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Abstract

The Internet is rapidly growing as a marketing medium. This year online ad-

vertising expenditures will reach approximately $20 billion in the US alone. Two

formats dominate online advertising: (i) Web sites buying advertising links from

each other and (ii) search engines selling sponsored links on their results pages. The

first part of the dissertation studies the former advertising model and investigates

the network structure that emerges from advertising links. In a world in which con-

sumers ‘surf’ the WWW, Web sites’ revenues originate from two sources: the sales of

content (products and services) to consumers, and the sales of links (traffic) to other

sites. In equilibrium, higher content sites tend to purchase more advertising links,

mirroring the Dorfman-Steiner rule. Sites with higher content sell fewer advertising

links and offer these links at higher prices. Thus, sites seem to specialize in terms

of revenue models: high content sites tend to earn revenue from sales of content,

whereas low content sites tend to earn revenue from sales of traffic (advertising). I

test these findings in a variety of empirical studies. The second part of the disserta-

tion explores the other dominant form of online advertising: paid placement. Here, a

search engine auctions sponsored links next to the search results. Advertisers submit

bids for the price that they are willing to pay for a click. The model focuses on

two key characteristics of this problem: (i) the interaction between the search list

and the list of sponsored links and (ii) the dynamic forces that influence bidding

behavior when sites compete for the sponsored links over time. The findings explain

the seemingly random order of sites on the sponsored links list and their variation

over time. The results have important managerial implications for both sellers and

buyers of online advertising.
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1 Introduction

The Internet and its most broadly known application, the World Wide Web (WWW)

are gaining tremendous importance in our society. The Web represents a new medium

for doing business that transcends national borders and attracts a significant share

of social and economic transactions. A large part of these transactions involves

advertising. The most basic form of advertising on the Web is when a Web site sells

an advertising link by displaying an ad on one or more of its pages for which the

advertiser pays a fee based on the page impressions or the clicks on the ad. A site

can be an advertiser and a publisher of advertising at the same time. In this way,

Web sites buy and sell the traffic of potential consumers who visit them.

A key feature of the WWW is that it is a decentralized network that evolves on its

own, based on its members’ incentives and activities. The goal of the dissertation’s

first part is to develop a model that helps understand what structure emerges from

this decentralized network formation process. Understanding this network structure

is important for all firms participating in e-commerce. The network structure has

a crucial role in determining the flow of potential consumers to each site, which is

key for demand generation. A primary interest of search engines, for instance, is

to understand how sites’ contents are related to their connectedness on the Web.

In turn, Web-sites need to be strategic about connecting themselves in the Web to

ensure that search engines correctly reflect or even boost their rank under a given

search word.1 Indeed, “search-engine optimization” has grown into a $1.25 billion

business with a growth rate in 2005 reaching 125%.

The second part will examine a new but rather popular form of advertising:

1In response to Google’s regular updates of its search algorithm, different sites shuffle up and
down wildly in its search rankings. This phenomenon, which happens two or three times a year
is called “Google Dance” by search professionals who give names to these events as they do for
hurricanes (see “Dancing with Google’s spiders”, The Economist, March 9, 2006).
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search advertising. Potential advertisers bid for a place on the list of sponsored links

that appears on a search engine’s “results” page for a specific search word. In 2006,

the revenues from such paid placements have doubled compared to 2005, reaching

almost $16 billion2. This fast growing market is increasingly dominated by Google,

which today, controls some 56 % of Internet searches. How such advertising is priced

and what purchase behavior will advertisers follow for this new form of advertising

is investigated in this section.

I develop a model, that takes into account different aspects of paid search adver-

tising. In doing so, my goal is to shed light on the advertising patterns observed on

Google search pages. Specifically, search pages can be characterized by a variety of

patterns in terms of the identity and position of sponsored links. In particular, there

is no clear relationship between the “results list” of search and the list of sponsored

links. Sometimes, a site may appear in both or in only one (either one) of the lists.

For example, for the search word “travel”, the two lists are different. However, for

the search word “airlines”, United Airlines appears as the first search result and the

second sponsored link. One can also observe significant fluctuations in the sites’

order in the sponsored links list. Besides generating normative guidelines to both

advertisers and the search engine on how to buy and sell sponsored links, my model

generates testable hypotheses that account for the variations described above.

It is important to confront the analytical results with empirical data. The third

part of the dissertation contains several empirical studies. In the first study, I com-

pare the results to previous empirical work (Broder et al. 2000, Faloutsos et al. 1999)

that examined the degree distribution of the WWW. A broad result found across

these studies is that links follow a scale-free power-law distribution with an expo-

nent of around 2. It is an empirical puzzle however, that this degree distribution

2See “Where is Microsoft Search?”, Business Week, April 2, 2007, p. 30. Total revenues from
paid placements is expected to reach $45 billion by 2011.
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is the same for both in- as well as out-links. In this study I show, how the model

can explain this pattern. In the second study, I collect data from a search engine.

For a variety of search words, I record how much advertising Web sites in different

positions sell and relate this to their content. This study confirms the hypothesis

that Web sites with lower content sell more advertising. Finally, in a third study, I

examine sites that buy advertising on Google search pages in the form of sponsored

links. On these sites, I estimate the amount of sold advertising and confirm that this

quantity is in an inverse relationship with the site’s profitability.

The rest of this dissertation is organized as follows. In Section 2, I summarize

the model and the results on the structure of the Web. Then, in Section 3, I present

the search advertising model. In Section 4, I describe the empirical analysis. Finally,

I conclude with a discussion of the results.
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2 Network Formation and the Structure of the

Commercial World Wide Web

The WWW includes an extremely broad community of Web sites with a vast array

of motivations and objectives. We cannot pretend to be able to capture all relevant

behaviors on such a diverse network. Rather, we restrict our attention to the com-

mercial WWW, by which we mean the collection of interlinked sites’ whose objective

is to profit from economic exchange with the public and/or each other. In the fol-

lowing, by WWW, we will always refer to this “sub-network”. As such, our goal is

to explain the network formation process and the resulting network structure of the

commercial WWW.

The primary way through which sites can drive traffic to themselves is the pur-

chase of advertising links.3 At the same time, each site also has the option to sell

the traffic reaching it by selling such advertising links to other sites. In a network

where each site is a potential advertiser and a potential seller of advertising, what

determines the tradeoff between selling content or advertising? In particular, how

does this tradeoff depend on the site’s popularity or attractiveness to the browsing

public? A closely related question is how should sites price their advertising links

as a function of their content. Finally, even on the commercial WWW, many of

the links are so-called “reference links”, that sites establish to other sites in order

to boost their own content or credibility (Mayzlin and Yoganarasimhan 2006). Sites

need to understand, how such links complement or interact with advertising links

to determine the ultimate network structure. Addressing these practical problems

requires the understanding of the “forces” that drive the evolution of the network’s

structure and the resulting competitive dynamics.

3In 2006, Internet advertising has reached $10 billion with a yearly growth rate of over 25% (see
“Marketing Budgets Are Up 46% for Q2”, www.emarketer.com, July 5, 2006).
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Specifically, we propose a network model in which the nodes represent rational

economic agents (sites) who make simultaneous and deliberate decisions on the ad-

vertising in-links they purchase from each other. Agents are heterogeneous with

respect to their endowed “content”, which may be thought of as their inherent value

in the eyes of the public/market. Consumers are assumed to ‘surf’ on the web of

nodes according to a random process, which is nevertheless closely linked to the net-

work structure. Sites generate revenue from two sources: (i) by selling their content

to consumers and (ii) by selling links to other sites. We start by assuming that the

price per traffic of each link is an increasing function of the originating site’s content.

Next, we show that this is indeed the case in an equilibrium where sites first set their

prices for advertising links and then purchase links at these prices in a second stage.

We also extend the model to the case where beyond buying and selling advertising

links, sites can also establish reference out-links to each other at a small cost. Finally,

we explore the situation when a substantial part of the public uses search engines. In

this context, we ask what happens when nodes represent multiple content “areas”.

We find that in equilibrium, higher content sites tend to buy more advertising

links, mirroring the Dorfman-Steiner rule well-known for traditional media but, so

far, not explored for a network medium. Similarly, reference links tend to point

to high content ones. As such, in equilibrium, the number of all in-links is closely

correlated with the site’s content. This explains why search engines have so much

success using algorithms based primarily on in-links (e.g. Google’s Page Rank) for

ordering pages in terms of content in the context of a search word. The model also

has a number of practical implications for the pricing of Internet advertising. We

find for instance, that sites with higher content should set a higher price-per-click for

their advertising links. This, combined with our result on the purchase of advertising

links indicates that there is a tendency for specialization of commercial sites’ business

models. Higher content sites emphasize product sales driving traffic to the site, while
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lower content ones emphasize the sales of traffic by mainly selling advertising links.

Therefore, high content sites tend to sell fewer advertising links than low content

sites. Figure 1 shows the example of “aa.com” and “kayak.com”. Both sites sell

airline tickets and related products. American Airlines supposedly makes a higher

margin on its visitors since it sells its own tickets, whereas Kayak does not get any

revenue from selling the tickets, therefore the former is a high content site, whereas

the latter is a low content site. As the figure shows, the sold advertising quantities

support our results that the low content site sells more advertising (on the right

under “sponsored”) than the high content site.

The two sites in Figure 1 constitute the two extreme types. However, according

to the results sites with a medium content also sell advertising but not huge amounts.

The example in Figure 2 show the site “travelocity.com”. This site also sells plane

tickets and charges a fixed amount for each ticket, therefore its profit margin is higher

than Kayak’s but lower than an airline’s. As the snapshot of the site shows, it sells

one advertising link in the bottom of the page, which fits into the pattern that our

results suggest.

A tendency for specialization also exists in content areas. Specifically, if we allow

sites to cover multiple content areas, we can show that, the more consumers use search

engines, the more sites have an incentive to specialize in terms of content areas.

Finally, we can show that the above equilibrium patterns are generally consistent

with the empirical reality of the commercial WWW. In particular, we find that in-

links follow a similar degree distribution as out-links as it is empirically observed on

the WWW, but not predicted by existing models of network formation.

While the marketing literature related to the Internet has grown considerably in

recent years, there is virtually no research exploring the link-structure of this new

medium or the likely forces that drive its evolution. This is not to say that social

sciences and economics in particular have not examined the endogenous formation
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Figure 1: High and low content sites: aa.com and kayak.com
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Figure 2: A “medium” content site: travelocity.com
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of networks. In an influential paper, Bala and Goyal (2000), for instance, develop a

model of non-cooperative network formation where individuals incur a cost of forming

and maintaining links with other agents in return for access to benefits available to

these agents. Recent extensions of the model (Bramouille et al. 2004) also consider

the choice of behavior in an (anti-)coordination game with network partners beyond

the choice of these partners.4 These models have several features, which do not really

apply to the WWW. First, they concentrate on the cost of link formation, which is

shown to be critical for the outcome. More importantly, the above papers consider

that individuals in the network are identical. For example, in Bala and Goyal (2000),

linking to a well-connected person costs the same as connecting to an idle one. This

is clearly not the case on the WWW, where large differences exist between the sites’

contents and their connectedness. Also, on the WWW the cost of establishing a link

largely depends on where this link originates from. Finally, the equilibrium networks

emerging from the above models clearly do not comply with the structure of the

WWW. Bala and Goyal (2000), for instance, find two possible equilibrium network

architectures, the “wheel” and the “star” or their respective generalizations.

Our work also relates to the vast literature on advertising (see Bagwell (2005) for

a good recent review).5 Of particular interest for us are studies dealing with adver-

tising firms’ choices of advertising quantities and the pricing of advertising by media

firms. Advertising quantities have been known to be determined by the advertisers’

product margins (Dorfman and Steiner 1954) and, of course, by the effectiveness of

advertising. Advertising expenditures have also been shown to be affected by prod-

uct quality in a variety of context. Nelson (1974) and Schmalensee (1978) develop

4See also Jackson and Wolinsky (1996) for an early paper concerned with the relationship be-
tween social network stability and efficiency and Jackson (2003) for a recent summary of this
literature.

5See Zeff and Aronson (1999) for an early summary of advertising on the Internet and Hoffman
and Novak (2000) for a qualitative description of online advertising pricing models. See also Iyer
and Padmanabhan (2006) on Internet referral services.
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a theory of advertising as a signal of quality. Villas-Boas (2004) studies advertising

effort in the context of discrimination between high and low quality products and

Agrawal (1996) computes equilibrium advertising levels in the presence of differential

brand loyalty. Our model does not map into these situations but our results linking

advertising quantities to sites’ content relate to the variety of outcomes identified in

these papers.

On the supply side, recent papers in marketing (see Dukes and Gal-Or 2003)

have shown that advertiser- and media-competition also have a significant effect on

advertising quantities. Advertising prices have also been shown to be influenced by

the above market features but recently, two additional factors have been revealed to

be of further interest: (i) the disutility of advertising (Masson et al. 1990) and (ii)

the competitive pricing of media content (Godes et al. 2006). Our paper builds on

this literature but is markedly different from it in many respects. First, our model

studies advertising via links of a network, i.e. advertising effectiveness is endogenous

as it depends on the network’s structure. Also, advertising is used to increase traffic,

not to inform, nor to signal quality or affect brand loyalty. More importantly, in our

model, advertisers and the media are not separate entities. Each site is a buyer as

well as a seller of advertising. A central question is: which one of these activities

dominates and how does this decision depend on the site’s content.

Finally, our work is also related to recent papers modeling consumers’ browsing

process on the WWW. Our demand structure is based on the classic model by Brin

and Page (1998) to provide a consistent description of how consumers flow on a

complex network of sites. We use some of the recent mathematical results related

to this framework, in particular Langville and Meyer (2004). We extend our model

using the concept of a reference-link, as in Mayzlin and Yoganarasimhan (2006), to

designate out-links that sites establish to other sites in order to improve their own

perceived value by consumers. With these elements, we develop a model that is more

15



consistent with the reality of the WWW than those of the existing network formation

literature.

The next section presents this basic model, which considers advertising links

and exogenous prices. Section 2.2 extends this model to a two-stage game where

sites price advertising links in the first stage and then, purchase in-links from each

other. Section 2.3 explores two further extensions: (i) the introduction of reference

out-links and (ii) the existence of search engines in a context where content is multi-

dimensional. The section ends with a general discussion and concluding remarks. To

improve readability, most proofs have been delegated to the Appendix.

2.1 The Model

We describe Web sites and the links between them as a directed graph, G. The nodes

of the graph correspond to the sites and the directed edges to the links between the

sites. Let i→ j denote if there is a link from node i to node j and i 6→ j if there is

no link between them. The number of links going out from a site is the out-degree

of the site, denoted by douti , and the in-degree is the number of its incoming links,

denoted by dini .

It is important to note that we consider as the unit of analysis a single Web site,

which may possibly include multiple pages. Technically, on the WWW, the nodes

correspond to the Web pages. However, most of the time, a Web site offering a single

product consists of several pages having almost all links established between them.

The incoming links of the site usually go to one of the main pages and the outgoing

links can go from any page. We argue that in a model of network formation, these

pages should be considered as one single node representing the Web site. All the links

going out and coming into a site’s sub-pages should be assigned to this one node.6

6This perspective is shared by search professionals. When Google calculates the rank of a page
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Beyond structural reasons, considering sites as the unit of analysis also makes sense

because they represent a single decision maker.

In what follows, we will describe consumers’ browsing behavior on such a graph,

followed by the description of the network formation game played by the sites. In

doing so, we need to stay at a relatively high level of abstraction. In particular, we

will consider a homogeneous group of consumers and a reduced form profit function

for sites.

2.1.1 Consumer browsing process

The primary task in modeling the WWW is to describe the process through which

users browse the Web, i.e. how they move from one site to the other. We will

consider these users as potential consumers, who may buy the content (product)

sold at a particular site. We normalize their total number to 1. Furthermore, we will

neglect consumer heterogeneity and simply assume that a consumer reaching a site

may consume the content of that site or “purchase” it with probability ρ, that we

can assume to be 1, without loss of generality. Our goal is to establish the number of

visitors at a site (in a given unit of time). To do this consistently is not a trivial task

because the weight (incoming traffic) of incoming links depends on how much traffic

reaches their originating sites, i.e. how many in-links the incoming links themselves

have. Obviously, two incoming links have very different effect on a site’s traffic if

they originate from different locations. In other words, we need to describe the flow

of consumers consistently across all nodes of the network.

We will use the simple but very powerful solution proposed to this problem by

Brin and Page (1998), which became one of the basic principles for Page Rank, the

in its search function for instance, it calculates it for the whole site and not for single pages within
a site. A possible way to do this is to consider all the pages that are in the sub-directories under
the same domain name of a site. For example any page with an address “www.amazon.com/...” is
considered as part of the “Amazon” site.
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algorithm that Google’s search engine uses to order Web pages. Assume n sites and

imagine that the total mass of consumers (1 unit) is initially distributed equally

between these n sites. A consumer follows a random browsing behavior in every

step. Starting from site i, with probability δ, s/he randomly follows a link going

out from that site or stays there, choosing each of these douti + 1 options with equal

probability.7 With probability 1− δ, s/he jumps to a random site on the Web, again

choosing each site with equal probability. The number of steps while the user follows

the links without jumping then follows a geometric distribution, with expectation

1
1−δ . δ is called the “damping factor” and in practice it is often set to δ = 0.85,

which corresponds to an expected “surfing distance” of around 6.67, that is, almost

seven links. Figure 3 illustrates the flow of consumers following the links.

It can be shown that the iteration of the above process results in a limit distri-

bution of consumers between Web sites. This limit distribution is called Page Rank

(PR).8 It can be thought of as the number of visitors at a Web site per unit time.

By definition, PR has to satisfy the following equation:

ri =
1− δ
n

+ δ

(
ri

douti + 1
+

ri1
douti1 + 1

+
ri2

douti2 + 1
+ . . .+

rik
doutik + 1

)
, (1)

where ri is the Page Rank of site i (i.e. the proportion of visitors reaching it),

i1, i2, . . . , ik are the sites linking to site i and doutij denotes the number of links going

out from site ij, that is the j-th site linking to site i (without counting the loops).

Describing the process over time for all sites, let r(t) denote the row vector result-

ing from the iteration after step t. With this notation r(0) denotes the initial vector

7The event when a consumer stays at the website can be formally represented by drawing a loop
around the node.

8Although Page Rank usually refers to the score that Web sites receive from Google, we use
Page Rank to describe the scores that are calculated of this simple version of the algorithm.
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Figure 3: Flow of visitors not showing those who jump to random pages.
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of the iteration which, we set without loss of generality to r(0) = ( 1
n
, 1
n
, ..., 1

n
), i.e. we

distribute browsers uniformly across all nodes. The iteration is defined through the

M transition probability matrix, whose cells are:

[M ]ij =

{ 1
dout

i +1
, if (i→ j),

0 otherwise.

Notice, that the i-th row of the matrix represents node i and the number in cell ij

represents the probability of moving to node j from node i. Using M , the iteration

described above reads:

r(t+1) = δ · r(t)M + (1− δ)r(0). (2)

If the series r(t) is convergent as t→∞ and it converges to r, then r provides the PR

values of the nodes in the network. These can be thought of as the steady number of

visitors at a Web site per unit time. It can be shown using Markov-chain theory that

the iteration is indeed convergent if the graph satisfies some properties (see Langville

and Meyer (2004) for details). We only use the following lemma.

Lemma 1 (Langville and Meyer 2004) If r(t) is a probability distribution for

every t, then the series is convergent as t→∞.

Obviously, in the initial step, r(0) is a probability distribution, but r(t+1) does not

satisfy this unless each row of the matrix M contains at least one non-zero element,

that is, every node in the graph has at least one out-link. The loops added to the

nodes ensure that this holds.

Using the matrix form of definition (1), if iteration (2) is convergent and it con-

verges to r, then it has to satisfy:

r = δ · rM + (1− δ)r(0). (3)
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Notice that if r is a probability distribution, then for any matrix [U ]ij = 1
n
, rU =

( 1
n
, 1
n
, ..., 1

n
). Hence (3) can be written as

r = δ · rM + (1− δ)rU = r(δM + (1− δ)U). (4)

This formula helps interpret the meaning of Page Rank by describing it as the

weighted average of two matrices (M and U) each representing a different random

process. M contains the transition probabilities across linked sites, i.e. it moves

browsers along the links of the network. Thus, it encapsulates the structure of the

Web. In contrast U represents a process that scatters browsers randomly around

to any of the sites. The weights given to these two processes are defined by δ, the

damping factor.9 Thus, Page Rank and the underlying process is a consistent de-

scription of how traffic is distributed across sites for any given link structure of the

network.

2.1.2 Network formation

Assume that there are n nodes (sites) with given constants c1 ≤, . . . ,≤ cn, represent-

ing their contents. These content parameters can be thought of as some measure of

the Web sites’ value for the public in a particular content domain. For instance, the

site may sell a product and c may represent consumers’ willingness to pay for this

product. Then, the variation in c may be thought of as heterogeneity across sites in

terms of product quality. In this spirit, we assume that the site’s net revenue from

a consumer is proportional to this parameter: the higher the public values the site,

the higher the income from a consumer visiting it. The site’s net revenue will also

be proportional to the total number of consumers being at the site, as measured by

9It is also interesting to note that r is the eigenvector of the matrix δM + (1 − δ)U with its
principal eigenvalue, 1.
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ri, i.e. site i’s total income from its consumers is:

rici.

The cost of each site has a fixed and a variable component. The fixed component

can be set to 0 without loss of generality. We assume that the variable component

(e.g. a shipping cost) that is proportional to the number of visitors is identical across

sites. Let C denote this per-visitor cost. Then, the total cost of a site is:

riC.

We assume that there is a market for links between sites. Every node, i offers

links for a fixed price-per-click, qi, which varies across nodes as will be clarified

below. This is consistent with general media (or Internet) practice where ad rates

are typically quoted as “rates per click-through”.

The number of clicks on a particular link can be calculated from the consumer

flow model. If site i has traffic ri and douti out-links, then the number of visitors

clicking on a particular out-link will be δri/(d
out
i + 1). Then, the total price of an

advertising link from site i will be pi = δriqi/(d
out
i + 1).

If another node purchases a link then this link will be created and pointing from

the seller to the buyer. Given prices, nodes makes simultaneous decisions about their

incoming links, that is, which other nodes they buys links from. Each node is allowed

to buy one link from every other node. Essentially, this market can be thought of

as the advertising market. If a node buys a link, it pays for an advertisement to be

placed on the seller’s page.

In our baseline model, the per-click prices for links are exogenous but we will

relax this assumption in Section 2.2.2. Specifically, in this section we will assume

that qi = q(ci) is an increasing function of content ci and that prices are not too

high (see (24) in the Appendix). In Section 2.2.2, we show that in a two-stage game
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where prices are set first, followed by the purchase of links, equilibrium prices are

indeed set this way. Nevertheless, even this exogenous pricing structure as reflected

by the choice of q(c) is quite intuitive. Price-per-click increasing in content allows

us to capture the basic tradeoff between keeping a consumer or handing it over to

another site. The higher the gain from a consumer (i.e. the higher c), the higher the

site wants to charge for potentially letting him/her to surf to another site. In other

words, this price function captures the tradeoff between sites’ two revenue streams.10

With these elements, a site’s profit, for a given network structure consists of its

income from its consumers plus the advertising income (from sold links) minus the

advertising costs (of bought links). Formally:

ui = ri(ci − C) + pi · douti −
∑
j→i

pj. (5)

2.1.3 Equilibrium analysis

Our objective is to determine the Nash-equilibria of a game where players’ objective

function is given by (5) and their strategies consist of buying links from one another

in a simultaneous decision. These equilibria represent a network or a graph (a set

of links between the nodes) and our main interest is in understanding the structure

of this graph. The following proposition describes the general structure of these

equilibria.

Proposition 1 At least one Nash-equilibrium always exists and all the equilibria

have the following properties.

10Notice, that in our model, sites control their sold advertising links only through their pricing.
This may not entirely capture the strategic interaction between sites. For example, a site may not
allow advertising by a strong rival even at a high price. We will discuss this issue in detail at the
end of the paper and would like to thank the review team for pointing it out.
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(i) The out-degree is a weakly decreasing function of content in the following sense.

If, for a given pair of nodes ck < cl, then doutk ≥ doutl .

(ii) If all the content parameters are different, then in-degree and Page Rank are

increasing functions of content.

Proof (Sketch): Here we give the main logic of the proof while the detailed proof

is provided in the Appendix. In the first step, we show that in equilibrium all the

nodes buy links from the nodes with the lowest q’s. This does not mean that they

will buy from the nodes charging the lowest price for links, but rather from those,

which sell their traffic at the lowest “per-click price”. Based on the increasing price

structure, these must be the sites with lowest content parameters, hence out-degree

is a decreasing function of the content parameter. Then, we show that nodes with

higher content can buy more links, hence in-degree is an increasing function of the

content. Due to the special structure of the network this yields that the Page Rank

is also an increasing function of content.

Figure 4 shows a possible equilibrium network structure. Once the nodes are

arranged according to their content (top left graph), the network structure reveals

the simple tendency whereby most links originate from low content pages (small dots)

and are directed towards high ones (large dots). The lower part of the figure shows

how in- and out-links depend on content, where nodes are arranged in increasing order

of content. Of course, if we suppose that all the content parameters are different, then

(i) is equivalent to saying that the out-degree is a decreasing function of the content

parameter. If there are identical content values, the nodes can still be ordered (as is

done on the figure) such that both the contents are increasing and the out-degrees

are decreasing.

This general equilibrium structure of the model, that advertising links tend to

go from lower content sites to higher content ones, is quite interesting. Essentially,
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Figure 4: The top two figures depict the same network, a possible equilibrium network,
where larger nodes denote higher content. The bottom graphs represent the number of
out- and in-links for each node, where nodes are arranged in increasing order of content.
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it means that high content sites are the most important buyers of advertising. This

result is similar to the Dorfman-Steiner advertising rule well-known in traditional

media.11 It is particularly interesting that this result continues to hold even in a

network context where sellers of advertising are competing for traffic to sell their own

content. The result also seems to have face validity as the biggest advertising sites

tend to be large well-known brands. Surveying the last decade in online advertising,

DoubleClick, for example, documents that by 2005, Fortune 500 companies’ share

of all online advertising reached 30% and has steadily increased over time. Similar,

trends emerge for Europe as well.12

The result is also interesting, because it suggests that sites have a tendency to

specialize in their business model. Certain sites, the ones with low content specialize

in selling links (i.e. traffic), while sites with high content tend to buy links (advertise)

in order to benefit from content (product) sales. However, there are also sites that

do both, which is specific to the Web.

To summarize, the network’s formation is characterized by two features: (i) pages

tend to buy links from other sites with lower contents and (ii) the higher the content

of a site the more links it will buy from other sites. This results in a network where

the number of in-links correlates with the value of the corresponding site.

2.2 Endogenous prices and infinitely many sites

After analyzing network formation with per-click prices as parameters, we now study

a game where prices and links are both decision variables. In particular, a key driver

of our results so far was the assumption that qi is increasing in content. Our goal is to

show that this is true even with endogenous prices and that the network formation

11We would like to thank the Area Editor for pointing out this similarity.
12See, “The Decade in Online Advertising” and “The Online Advertising Landscape in Europe”,

DoubleClick, April/September 2005 as well as Zeff and Aronson (1999) p.7.
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results hold. Specifically, we analyze a two-stage game where in the first stage,

sites set per-click prices for advertising links and in the second stage, they establish

links between each other, given prices. The second stage game, as it was described

in Section 2.1.2, would be too complex to solve for any fixed set of qi parameters.

However, the size of the Web suggests that we should consider the case when the

number of players is large enough so that a single site’s decision does not have a

significant effect on the other sites. To capture this idea, we suppose that there are

infinitely many sites or a continuum of sites. We describe such a model next.

2.2.1 Network formation

In the infinite version of the original network formation game, suppose that the set of

players is the interval I = [0, 1] and each player corresponds to a node of the infinite

directed graph.

Definition 1 A directed graph on the set I is defined as a subset G ⊆ I × I, where

an element (x, y) ∈ G corresponds to a directed link from x ∈ I to y ∈ I.

The definition of the degrees of the graph requires measure theory. We will call the

subsets of I measurable if they are measurable with respect to the Lebesgue-measure

on the interval I, denoted Λ.

Definition 2 The out-degree of x ∈ I in the graph G, is the measure of those nodes

to which links from x exist, that is dout(x) = Λ{y ∈ I|(x, y) ∈ G} if the set is

measurable, otherwise the out-degree does not exist. Similarly, the in-degree of y ∈ I
is defined as din(y) = Λ{x ∈ I|(x, y) ∈ G} if the set is measurable.

We will restrict ourselves to graphs where all the degrees exist, that is, the cor-

responding sets are measurable. We will show that any equilibrium graph has to be
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Figure 5: The representation of an infinite network and its degrees.
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such. Directly generalizing the game, we assume that the measurable function c(i)

provides the content of site i ∈ I and the measurable function q(i) represents the

per-click prices. We can assume without loss of generality that c(i) is increasing,

i.e. sites are ordered by content on I. The Page Rank ‘function’ is also directly

generalizable. However, in the infinite case, we have to deal with the problem of

zero out-degrees. If the set of nodes that buy links from node i, is a zero measure

set, then dout(i) = 0. In the finite case, the solution is to establish a loop around

node i, but that would also be a zero-measure set in the infinite case. Hence, we

introduce the variable s > 0, accounting for the visitors who stay at site i. Then,

the proportion of visitors who stay at the site is s
s+dout(i)

. Therefore, the equation

defining Page Rank will be

r(i) = (1− δ) + δ
s

dout(i) + s
r(i) + δ

∫
x→i

r(x)

dout(x) + s
dx. (6)

It can be interpreted as a density function describing the marginal probability of

visitors being at different sites. A (1−δ) proportion of visitors is jumping to random

pages and the rest of them are following the links. Note that, in the s = 0 case, we can

derive (6) by multiplying (1) by n and changing the notation to r(i) := nri. Then, as

n→∞ we obtain (6). To make sure that players are not indifferent between different

choices, we assume that Λ(q−1(x)) = 0 for every x, that is, not many sites have the

exact same price. The total price for a link at site i is p(i) = δr(i)q(i)/(dout(i) + s).

Then, site i has the following utility function.

ui = r(i)(c(i)− C)− p(i) · dout(i)−
∫
j→i

p(j)dj. (7)

For this infinite game, the main results that were valid for the discrete case still

hold. If q(.) is an increasing function of content and satisfies (24), there always

exists an equilibrium and in this equilibrium, in-degree is increasing and out-degree

is decreasing in content (and in i). Proposition 2 formally states this result.
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Proposition 2 If q(i) is increasing satisfying (24), and the functions c and q are

continuous, at least one pure-strategy Nash-equilibrium exists and in any equilibrium

din(i) is increasing and dout(i) is decreasing.

Proof: See the Appendix.

Since the number of players is infinite, a single player does not have a significant

impact on the game. Let us capture this by the following definition.

Definition 3 Two measurable functions q and q′ : [0, 1] → R are equal almost

everywhere (q = q′ a.e.) if Λ{x|q(x) 6= q′(x)} = 0, that is, if they only differ in a

small set.

Lemma 2 If q = q′ a.e., then the set of equilibria of the games corresponding to the

two functions are equal a.e., that is, for any equilibrium function din() for q, there

exists an equilibrium for q′ with a din
′
() = din() a.e.

Proof: Let X denote the set {i|q(i) 6= q′(i)}. The payoffs and the optimal decisions

do not change for the sites that are not in X. For those, who are in X, the optimal

decisions may be different, but these players are in a null set.

Now that we have characterized the equilibria in the second stage (network for-

mation) game, we will show that q(i) is increasing in any equilibrium of the two-stage

game.

2.2.2 Price setting

In the first stage, every site selects its q(i) simultaneously, only knowing the content

function. In the second stage, sites establish links. Since the two-stage game may

have several sub-game perfect Nash-equilibria, even unreasonable ones, we will rule

out some of them based on Lemma 2.
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Definition 4 A sub-game perfect equilibrium (q, E(q)) of the two-stage game is a

refined sub-game perfect Nash-equilibrium, if

(i) E(q) is a pure-strategy Nash-equilibrium of the second stage and

(ii) If q = q′ a.e., then E(p) = E(p′) a.e.

This definition makes sure, that to any refined SPNE corresponds an SPNE, and

any SPNE with the property that an infinitesimal perturbation in prices (q ∼ q′)

leads to a qualitatively different network in the second stage is not a refined SPNE.

Therefore, sites have an expectation about the second stage’s network structure in

the first stage, and this expectation does not change if only a few sites change their

prices. This approach ignores certain direct strategic effects of the pricing decision.

Specifically, we assume that sites react to the distribution of prices across all other

sites. With infinitely many sites, this distribution does not change if a single site

alone changes its price. This assumption is realistic in the context of the WWW

where there are over 10 billion pages and no site dominates the traffic on the entire

network. Using this equilibrium concept, our main result is the following.

Proposition 3 For any refined SPNE of the two-stage game, the first stage’s q(.)

function has to be increasing.

Proof: See the Appendix.

The significance of Proposition 3 is that it supports our assumption that in the

network formation stage of the game, the per-click prices of advertising links increase

with respect to the sites’ content. Among other findings, this reinforces our previous

result that sites tend to be specialized in terms of their revenue models. Sites with

low content tend to sell traffic to higher content sites by selling advertising links for

relatively low prices. Figure 6 shows a possible infinite equilibrium network. High-
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Figure 6: The representation of an equilibrium network. The horizontal axis repre-
sents content and the outdegrees can be read from the vertical axis.
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content sites on the other hand benefit more from the sales of their content to the

public. They price their advertising links high and, as a result, sell few advertising

links.13 The intuition behind the result is that sites with a higher content have a

higher potential of making profits on their visitors. Hence they set higher prices to

be able to sell fewer links. This way a higher proportion of their visitors become

their customers, resulting in a higher average margin per visitor. In the second stage

these sites purchase more advertising, since they can more effectively leverage the

traffic they buy.

2.3 Extensions

In what follows, we explore three extensions to the model. First, we allow sites to

create reference links. These are out-links that sites may establish to boost their ef-

fective content. Second, we incorporate advertising disutility in model, by assuming

that potential consumers tend to spend less if there are too many ads on a site. Fi-

nally, we explore the impact of search engines allowing sites to have multiple content

areas.

2.3.1 Reference links

So far, we have focused on a specific type of links: advertising links. These links are

established for a fee to direct consumers to the Web site of the advertiser. Here, we

introduce another type of link that is commonly used in the non-commercial Web:

reference links.14 These links also have an important role in forming the structure of

the commercial Web. Reference links are used to increase the referring sites’ content

with the help of the referred pages (Mayzlin and Yoganarasimhan 2006). The number

13“Hot, well-targeted content sites have [..] been able to command very high prices.” Zeff and
Aronson (1999), Chapter 7, p.176.

14We are indebted to one of the reviewers for suggesting this extension.
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of reference links going out from (coming in) a site is denoted by doutR (dinR). Every

node is allowed to establish one reference link from itself to every other node at

maintenance cost κ. Each site is allowed to establish an (outgoing) reference link to

every other site. The advertising links are still included in the model, as they were

in the original version, that is, each site is allowed to buy one (incoming) advertising

link from every other site. Let i →R j denote if there is a reference link from i to

j and i →A j if there is an advertising link between them, whereas the number of

incoming (outgoing) advertising links is denoted by dinA (doutA).

Thus, the strategy of player i can be described by two vectors, each consisting

of 0’s and 1’s. The first vector xR
i determines to which nodes player i establishes

reference links to (x
R(j)
i = 1 if s/he forms a reference link to node j and 0 if not). The

second vector xA
i describes which nodes s/he buys advertising links from (x

A(j)
i = 1

if s/he buys a link from node j and 0 if not). In the case when i decides to refer

to j and j decides to buy an advertising link from i, we assume that both links are

established and this is the only case when two links pointing in the same direction

are allowed between two nodes. Also, in order to get around the problem that players

might be indifferent between two or more possible choices of links, we will assume

that if a player is indifferent s/he establishes as many links as possible.

The incentive to create reference links is to increase a site’s content by referring to

other sites. Therefore, we generalize the payoff function by using the “accumulated”

or “effective” content term, which consists of two elements: (i) the site’s resident

content, ci, (ii) the sum of the content of sites linked to through reference links

multiplied by a scaling constant 0 ≤ β < 1. Therefore, the total payoff of node i is

defined as follows:

ui = ri

(
ci + β

∑
i→Rj

cj − C

)
− κdoutRi + pi · doutAi −

∑
j→Ai

pj. (8)
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Introducing the reference links makes the problem much more complex, since a

site cannot control its traffic by buying the appropriate number of advertising links,

the traffic is also affected by the incoming reference links. In order to solve the game

we use the following simplification. Instead of using the stochastic model, to describe

the flow of consumers, we use a traffic function with the following properties. Let

ri = f(dinR
i , dinA

i ) be the traffic or demand that reaches the site. f is a function

of the site’s in-degrees and we assume that it is increasing and strictly concave in

both advertising links (dinA
i ) and reference links (dinR

i ). This assumption is strongly

supported by practice and is one of the basic principles behind search engine design.

Describing Google’s search engine, The Economist claims for example, that “[t]he

most powerful determinant of a Web page’s importance is the number of incoming

referral links, which is regarded as a gauge of a site’s popularity”.15 We also make

the natural assumption that f has increasing differences in dinR
i and dinA

i . That is,

f(x+h1, y+h2)−f(x, y+h2) ≥ f(x+h1, y)−f(x, y) for any x, y ≥ 0 and h1, h2 ≥ 0,

i.e. the two kinds of in-degrees are weakly complements. Then, the utility function

becomes:

ui = f(dinA
i , dinR

i )

(
ci + β

∑
i→Rj

cj − C

)
− κdoutRi + pi · doutAi −

∑
j→Ai

pj. (9)

With this generalization we can show the following.

Proposition 4 If pi = p(ci) is increasing, then the game has an equilibrium, and

in any equilibrium, if ci > cj then dinR
i ≥ dinR

j , doutAi ≤ doutAj , dinA
i ≥ dinA

j and

doutRi ≥ doutRj .

Proof: See the Appendix.

15Ibid. See also “How Google works”, The Economists Technology Quarterly, September 18,
2004.
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Figure 7: A possible equilibrium network obtained in a simulation, n=25

Keeping the assumption that prices are increasing in content, we can show that

the structure of the network formed by the advertising links is qualitatively the same

as without reference links. The network formed by the reference links has a similar

structure but with the opposite order of out-degrees. For both networks, the in-

degrees are increasing in content, whereas the out-degrees are decreasing in content

for advertising links and increasing for reference links. Figure 7 shows a possible

equilibrium network.

The intuition for the distribution of reference links is quite simple. Clearly, each

site will try to establish reference links to the highest content sites, which benefit
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more from these in-links as they have a higher margin on the additional traffic gen-

erated by these in-links. Therefore, high content sites can afford to establish more

reference out-links increasing their margin even more. The presence of advertising

links intensifies this effect since outgoing reference links and incoming advertising

links are complements. The more reference links a site establishes the more advertis-

ing links it has an incentive to buy. Thus, the increased traffic from these advertising

links results (indirectly) in extra profit from outgoing reference links.

The general feature of the equilibrium network, that higher content results in more

reference in-links is very interesting. It provides, for instance, an explanation for why

the famous search engine, Google had so much success introducing the quantity Page

Rank for search. Google’s objective is not only to find all the pages containing the

search expression, but also to rank them according to their content. Since measuring

content directly is difficult, it can use Page Rank as an indirect measure because,

according to our model, in equilibrium, high Page Rank should be correlated with

high content.

2.3.2 Advertising disutility

The obvious downside of selling advertising links is that visitors leave the site before

making a purchase. However, consumers may also be annoyed by ads leading to a

decreased willingness to pay. Here, we extend the model by assuming that consumers’

utility decreases if the site that they visit contains many advertisements. This will

decrease their willingness to spend money on that Web site. We will capture this

phenomenon by introducing a negative element in the content term that linearly

increases with the (advertising) out-links. Thus, the total payoff of site i is defined

as follows.

ui = ri(ci − γdouti − C) + pi · douti −
∑
j→i

pj,
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in the case with only advertising links and

ui = ri

(
ci + β

∑
i→Rj

cj − γdoutAi − C

)
− κdoutRi + pi · doutAi −

∑
j→Ai

pj

in the general case with reference links. γ ≥ 0 measures the disutility for advertising.

A closer examination shows that the introduction of advertising disutility does not

change the complexity of the problem; the outcome of the game and the proofs

are essentially the same. The reason is that in all the results the out-degrees are

decreasing in content. Subtracting this decreasing term from the increasing content

makes it even more increasing. This makes the results more accentuated with a

higher γ parameter, that is, with consumers more sensitive to the negative effects of

advertising.

2.3.3 Search engines and multiple content areas

Search engines (SE) play an important role in the formation of the network. If some

consumers use SEs, then the number of visitors at a Web site does not only depend

on the structure of the network but also on how search engines display the site in

the result of a given search. Today’s SEs use a twofold method to determine which

pages and in what order to display the result of a search. On the one hand, they

measure content directly, on the other hand, they measure content indirectly through

the structure of the network, using methods such as Page Rank. To examine the

effect of SEs we will assume a single SE that filters the s highest content sites for

its users, where s is a fixed integer. We also assume that traffic is distributed across

these s sites proportional to each site’s Page Rank. Note that we do not consider

the SE as a strategic player.

As will become clear later, when considering SEs, we need to generalize our model

in another respect, letting content have multiple dimensions. Specifically, we assume
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that content is a D-dimensional vector ci = (c1i , c
2
i , . . . , c

D
i ). These dimensions can

be seen as content areas (e.g. entertainment or e-commerce in various domains,

etc.). We assume that a particular consumer visiting the site is only interested in

one dimension of the site.16 The proportion of consumers interested in the different

dimensions is represented by the weight vector w. This vector can also be interpreted

as the probability distribution on content dimensions describing the interest of a

randomly selected consumer. Thus, the expected consumer-specific content at site i

is the scalar product w · ci, which can also be called the (weighted) average content

of a page.

Then, in the generalization of our model (5), the income of a Web site from selling

its content changes from rici to ri · w · ci. Thus, still without the presence of SEs,

the total utility of node i is

ui = ri(w · ci − C) + pid
out
i −

∑
j→i

pj, (10)

where we assume that pi = δqiri/(d
out
i +1) and qi = q(w ·ci) is an increasing function

of average content.

It is easy to see that this generalized model results in the same equilibrium as

the one described in Proposition 1. The only difference is that we need to replace

content with the weighted average content in the Proposition. This shows that

without introducing the SEs in the model, multi-dimensional content does not make

much difference. In particular, if sites had the possibility to change the allocation

(distribution) of their total content across specific content areas, they would not have

an incentive to do so, since only (weighted) average content matters.17

What happens if we incorporate SEs in the model? Let us assume that only a

16This assumption can be relaxed. If a consumer is interested in several dimensions we assign a
probability distribution to his/her interest.

17Notice that the “cost of content” associated with a certain area is proportional to the consumer
interest in that dimension.
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b proportion of consumers is browsing according to the process described in Section

2.1.1. The remaining (1 − b) consumers use a SE in every step of browsing, which

directs them to a Web site in the following way. As we mentioned before, a consumer

is only interested in one dimension of content, hence s/he runs a search in that

dimension. Through the result of the search, the SE directs the consumer randomly

to one of the top content sites in that dimension. More precisely, the SE selects

the pages with the s highest content parameters in every dimension and directs

consumers to one of these with probability proportional to their Page Rank.18 Let

Sd denote the set of the s highest content pages in dimension d and Idi denote the

indicator of the event (i ∈ Sd), that is, whether the content of site i in dimension d

is among the top s contents. Then, the probability that a consumer from a SE gets

to a given page in dimension d is either 0, if it is not one of the top content sites

in the search dimension, or ri/Rd, where Rd =
∑

l∈Sd
rl is a normalizing constant in

dimension d. Thus, the income from consumers in dimension d at site i is:

bric
d
i + (1− b)ricdi

Idi
Rd

= ric
d
i (b+ (1− b)Idi /Rd).

Using notation Ci = (C1
i , C

2
i , . . . , C

D
i ), where Cd

i = cdi I
d
i /Rd, the expected income

from selling content at page i is: ri(bw · ci + (1 − b)w · Ci). It is important to see

the difference between ci and Ci, the latter being the content vector truncated by

the search engine by eliminating (setting to 0) the dimensions that do not make it

in the top s ranks. The term (1− b)w ·Ci can then be interpreted as the expected

reward from the search engine for being a top site in one of the content dimensions

i.e. a sort of “specialization reward”. Let Ei denote the modified average content

bw · ci + (1− b)w ·Ci. Then, the total utility of site i is

ui = ri(Ei − C) + pid
out
i −

∑
j→i

pj, (11)

18This is consistent with practice. For example, there are very few consumers who go beyond the
second page of Google’s search results.
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where pi = δqiri/(d
out
i + 1) and qi = q(.) is an increasing function of the modified

average content, Ei, as defined before.

Clearly, with a single content area, the existence of a search engine does not

matter qualitatively. It simply makes the “divide” between low and high content

pages more pronounced. Assuming multiple content areas, the equilibria can be

described by the following proposition.

Proposition 5 At least one pure strategy Nash-equilibrium always exists and all the

equilibria have the following properties.

(i) The out-degree is a weakly decreasing function of the modified average content

in the following sense. If, for a given pair of nodes Ek < El, then doutk ≥ doutl .

(ii) If we suppose that all the modified average contents are different, then the in-

degree and the Page Rank are increasing functions of the modified average con-

tent.

Proof: The proof follows from that of Proposition 1, replacing ci with Ei.

The above properties of the equilibrium graph show that the sites with the highest

Ei will have the highest in-degree and Page Rank. Since Ek is the linear combination

of (i) the average content of site k and, (ii) the expected reward from the SE for

offering leading content in particular dimensions, the proposition implies that in

the presence of a search engine the allocation of content between dimension really

matters. Specifically, there is an incentive to specialize in a certain content area in

order to be one of the top sites of a particular dimension and, in this way maximize

the “specialization reward”. On the other hand, this incentive to specialize decreases

as the average content of a site is higher, since a high average content site does not

have to allocate all its resources to one dimension, it can afford to diversify its
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content. Thus, we would expect sites with low total content to specialize, while

those with high general content to diversify. However, as more and more people use

search engines the advantage from high average content disappears and ultimately

all sites compete for higher content in a specific area.

2.4 Discussion and conclusion

We proposed to model the commercial WWW based on the idea that profit maxi-

mizing Web sites purchase (advertising) in-links from each other to direct traffic to

themselves in order to sell their content. A key feature of the model is that sites are

heterogeneous in terms of their content. Homogeneous consumers are assumed to

browse the Web in a random process directed by the network’s link structure. First,

we supposed exogenous per-click prices for in-links that increase in content. Later,

we showed that with endogenous prices this pattern is confirmed in equilibrium. In

two extensions, we introduced the presence of search engines and the possibility for

sites to establish reference out-links to each other. In each case, we were interested

in the equilibrium network structure as well as sites’ differing incentives as a function

of their content.

Overall, we found that in all equilibria, both advertising and reference links point

to higher content sites. This result strongly supports the broadly accepted search

heuristic, which heavily relies on the number of in-links to rank sites with respect to

content. This can explain, for instance, why Google’s Page Rank algorithm works so

well in practice, by showing that in equilibrium, the number of in-links is positively

related to a site’s content. In contrast to in-links, the pattern of out-links is markedly

different for advertising and reference links. Sites tend to purchase advertising links

from lower content sites, i.e. the number of advertising out-links is negatively related

to the content of a given site. In the case of reference links however, it is higher
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content sites that tend to establish more out-links. We also show that, in the presence

of search engines, this structure becomes more pronounced.

These results provide useful guidelines for marketing managers on how to manage

their firms’ site(s) in terms of their connectedness in the Web. First, competition

seems to provide strong incentives for sites to specialize in terms of their business

models. Low content sites benefit more from the sales of traffic (advertising) even

though they can only price such traffic at modest rates. High content sites on the

other hand, benefit more from revenues earned from content sales to consumers.

These sites should charge high prices for advertising links and, as a result, sell few of

these. Instead, they are better off attracting traffic by purchasing advertising links.

Because of this increased traffic, high content sites also benefit more from reference

links and should therefore, establish more such links. Finally, if we consider multiple

content areas, then we can show that low content sites have an incentive to specialize

by area while high content ones benefit more from diversification. Translating to

practice, this may mean that in the context of e-commerce for instance, a strong

online retail brand, like Amazon.com can afford to have a broad product assortment,

while a small retail brand may have to specialize in one category to be successful.19

Limitations and future research

Our stylized model is limited in several ways. Probably the most severe limitation

comes from our assumptions on consumer behavior. We have assumed away explicit

consumer search and reduced it to a random browsing process. More importantly, we

ignored consumer heterogeneity in preferences for content. Such heterogeneity could

be of two kinds: vertical and/or horizontal. With respect to the first, while we assume

19In our context, Amazon is a ‘high content’ site in the sense that consumers’ willingness to pay
for items (books, CDs, etc.) is higher than their willingness to pay for the same items at another
online retailer.
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sites to be different in terms of content that could be broadly identified with ‘quality’,

we do not model heterogeneity in terms of consumers’ willingness to pay for content.

Such considerations would need to take explicitly into account sites’ pricing of content

that would make the model prohibitively complex. Similarly, in one extension, we

consider heterogeneity in consumers’ interest for certain ‘content areas’ but we do

not allow firms to influence this interest. Again, this would require the explicit

consideration of pricing and maybe even the modeling of the advertising message

(i.e. positioning). Clearly, neglecting these important aspects of consumer behavior

limits the practical applicability of the paper. Rather than providing very specific

recommendations for firms, our results should be interpreted as broad structural

patterns/tendencies spanning the WWW. A more detailed modeling of consumers

(including search and heterogeneity in preferences) is an obvious direction for future

research.

Our model has important limitations on the firms’ side as well. For example,

we assumed a generic profit function across sites that only differed in terms of sites’

content. Another limitation is that sites were not allowed to strategically choose

their out-links. Rather, the creation of out-links is only influenced by each site’s

pricing strategy, which in turn only depends on the distribution of prices. This

aspect of the model may not fully represent the competitive dynamics between sites.

For example, two sites competing head on for consumers may not accept advertising

from one another even if they would do so for other sites at a given price. Again, such

idiosyncratic relationships would change the micro-structure of links around certain

key sites. One could only speculate that, in these cases, rather than the regular

patterns of our equilibrium structures, one would expect the emergence of clusters

around a few large sites.

One way to account for a site’s strategic decisions about out-links would be

allowing sites to price discriminate. In a possible generalization of the model, sites
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could sell their out-links charging different (per-click) prices to different sites. We do

not solve this general model but we conjecture that the equilibrium structure would

be similar to that in our simple model. High content sites would generally charge

higher prices and a particular site’s price would be increasing in the content of the

potential buyer. The intuition is that high content sites still want to sell fewer links,

thus charge higher prices, but they also want to make the highest possible profit on

sold links. Therefore, a site would ask for a higher price if the buyer is willing to pay

more (if it has higher content). Other ways to consider the strategic formation of

out-links and the resulting link structures is certainly a valuable direction for future

research.

Given the above limitations, one should naturally ask: are the presented equi-

librium network patterns consistent with empirical evidence? In Section 4.1, we

compare our results to previous empirical work (Broder et al. 2000, Faloutsos et al.

1999) that examined the degree distribution of the graph (i.e. the histogram of links)

formed by the WWW. A broad result found across these studies is that links follow

a scale-free power-law distribution with an exponent of around 2. It is an empir-

ical puzzle however, that this degree distribution is the same for both in- as well

as out-links. Our model can explain this pattern. Specifically, in Section 4.1, we

establish the relationship between the degree distributions of in- and out-links. In

particular, we show that, if either of these is a scale-free power-law distribution with

an exponent of around 2, then in- and out-links follow the same degree distribution

as is the case in reality. As such, our equilibrium network structure is more con-

sistent with the empirical features of the WWW than those of previous theoretical

models’ that do not consider heterogeneity across sites and/or do not treat sites as

utility maximizing agents. In this respect, a key contribution of our model is that it

explains what drives Web sites’ choices of links.

The WWW is a fascinating new medium with an important effect on our economy
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and society. This paper is just a small step towards understanding its structure. As

discussed above, there are many opportunities for both theoretical and empirical

work to further explore the drivers of its evolution.
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3 The Race for Sponsored Links: A Model of

Competition for Paid Placement on a Search

Engine

Previous research studying search advertising has focused on the problem of multi-

item (or position) auctions to study the optimal bidding behavior of advertisers

(Varian 2007, Edelman et al. 2007). However, a key characteristic of paid placement

is that the consumer is facing two “competing” lists of sites that are both relevant

in the context of the particular search: (i) the “results list” of the search and (ii)

the list of sponsored links (see Figure 8). Furthermore, membership and position on

the results list is exogenous and typically represents the site’s popularity or inherent

value. The search engine cannot use this list strategically without losing credibility

from users. Thus, the existence of this search list cannot be ignored when one

evaluates sites’ bidding behavior for sponsored links appearing on the same page.

Another key characteristic of the problem is that the search engine can take into

account advertisers’ inherent traffic when awarding paid links. As the bids corre-

spond to payments per-click, this information is important in determining the search

engine’s total revenue from a given sponsored link. Google’s superior technology, Ad-

Works consists in taking sites’ click-through rates into account in addition to their

per-click bids when awarding paid placements. Finally, the search engine can also

determine how many sponsored links it auctions away on its site. Again, advertisers’

incentives for bidding and, in turn, the search engine’s revenue will depend on this

decision.

We develop a model, that takes into account these aspects of paid search adver-

tising. In doing so, our goal is to shed light on the advertising patterns observed

on Google search pages. Specifically, search pages can be characterized by a variety

of patterns in terms of the identity and position of sponsored links. In particular,
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Figure 8: Search for “travel” at google.fr. The list on the left side is the results list
of the search and the list on the right side represents the list of sponsored links or
paid placements. In this case, the two lists do not overlap.
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there is no clear relationship between the “results list” of search and the list of spon-

sored links. Sometimes a site may appear in both or in only one (either one) of the

lists. For example, on Figure 8 the two lists are different. However, on Figure 9,

representing the results page for the search word “airlines”, United Airlines appears

as the first search result and second on the sponsored links list. One can also ob-

serve significant fluctuations in the sites’ order in the sponsored links list. Finally,

the number of items listed in the sponsored list is also changing over time. Beside

generating normative guidelines to both advertisers and the search engine on how to

buy and sell sponsored links, our model generates testable hypotheses that account

for the variations described above.

Since search advertising is mostly responsible for the growth of the online ad-

vertising business, it has attracted significant interest in the economics literature20.

Edelman et al. (2007) analyze the generalized second price auction that is used by

most search engines to allocate sponsored links on search pages. The paper focuses

on equilibrium properties and compares these to other auction mechanisms. Varian

(2007) studies a similar problem but assumes away uncertainty and shows that the

equilibrium behavior matches empirical pricing patterns for sponsored links. In a

related paper, Chen and He (2006) study bidding for paid placements but assume

differentiated advertisers and consumers who are initially uncertain about their val-

uations. They show how the auction mechanism improves the efficiency of consumer

search and results in possible price dispersions for advertising.

Our work is different from this literature in that our focus is on the interaction

between the search engine’s basic role to find relevant sites in a given search context

and its private objective to sell sponsored links on search pages. We model the

20The other dominant advertising model - sites buying ads on each other’s pages - is analyzed in
Katona and Sarvary (2006). That paper studies equilibrium advertising prices and the endogenous
network structure determined by the advertising links.
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Figure 9: Search for “airlines” at google.fr. United Airlines is a top member on both
search and sponsored lists.
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inherent competition between the output of these two processes and evaluate its

effect on advertisers’ behavior. In terms of modeling the allocation of sponsored

links, our paper is closest to Varian (2007) but our focus is elsewhere. In addition,

a key difference is that we assume a concave response function to advertising that

is well documented in marketing. Finally, as opposed to the above papers, we also

explore the endogenous choice of the number of sponsored links offered by the search

engine.

The dynamic advertising model we study in the second part of the paper is related

to previous work on the dynamic setting of marketing variables in a competitive

context using a Markovian game. For an application on advertising see Villas-Boas

(1993), while an application for dynamic R&D competition can be found in Ofek

and Sarvary (2003). Our work uses a similar framework and relates to the results of

both papers. The possibility of an alternating advertising pattern is similar to Villas-

Boas (1993) and is largely driven by decreasing returns on advertising. However, in

our model, as in Ofek and Sarvary (2003), we have a contest as advertisers’ bid for

each position on the list with only one winner. Finally, this dynamic model is also

somewhat related to the dynamic auction model of Zeithammer (2006). However, in

our case this is a repeated auction for a per-period prize while his paper considers

dynamic bidding for a single item.

Finally, our paper is also related to recent empirical work on search advertising

(Rutz and Bucklin 2007a, b). This research broadly studies the effectiveness of paid

placements with particular attention devoted to spillover and lagged effects as well

as contexts when multiple search words are used. Our model extensions are largely

motivated by these papers (see our dynamic model and the discussion on multiple

search words) although the present paper focuses on the pricing of search advertising

and advertisers’ bidding behaviors.

The rest of the section is organized as follows. Next, we describe the basic model
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description in Section 3.1 and equilibrium analysis in Section 3.2. Section 3.3 studies

dynamic advertising purchases by firms, whereas Section 3.4 generalizes the model

to incorporate multiple content areas.

3.1 The Model

We assume n websites that are indexed with respect to their exogenously given,

inherent click-through rates (CTRs), γ1 > γ2 > ... > γn. These rates represent

the value of the sites in the eyes of the consumers or can be thought of as their

popularity in the context of a search word. The (n + 1)th player is a search engine

(SE), a special website21. The SE ranks the sites according to their popularity in

a given search context, that is, the click-trough rates determine the ranking. Thus,

its basic service lies in finding sites, that consumers are most interested in (click-

through-rates are known by sites and the SE but not by consumers). The search

engine returns the r highest ranked sites as the search result. Next to the regular

results, the SE also displays an s number of “sponsored links”. The order of these

links can be chosen by the SE and this choice is based on the bids submitted by

websites. Let l1, l2, ..., ls denote the sites winning the sponsored links, in order of

appearance. Thus, the output of the SE is modeled as a page with two lists: a search

list and a sponsored ad list. Google’s search page is exactly like this (see Figures 8

and 9) and other search engines have a similar format.

3.1.1 Consumers’ behavior on the search page

We assume, that the SE attracts a unit traffic of consumers which is distributed in

the following way. When a consumer sees the SE’s page generated by the search,

s/he either clicks on one of the regular results, one of the sponsored links or leaves

21We assume that the SE is a monopolist. While this is not entirely true in practice, Google
dominates the search industry with over 56% of all searches, a proportion that is growing.
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the page without clicking. We assume that consumers’ clicking behavior is affected

by the following four factors.

1. The order in which the sites are listed on both types of lists.

2. Differences in click probabilities between the sponsored list and the search

result list.

3. Individual differences between sites in inherent click-though rates or popularity.

4. Whether the site appears in both search and sponsored lists or only one of the

lists.

For the first factor, assume that α1, α2, ... > 0 denote the psychological order

constants that determine how the possible clicks are distributed through an ordered

list of items. That is, whenever someone sees an ordered list of equally interesting

items s/he chooses the ith item with probability proportional to αi. Similarly, for

the second factor, let β < 1 denote the ratio of consumers who click on a sponsored

link rather than an equally interesting link on the organic search list. Combin-

ing the two factors, the distribution of consumers among the links, not taking into

account individual differences, is determined by the parameters: α1, α2, ..., αr and

βα1, βα2, ..., βαs. Since the search engine has a unit traffic, we have to normalize

r∑
i=1

αi + β
s∑
i=1

αi

to 1.

For the third factor, that takes individual differences into account, we can mul-

tiply these parameters with the inherent click-through rates of the sites. In any

particular position, a site with a higher CTR is more likely to attract a click than

another site in the same position having a lower CTR. Finally, for the fourth fac-

tor, we assume that if a site is listed both among the regular search results and the
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Figure 10: Probabilities of a user clicking on the links.

sponsored links, the latter will have a lower click-probability than if the site were

listed only on the sponsored links list. Specifically, let δ denote the strength of this

effect, that is, the proportion of people who do not click on a sponsored link if it is

also displayed among the regular results but click on the regular link instead. Note

that the parameter δ does not have an effect on the total traffic that a site gets from

the search engine because it simply changes the origin of this traffic. However, it

determines the traffic coming from a sponsored link, which will be important in the

sites’ bidding process and will also affect the SE’s revenue. Figure 10 illustrates the

probabilities that a user clicks on a specific link.

Given these factors, we now determine how the traffic of the search engine is

distributed through the websites. Let A(i) denote the function that takes a value of

0 if Site i does not win a sponsored link, that is, i 6∈ {l1, l2, ..., ls} and αj if Site i

wins the jth sponsored link. With these, the total traffic that Site i ≤ r gets from
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the search engine is proportional to:

ti = tRi + tSi = γiαi + γiβA(i).

For i > r, the traffic is

ti = tSi = γiβA(i).

3.1.2 Websites

Websites make profits from the traffic that arrives to their sites from the search

engine22. Let us assume, that there is a common R(t) function for all sites that

determines the revenue associated with t amount of traffic. We naturally assume,

that R(t) is increasing and concave23. In order to obtain sponsored links, sites have

to submit bids to the search engine. The bid that Site i submits, bi is the amount

that it is willing to pay for unit traffic (per-click). If the search engine decides to

include Site i among the sponsored links, Site i has to pay an advertising fee of pit
S
i ,

where pi ≤ bi is set by the search engine. Therefore, Site i’s utility is

ui = R(tRi + tSi )− pitSi

if it wins a sponsored link and ui = R(tRi ) otherwise, where tSi depends on which

sites win the sponsored links.

At this point, the SE is completely free to determine the order of winners and

advertising fee it charges for a click, pi ≤ bi. First, we will show that in a one-period

game the SE sets pi = bi corresponding to a first price auction, then we will discuss

the different types of auctions that search engines use in practice. Based on this

22Thus, we ignore the fact, that sites could already have different amounts of incoming traffic
from other sources. If we naturally assume that sites with a higher click-through rate also have
higher outside traffic, then the results still hold.

23See Rutz and Bucklin (2007b) for a detailed analysis on how R(t) could be estimated in practice.
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discussion, in Section 3.1.3, we will restrict the SE’s strategies and define the types

of equilibria we use in subsequent analysis.

The timing of the game is the following. First, websites simultaneously submit

the bi bids, knowing all the click-through rates and R(). Then, the search engine

decides which sites it will include among the sponsored links and in what order.

Finally, sites pay the advertising fee to the search engine and realize profits from the

traffic they receive.

3.1.3 The Search Engine’s Best Response

First, we determine the SE’s best response to given bids b1, b2, ..., bn in the second

stage of the game. Although it would seem so, the best strategy is not to simply

assign the sponsored links to websites in the order of their bids. The SE has to

consider the sites’ click-through rates, since the total traffic it sells to them and thus

its revenue depends on these rates. Therefore, a site with a high click-through rate

may pay a higher total fee even if its bid is low. An opposite effect is that sites

with the highest inherent click-through rates will also likely appear on the regular

search list. As a result, they will attain fewer clicks on the sponsored link because

a δ proportion of the consumers will click on the regular search results link instead.

Formally, the SE maximizes its profit,

ΠSE =
s∑
i=1

tSi pi.

The following claim summarizes the SE’s best response to the bids. Let I(i) denote

the function that takes the value 1 if i ≤ r and 0 otherwise. The SE’s decision can

be described by the series w1, w2, ..., wn, where Site wi will get sponsored link i. Sites

ws+1, ws+2, ..., wn will not get a sponsored link.
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Claim 1 In equilibrium,

γwi
bwi

(1− δI(wi)) ≥ γwj
bwj

(1− δI(wj))

holds for i < j, where i ≤ s and the SE sets pi = bi.

In other words, the search engine ranks the sites according to their γibi(1− δI(i))

and charges each site’s bid. That is, for sites that are not in the top r among

the search results, their position among the sponsored links is determined by their

inherent CTR multiplied by their bid. For top sites this value is multiplied by

(1 − δ), accounting for consumers who choose to click on the results link instead of

the sponsored link.

As a result of Claim 1, in a non-repeated game, the search engine’s best strategy

is to charge the highest bid (corrected with the CTR). This corresponds to a first

price auction. However, in reality search engines use second price auctions (some

of them correcting for differences in CTRs, some of them not) to avoid the problem

that when multiple items with different values are auctioned away then the first price

auction typically does not have an equilibrium. This is because bids in a first price

auction always converge towards each other, which makes it impossible to reflect the

differences in valuations for the different items24. Thus, it is important to discuss

the different types of auctions and equilibria that can be used in our models.

In our analysis, we assume that websites have full information about each others’

bids, valuations and click-through rates. This is consistent with reality: quite well

known valuations across sites are typical characteristics of auctions of sponsored

links. When competitors’ valuations are known, a first price auction for a single

item typically has an infinity of equilibria. For example, let v1 > v2 > ... > vn be the

valuations of n bidders for a single item. If a first price auction is applied then the

24Another reason to use a second price auction is that, if valuations are uncertain, then the second
price auction is a mechanism that leads to truth-telling in a single-item auction.
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winner pays its bid. In equilibrium, the winner is always player 1 and the winning

bid, b1 can take any value in the (v2, v1] interval. Thus, the auctioneer’s revenue is

between v2 and v1. We denote these equilibria by FNE (first price Nash equilibrium).

In the case of a second price single-item auction, anyone can win the auction in

equilibrium (SNE). If every player bids zero except player i, who bids v0 > v1, then

the winner is player i, who has to pay nothing. In general, the second highest bid

is always below v1, so the auctioneer’s revenue is somewhere between 0 and v1. To

restrict the possible outcomes of a second price auction, Varian (2007) introduced the

notion of symmetric equilibria for multi-item second price auctions, (SSNE), which

is a subset of the pure-strategy Nash-equilibria. In such an equilibrium, the player

in position k is better off paying the bid of the player in position k + 1, then would

be in position l paying the bid of player l + 1. This is a stronger restriction than in

an SNE for moving up in the ranking because in an SNE a player is only supposed

to be better off paying bid k + 1 for position k than paying bid l for position l.

Since bid l is higher than bid l + 1, an SSNE is always an SNE but the opposite is

not true. According to Varian (2007), in an SSNE, the order of winners is always

1, 2, 3, ..., that is, in case of a single item the winner is always player 1. Furthermore,

the auctioneer’s maximum SSNE revenue is the same as the maximum SNE revenue

and is equal to v1 in case of a single item. Since the equilibria in a first price single-

item auction (FNE) and symmetric equilibria in a second price single-item auction

(SSNE) give the same results for the bid orders and maximum revenues of the seller,

we can use the two concepts interchangeably for our analysis, if there is only one

sponsored link. For multiple links, the FNE usually does not exist, so in this case,

we will always use the SSNE as the equilibrium concept.
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We always correct for click-through rates as it is established in Claim 1. Player

i’s bid is multiplied by γi(1− δI(i)) and the search engine ranks the

Fi = γibi(1− δI(i)),

values when determining the order of sites and the prices. In a first price auction,

Site i has to pay pi = bi for a click, corresponding to a total fee of βA(i)Fi, where

A(i) reflects its position. In a second price auction, if Site i is followed by Site j in

the order then Site i has to pay

pi =
Fj

γi(1− δI(i))
= bj

γj(1− δI(j))

γi(1− δI(i))

for a click, totaling to a fee of βA(i)Fj. The next section determines the equilibrium

bids.

3.2 Equilibrium analysis

3.2.1 Bidding strategies for one sponsored link

To illustrate the primary forces that work in the game, we first consider the case in

which, there is only one sponsored link offered, that is, s = 1. Let

G(i) = R(I(i)γiαi + γiβα1)−R(I(i)γiαi)

denote the revenue gain for Site i of winning the sponsored link. Clearly, the total

fee Site i will pay for the sponsored link cannot exceed G(i). Let w1, w2, ..., wn be a

permutation of sites such that G(w1) > G(w2) ≥ ... ≥ G(wn) holds25. Furthermore,

let P1 denote the total fee that the winner pays for the sponsored link,26 which is

equal to the seller’s revenue.

25The assumption that there is a single highest value eases the presentation of results, but does
not change them qualitatively.

26In case of a first price auction, this is calculated from its own bid. In case of a second price
auction, it is calculated from the second highest bid, corrected for CTRs.
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Proposition 6 In any FNE and SSNE, the winner of the sponsored link is Site w1

and the total fee it pays is G(w1) ≥ P1 ≥ G(w2).

Given the assumption that R() is increasing and concave, the winner can be any

site from 1 to r + 1, depending on the parameters. For example, if R() were linear

then the site with the highest γiβα1, that is, Site 1 would be the winner. However,

if the γi’s are not too far from each other, that is γ1 − γr+1 → 0, then the winner

is Site r + 1. These two cases illustrate the two forces that work against each other

in determining the outcome. On one hand, since R() is concave, sites who already

receive traffic from the search engine through regular results have a lower benefit from

winning the link27. On the other hand, sites with a higher γi obtain more traffic from

a sponsored link, therefore, they are willing to pay more for such a link. If the latter

effect is stronger, then a top site wins, otherwise a regularly lower ranked site wins

the sponsored link. In reality, these two cases translate to the distinct, observed

scenarios illustrated by Figures 8 and 9. On the first figure, the sponsored links and

search result are distinct. In contrast, on the second, a site appearing among the top

search results also obtains a (top) sponsored link.

The following corollary describes the equilibrium bids.

Corollary 1 The winning bid in an FNE is

G(w1)

βα1γw1(1− δI(w1))
≥ b1 >

G(w2)

βα1γw1(1− δI(w1))
.

In an SSNE, the winning bid can be arbitrarily high, but the second highest bid is

G(w1)

βα2γw2(1− δI(w2))
≥ b2 >

G(w2)

βα2γw2(1− δI(w2))
.

27This force is even stronger if we assume that sites with a high CTR have a larger traffic
independent from the SE.
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Note that the bids largely depend on the parameters. Sites with similar valuations

might submit significantly different bids based on their CTR’s or their position among

the regular search results.

3.2.2 Bidding strategies for multiple sponsored links

We will now discuss the general case, with multiple sponsored links (s > 1). As

mentioned before, the first price auction does not work in this case, thus we analyze

the SSNE only. Let

Gj(i) = R(I(i)γiαi + γiβαj))−R(I(i)γiαi)

denote the revenue gain for Site i of winning the sponsored link j (j = 1, ..., s).

Let w1, w2, ..., wn denote the sites in the order of their CTR-corrected bids (Fi’s).

Furthermore, let Pi denote the total fee that Site i pays for the advertising:

Pi = bwi+1
αwi

βγwi
(1− δI(wi)).

The search engine ranks the sites according to their CTR-corrected bids, that is,

if the order is w1, w2, ..., then the following have to hold for every 2 ≥ i ≥ s:

Pi−1

αi−1

>
Pi
αi
. (12)

In any equilibrium, Site wk does not have an incentive to bid less and get to a

lower position. Therefore,

Gk(wk)− Pk ≥ Gl(wk)− Pl. (13)

Furthermore, according to the definition of a symmetric equilibrium, Site wl does

not want to get into position k even if it has to pay Pk (and not Pk−1). That is,

Gl(wl)− Pl ≥ Gk(wl)− Pk. (14)
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Combining (12), (13) and (14), we get the following inequalities, describing the

equilibria of the auction:

Gk(wk)−Gl(wk) ≥ Pk − Pl ≥ Gk(wl)−Gl(wl). (15)

The complexity of the problem does not allow us to characterize all the SSNEs.

Multiple equilibria may exist, where the order of winners is different. The following

example illustrates the complexity of the problem even in a simple case.

Example 1 Assume s = 2 and n = 3, with the following valuations:

G1(1) = 10, G2(1) = 8, G1(2) = 9, G2(6) = 6, G1(3) = 8, G2(3) = 7.

These gains can be derived from a suitable R() function, γ-s and α-s. Note that with

prices P1 = 9 and P2 = 7, the equilibrium order of sites can be either (w1 = 1, w2 =

3, w3 = 2) or (w1 = 2, w2 = 1, w3 = 3).

To solve for the maximum and minimum revenue equilibria in the general prob-

lem, we would have to solve the linear program defined by (12) and (15) for every i,

k and l. While this problem is still very complex, with a minor restriction, we can

easily solve it.

Definition 5 We say that the preferences of sites i and j are aligned, if G1(i) >

G1(j) implies Gk(i)−Gl(i) > Gk(j)−Gl(j) for every 1 ≤ k, l ≤ s+ 1.

The assumption of aligned preferences is rather natural. It says that there is a

consensus between players about the value of different positions. With this, we can

determine the equilibrium ranking of sites.

Lemma 3 In any SSNE, Gk(w1) ≥ Gk(w2) ≥ ... ≥ Gk(ws+1) for any 1 ≥ k ≥ s+ 1.
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In order to fully describe the equilibria we also have to assume that sites’ valuation

for the position they are in is high enough relative to the next site’ valuation of the

next position. Specifically, we assume that

Gj(wj)−Gj+1(wj) >
αj − αj+1

αj+1 − αj+2

(Gj+1(wj+1)−Gj+2(wj+1)) (16)

holds for every 1 ≥ j ≥ s−1 (see the Appendix for more details on this assumption).

With these assumptions, we can describe the SSNE, following the path proposed by

Varian (2007).

Proposition 7 If all the sites’ preferences are aligned and (16) holds, then an SSNE

exists. Furthermore,

1. The maximum SSNE income of the seller is

M(s) =
s−1∑
j=1

[j(Gj(wj)−Gj+1(wj))] + sGs(ws).

2. The maximum SSNE income is equal to the maximum SNE income.

The results are similar to the case in which there is only one sponsored link

to bid for. The set and order of winners is determined by two factors. Sites with

higher traffic from other sources, such as regular search results, have a lower marginal

valuation for traffic, however sites with higher CTRs value sponsored links higher.

It is clear that the order among those sites that do not receive regular search results

will be decreasing in the CTR, that is, r + 1, r + 2, ..., n. However, the top r sites

may end up in any position depending on their parameters. Also, the misalignment

of preferences is only possible among the top r sites, that is, in some cases multiple

equilibria may exist and they may switch positions.

Figure 11 shows the possible valuations of twenty sites for five sponsored links.

The parameters are such that sites 11 and 12 have the highest valuations for the
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sponsored links because they are the sites with the highest click-through rates that

are not listed among the regular search results. Since the advertising response func-

tion is concave, these sites have a higher marginal valuation for a click. As a result,

the winner of the first sponsored link is Site 11, followed by sites 12, 3, 4, and 2.

Figure 12 shows the equilibrium prices the sites pay and the bids they submit. Here,

the sites are listed in their order of appearance. It is not surprising, that the total fee

they pay is decreasing with the position they are in. However, it is interesting to see

that higher per-click bids do not automatically lead to a better position. Generally,

sites with higher inherent CTRs do not need to bid too high, however, top sites (such

as 3, 4 and 2) still have to bid higher than others for the same position because their

higher CTRs guarantees them a position on the SE’s search results list, which in

turn directs traffic away from the sponsored link.

3.2.3 The number of sponsored links

So far we have considered the number of sponsored links displayed by the search

engine given. In this section, we compare the search engine’s revenue in case of

offering different numbers of links. For the sake of simplicity we assume a linear

revenue function, that is, R(t) = at. Then Gk(i) = βγiαk. We assume that the

search engine makes a decision about the number of sponsored links and announces

it prior to the auction. When it makes the decision it has to take into consideration

two forces. First, if it offers more links for sale, it will receive fees from more sites.

However, when the number of links is increased, the traffic flowing through one goes

down. Let us compare the cases when the search engine offers s sponsored links and

when it offers t < s instead. If βαj is the traffic going to sponsored link j in the first

case, then it increases to

βα′j = βαj(1 + βαt+1 + ...+ βαs).
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Figure 11: Sites’ valuation of the five sponsored links. The parameters are: n = 20,
r = 10, s = 5, γi = 0.5 − 0.025(i − 1), αi = (20 − (i − 1))/232.5, β = 0.5, δ = 0.6,
and R(x) = log(1 + 30x).
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As we saw in the previous section, there are usually many equilibria and the

revenue of the SE cannot be determined. Here, we will only compare the maximum

revenues the SE can attain by selling different number of sponsored links.

Proposition 8 The SE can attain a higher maximum revenue by offering t < s

sponsored links instead of s, if and only if,

β(αt+1 + ...+ αs)

(
t∑

j=1

jγjαj −
t−1∑
j=1

jγjαj+1

)
>

s∑
j=t+1

jγjαj −
s−1∑
j=t

jγjαj+1.

Decreasing the number of sponsored links increases the traffic on the remaining

ones. Thus, the sites are willing to pay more for them. The LHS of the inequality is

equal to this benefit. However, by forgoing sponsored links t + 1 to s, the SE loses

s− t advertisers. The resulting loss is the RHS of the inequality. Note that the RHS

is sometimes negative, that is, even without the increased traffic on the remaining

links the SE may have an incentive to decrease the number of links.

Example 2 Assume that s = 2 and t = 1. The SE is better off offering one link, iff,

βα1 >
2γ2 − γ1

γ1

.

In essence, the SE will offer only one sponsored link, if the second highest CTR

is relatively low. In particular, if γ2 < γ1/2, then the SE is better off selling one link

even if the second link still drains the traffic.

3.3 Repeated bidding for sponsored links

In the previous models, we assumed that the process through which the sponsored

links are assigned is a one-shot game. However, the auctions for the links take

place repeatedly. We cannot always ignore the effects that previous bids and results
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have on the current auction. An important effect is, for example, that when a site

wins a sponsored link, the traffic that it receives through the link may have a lagged

effect. Such lagged effects have been documented in Rutz and Bucklin (2007a). Some

consumers who get to a website through advertising may become regular customers

of the site. If they want to return to the site they do not need the sponsored link

again, they may remember or “bookmark” the site’s address. This effect however,

decreases with time. For the sake of simplicity we assume that it lasts only for

one time period and that there is only one sponsored link. Precisely, if a consumer

arrives from the SE to the site in a given time period, then with probability q s/he

will return in the next period without the help of the search engine. Then, if Site i

receives traffic ti from the search engine in a given period, then the lagged effect of

this traffic is qti in the next period.

Now let us examine how this effect changes site’s valuations of the sponsored

link. If a site did not win the sponsored link in the previous period then the gain

associated with winning it is

Gl(i) = R((1 + q)I(i)γiαi + γiβα1))−R((1 + q)I(i)γiαi),

where we also deal with the lagged effect of regular search results. On the other

hand, if the site did win the sponsored link in the previous period, then its gain is

Gw(i) = R((1 + q)I(i)γiαi + (1 + q)γiβα1))−R((1 + q)I(i)γiαi + qγiβα1).

Therefore, if R() is strictly concave, then Gw(i) < Gl(i). The intuition is that due to

decreasing marginal returns, the site values the sponsored link less, if it has already

won the link in the previous period. To solve the repeated game we use the concept

of Markov-perfect equilibrium, where players’ actions only depend on the states of

the world. In this case, the states represent the possible winners of the auction and

when a site wins the auction, the world moves to that state. In such an equilibrium,
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forward looking players choose their strategies to maximize their profits over time

using the discount factor δ. Let V
(j)
i denote Site i’s discounted equilibrium profits

counted from a period, when the previous winner is Site j. Sites’ payoffs in the

current period will be determined by their bids. If Site i does not win the auction, it

does not make any profit in the current period, that is, its overall discounted profit

will be

δV
(w)
i ,

where w is the winner of the current auction. On the other hand, if Site i wins the

auction then it will make a profit of vi = Gw(i) − P if i = j and vi = Gl(i) − P ′ if

i 6= j, where P and P ′ are the prices the winner has to pay (these depend on the

bids). Therefore, its overall discounted profit will be

vi + δV
(i)
i .

In equilibrium, player i chooses its bid to maximize this quantity, that is,

V
(j)
i = max

bi
(δV

(w)
i , vi + δV

(i)
i ),

where w and vi both depend on bi.

Since there is only one sponsored link, we can use the first price auction’s equi-

librium and the second price auction’s symmetric equilibrium concepts interchange-

ably. We will determine the Markov-perfect first price Nash-equilibria (MFNE) and

Markov-perfect second price symmetric Nash-equilibria (MSSNE) of the game. Re-

garding the valuations, let us assume that only the first two sites have a high enough

valuation to win the auction, that is Gl(j) < min(Gw(1), Gw(2)) for j ≥ 3. Then, we

only have the examine the auction where Sites 1 and 2 bid for the link. Without loss

of generality we can assume that Gl(1) > Gl(2), that is, site 1 has a higher valuation

for the sponsored link, not taking into account the lagged traffic.
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Proposition 9

1. If Gl(2) < Gw(1), then Site 1 is the winner in every period and

Gw(1) ≥ P1 ≥ Gl(2),

that is, the seller’s maximum discounted income is

M1 =
Gw(1)

1− δ
.

2. If Gl(2) > Gw(1), then the two sites alternate winning, and the seller’s maxi-

mum discounted income is

M2 =
Gl(1) + δGl(2)

1− δ2
.

In essence, if Site 1 values winning the link for a second time higher than Site

2 does for the first time, then Site 1 is the winner always. Otherwise, the two sites

alternately win and lose the auction. The intuition is that when Site 1 wins the link

in one period, then its valuation goes down in the next period and Site 2 is willing

to pay more for the link. Now that Site 2 wins the auction, the valuations will again

cross each other leading to the alternation. Next, we examine how the value of q

affects the type of equilibrium.

Corollary 2 There is a q∗ > 0, such that

• if 0 < q < q∗ then the winner is always Site 1,

• if q∗ < q then the two sites alternate as winners.
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In other words, as the ratio of returning customers increases, at one point the

type of equilibrium changes and the two sites start winning alternately. This critical

value is smaller if the marginal returns on traffic decrease quickly.

Next, let us compare the search engine’s income in the two cases. It is worth

noting, that M1 and M2 not only represent the SE’s maximum income in the two

cases, but also the total surplus of all players (SE and sites) in all the equilibria

of the given type28. We compare these values around the boundary of the two

regions, which separates the alternating and non-alternating equilibria, that is, where

Gw(1) = Gl(2).

Corollary 3

lim
Gw(1)−Gl(2)→0+

M1 < lim
Gw(1)−Gl(2)→0−

M2,

and the difference increases in q and δ.

We find a discontinuity in the total income at the boundary of the two regions,

because the SE and the sites are strictly better off in the case of an alternating

equilibrium. The intuition is that the alternating assignment of the SE’s traffic is a

more efficient allocation than when one site is the winner in every period. This extra

revenue is higher if the ratio of returning consumers is higher and if the discount

rate is higher. Whether the SE or the sites appropriate this extra revenue depends

on the actual bids.

3.4 Multiple keywords

So far we assumed that every consumer is interested in the same topic and the results

include the same pages for every query. Obviously, this is rather unrealistic, thus,

in this section, we will relax this assumption. Our objective is to explore how the

28Individual incomes depend on how this surplus is divided in a given equilibrium.

71



allocation of sponsored links in relation to a given search word changes when multiple

interacting search words are considered. As reported in Rutz and Bucklin (2007b),

most advertisers manage/bid for a bundle of key words.

Let us assume that there are d different topics that consumers are interested in

and (p1, p2, ..., pd) denotes the distribution of these interests, i.e. pk is the proportion

of consumers who search in topic k or the proportion of searches that consumers

initiate in topic k.

Web sites may offer content in every topic, although their relevance may vary from

topic to topic. In other words, the inherent click-trough rates may be different for

the same site in different topics. For example travelocity.com may have a high click-

through rate in the context of travel but most likely has a lower one when consumers

are searching for home appliances. Accordingly, let γki denote the inherent click-

through rate of Site i in topic k. Note that the order of sites with respect to their

click-trough rates may be different for different topics. We index sites with respect

to their click-through rates in topic 1, that is γ1
1 > γ1

2 > ... > γ1
n. For convenience,

we also assume that two sites cannot have identical click-trough rates in the same

topic. We introduce the permutations σk(), that ranks sites with respect to their

click-trough rates in topic k, that is, γkσk(1) > γkσk(2) > ... > γkσk(n), where obviously,

σ1(i) = i. Websites’ revenues are now a function of the traffic they receive in the d

topics, that is, Site i benefits R(t1i , t
2
i , ..., t

d
i ) from the traffic it receives from the SE.

In every topic the search engine lists the top r sites, that is, the ones with the

highest click-through rates. Next to the regular search results, it lists the sponsored

links as a result of the same bidding process described before. The sponsored links

for every search word are allocated after a separate bidding process. First, websites

simultaneously submit their bids in every topic, then the SE allocates the sponsored
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links for every word. Then the traffic Site i receives in topic k will be

tki = pkγ
k
i (Ik(i)αi + βAk(i)),

where Ik(i) and Ak(i) are the analogues of I(i) and A(i).

First, we examine the case when R() is additive over topics, that is,

R(t1, t2, ..., td) = R1(t1) +R2(t2) + ...+Rd(td). (17)

Under this assumption, the results reduce to the single topic equilibria studied before:

Proposition 10 If R() satisfies (17), then equilibrium strategies in topic k are iden-

tical to those in Proposition 7, with R() = Rk().

The result states that the bids in different topics are independent and are the

same as in the single-topic model. This shows that Proposition 7 can be applied to

determine the equilibria in this general model if the return on traffic is independent

across search words.

However, the focus of our investigation is the interaction between the bids in

different topics. Therefore, from this point, we assume a specific form of revenue

function,

R(t1, t2, ..., td) = R(t1 + t2 + ...+ td),

that is, traffic received in different topics is equivalent and the revenue of a website

only depends on the total traffic it receives. To exclude the additive case, we assume

that R() is increasing and strictly concave. The complexity of the problem does not

allow us to describe all possible equilibria. We focus on the simple case of d = 2, to

capture the interaction between the auctions in different content areas. Let GS(i)

denote Site i’s gain form winning the sponsored links for the keywords in set S, where
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S = {1}, {2}, {1, 2}. For example,

G{1,2}(i) = R(I1(i)p1γ
1
i αi + I2(i)p2γ

2
i ασ−1(i) + (p1γ

1
i + p2γ

2
i )βα1)) (18)

−R(I1(i)p1γ
1
i αi + I2(i)p2γ

2
i ασ−1(i)).

Since R() is concave, G is subadditive on the sets, that is, G{1,2} < G{1} + G{2}.

In order to determine the winners in equilibrium, we have to know which site has

the highest valuation for a given keyword. Let x1, x2, ... be a permutation of the

sites according to their valuation of the first keyword and y1, y2, ... be one according

to their valuation of the second keyword. That is, G{1}(x1) > G{1}(x2) > ... and

G{2}(y1) > G{2}(y2) > ... Without loss of generality, we will assume that

G{2}(y1) +G{1}(x2) > G{1}(x1) +G{2}(y2). (19)

Let P k be the total fee that the winner of the auction pays for keyword k (denoted

by wk). Then, the SE’s income will be P 1 +P 2. The following proposition describes

the outcome under this scenario.

Proposition 11 Both an SSNE and an FNE exist and they all satisfy the following

conditions in which the inequalities are binding.

1. If x1 6= y1, then w1 = x1 and w2 = y1. The seller’s revenue is

G{1}(x1)+G{2}(y1) ≥ P 1+P 2 ≥ max(G{1}(x2)+G{2}(y2), G{1,2}(x1), G{1,2}(y1)).

2. If x1 = y1 and G{1,2}(x1) ≥ G{2}(y1) + G{1}(x2), then w1 = w2 = x1. The

seller’s revenue is

G{1,2}(x1) ≥ P 1 + P 2 ≥ G{1}(x2) +G{2}(y2).
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3. If x1 = y1, x2 = y2, and G{1,2}(x1) < G{2}(y1) + G{1}(x2), then w1 = x2 and

w2 = y1. The seller’s revenue is

G{2}(y1) + 2G{1}(x2)−G{1}(x1) ≥ P 1 + P 2.

4. If x1 = y1, x2 6= y2, and G{1,2}(x1) < G{2}(y1) + G{1}(x2), then two types of

outcomes may exist.

(a) As in the previous case, w1 = x2 and w2 = y1 and the seller’s revenue is

G{2}(y1) + 2G{1}(x2)−G{1}(x1) ≥ P 1 + P 2.

(b) If G{2}(x1) +G{1}(y2) ≤ G{1}(x1) +G{2}(y2), and G{1,2}(x1) < G{1}(x1) +

G{2}(y2) then in another type of equilibrium, w1 = x1 and w2 = y2 and

the seller’s revenue is

G{1}(x1) + 2G{2}(y2)−G{2}(y1) ≥ P 1 + P 2.

In all the cases, except (4b), the allocation is efficient in the sense that the winners

of the auction are those sites that have the maximum total valuation for the words

that they win the auction for (in the second case this is a single site). In (4b), the

winner of word 1 is the site that has the highest valuation for it, and the winner of

word 2 is the site with the second highest valuation for it, in spite of the fact that

the first site for word 2 and the second site for word 1 have a higher total valuation.

Examining the relationship between the two words, we can see that if the words

are unrelated, that is, if different sites have the highest valuation for the two words,

then these sites with highest valuation win the auction (case 1). On the other hand,

if the words are related and presumably the same site has the highest valuation for

both words, then either that site wins both auctions (if its total valuation is high

enough - case 2) or it wins only one of them (cases 3 and 4). In these latter cases, the
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intuition is that winning one auction boosts the winner’s traffic, therefore, it does

not value the traffic in the other auction that high, leaving the opportunity to the

site with the second highest valuation to win there. In the extreme case, if there are

nearly as many related words as bidders, then even the site with the lowest valuation

can end up winning a sponsored link.

3.5 Conclusion

In this paper, we have modeled the race for sponsored advertising links on a SE’s

page between websites endowed with different click-through rates. We argue that the

SE’s problem can not simply be described as a multi-item auction. The existence

of the search results list on the SE’s page represents an important externality for

both types of players. In addition to exploring the effect of this externality on the

allocation outcomes we also study a variety of other issues: the endogenous choice

of the number of sponsored links, bidding for links in multiple search words and the

dynamics of the bidding behavior.

Our key result is that we explain the machanism that may lead to wildly different

patterns observed in the behavior of sponsored links. In particular, top sites who

rank high on the SE’s search results list are likely to benefit less from advertising

links. Furthermore, from the SE’s perspective, even if they bid high for a sponsored

link, consumers may actually not click on this link but rather click on the search

result link instead. These two effects may cause secondary sites to end up winning

the auction on the sponsored list. On the other hand, if the popularity of a site is

large enough compared to secondary sites then the above effects are not enough to

compensate for the inherent advantage of a site in directing traffic to itself and top

sites may still end-up high on the list of sponsored links.

We also explore a number of extensions. Endogenizing the number of sponsored
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links allocated by the SE, we show that the SE can increase click-though rates by

decreasing the number of these links. A decrease in this number increases the value of

the links and may result in compensating the loss associated with a smaller number

of links. We also explore the case when multiple search words are considered for

sponsored links. We identify conditions under which bidding across words should be

independent. A key result here is that the relationship between the search words

is the main driver of the bidding outcomes. Finally, we examine a dynamic model,

where online advertising has a lagged effect on the site that wins the sponsored link.

We identify dynamic bidding patterns that lead to alternating or constant allocations

of the sponsored links, depending on the strength of the lagged effect.

All along, the paper proposes testable hypotheses to be confronted with online ad-

vertising data. Furthermore, the results also provide normative insights to managers

of both sellers and buyers of sponsored links.
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4 Empirical Analyses

4.1 Degree Distribution

It is important to confront our model to empirical evidence about the degree dis-

tribution of the WWW. An important empirical pattern about the Web, is that it

has a scale-free power-law degree distribution (Barabási and Albert 1999, Broder

et al. 2000, Faloutsos et al. 1999, Katona 2005). In particular, the ratio of nodes

with degree k is P (k) ∼ k−γ, where γ is around 2. More importantly, this empir-

ical observation stands for both in- and out-degrees. Figure 13 illustrates such a

degree distribution for the Hungarian Web (Benczúr et al. 2003). Roughly speaking,

this means that the proportion of nodes reached from a large number of other nodes

tends to be quite high. Previous models from mathematics (e.g. Barabási and Albert

(1999), Bollobás et al. (2001), Cooper and Frieze (2003), Katona and Móri (2006))

could claim this finding for in-degrees only but not for out-degrees.

Without assuming a specific distribution of c across sites and a specific functional

form for q(c), we cannot predict the actual degree distribution observed. However, we

can explain why do we observe an almost identical degree distribution for in- and out-

degrees. To our knowledge, our model is the first one to exhibit this characteristic.

In our model it is more commode to study the degree distribution using the ratio

of nodes with degree “at least k”. The connection between these two quantities can

be easily established: a ratio of k−γ in the former case yields a ratio of k−γ+1 in the

latter case (i.e. with degrees at least k). Let us denote the number of nodes with

in-degree at least k by N(k) and the number of nodes with out-degree at least l by

M(l).

Proposition 12 If we suppose that all the content parameters are different then,

in an equilibrium network, M(N(k))=k for any k such that doutk > doutk+1, that is,

79



 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

P(k)

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100
k

 1000  10000  100000

line 1
line 2

Figure 13: The in-degree distribution of the Hungarian Web. The horizontal axis
represents in-degree (k), while the vertical axis measures the number of nodes with
a given in-degree (P (k)), both on logarithmic scales. The empirical distribution is
P (k) ∼ k−2.29 .
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M() = N−1(), where the inverse is well defined. Specifically, the in- and out-degree

distribution are identical if one of them is a power-law distribution with exponent

γ = 2.

It follows from the proposition that if one of the in- and out-degree distributions

is power-law scale free with exponent γ then the other one is also power-law scale-free

with exponent 1 + 1
γ−1

. Thus, if γ is about 2 for one of the degree distributions, then

it has to be 2 for the other one as well.

4.2 Sold Advertising as a function of content

I defined a Web site’s content as its value in the eye of the public and argued that a

site’s margin is proportional to its content. Thus, people surfing on the Web obtain

a higher utility from visiting a high content site than a low content site. However,

due to the complexity of the web and the high number of web sites it is hard to find

these pages. Search engines provide a service which makes this easier. They find the

pages (for every search word) that surfers value the most. Therefore, I may assume

that a search engine’s goal is to find the highest content Web pages in every area.

In the current study, I use the results from a search engine to examine how the

content of a site (estimated from its position among the search results) affects the

number of advertising links and size of the advertising space sold on that site. I

collected fifty popular search words and ran a Google search for each of them. I

selected Web sites from different positions (1st, 201st, 401st, 601st, and 801st)29

from the results of a given search. On each result page, I counted the number of sold

advertising links (num) and estimated the advertising surface (size) on each of these

sites. Table 1 shows the results for a number of words.

29Although Google’s estimate for the number of results containing a word is over a million, it only
lists around a thousand results. I selected the above numbers to span the entire range of results.
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1st 201st 401st 601st 801st
Word num size num size num size num size num size

airlines 0 0 0 0 5 2 2 3 10 6
finance 0 0 0 0 0 0 7 4 10 8
maps 1 2 0 0 2 4 0 0 7 6
pictures 0 0 0 0 0 0 4 7 3 3
sports 0 0 0 0 1 1 5 4 1 1
video 0 0 3 1 0 0 7 6 3 3

Table 1: Results for selected words. Number of sold advertising links and occupied
advertising surface on pages in different positions in a Google search for a given word.

Examining the results for the fifty words suggests that both quantities increase

with the position in the Google search. Figure 14 shows the averages over the fifty

words.

Applying a fixed effects model also confirms that these quantities are significantly

increasing (t = 4.75, p < 0.001 for num and t = 4.28, p < 0.001 for size). The coeffi-

cient reveals that there is an about 0.23 increase in the number of sold advertising

links as the site’s position in the search list increases by 100. The results support

the hypothesis that sites with lower content sell more advertising, since these sites

are in a lower position among search results.

Although this study accounts for sold advertising links, it would also be important

to examine bought advertising links. However, this method does not allow us to do

that. Sold advertising links are easily identifiable by just looking at a Website,

whereas it is much more complicated to gather the advertising links that one site

buys. In order to do this, one would have to visit all the sites that a particular site

could possibly buy advertising from.
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Figure 14: Average number of sold advertising links and advertising space as a
function of Google ranking.
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4.3 Sponsored links and sold advertising

The previous study estimated the relationship between an indirect measure of content

and sold advertising. However, sponsored links allow us to find out more about a

site’s content. As described in Section 3, sponsored links on a search engine are sold

through an auction where, in general, sites which are willing to pay more for a click

get to a better position. Thus, there is a clear relationship between profit margin

of a site and its position among the sponsored links. This makes it possible to find

high content sites and low content sites in a given content area is. The difficulty is

that there are only a limited number of sponsored links for a word and all of these

point to sites that are relatively high content, since they are willing to buy traffic.

For each of the fifty words that I used in the previous study, I ran a Google search

and clicked on the first and last sponsored links. Then, following the same method

as in Section 4.2, I estimated the advertising surface occupied by advertisements on

the target page. As expected, I only found out-going advertising links on these pages

for a low percentage of words (32%), since these are all relatively high content sites.

However, the overall size of advertising on the pages that were in the last position

among the sponsored links is significantly higher than on those which were in the

first position (t = 3.52, p < 0.001). Table 2 shows the results for a number of words

These results also support the hypothesis that having a higher content decreases

the willingness to sell advertising links. Together with the other two studies, the

results provide empirical evidence that the patterns obtained in the model are similar

to those that exists in reality.
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size
Word first last

airlines 0 2
cars 0 3
finance 0 2
horoscopes 2 4
songs 0 3
sports 0 4
weather 0 2

Table 2: Results for selected words. Number of sold advertising space on the target
page of the first and last sponsored link
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5 Conclusion

The dissertation studies two dominant forms of online advertising. The first part

analyzes how Web sites buy and sell advertising links directly from/to each other.

Overall, I found that both advertising and reference links point to higher content

sites. This result strongly supports the broadly accepted search heuristic, which

heavily relies on the number of in-links to rank sites with respect to content. This can

explain, for instance, why Google’s Page Rank algorithm works so well in practice,

by showing that in equilibrium, the number of in-links is positively related to a

site’s content. In contrast to in-links, the pattern of out-links is markedly different

for advertising and reference links. Sites tend to purchase advertising links from

lower content sites, i.e. the number of advertising out-links is negatively related

to the content of a given site. In the case of reference links however, it is higher

content sites that tend to establish more out-links. I also show that, in the presence

of search engines, this structure becomes more pronounced. Furthermore, search

engines provide an incentive to sites to specialize in content areas.

In the second part, I model another important form of online advertising: paid

placement. Web sites endowed with different click-through rates race for sponsored

advertising links on a search engine’s results page. I argue that the SE’s problem

cannot simply be described as a multi-item auction. The existence of the search

results list on the SE’s page represents an important externality for both types of

players. My key contribution is that I explain the process that may lead to wildly

different patterns observed in the behavior of sponsored links. In particular, top sites

who rank high on the SE’s search results list are likely to benefit less from advertising

links. Furthermore, from the SE’s perspective, even if they bid high for a sponsored

link, consumers may actually not click on this link but rather click on the search

result link instead. These two effects may cause secondary sites to end up winning
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the auction on the sponsored list. On the other hand, if the popularity of a site is

large enough compared to secondary sites then the above effects are not enough to

compensate for the inherent advantage of a site in directing traffic to itself and top

sites may still end up high on the list of sponsored links.

The empirical section provides evidence that patterns found in the models are

consistent with reality. The first study explains the connection between the degree

distribution of in- and out-links in the Web. Previous research has shown that these

distributions follow a power-law scale-free form, but have not established a connection

between the in- and out-degrees.

The second study examines the amount of advertising that different Web sites

sell. It is not possible to directly measure a site’s content, but search engines rank

sites according to how valuable they are in the eye of the public. This ranking

gives makes it possible to compare how much space advertising occupies on pages in

different positions. The results confirm the hypothesis derived from the model that

sites with a higher content sell fewer advertising links.

Finally, the third study connects the two different types of on-line advertising.

It examines the amount of sold advertising on sites that pay different prices for

sponsored links. Sites that want to get the first sponsored links have to submit a

higher bid than sites that just want an arbitrary sponsored link. That is, sites of the

former type value traffic more, presumably because they can better leverage traffic.

According to the model these site should sell fewer advertising links. The results of

the third study confirm this hypothesis.

Overall, the results provide useful guidelines for marketing managers on how

to manage their firms’ site(s) in terms of their connectedness in the Web. First,

competition seems to provide strong incentives for sites to specialize in terms of their

business models. Low content sites benefit more from the sales of traffic (advertising)
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even though they can only price such traffic at modest rates. High-content sites on

the other hand, benefit more from revenues earned from content sales to consumers.

These sites should charge high prices for advertising links and, as a result, sell few

of these. Instead, they are better off attracting traffic by purchasing advertising

links. Because of this increased traffic, high content sites also benefit more from

reference links and should therefore, establish more such links. The second part also

has several important managerial implications. First, managers of a site should be

aware that when they are bidding for sponsored links their site’s inherent popularity

can significantly change how high they have to bid to get a sponsored link in a

good position. Furthermore, there are important interactions between the position

occupied in the organic search results list and the sponsored links list. Sites that are

among the top search results may not need to win a sponsored link under certain

conditions. On the other hand, if they do need a sponsored link they might have to

bid higher than sites who are not on the organic results list. Finally, sites have to

consider the lagged effect of sponsored links which may lead to a pulsing advertising

strategy.
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Appendix: Proofs

Proof of Proposition 1:

First, we prove that if an equilibrium exists then it has to satisfy (i) and (ii). Al-

though we do not know the Page Rank values, we know how a node’s rank is related

to its in-neighbors ranks. In particular

ri =
douti + 1

douti + 1− δ

(
1− δ
n

+ δ
∑
j→i

rj
doutj + 1

)
. (20)

Therefore, we can transform (5) to

ui =
douti + 1

douti + 1− δ
(1− δ)

(
ci − C + δqi

dout
i

dout
i +1

)
n

+

+ δ
∑
j→i

rj

dout
i +1

dout
i +1−δ

(
ci − C + δqi

dout
i

dout
i +1

)
− qj

doutj + 1
. (21)

The first term does not depend on player i’s decision, therefore it is enough to

maximize the sum in the second term if the other agents’ decisions are fixed. Player

i makes a decision about which in-links to buy, hence s/he only decides which terms

to include in the sum. Thus, the sum is maximal if only those terms are included

which are non-negative. Hence player i buys a link from player j if and only if

douti + 1

douti + 1− δ

(
ci − C + δqi

douti

douti + 1

)
− qj ≥ 0. (22)

This inequality shows that a node buys links from those nodes for which qj is the

lowest. Therefore, in an equilibrium, if qk < ql for a given pair of nodes (k, l),

then the nodes who buy from node l must form a subset of those who buy from

node k, implying that doutk ≥ doutl . Since qk = q(ck) ≥ ql = q(cl) and q is an

increasing function, ck < cl implies doutk ≥ doutl , completing the proof of part (i) of

the proposition.
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In order to prove part (ii), we have to continue the above argument. Rearranging

inequality (22), we get

T (i) :=
douti + 1

douti + 1− δ
(ci − C) + δqi

douti

douti + 1− δ
≥ qj. (23)

Node i buys a link from node j if and only if this holds. If prices are such that T (i) is

increasing, then the number of bought links is increasing in content. We can ensure

this by assuming

qi ≤ ci
δ

1− δ
. (24)

However, in Section 2.2.2, we will show that if sites are allowed to set prices, T (i)

will be increasing. Therefore, if ck < cl, that is k < l, then T (k) < T (l), hence

site l buys more links than site k. The threshold increases as the content increases,

therefore the in-degree is an increasing function of the content. As a consequence of

the special structure of the graph, if a node has higher content than another, it not

only buys more links, but the set of nodes s/he buys links from contains that of the

lower content nodes. Since Page Rank is a linear combination of those pages a node

buys links from, this ensures that Page Rank is also increasing in content, proving

part (ii).

Finally, we will prove that at least one equilibrium exists. We will use the re-

sult that any game with convex and compact strategy space and continuous payoff

function, which is quasi-concave in the players’ own strategies has a pure-strategy

Nash-equilibrium. Although, the strategy space in our case is discrete, we will ex-

tend it. We will allow the sites to establish partial links. If a site establishes a link

partially with weight 0 < w ≤ 1, it only pays w fraction of the price and gets w

proportion of the traffic. Fixing the other player’s actions, let

Uj→i(w) = wrj

dout
i +1

dout
i +1−δ

(
ci − C + δqi

dout
i

dout
i +1

)
− qj

doutj + 1
(25)
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denote the payoff of establishing link j → i with weight w for node i. These Uj→i(w)

functions are linear, therefore the payoff function is quasi-concave, since it is the sum

of these functions. Since we extended the strategy space, it is compact and convex.

Also, the payoffs are continuous and concave in the players’ own actions, hence an

equilibrium exists. Furthermore, in this equilibrium, a player will only establish a

partial link if s/he is totally indifferent about the link. If a site has a profit increase

from establishing a link partially, it has an even higher increase from establishing

it fully. In equilibrium, however, a player can only be indifferent about one link.

Therefore, in this equilibrium, every player will establish at most one partial link,

the rest of the links will be either fully or not established. Notice also, that we only

show the existence of an equilibrium, but this may not be unique.

Proof of Proposition 2:

We begin by proving that if q(i) is increasing and q(i) ≤ δ
1−δc(i), then in any equi-

librium, din(i) is also increasing and dout(i) is decreasing. Similarly to the discrete

case, player i buys a link from player j if and only if

dout(i) + s

dout(i) + s(1− δ)
(c(i)− C) + δq(i)

dout(i)

dout(i) + s(1− δ)
≥ q(j). (26)

This shows that a node buys links from those nodes for which q(j) is the lowest.

Therefore, in an equilibrium, if q(k) < q(l) for a given pair of nodes (k, l), then

the nodes who buy from node l must form a subset of those who buy from node k,

implying that dout(k) ≥ dout(l), therefore dout(i) is decreasing.

In order to prove that din(i) is increasing, we have to continue the above argument.

We repeat inequality (26),

T (i) :=
dout(i) + s

dout(i) + s(1− δ)
(c(i)− C) + δq(i)

dout(i)

dout(i) + s(1− δ)
≥ q(j). (27)

to recall the decision rule of a node. The left hand side defines a T (i) threshold for

node i, deciding from which nodes to buy links. The number of links bought buy
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node i depends on this quantity. The higher T (i) is, the more links it buys. If,

for example, q(i) ≤ δ
1−δc(i), then T (i) is increasing. Furthermore, we will show in

Proposition 3, that T (i) is increasing if players set their prices. Finally, if T (i) is

increasing, din(i) will also be increasing.

In order to prove the existence of an equilibrium we will use Tikhonov’s fixed

point theorem (Istratescu 1981). It states that if X is a compact convex subset of

a a locally convex topological vector space (X) and f : X → X is continuous, then

f has a fixed point. Recall equation (26), describing the decision rule of player i.

Player j sells links to the nodes that satisfy T (i) > q(j). Therefore,

dout(j) = Λ (i|T (i) > q(j)) . (28)

Let L(j) denote the right hand side of equation (28), which is a measurable function

if dout() is measurable. A function dout(j) satisfying dout(j) = L(j) must repre-

sent an equilibrium. We will show that the operator mapping L() to the function

dout is continuous. Since q is a continuous function,
∫∞

0
|T−1(j) − T ′−1(j)|dj ≤

c1
∫
I
|d(i)− d′(i)|di with a suitable c1 constant, where T () and T ′() are the threshold

functions corresponding to d() and d′(), respectively. Also, let L() and L()′ denote

the functions that the operator assigns to d() and d′(). Then,
∫∞

0
|L(j)− L′(j)|dj =∫∞

0
|T−1(j) − T ′−1(j)|dq(j). Since q(j) is continuous on a compact set, it has to

bounded therefore,
∫∞

0
|T−1(j)−T ′−1(j)|dq(j) ≤ c2

∫
I
|d(i)−d′(i)|di, hence the oper-

ator is continuous. We will apply Tikhonov’s theorem to this operator on the normed

space of L1 functions on [0, 1]. The fixed point of this operator must satisfy (28),

thus it represents an equilibrium of the game. However, the equilibrium may not be

unique.

Proof of Proposition 3:

Let us consider a refined SPNE (q, E(q)) and look at the optimization problem that

a site faces in stage one. Let ζ denote q(i), that is, the decision variable of site i

94



in stage one. We have seen in the proof of Proposition 2, that in the second stage

a site essentially only decides how many links to buy and establishes them from

the cheapest sites. Let ψ denote din(i), that is, the decision variable in the second

stage. Let D(ζ) be the aggregate demand for out-links in the second stage (in the

equilibrium E(q)), that is, the measure of the set of sites who want to buy a link from

site i (or any site). Let K(ψ) denote the cost of ψ links, that is, K(ψ) =
∫
j→i p(j)dj.

Obviously, K(ψ) is increasing and D(ζ) is decreasing. Also, rewriting (6) Page Rank

is

r(i) =
douti + s

douti + s(1− δ)

(
(1− δ) + δ

∫
x→i

r(x)

dout(x) + s
dx

)
.

Decomposing this into two factors, let

r1(ζ) =
D(ζ) + s

D(ζ) + s(1− δ)

denote the first factor and

r2(ψ) = (1− δ) + δ

∫
x→i

r(x)

dout(x) + s
dx

the second. Then, rewriting the utility function, we have

ui(ψ, ζ) = r2(ψ)r1(ζ)

(
c(i)− C + δζ

D(ζ)

D(ζ) + s

)
−K(ψ). (29)

Since (q, E(q)) is a refined SPNE, ζ and ψ has to maximize this function, as if the

price and in-link decisions were simultaneously made. If we fix i, the solution of the

maximization problem in ζ is the same for all ψ’s. This optimal ζ∗(i) is increasing

in i, because the function

T (i, ζ) = r1(ζ)

(
c(i)− C + δζ

D(ζ)

D(ζ) + s

)
=

=
D(ζ) + s

D(ζ) + s(1− δ)
(c(i)− C) + δζ

D(ζ)

D(ζ) + s(1− δ)
(30)
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has increasing differences in (i, ζ), since the term that contains both variables is

a product of two increasing functions (of i and ζ, respectively). Furthermore, the

optimal T , that is, T ∗(i) = T (i, ζ∗(i)) is also increasing, because if l > k then

T ∗(l) = T (l, ζ∗(l) ≥ T (l, ζ∗(k) > T (k, ζ∗(k)) = T ∗(k).

Therefore, in equilibrium both q(i) and T (i) are strictly increasing (if c(i) is strictly

increasing), hence the second stage results hold.

Proof of Proposition 4:

We will show that the payoff function has increasing differences in the players’ own

decisions (dinA
i , doutRi ) and in the pairs composed of an own decision variable and

another player’s decisions variable. Although (9) is not written as a direct function

of other players’ decisions, these are captured by dinR
i and doutAi . If another player

buys more advertising links doutAi either increases or does not change. If another

player establishes an extra reference link dinR
i does not change or increases. Then

it is straightforward to check that the payoff function has increasing differences in

the above mentioned variable pairs, because with the exception of f(., .), which has

increasing differences in its variables by definition, the relevant terms are always

products of functions which are increasing in the variables in question.

Therefore, the game is supermodular, hence we can use the machinery introduced

by Topkis (1998) to describe the characteristics of the equilibria. It follows from

supermodularity that the pure-strategy equilibria of the game form a non-empty

complete lattice with a greatest and a least element, where the former is Pareto-

optimal. Moreover, we can show that any equilibrium has the following special

structural properties.

One can see that if a node select how many reference links to establish, it connects

these to the highest content nodes. Also, every node buys advertising links from the
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cheapest nodes, hence we obviously have dinR
i ≥ dinR

j if ci > cj and doutAi ≤ doutAj if

pi > pj, that is, if ci > cj. Now, we have to show, that in equilibrium, the actions of

players are increasing with respect to their content.

Since every node buys advertising links from the lowest content nodes, and es-

tablishes reference links to the highest, the two decision variables of site i are only

the number of links to establish: dinA
i and doutRi . It is easy to see that the payoff

function has increasing differences in the pairs (dinA
i , doutRi ), (dinA

i , i) and (i, doutRi ),

checking the terms that contain two of the variables in question. Therefore, the op-

timal decisions (dinA∗
i , doutR∗i ) are increasing in i. That is, if i > j (i.e. ci > cj) then

doutR∗i ≥ doutR∗j , and dinA∗
i ≥ dinA∗

j .

Proof of Claim 1:

The search engine wishes to maximize the income from the s winners of the

sponsored link. Given the order of sites it is obviously optimal to set the pi’s to

the maximum, that is, pi = bi. Regarding the order of sites, if Site i acquires a

sponsored link, the search engine will receive a total payment of βA(i)Fi from that

site, where Fi = γibi(1 − δI(i)). The Fi values are site specific and only depend on

the site’s parameters, whereas the A(i) values are determined by the search engine,

when it assigns the sponsored links. In order to maximize β
∑n

i=1A(i)Fi, the SE has

to assign the α’s in a decreasing order of the Fi values.

Proof of Proposition 6:

As we have discussed before, the winner both in an FNE and an SSNE is the site

with highest valuation, The payment of the winner is between the first and second

valuations.

Proof of Lemma 3:
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If sites’ preferences are aligned, then (15) yields G1(wl) ≥ G1(wm) for every

l < m, proving the lemma.

Proof of Proposition 7:

In order to prove the existence of an SSNE, we have to show that there exist

P1 ≥ P2 ≥ ... ≥ Ps, such that, they satisfy inequalities (13) and (14) for every

1 ≤ k < l ≤ s. We will show that if the sites’ preferences are aligned, then it

is enough to check that P1 ≥ P2 ≥ ... ≥ Ps satisfy a subset of them, namely the

following inequalities, for every j.

Gj(wj)−Gj+1(wj) ≥ Pj − Pj+1 ≥ Gj(wj+1)−Gj+1(wj+1) (31)

We have to show, that all the inequalities in (13) and (14) follow from these in (31).

Let 1 ≤ k < l ≤ s be arbitrary indices. Summing (31) for j = k to l, we get

l−1∑
j=k

[Gj(wj)−Gj+1(wj) ≥ Pk − Pl ≥
l−1∑
j=k

[Gj(wj+1)−Gj+1(wj+1)].

Since the preferences are aligned, Gj(wk)−Gj+1(wk) ≥ Gj(wj)−Gj+1(wj) for j > k,

therefore, we obtain

Gk(wk)−Gl(wk) ≥ Pk − Pl,

and similarly

Pk − Pl ≥ Gk(wl)−Gl(wl).

We have shown, that the system given by (13) and (14) is equivalent to that defined

by (31). That is, it is always enough to check whether a site wants to get to a position

which is one higher or lower. Therefore, given that (12) holds, the values of Pj−Pj+1

can be chosen arbitrarily from the intervals given in (31), fixing Ps+1 = 0. In (16),

we basically assume that selecting the maximum values does not violate (12). Thus,
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we get the second part of proposition by summing the left hand sides of (31) in the

following way.
s∑
i=1

Pi = sPs +
s−1∑
j=1

j(Pj − Pj+1).

For the fourth part, let us note that every SSNE is an SNE, therefore the maxi-

mum SNE income is at least as high as the maximum SSNE income. For the other

direction, let PN
i denote the expenditure of Site i in an SNE with maximum revenue

and let P S
i denote the same expenditure in a maximum revenue SSNE. From the

previous part, we know that

P S
j = P S

j+1 +Gj(wj)−Gj+1(wj),

However, according to the definition of an SNE,

PN
j ≤ PN

j+1 +Gj(wj)−Gj+1(wj).

Since Gs+1(ws) = 0,

PN
s ≤ Gs(ws) = P S

s .

Then, it is easy to show recursively that PN
i ≤ P S

i , completing the proof.

Proof of Proposition 8:

According to Proposition 7, the maximum equilibrium revenue of the SE, in case

of selling s links, is

M(s) = β

(
s∑
j=1

jγjαj −
s−1∑
j=1

jγjαj+1.

)
If the SE decides to instead sell only t links, the traffic on the remaining links will

increase by a factor of (1 + β(αt+1 + ...+αs)). Therefore, the maximum equilibrium

revenue will be

(1 + β(αt+1 + ...+ αs))β

(
t∑

j=1

jγjαj −
t−1∑
j=1

jγjαj+1

)
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in this case. Comparing the two quantities, we get the expression in the proposition.

Proof of Proposition 9:

First, we prove the second part of the proposition, that is, identify the conditions

necessary for an alternating equilibrium. In such an equilibrium, bidding strategies

are such, that if Site i has won the previous auction then Site j = 3− i is the current

winner. Let P (i) denote the fee that Site j = 3 − i has to pay in the auction when

Site i is the previous winner. Let V
(j)
i denote the discounted equilibrium profits of

Site i from a given period when Site j is the previous winner. In an alternating

equilibrium,

V
(1)
1 = δV

(2)
1

V
(2)
1 = Gl(1)− P (2) + δV

(1)
1

V
(1)
2 = Gl(2)− P (1) + δV

(2)
2

V
(2)
2 = δV

(1)
2

Therefore,

V
(2)
1 =

Gl(1)− P (2)

1− δ2

V
(1)
2 =

Gl(2)− P (1)

1− δ2

The sufficient and necessary conditions these valuations and prices have to satisfy

are that in a given auction, the winner has to have a higher valuation and fee payed

by the winner must fall between the two players’ valuations (both in an MFNE and

MSSNE). For example, if the previous winner is Site 1, then the current winner must

be Site 2, therefore,

Gw(1) + δ(V
(1)
1 − V (2)

1 ) ≤ P (1) ≤ Gl(2) + δ(V
(1)
1 − V (2)

1 )

100



must hold. Plugging the corresponding formulas, we obtain

Gw(1)− 1− δ
1− δ2

(Gl(1)− P (2)) ≤ P (1) ≤ Gl(2). (32)

Comparing the valuations in a period when Site 2 is the previous winner, we get a

similar inequality,

Gw(2)− 1− δ
1− δ2

(Gl(2)− P (1)) ≤ P (2) ≤ Gl(1). (33)

The set defined by (32) and (33) is a two-dimensional simplex. It is easy to see that

it is non-empty iff Gl(2) ≥ Gw(1) (given the other restrictions on the parameters).

The maximum discounted income of the seller depends on the first period of the

game. Let Pt denote its income in period t. If Site 1 is the first winner, then it would

be ∞∑
t=1

δt−1Pt =
P (2) + δP (1)

1− δ2
.

If Site 2 is the first winner, then it is

P (1) + δP (2)

1− δ2
.

We determine the maximum for both and consider the higher value. Clearly, since

Site 1 has higher valuations, the SE’s income will be higher if Site 1 is the first

winner. Maximizing P (2) + δP (1) on the simplex defined by (32) and (33), we get

M2 =
Gl(1) + δGl(2)

1− δ2
.

The first part of the proposition can be proven by following the same steps.

However, it is obvious, that since in both states site 1 has a higher valuation, it is

always the winner. Then the price payed must be in the given range, yielding the

stated maximum income.

Proof of Corollary 2:
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The values of Gl(1) > Gl(2) are independent of q. When q = 0, Gl(i) = Gw(i)

and as q increases Gw(1) decreases. Let q∗ be the unique solution of

R((1 + q)I(1)γ1α1 + (1 + q)γ1βα1))−R((1 + q)I(1)γ1α1 + qγ1βα1) =

= R((1 + q)I(2)γ2α2 + γ2βα1))−R((1 + q)I(2)γ2α2).

Then, for 0 < q < q∗, we get the first case in Proposition 9 and for q∗ < q, we get

the second case.

Proof of Corollary 3:

Fixing Gl(2) in Proposition 9, we can establish

lim
Gw(1)−Gl(2)→0+

M1 =
Gl(2)

1− δ
,

lim
Gw(1)−Gl(2)→0−

M2 =
Gl(1) + δGl(2)

1− δ2
=
Gl(2)

1− δ
+
Gl(1)−Gl(2)

1− δ2
.

Hence, the difference is

0 <
Gl(1)−Gl(2)

1− δ2
=
Gl(1)−Gw(1)

1− δ2
,

which clearly increases in q and δ.

Proof of Proposition 10:

The payoffs in one content area do not depend on the actions in the rest of the

content areas. Therefore, the best responses can be determined separately in every

content area and the equilibria will be the same that we described in Proposition 6.

Proof of Proposition 11:

Before describing the equilibria in the different cases, we establish a general rule

that drives the results. In any equilibrium (FNE or SSNE), the winner of the auction
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for keyword i has to have the highest marginal valuation, given the result in the other

auctions. Furthermore, the price payed by the winner has to between its marginal

valuation and the second highest marginal valuation. Using this rule, we can now

determine the equilibria in the different cases.

1. If two different sites have the highest valuation, then clearly they can be the

only winners, otherwise there is a site with a higher marginal valuation.

2. Clearly, if Site x1 wins one auction, then it still has the highest marginal

valuation in the other one.

3. It is easy to see, that the two possible combination of winners is (w1 = x2, w
2 =

y1) and (w1 = x1, w
2 = y2). Assume for a moment, that we have the latter case

in equilibrium. Then, site x1 does not have an incentive to give up keyword 1

in order to win keyword 2, that is,

G{1}(x1)− P 1 ≥ G{2}(x1)− P 2.

Similarly, Site 2 does not have an incentive to give up keyword 2 in order to

win keyword 1, that is,

G{2}(x2)− P 2 ≥ G{1}(x2)− P 1.

Combining the two, we obtain

G{1}(x1)−G{2}(x1) ≥ P 1 − P 2 ≥ G{1}(x2)−G{2}(x2), (34)

yielding

G{1}(x1) +G{2}(x2) ≥ G{2}(x1) +G{1}(x2),

contradicting our assumption in (19). This leaves us the case (w1 = x2, w
2 =

y1).
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To show that this type of equilibrium exists and to determine the maximum

income, we determine the sufficient and necessary conditions on the prices.

From the marginal valuation argument, we have

G{1}(x2) ≥ P 1 ≥ max(G{1,2}(x1)−G{2}(x1), G{1}(x3)), (35)

G{2}(x1) ≥ P 2 ≥ max(G{1,2}(x2)−G{1}(x2), G{2}(y3)). (36)

Furthermore, using the same argument as for (34), we obtain

G{1}(x2)−G{2}(x2) ≥ P 1 − P 2 ≥ G{1}(x1)−G{2}(x1), (37)

One can check that the simplex defined by (37), (35), and (36) is non-empty

and that the maximum of P 1 + P 2 is as stated.

4. As in the previous part we have to deal with the two possible types (w1 =

x2, w
2 = y1) and (w1 = x1, w

2 = y2), but in this case both are possible.

Determining the existence and the maximum income of the first goes as before.

For the second type, we have to examine the condition under which it ex-

ists. Similarly to the previous part, the following inequalities define the set of

equilibria of this type.

G{1}(x1) ≥ P 1 ≥ G{1}(x2), (38)

G{2}(y2) ≥ P 2 ≥ max(G{1,2}(x1)−G{1}(x1), G{2}(y3))(39)

G{2}(y2)−G{1}(y2) ≥ P 2 − P 1 ≥ G{2}(x1)−G{1}(x1) (40)

For (39), we need G{1,2}(x1) < G{1}(x1) + G{2}(y2) and for (40), we need

G{2}(x1) +G{1}(y2) ≤ G{1}(x1) +G{2}(y2). If these hold, the set is non-empty

with the maximum income as stated.
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Proof of Proposition 12: Recall that N(k) denotes the number of nodes with

in-degree at least k, while M(k) denotes the number of nodes with out-degree at least

k. The connection between these functions is the following. It follows from the proof

of Proposition 1 that the kth largest out-degree is equal to the number of nodes

with in-degree at least k because every node buys its in-links from the nodes with

lowest content. Thus doutk = N(k). Furthermore, since the out-degree is decreasing

as k increases, the number of nodes which have out-degree higher than node k is at

least k and is exactly k if doutk > doutk+1. Hence in the latter case M(N(k)) = k. To

summarize the connection,

N() = dout() = M−1(),

where the inverse is well-defined.
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