor of the form 
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rβ rather than 
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which minimizes the sum of squared errors. Noting that  
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if both series are mean corrected and n  is odd, the sum of 
squared errors can also be written as  
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Incorporating the information that the integral of the 
cospectrum over the interval 1( , )rω π+ is negligible leads 
to the estimator  
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which can also be obtained from the band-regression 
estimator ˆ

rβ  by shrinkage towards zero, i.e., by 
multiplication by  
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If the focus is on the relationship between the low-
frequency components of two series, the use of the band-
regression estimator ˆ

rβ  is appropriate. However, if it is 
on prediction in the time domain, the whole frequency 
range will be used. Ideally, the low-frequency components 
should be multiplied by ˆ

rβ  and the high-frequency 
components by zero. Unfortunately, this differentiation is 
not possible in the time domain. While already the 
unrestricted estimator β̂ strikes a balance between the two 

extremes, the estimator rβ  is clearly the better choice 
because it additionally makes use of available extra 
information.  

2.1.3. Degrees-of-Freedom Adjustment 

The variance of a stationary process with variance 2
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can be obtained from its spectral density yf  via 
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is therefore approximately equal to 
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when the integral of the cospectrum over the interval 
1( , )rω π+ is negligible and n  is large.  

Now assume that the two processes are independent 
Gaussian white-noise processes. Then  
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An approximately unbiased estimate of 2
yσ  is given by  
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and 2log( )yn nσ  can be estimated by 
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In the standard case, when all frequencies are used, i.e., 
r m= , the number of degrees of freedom is just 1n − . In 
contrast, it is a fractional number, namely r

mn − , when 
only r m<  frequencies are used. 

2.2. Downweighting 
Pesaran and Pick [10] investigated the performance of 

univariate one-step-ahead forecasts of the form 
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and found that the average-window (AW) weights  
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outperform the single-window (SW) weights 
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unless the breaks are very small. Complementing this 
result, Steinberger [11] compared these weights in a low-
signal/high-noise framework. In his asymptotic analysis, 
he allowed for an increasing number of breaks. Depending 
on the specification of the volatility process, the 
asymptotic mean square forecasting error (MSFE) of the 
SW weights turned out to be asymptotically as small as 
that of the AW weights or even smaller.  

Assuming that both the regression parameters and the 
error variance of a simple regression model are subject to 
a single structural break, i.e., 
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Pesaran et al. [12] derived optimal weights for one-
step-ahead forecasts of the form 
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Their optimal weights have a discrete change which 
depends on the time and size of the break. This discrete 
change can only be approximated poorly by weights that 



125 International Journal of Econometrics and Financial Management  

 

are either constant or slowly decaying. Moreover, the time 
and size of the structural break are usually unknown and 
must therefore be estimated. Monte-Carlo results in [12] 
suggest that the use of estimates instead of the true values 
for the calculation of the weights is advisable only if the 
break is large and can easily be identified. Otherwise, a 
more robust approach is required. Pesaran et al. [12] 
derived "robust optimal" (RO) weights 
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by integrating out the effects of uncertainty about the 
breaks with respect to some given distribution. However, 
as can be seen from  
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the "robust optimal" weights are very similar to the 
conventional average-window weights, hence it is 
unrealistic to expect too much of them.  

Anyhow, there simply cannot be any fully specified 
weights that are appropriate for all applications. At least, 
adjustments to the respective applications must be made 
with the help of some tuning parameters. For example, an 
integer-valued tuning parameter can be introduced by 
requiring a minimum size for the subsamples to be used in 
window averaging (see [10]) and a real-valued tuning 
parameter by averaging across exponentially decaying 
weights rather than equal weights, i.e., 
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as 1ρ → . Clearly, it can never be ruled out that in a 
concrete application some ad-hoc weights such as 
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outperform weights that are supposedly more 
sophisticated. 

3. Empirical Results 
Downweighting older observations is an established 

method to take care of parameter instability in forecasting 
tasks. Pesaran et al. [12] derived optimal weights for one-
step-ahead forecasts under the assumption that 
information about the location and the size of the breaks is 
available and then obtained "robust optimal" weights by 

integrating out the effects of uncertainty about the breaks 
with respect to some given distribution. Using the latter 
weights to forecast real GDP with the slope of the yield 
curve as explanatory variable, they observed a significant 
improvement over conventional methods. In the following, 
we will examine whether the focus on certain frequency 
bands can lead to a further improvement. For the sake of 
comparability, the same data set will be used. This data set 
contains quarterly observations on the real GDP as well as 
long and short interest rates from 1979Q1 to 2009Q4 of 
Australia, Canada, France, Germany, Italy, Japan, Spain, 
UK, and USA. It is part of the larger data set “GVAR 
data”, which is an extension of the data set originally used 
by Dees et al. [17] and can be downloaded from 
http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html. 

The slope of the yield curve is supposedly a valuable 
leading indicator of GDP growth (e.g. [18-23], [12]). 
Forecasts of the GDP growth rate at time n, yn+1, may 
therefore be obtained from (42) and (43), where the 
explanatory variable xn+1 is the slope of the yield curve at 
time n. The growth rates are defined as the differenced log 
GDP values (multiplied by 100) and the slopes as the 
differences between the long-term interest rates and the 
short-term interest rates (yield-curve spreads).  

At first glance, forecasts of the form (42) seem a bit 
naïve because no lagged values of the dependent variable 
are used. But this is only a serious problem if SW-weights 
are used in (43). In the case of declining weights, the 
dummy variable takes over the job of modeling the 
conditional mean and can compete with low-order ARMA 
models, at least when there are tuning parameters. For 
example, the best forecast of a simple invertible MA(1) 
process  

 1t t ty u uθ −= +  (50) 

is just given by 

 1 1
0

ˆ .j
t t t jL

j
y y yθ

θ θ θ
∞

+ −+
=

= = ∑  (51) 

It turns out that the dummy variable is quite successful 
in modeling the conditional mean. Actually, it is so 
successful that there is hardly anything left to explain for 
the true explanatory variable, namely the spread.  

Following [3] recursive out-of-sample forecasts are 
constructed for the period from 1994Q1 to 2009Q4. Table 1.a 
compares averages (over all countries) of sums of squared 
forecast errors. Consistent with the findings in [3], the 
forecasts obtained with the AW weights and the RO 
weights outperform those obtained with the SW weights. 
While it is not surprising - because of relationship (45) - 
that the former two are practically equivalent, it is 
remarkable that these “optimal” weights are clearly 
outperformed by some ad-hoc weights such as (49), and to 
make matters worse, even without fine-tuning, i.e., simply 
with 1τ = . Even more remarkable is the fact that the 
performance of the forecasts using the “optimal” weights 
does not deteriorate when the spread is removed and only 
the dummy variable is left, which raises a doubt whether 
the yield-curve spread is really a valuable leading 
indicator of GDP growth. In contrast, using the lagged 
GDP growth instead of the spread in addition to the 
dummy variable immediately boosts the forecasting 
performance. For a more informative comparison of the 
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competing forecasts, we use cumulative sums of forecast 
errors rather than total sums. Figure 1 shows the 
cumulative sums of absolute forecast errors separately for 
each country. Despite the fact that absolute errors are used 
rather than squared errors for reasons of robustness, the 
curves still fluctuate considerably. Overall, the results are 

largely consistent across countries and in line with Table 1.a. 
There are no apparent country-specific characteristics. The 
only exception is Australia where the benchmark model 
(with dummy variable plus spread and SW weights) is 
competitive. 
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Figure 1. Cumulative absolute forecast errors of models 1 SW (gray), 1+x AW (red), 1 AW (pink), 1+x RO (green), 1+x AH (darkgreen), 1+L(y) SW 
(blue), 1+L(y) AW (purple) relative to 1+x SW (black): (a) USA (b) Japan (c) Germany (d) UK (e) France (f) Italy (g) Spain (h) Canada (i) Australia 
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Table 1. Averages (over all countries) of the sums of squared forecast errors of weighted (band) regressionsof GDP growth (y) at time non a 
dummy variable (1) and the yield-curve spread (x) at time n-1. Also included are forecasts where the spread is replaced by the lagged GDP 

growth (Ly). The conventional forecast 1 1
ˆˆˆn ny xα β+ += +  based on the whole frequency band and obtained with SW weights serves as a 

benchmark (=1.000) 
(a) Weighted regressions 
1 (SW) 1 (AW) 1+x (SW) 1+x (AW) 1+x (RO) 1+x (AH*) 1+Ly (SW) 1+Ly (AW)  
0.977 0.913 1.000 0.911 0.915 0.795  0.763 0.772 
* 1τ =         
 
(b) Weighted band regressions 
r/m (the lowest r of m Fourier frequencies are used) 
 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 
1+x (SW) 0.978 1.000 0.989 0.993 0.999 0.999 0.997 1.001 
1+x (AW) 0.919 0.911 0.919 0.918 0.917 0.914 0.914 0.913 
1+Ly (SW 0.865 0.782 0.747 0.737 0.731 0.731 0.732 0.734 
1+Ly (AW) 0.824 0.771 0.728 0.725 0.732 0.740 0.757 0.771 

 

Figure 2. Frequency-domain analysis of U.S. data: (a) GDP growth, (b) Periodogram of GDP growth, (c) Spread, (d) Periodogram of spread, (e) Co-
periodogram (f) Quadrature periodogram 
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Figure 2 displays the results of a frequency-domain 
analysis of the U.S. data. The size of the periodogram at a 
particular frequency indicates how strongly oscillations of 
this frequency are represented in a time series. The co-
periodogram indicates for each frequency how strongly 
two time series oscillate with a phase difference of zero or 
half a cycle and the quadrature periodogram indicates how 
strongly they oscillate with a phase difference of a quarter 
cycle. Figure 3 displays the co-periodograms of GDP 
growth and (lagged) spread for all nine countries. Figure 2 
and Figure 3 show that the variance of the growth rate, the 
variance of the spread, and the covariance between the 

growth rate and the spread are largely determined by the 
low frequency components of these time series. A band-
regression approach may therefore be promising. Thus, 
the shrinkage estimator (24), which has been derived in 
the previous section, is also included in the comparative 
study. Table 1.b shows the results. Again, cumulative 
sums of absolute forecast errors are displayed separately 
for each country to provide more detailed information 
about differences in the forecasting performance (see 
Figure 4). Apparently, focusing only on some low 
frequency band has no effect on the forecasts utilizing the 
spread. They are just as bad as before. 
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Figure 3. Co-periodogram of GDP growth and lagged spread: (a) USA (b) Japan (c) Germany (d) UK (e) France (f) Italy (g) Spain (h) Canada (i) 
Australia 

However, when the spread is replaced by a variable 
with predictive power additional to the dummy variable, 
the band-regression approach works quite well. The best 

results are obtained when the concepts of downweighting 
and band regression are combined (see the last line of 
Table 1.b). A suitable upper limit bound for the frequency 
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band is in the range from 0.15π and 0.25π. The fractional 
BIC  

 log( ( )) ( 1) log( )r
mn S r k n+ +  (52) 

selects also an upper bound in that range (on an average 
about 0.15π). In contrast, the fractional AIC  

 log( ( )) 2( 1) r
mn S r k+ +  (53) 

is of little help as it typically selects all frequencies. Both 
the fractional AIC and the fractional BIC are obtained 
from their conventional counterparts simply by replacing 
the degrees of freedom k occurring in these criteria by the 
fractional degrees of freedom kr/m. 
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Figure 4. Cumulative absolute forecast errors of band regression (r=0.2m) models 1+x SW (red), 1+x AW (gold), 1+L(y) SW (green), 1+L(y) AW 
(blue) relative to standard regression model 1+x SW (black): (a) USA (b) Japan (c) Germany (d) UK (e) France (f) Italy (g) Spain (h) Canada (i) 
Australia 

4. Discussion 
Using frequency-domain information for forecasting 

purposes is a nontrivial task because it is not clear how the 

information contained in the phases should be processed 
unless there are strict periodicities. In contrast, forecasts 
based on time-domain models such as ARMA models 
depend only on the most recent observations and thereby 
utilize phase information automatically. Of course, 
estimates of the parameters of time-domain models can 
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also be obtained indirectly from the amplitudes, but this 
extra effort will only be worthwhile if there is some 
advantage over straightforward time-domain estimation. 
For example, if a linear relationship between variables 
exists only in a certain frequency band, it will make sense 
to focus just on this frequency band and ignore the other 
frequencies. However, the improved estimator of the 
linear relationship obtained in this way, i.e., the band-
regression estimator, is only relevant for certain 
frequencies and completely irrelevant for the other 
frequencies. The estimator proposed in this paper 
therefore forges a compromise between these extremes by 
shrinking the band-regression estimator towards zero, 
where the right amount of shrinkage is determined by 
imposing frequency-domain restrictions on the 
conventional time-domain estimator. 

This estimator is then applied to forecast international 
GDP growth rates and its forecasting performance is 
compared with that of other estimators. In addition, the 
effect of downweighting older observations to take care of 
structural breaks is examined. The new estimator applied 
to downweighted observations comes out best. 
Remarkably, it makes no difference whether or not the 
slope of the yield-curve is included in the model. Previous 
evidence that this variable may be a valuable leading 
indicator of GDP growth is attributed to a possible 
misspecification of the univariate dynamics of GDP 
growth. 

In principle, the pooling of cross section and time series 
data would allow the investigation of country specific and 
time specific factors. However, this is beyond the scope of 
this paper and is left for future work.  
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