
A Machine Learning Approach to Android Malware
Detection

Justin Sahs and Latifur Khan
University of Texas at Dallas

Dallas TX 75080, USA

Email: {jcs074000,lkhan}@utdallas.edu

Abstract—With the recent emergence of mobile platforms
capable of executing increasingly complex software and the rising
ubiquity of using mobile platforms in sensitive applications such
as banking, there is a rising danger associated with malware
targeted at mobile devices. The problem of detecting such
malware presents unique challenges due to the limited resources
avalible and limited privileges granted to the user, but also
presents unique opportunity in the required metadata attached to
each application. In this article, we present a machine learning-
based system for the detection of malware on Android devices.
Our system extracts a number of features and trains a One-
Class Support Vector Machine in an offline (off-device) manner,
in order to leverage the higher computing power of a server or
cluster of servers.

Index Terms—Computer Security, Data Mining, Support Vec-
tor Machines

I. INTRODUCTION

The smartphone has rapidly become an extremely prevalent

computing platform, with just over 115 million devices sold

in the third quarter of 2011, a 15% increase over the 100

million devices sold in the first quarter of 2011, and a 111%

increase over the 54 million devices sold in the first quarter

of 2010 [25], [26]. Android in particular has seen even more

impressive growth, with the devices sold in the third quarter of

2011 (60.5 million) almost triple the devices sold in the third

quarter of 2010 (20.5 million), and an associated doubling

of market share [26]. This popularity has not gone unnoticed

by malware authors. Despite the rapid growth of the Android

platform, there are already well-documented cases of Android

malware, such as DroidDream, which was discovered in over

50 applications on the official Android market in March 2011

[30]. Furthermore, Enck et al. [12] found that Android’s built-

in security features are largely insufficient, and that even non-

malicious programs can (unintentionally) expose confidential

information. A study of 204,040 Android applications con-

ducted in 2011 found 211 malicious applications on the official

Android market and alternative marketplaces [37].

The problem of using a machine learning-based classifier to

detect malware presents two main challenges: first, given an

application, we must extract some sort of feature representa-

tion of the application; second, we have a data set that is almost

exclusively benign, so we must choose a classifier that can be

trained on only one class. To address the first problem, we

extract a heterogeneous feature set (described in Section IV),

and process each feature independently using multiple kernels

(described in Section V). To address the second problem, we

use a One-Class Support Vector Machine [27], which we train

using only benign applications.

This paper is organized as follows: in Section II, we discuss

related work; in Section III, we present an overview of our

approach; in Section IV, we present the various features that

we extract from our data set; in Section V, we present the

kernels we use to train our model; in Section VI, we discuss

our experimental results; finally, in Section VII, we analyze

our results and present possible future research.

II. RELATED WORK

There has been significant work on the problem of detecting

malware on mobile devices. Several approaches [11], [16],

[18] monitor the power usage of applications, and report

anomolous consumption. Others [6], [36] monitor system calls

and attempt to detect unusual system call patterns. Other

approaches use more traditional comparison with known mal-

ware (e.g. [4]), or other heuristics (e.g. [37]).

The more general field of malware detection is host to

a wider range of approaches. Traditional static analysis ap-

proaches such as [8], [19], which focus on comparing pro-

grams to known malware based on the program code, looking

for signatures or using other heuristics. Other approaches [17],

[28], [32] focus on using machine learning and data mining

approaches for malware detection. In [32], Tesauro et al. train

a neural network to detect boot sector viruses, based on byte

string trigrams. Schultz et al. [28] compare three machine

learning algorithms trained on three features: DLL and system

calls made by the program, strings found in the program

binary, and a raw hexadecimal representation of the binary.

In [17], Kolter and Maloof train several machine learning

algorithms on byte string n-grams.

III. APPROACH

We use an open source project, Androguard [10], to extract

features from packaged Android applications (APKs). We then

use these extracted features to train a One-Class Support

Vector Machine [27], using the Scikit-learn framework [24],

which provides a convenient interface to LIBSVM [7].

The main idea in [27] is to generate a classifier that will

classify most of the training data as positive, and classify

training or testing data as negative only if it is sufficiently

different from the training data, making it ideal for our
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purposes, as benign Android applications are far more readily

accessible than malicious ones. As a support vector machine,

the One-Class SVM is a linear classifier in a high-dimensional

feature space based on the constrained quadratic optimization

problem:

min
w,�ξ,ρ

1

2
‖w‖2 + 1

νl

∑
i

ξi − ρ (1)

such that (w · φ(xi)) ≥ ρ− ξi, ξi ≥ 0 .

This gives the classifier function

f(x) = sign (w · φ(x)− ρ) . (2)

Here, φ(x) is a feature space transformation aimed at mapping

the features of x into a space where the classes are linearly

seperable, and w is some element of that space. Then, the

optimization problem (1) tries to find a linear separation such

that it separates the training data from the origin, and its

distance from the origin is maximal.

Rather than supply φ(·) directly, we instead supply a kernel,

k(x, y) = 〈φ(x), φ(y)〉 . (3)

The required properties of kernels, and our particular choice

of k(·, ·) are described in Section V.

IV. FEATURE EXTRACTION

In order to apply any kernel, we must first extract important

features from the application. Android applications are pack-

aged as APK files, which are similar to standard Java jar files.

We use the open source project Androguard [10] to process

these files and extract features. Androguard provides a fairly

easy-to-use interface for analyzing and reverse engineering

Android applications.

A. Permissions

Every APK must include a manifest file that, among

other things, requests permission to access certain re-

stricted elements of the Android operating system. These

elements include access to various hardware devices (e.g.

GPS, camera), sensitive features of the operating sys-

tem (e.g. contacts), and access to certain exposed parts

of other applications. For example, the permission “an-

droid.permission.INTERNET” requests the right to access

the Internet, and “android.permission.READ CONTACTS”

requests the right to access the users phone contacts

database [13].

Once we have extracted the list of requested permissions,

we divide them into two groups: standard built-in permissions

and non-standard permissions. For standard permissions, we

generate a binary vector where each entry corresponds to a

built-in permission which is set to 1 if the application requests

that permission, and 0 otherwise.

For non-standard permissions, we split the strings into three

segments: the prefix (usually “com” or “org”), the organization

and product section, and the permission name. We ignore any

occurance of the words “android” or “permission,” which are

ubiquitous.

B. Control Flow Graphs

For every method in a given application, we extract a control

flow graph (CFG) from the raw bytecode of the method. A

CFG is an abstract representation of a program in which

vertices represent atomic blocks of non-jump instructions, and

edges represent the possible paths of program flow. Each

vertex is labelled based on the last instruction in the block,

because it is this instruction that determines how the program

flow leaves the block. For example, an unconditional jump is

represented as a single edge; a conditional jump is represented

as two edges incident on the same starting node. However,

many viruses use metamorphic techniques to produce modified

copies with code that has the same semantics, but with

different control flow [33]. To combat these mutations, we

apply the graph rewriting rules of [3]:

• Merge consecutive instruction blocks

• Merge unconditional jumps with the instruction block

they jump to

• Merge consecutive conditional jumps

These rewrites, or reductions, have the added advantage of

reducing the size of the extracted graph without destroying

important semantic information about program flow.

Once we have extracted and processed these graphs, we

discard those graphs with five or fewer nodes, as there are only

relatively few possible CFGs of five or fewer nodes (and so

they encode little semantic information), and discarding them

allows for a sizeable speedup in processing. We then combine

these graphs into a large disconnected graph (sometimes such

a graph is called a forest).

V. KERNELS

This section is devoted to a description of the kernels

used in our approach. For each kernel we use, we wish to

guarantee a property called the Mercer condition, or positive-

definiteness. To improve readability, an overview of the theory

of Mercer kernels, as well as the proof of Theorem 5.2 and a

more efficient formulation of the string kernel is given in an

appendix.

A. A Kernel over Binary Vectors

Given a feature space of binary vectors (i.e. {0, 1}n for

some n), there are a number of possible kernels, as dis-

cussed in [23]. In particular, the standard boolean operations

of conjunction, negated disjunction and if-and-only-if lend

themselves to straightforward Mercer kernels. We use the the

if-and-only-if kernel:

Definition. The if-and-only-if kernel, k↔ of two binary

vectors is given by

k↔(A,B) =
n∑

i=1

ai ↔ bi, (4)

where x↔ y is one if x and y have the same value. That is,

the if-and-only-if kernel returns the number of equivalent bits.

Theorem 5.1 ([23]): k↔ is a Mercer kernel.
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B. A Kernel over Strings

For our string features (Section IV-A), we use the kernel in

[20], which is defined over arbitrary-length strings over some

alphabet Σ. The basic idea is to count the number of common

subsequences between strings, weighted by the length of the

subsequences in the original string.

Definition. A string s is an ordered list of symbols taken

from some alphabet Σ. We denote by Σn the set of all strings

of length n, and by Σ∗ the set of all strings (of any length).

The concatenation of two strings s and t is denoted s ◦ t. A

substring t of s, starting at si and ending at sj is denoted by

s[i : j].
Given a string s, a subsequence u is any string such that

uj = sij , where 1 ≤ ij < ij+1 ≤ |s|. We refer to these

indices as �ı = {i1, . . . , i|u|}, and denote u = s[�ı]. We denote

the length of the subsequence as l(�ı) = i|u|−i1+1; that is, the

length is measured as the distance between the start and end

of the subsequence in s, rather than the number of symbols in

u.

Let the nth subsequence kernel be defined as

kn(s, t) =
∑
u∈Σn

∑
�ı:u=s[�ı]

∑
�j:u=t[�j]

λl(�ı)+l(�j)

Then, kn(s, t) measures the number of common n-symbol

subsequences between s and t, weighted by their lengths. If

s = t, then they will have every subsequence of length n in

common, thus maximizing kn(s, t) for all n ≤ min(|s|, |t|).
On the other hand, if s and t are maximally different (i.e.

they have no symbols in common), then kn(s, t) = 0 for all

n ≤ N . We can combine the kn(·, ·) for different n, with a

simple sum that is weighted by n:

kstr(s, t) =

N∑
n=0

μ(n)kn(s, t)

For simplicity, we use a simple weighting function μ(n) = 1
for all n ≤ N .

Theorem 5.2: kstr(·, ·) is a Mercer kernel.

C. A Kernel over Graphs

Given a feature space of labelled, directed graphs, we use

the Weisfeiler-Lehman subtree kernel from [31], which is

based on the Weisfeiler-Lehman test for graph isomorphism

[35]. In [31], Shervashidze et al. propose a general framework

of graph kernels where the Weisfeiler-Lehman graph isomor-

phism test is used to construct a series of labelled graphs,

which are each compared using some other graph kernel.

This approach allows for very simple (and otherwise not very

useful) graph kernels to be applied in a way that improves

their discriminative power.

Definition. Given a labelled graph G = (V,E, l0), where

l0(v), v ∈ V is a label taken from some alphabet Σ, the

Weisfeiler-Lehman sequence of height h is the sequence of

graphs

{G0, G1, . . . , Gh} = {(V,E, l0), (V,E, l1), . . . , (V,E, lh)},

where l1, . . . , lh are constructed using Algorithm 1. The func-

tion f(·) in the algorithm is some mapping f : Σ∗ → Σ such

that f(si(v)) = f(si(u)) if and only if si(v) = si(u). The

compression function f(·) is intended to make the algorithm

more space efficient, so that labels do not grow exponentially

with i, with the authors of [31] suggesting maintaining a global

counter that records the number of distinct strings that f(·) has

been called on. Because our implementation is designed to be

distributed, this approach is infeasible. We instead take f(·)
to be the identity function.

Algorithm 1 Weisfeiler-Lehman relabelling

1: for i← 0 to h do
2: for all v ∈ V do
3: if i = 0 then
4: Mi(v)← l0(v)
5: else
6: Mi(v)← {li−1(u) | u ∈ N(v)}
7: � N(v) = {u | (v, u) ∈ E} is the set

8: � of neighbors of v.

9: si(v)← li−1(v) ◦ sort(Mi(v))
10: � Sort Mi(v) and concatenate its

� elements to the previous label

11: li(v)← f(si(v))
12: end if
13: end for
14: end for

Definition. Given a graph kernel k1(·, ·), the Weisfeiler-
Lehman kernel with base kernel k1(·, ·) and h iterations is

defined by

k
(h)
WL(k1)

(G,G′) = k1(G0, G
′
0) + · · ·+ k1(Gh, G

′
h), (5)

where {G0, . . . , Gh} and {G′0, . . . , G′h} are the Weisfeiler-

Lehman sequences for G and G′.
Theorem 5.3 ([31], Theorem 3): If k1(·, ·) is a Mercer ker-

nel over graphs, then k
(h)
WL(k1)

(·, ·) is also a Mercer kernel.

Definition. The Weisfeiler-Lehman subtree kernel with h
iterations is a Weisfeiler-Lehman kernel with a base kernel

that counts the number of matching node labels between G
and G′:

kg(G,G′) =
∑
v∈V

∑
v′∈V ′

δ(l(v), l(v′)), (6)

where δ(a, b) is the Dirac kernel, which is 1 when a = b, and

0 otherwise, and l(v) is the label of node v.

D. A Kernel over Sets

Consider a feature space of unordered sets of arbitrary

cardinality with elements drawn from some set X for which

we have a Mercer kernel k0(·, ·); that is, features x ∈ P(X) for

some X , together with k0 : X×X → R. We wish to construct

a Mercer kernel k : P(X)× P(X)→ R from k0(·, ·).
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Ideally, to find k(x, y), we should find the best matching of

x and y, i.e. a collection of pairs (xi, yj) such that k0(xi, yj)
is maximal. In [34], a simple method was proposed:

kmatch(x, y) =
1

2

1

|x|
|x|∑
i=1

max
j

k0(xi, yj) (7)

+
1

2

1

|y|
|y|∑
j=1

max
i

k0(xi, yj).

The idea is to find the best match yj ∈ y for each xi ∈ x, and

then the best xi for each yi, and to sum the k0(xi, yj) for each

of these matches. Unfortunately, (7) has been shown not to be

a Mercer kernel. In particular, the use of the max operation

does not preserve positive definiteness. As an alternative, we

use the exponent match kernel of [21]:

kk0
set(x, y) =

1

|x|
1

|y|
|x|∑
i=1

|y|∑
j=1

k0(xi, yj)
p. (8)

By raising the k0(xi, yj) to an exponent, we effectively

give larger values more weight. Indeed limp→∞ k(·, ·) =
kmatch(·, ·). As a sum of exponents of Mercer kernels, k(·, ·)
is itself a Mercer kernel.

E. A Kernel over Non-standard Permissions

In Section IV-A, we noted that we separate the non-standard

permission strings into three components: a prefix, a middle

section that contains the organization and/or product names,

and a suffix that contains the actual permission name. We treat

these three sections as independent sets of strings, and apply

the set kernel of Section V-D, and then we take the average of

these three values as our kernel value (note that the average

of a set of Mercer kernels is a positive linear combination of

those kernels, and is therefore a Mercer kernel itself):

kp(x, y) =
kkstr
set (x0, y0) + kkstr

set (x1, y1) + kkstr
set (x2, y2)

3
,

(9)

where x0 is the set of prefixes, x1 is the set of middle strings,

and x2 is the set of permission names associated with the

permissions of x.

F. A Kernel over Applications

An analysis of each of the preceding kernels reveals that

they tend to be biased towards longer or larger inputs: for

example, the maximum value of k↔(·, ·) is n, the length of

the vectors being compared. Similarly, the string and graph

kernels both perform sums dependent on the size on the input.

Therefore, we should normalize them:

k̂(s, t) =
k(s, t)√

k(s, s)k(t, t)

Then, we have the final kernel, k : X × X → R, where

X is the space of possible Android applications. Let vx, px
and gx be the extracted permissions bit-vector (Section IV-A),

permissions string set array (Section IV-A), and control flow
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graph (Section IV-B) of the application x, respectively. Then,

we have

k(x, y) = k̂↔(vx, vy) + k̂p(px, py) + k̂g(gx, gy), (10)

which is a positve linear combination of Mercer kernels, and

therefore a Mercer kernel.

VI. EXPERIMENTAL RESULTS

We tested our system against a collection of 2081 benign

and 91 malicious Android applications. For each datapoint, we

selected a random subset of the training (benign) applications

and performed k-fold cross validation. We did this four times

per datapoint, and average the results. In addition to the

full kernel, we also trained against each individual kernel

separately. Figures 1 and 2 show the true negative (benign
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Fig. 3. Accuracy Measures vs Sample Size

classified as benign) and true positive (malware classified as

malware) versus sample size, respectively.

Figure 3 shows various measures of accuracy of the system:

precision, recall, F1 measure (the harmonic mean of precision

and recall), F2 measure (like F1, but with recall weighted

twice as much as precision), and F 1
2

(like F1, but with

precision weighted twice as much as recall). Note that the

increasing benign sample size combined with a fixed malicious

sample size causes precision to decrease as the benign sample

increases (and therefore also the F -measures).

These data suggest some interesting traits of our system.

First, the full kernel never outperforms the bit-vector ker-

nel that compares built-in permissions. The bit-vector kernel

seems to divide the feature space into two segments: applica-

tions that request the kind of permissions that are required by

malware, and those that do not. Although it correctly classifies

most malware, approximately half of all benign applications

request those same permissions, and are therefore classified as

malware by the bit-vector kernel and frequently also the full

kernel.

Second, the string kernel seems to have very little discrim-

inative power, and generally classifies nearly everything as

malware. This is likely because the non-standard permissions

that are its input are, by definition, uncommon. This leads to a

feature space that is extremely sparse, and often zero, so that

much of the training data is at the origin, making it impossible

for the 1C-SVM to separate the training data from the origin.

Finally, the graph kernel shows somewhat unusual behavior:

it has a higher false negative rate than true negative rate. This

suggests that the malware are further from the origin than a

significant proportion of the training data, putting them on the

wrong side of the separating hyperplane trained by the 1C-

SVM.

VII. DISCUSSION AND FUTURE WORK

We have presented a novel machine learning-based malware

detection system for the Android operating system. Our system

has shown promising results in that it has a very low false

negative rate, but also much room for improvement in its

high false positive rate. There are a number of possible

improvements that could be investigated.

A. Features

Our system is limited to just the permissions (built-in and

non-standard), and CFGs of the input applications. There are

many other potential sources of information-rich features. For

instance, there are other metadata entries in the manifest file

that contains the requested permissions. There are also many

potential sources of features in the program code itself, such

as constant declarations and method names.

Additionally, the current features could be improved. In

particular, the way we extract CFGs abandons much of the

information originally present in the code: we label nodes in

the CFG based only on the last instruction of the block it rep-

resents. We could instead label based on all of the instructions

in the block. We also only have a small set of labels, which

could be expanded to include more detailed information about

the kinds of instructions present (e.g. arithmetic operations,

memory access, etc.). Such distinctions would lead to a much

more robust label set, which would possibly increase the power

of the graph kernel, since it is based on the graph labels.

B. Kernels

In addition to new features, and any new kernels such

features would require, there may be room for improvement

among the kernels we chose for our existing features. Once

again, the CFG feature is the most likely candidate for

improvement. The current system treats the collection of

graphs extracted as a single disconnected graph. This treatment

may give up discriminitive power by comparing these graphs

in aggregate, rather than an all-pairs comparison. Therefore,

combining the graph kernel of [31] with a set kernel such

as those in [21] or even [14] could lead to a much more

powerful kernel. Unfortunately, the high number of methods

in each application make the quadratic time complexity of the

kernel presented in [21] impractical, and the kernel in [14] is

over a feature space of sets of vectors, each drawn from the

same vector space. Because the graph kernel of [31] essentially

converts graphs to vectors, it seems like a good match with

[14]. However, two graphs will be converted to vectors drawn

from two different vector spaces, and projecting these vectors

into the union or intersection space efficiently has proved to

be non-trivial.

C. Models

Finally, we use the One-Class Support Vector Machine be-

cause we have far more benign examples than malicious ones.

However, we do have some malicious examples, so a semi-

supervised approach may be more powerful. For instance, in

[2], the authors reduce the problem of novelty detection in
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a semi-supervised setting to the problem of Neyman-Pearson

Classification [29]. This could be combined with [9], in which

the authors describe a method for training Support Vector

Machines for Neyman-Pearson Classification. Such a semi-

supervised classifier would likely have more discriminitive

power than the 1C-SVM.

APPENDIX

As mentioned in Section III, we wish to solve the con-

strained quadratic optimization problem (1). Towards that end,

(1) is transformed into a Lagrangian [27]:

L(w, �ξ, ρ, �α, �β) =
1

2
‖w‖2 + 1

νl

∑
i

ξi − ρ (11)

−
∑
i

αi

(
(w · φ(xi))− ρ+ ξi

)−∑
i

βiξi ,

which gives a new form for (2):

f(x) = sign

(∑
i

αik(xi, x)− ρ

)
. (12)

From this, we can derive a dual objective function [27],

min
�α

1

2

∑
i,j

αiαjk(xi, xj) (13)

such that 0 ≤ αi ≤ 1

νl
,
∑
i

αi = 1 .

However, in order to guarantee that the dual function (13)

has a solution, we must place certain restrictions on k(·, ·).
In particular, if the kernel is not a Mercer kernel (defined

below), there may be xi such that the dual objective function

can become arbitrarily large, so that the constrained quadratic

optimization problem has no solution [5].

A. Mercer Kernels

Definition. A function k : X × X → R is called a (real-
valued) positive-definite kernel if it is symmetric (k(x, y) =
k(y, x)), and

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0 (14)

for any n ∈ N, xi ∈ X and ci ∈ R. Another way of

expressing this requirement is that the matrix K defined by

Kij = k(xi, xj) is symmetric, and all of its eigenvalues are

non-negative. Note that if k(xi, xj) ≥ 0 for all xi, xj ∈ X
and is symmetric, (14) holds.

The theory of positive-definite kernels is based largely on

the work of Mercer [22], so the requirement that kernels be

positive-definite is often called the Mercer condition, and such

kernels are referred to as Mercer kernels.

It is worth noting a few key properties regarding the

combination of Mercer kernels:

Definition. A set X is called a cone if {λx|x ∈ X}X ⊆ X
for all λ ≥ 0. A set is called convex if, for every (x, y) ∈ X ,

the line segment connecting x and y, −→xy ⊆ X .

Theorem A.1 ([1], 1.11): If X is a nonempty set, the set of

all Mercer kernels over X ×X is a convex cone.
Corollary A.2: If k1, k2 : X ×X → R are Mercer kernels,

then k+(x, y) = λ1k1(x, y) + λ2k2(x, y) is also a Mercer

kernel. In other words, the set of Mercer kernels over X ×X
is closed under positive linear combination.

Proof: Consider kρ(x, y) = ρk1(x, y) + (1 − ρ)k2(x, y)
for some ρ ∈ [0, 1]. Because the set of Mercer kernels over

X ×X is convex, kρ(x, y) is a Mercer kernel. Then, consider

the kernels

kλ1
(x, y) =

λ1

ρ
k1(x, y) and kλ2

(x, y) =
λ2

1− ρ
k2(x, y).

Because the set of Mercer kernels over X×X is a cone, both

of these are Mercer kernels. Combining the two, we get

k∗(x, y) = ρ
λ1

ρ
k1(x, y) + (1− ρ)

λ2

1− ρ
k2(x, y)

= λ1k1(x, y) + λ2k2(x, y).

Theorem A.3 ([1], 1.12): If k1, k2 : X × X → R are

Mercer kernels, then k×(x, y) = k1(x, y)k2(x, y) is a Mercer

kernel.

B. More on kstr(·, ·)
The definition of kn(·, ·) lends itself to a naı̈ve algorithm

that takes O(|Σ|n) time, which is clearly infeasible. By

constructing a recursive definition of kn(·, ·), we can reduce

the time to O(n|s||t|).
Definition. The recursive version of kn(·, ·) uses a dynamic

programming approach that introduces a number of interme-

diate computations, k′i and k′′i for 1 ≤ i < n:

k′0(s, t) = 1 for all s, t

k′′i (s, t) = 0 if min(|s|, |t|) < i

k′i(s, t) = 0 if min(|s|, |t|) < i

ki(s, t) = 0 if min(|s|, |t|) < i

k′′i (s ◦ x, t ◦ y) = λk′′i (s ◦ x, t) if x 
= y

k′′i (s ◦ x, t ◦ x) = λ
(
k′′i (s ◦ x, t) + λk′i−1(s, t)

)
k′i(s ◦ x, t) = λk′i(s, t) + k′′i (s ◦ x, t)

then, the final row:

kn(s ◦ x, t) = kn(s, t) +
∑

j:tj=x

k′n−1(s, t[1 : j − 1])λ2

Proof of Theorem 5.2: Consider the feature space trans-

formation for each u ∈ Σn

φu(s) =
∑

�ı:u=s[�ı]

λl(�ı)

which maps each string to the weighted length of all oc-

curences of the subsequence u. Then, because this feature

space is simply real numbers, we can define its inner product

naturally:

〈φu(s), φu(t)〉 =
∑

�ı:u=s[�ı]

λl(�ı)
∑

�j:u=t[�j]

λl(�j)

=
∑

�ı:u=s[�ı]

∑
�j:u=t[�j]

λl(�ı)+l(�j)
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Then, we can define a full feature space consisting of the

cartesian product over all u. This gives us the inner product

〈φ(s), φ(t)〉 =
∑
u∈Σn

〈φu(s), φu(t)〉

=
∑
u∈Σn

∑
�ı:u=s[�ı]

∑
�j:u=t[�j]

λl(�ı)+l(�j)

= kn(s, t)

So kn(·, ·) is an inner product in R
|Σn|, so it is a Mercer

kernel. kstr(·, ·) is therefore a positive-weighted finite sum of

Mercer kernels, and thus a Mercer kernel itself.
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