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ABSTRACT
This lecture presents a study of the microarchitecture of contemporary microprocessors. The fo-
cus is on implementation aspects, with discussions on their implications in terms of performance, 
power, and cost of state-of-the-art designs. The lecture starts with an overview of the different types 
of microprocessors and a review of the microarchitecture of cache memories. Then, it describes 
the implementation of the fetch unit, where special emphasis is made on the required support for 
branch prediction. The next section is devoted to instruction decode with special focus on the par-
ticular support to decoding x86 instructions. The next chapter presents the allocation stage and pays 
special attention to the implementation of register renaming. Afterward, the issue stage is studied. 
Here, the logic to implement out-of-order issue for both memory and non-memory instructions is 
thoroughly described. The following chapter focuses on the instruction execution and describes the 
different functional units that can be found in contemporary microprocessors, as well as the imple-
mentation of the bypass network, which has an important impact on the performance. Finally, the 
lecture concludes with the commit stage, where it describes how the architectural state is updated 
and recovered in case of exceptions or misspeculations.

This lecture is intended for an advanced course on computer architecture, suitable for gradu-
ate students or senior undergrads who want to specialize in the area of computer architecture. It 
is also intended for practitioners in the industry in the area of microprocessor design. The book 
assumes that the reader is familiar with the main concepts regarding pipelining, out-of-order execu-
tion, cache memories, and virtual memory.
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1

Computers are at the heart of most activities nowadays. A processor is the central component of 
a computer, but nowadays, we can find processors embedded in many other components, such as 
game consoles, consumer electronic devices and cars, just to mention a few.

This lecture presents a thorough study of the microarchitecture of contemporary micropro-
cessors. The focus is on implementation aspects, with discussions on alternative approaches and 
their implications in terms of performance, power and cost.

The microarchitecture of processors has undergone a continuous evolution. For instance, 
Intel has shipped a new microprocessor approximately every year in the recent past. This evolution 
is fueled mainly by two types of factors: (1) technology scaling and (2) workload evolution.

Technology scaling often is referred to as Moore’s law, which basically states that transistor 
density doubles approximately every 2 years. Every technology generation provides transistors that 
are smaller, faster and less energy consuming. This allows designers to increase the performance of 
processors, even without increasing their area and power.

On the other hand, processors adapt their features to better exploit the characteristics of user 
applications, which evolve over time. For instance, in recent years, we have witnessed an extraordi-
nary increase in the use of multimedia applications, which have resulted in an increasing number of 
features in the processors to better support them.

1.1 CLASSIFICATION OF MICROARCHITECTURES
Processor microarchitectures can be classified along multiple orthogonal dimensions. Here we will 
present the most common ones.

1.1.1 Pipelined/Nonpipelined Processors
Pipelined processors split the execution of each instruction into multiple phases and allow different 
instructions to be processed in different phases simultaneously. Pipelining increases instruction- 
level parallelism (ILP), and due to its cost-effectiveness, it practically is used by all processors  
nowadays.

Introduction
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1.1.2 In-Order/Out-of-Order Processors
An in-order processor processes the instructions in the order that they appear in the binary (accord-
ing to the sequential semantics of the instructions), whereas an out-of-order processor processes the 
instructions in an order that can be different (and usually is) from the one in the binary. The purpose 
of executing instructions out of order is to increase the amount of ILP by providing more freedom 
to the hardware for choosing which instructions to process in each cycle. Obviously, out-of-order 
processors require more complex hardware than in-order ones.

1.1.3 Scalar/Superscalar Processors
A scalar processor is a processor that cannot execute more than 1 instruction in at least one of 
its pipeline stages. In other words, a scalar processor cannot achieve a throughput greater than 1 
instruction per cycle for any code. A processor that is not scalar is called superscalar. Note that a 
superscalar processor can execute more than 1 instruction at the same time in all pipeline stages and 
therefore can achieve a throughput higher than 1 instruction per cycle for some codes.

Very-long-instruction-word (VLIW) processors are a particular case of superscalar proces-
sors. These processors can process multiple instructions in all pipeline stages, so they meet the defi-
nition of superscalar. What makes a superscalar processor to be VLIW are the following features: 
(a) it is an in-order processor, (b) the binary code indicates which instructions will be executed 
in parallel, and (c) many execution latencies are exposed to the programmer and become part of 
the instruction-set architecture, so the code has to respect some constraints regarding the distance 
between particular types of instructions to guarantee correct execution. These constraints have the 
purpose of simplifying the hardware design since they avoid the inclusion of hardware mechanisms 
to check for the availability of some operands at run time and to decide which instructions are is-
sued in every cycle.

For instance, in a VLIW processor that executes 4 instructions per cycle, the code consists of 
packets of 4 instructions, each of them having to be of certain types. Besides, if a given operation 
takes three cycles, it is the responsibility of the code generator to guarantee that the next two packets 
do not use this result.

In other words, in a non-VLIW, processor the semantics of a code are determined just by 
the order of the instructions, whereas in a VLIW processor, one cannot totally derive the semantics 
of a code without knowing some particular features of the hardware (typically the latency of the 
functional units). By exposing some hardware features as part of the definition of the architecture, a 
VLIW processor can have a simpler design but, on the other hand, make the code dependent on the 
implementation, and thus, it may not be compatible from one implementation to another.
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1.1.4 Vector Processors
A vector processor is a processor that includes a significant number of instructions in its ISA (in-
struction set architecture) that are able to operate on vectors. Traditionally, vector processors had 
instructions that operated on relatively long vectors. More recently, most microprocessors include a 
rich set of instructions that operate on relatively small vectors (e.g., up to 8 single-precision FP ele-
ments in the Intel AVX extensions [17]). These instructions are often referred to as SIMD (single 
instruction, multiple data) instructions. According to this definition, many processors nowadays are 
vector processors, although their support for vector instructions varies significantly among them.

1.1.5 Multicore Processors
A processor may consist of one or multiple cores. A core is a unit that can process a sequential 
piece of code (usually referred to as a thread). Traditional processors used to have a single core, but 
most processors nowadays have multiple cores. A multicore processor can process multiple threads 
simultaneously using different hardware resources for each one and includes support to allow these 
threads to synchronize and communicate under the control of the programmer. This support nor-
mally includes some type of interconnect among the cores and some primitives to communicate 
through this interconnect and often to share data and maintain them coherently.

1.1.6 Multithreaded Processors
A multithreaded processor is a processor that can execute simultaneously more than one thread 
on some of its cores. Note that both multicore and multithreaded processors can execute multiple 
threads simultaneously, but the key distinguishing feature is that the threads use mostly different 
hardware resources in the case of a multicore, whereas they share most of the hardware resources in 
a multithreaded processor.

Multicore and multithreading are two orthogonal concepts, so they can be used simulta-
neously. For instance, the Intel Core i7 processor has multiple cores, and each core is two-way  
multithreaded.

1.2 CLASSIFICATION OF MARKET SEGMENTS
Processors also have different characteristics depending on the market segment for which they are 
intended. The most common classifications of market segments are the following:

Servers: This segment refers to powerful systems in data centers, which typically are shared 
by many users and normally have a large number of processors. In this segment, computing 
power and power dissipation are the most important parameters for the users.

•
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Desktop: This term refers to computers used at home or in offices, typically by no more than 
one user at the same time. In these systems, computing power and the noise of the cooling 
solution are normally the most important parameters for the users.
Mobile: This refers to laptop computers, also known as notebooks, whose main feature is 
mobility, and thus, they operate on batteries most of the time. In these systems, energy 
consumption is the most important parameter for the users, due to its impact on battery 
life, but computing power is quite important too.
Ultramobile: In these systems, energy consumption is of paramount importance for the 
users. Computing power is important but secondary with respect to energy consumption. 
These systems are usually very small to maximize their portability.
Embedded: This segment refers to the processors that are embedded in many systems that 
we use nowadays apart from computers. These embedded processors are practically every-
where: in cars, consumer electronics, health-care appliances, etc. Their characteristics vary 
significantly depending on the particular system where they are embedded. In some cases, 
their computing power requirements may be important (e.g., in set-top boxes), whereas in 
many others, the cost is the most important parameter since they have minimal computing 
requirements, and it is all about minimizing their impact on the total cost of the product. 
Some embedded processors are in mobile systems, and in this case, energy consumption is 
also of paramount importance.

1.3 OVERVIEW OF A PROCESSOR
Figure 1.1 shows a high-level block diagram of the main components of a processor that is valid for 
most processors nowadays, in particular, for out-of-order superscalar processors, which represent 
the most common organization. It also depicts the main phases that every instruction goes through 
in order to be executed. Note that these phases do not necessarily correspond to pipeline stages; a 
particular implementation may split each of them into multiple stages or may group several of them 
into the same stage.

Instructions are first fetched from the instruction cache. Then they are decoded to understand 
their semantics. Afterwards, most processors apply some type of renaming to the register operands 
in order to get rid of false dependences and increase the amount of ILP that can be exploited. Then, 
instructions are dispatched to various buffers, depending on the type of instruction. Nonmemory 
instructions are dispatched to the issue queue and the reorder buffer, whereas memory instructions 
are dispatched to the load/store queue, in addition to the previous two. Instructions remain in the 
issue queue until they are issued to execution. Operands have to be read before executing an instruc-
tion, but this can be done in multiple ways, which we will describe in chapters 5 and 6. Afterward, 
the result is written back to the register file, and finally, the instruction is committed. An instruction 

•

•

•

•
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remains in the reorder buffer until it commits. The goal of the reorder buffer is to store information 
about the instruction that is useful for its execution but also for squashing it if necessary.

Memory operations are handled in a special manner. They need to compute the effective ad-
dress, which typically is done in the same way as an arithmetic instruction. However, besides access-
ing the data cache, they may need to check their potential dependences with other in-flight memory 
instructions. The load/store queue stores the requited information for this, and the associated logic 
is responsible for determining when and in which order memory instructions are executed.

In an in-order processor, instructions flow through these phases in the program order. This 
means that if an instruction is stalled for some reason (e.g., an unavailable operand), younger in-
structions may not surpass it, so they may need to be stalled too.

In a superscalar processor, each one of the components described above has the capability of 
processing multiple instructions at the same time. Besides, it is quite normal to add buffers between 
some pipeline stages to decouple them and in this manner allow the processor to hide some of the 
stalls due to different types of events such as cache misses, operands not ready, etc. These buffers are 
quite common between fetch and decode, decode and rename and dispatch and issue.

1.3.1 Overview of the Pipeline
This section presents an overview of the main components of the pipeline. A detailed description of 
them is presented in following chapters.

FIGURE 1.1: High-level block diagram of a microprocessor.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00309ED1V01Y201011CAC012&iName=master.img-001.jpg&w=269&h=196
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The first part of the pipeline is responsible for fetching instructions. The main components of 
this part of the pipeline are (a) an instruction cache, where instructions are stored, and (b) a branch 
predictor that determines the address of the next fetch operation.

The next part is the instruction decode. The main components of this part are decoders, 
ROMs and ad-hoc circuitry, whose main objective is to identify the main attributes of the instruc-
tion such as type (e.g., control flow) and resources that it will require (e.g., register ports, functional 
units).

Afterward, the instructions flow to the allocation phase, where the two main actions that  
are performed are register renaming and dispatch. Register renaming entails changing the names of 
the register operands with the purpose of removing all false dependences and therefore maximiz-
ing the instruction-level parallelism that the processor can exploit. This is done normally through 
a set of tables that contain information about the current mapping of logical names to physical 
ones and what names are not being used at this point in time, together with some logic to analyze 
dependences among the multiple instructions being renamed simultaneously, since the destination 
and source register of a producer-consumer pair has to be renamed in a consistent manner. The 
instruction dispatch consists of reserving different resources that the instruction will use, including 
entries in the reorder buffer, issue queue and load/store buffers. If resources are not available, the 
corresponding instruction is stalled until some other instruction releases the required resources.

The next phase in the pipeline is devoted to instruction issue. Instructions sit in the issue 
queue until the issue logic determines that their execution can start. For in-order processors, the 
issue logic is relatively simple. It basically consists of a scoreboard that indicates which operands are 
available and a simple logic that checks whether the instructions sitting at the head of the queue 
have all their operands ready. For out-of-order processors, this logic is quite complex since it entails 
analyzing all the instructions in the queue at every cycle to check for readiness of their operands and 
availability of the resources that they will require for execution.

After being issued, instructions go to the execution part of the pipeline. Here there is a variety 
of execution units for different types of operations, which normally include integer, floating-point 
and logical operations. It is also quite common nowadays to include special units for SIMD opera-
tions (single instruction, multiple data, also referred to as vector operations). Another important 
component of the execution pipeline is the bypass logic. It consists basically of wires that can move 
results from one unit to the input of other units and the associated logic that determines whether 
results should use the bypass instead of using the data coming from the register file. The design of 
the bypass network is critical in most processors since wire delays do not scale at the same pace as 
gate delays, so they have an important contribution to the cycle time of the processor.

Finally, instructions move to the commit phase. The main purpose of this part of the pipeline 
is to give the appearance of sequential execution (i.e., same outcome) even though instructions are 
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issued and/or completed in a different order. The logic associated with this part of the pipeline nor-
mally consists of checking the oldest instructions in the reorder buffer to see if they have been com-
pleted. Once they are completed, instructions are removed from the pipeline, releasing resources and 
doing some bookkeeping.

Another part of the pipeline that affects multiple components is the recovery logic. Some-
times, the activity done by the processor has to be undone due to some misspeculation (a typical 
case is branch misprediction). When this happens, instructions have to be flushed, and some storage 
(e.g., register file) has to be reset to a previous state.

The rest of this document describes in detail the design of the different components of contem-
porary processors, describing a state-of-the-art design and sometimes outlining some alternatives.

•  •  •  •
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Caches store recently accessed program data and instructions, in the hope that they will be needed 
in the near future, based on the observation that program memory accesses exhibit significant spa-
tial and temporal locality. By buffering such frequently accessed data in a small and fast structure, 
the processor can give the illusion to the application that accesses to main memory are in the order 
of a few cycles.

Data caches usually are organized in hierarchies of between 1 and 3 levels, so we can talk 
about the first-level cache, the second-level cache, etc. The lower the level, the closer to the proces-
sor the cache is located. Level 1 data caches usually have low associativity and store several tens of 
kilobytes of data arranged in cache blocks of around 64 bytes each, and they can be accessed in a few 
cycles (between 1 and 4, usually). Normally, processors have two first-level caches, one for program 
data (the data cache) and one for program instructions (the instruction cache). Second- and third-
level caches are usually between several hundreds of kilobytes and a few megabytes in size, have very 
high associativity and take tens of cycles to access. These caches usually hold both program data and 
instructions. Moreover, although each core in a multicore processor has its own (private) first-level 
caches, higher levels of the memory hierarchy are usually shared among multiple cores. In this sec-
tion, we will focus the discussion on first-level data caches.

Normally, program data and instruction addresses are virtual addresses. Load and store instruc-
tions as well as the fetch engine must perform address translation (more on this later) to translate 
the virtual addresses to physical addresses. The caches can be indexed with either virtual or physical 
addresses. In the former case, the cache access can be initiated earlier, since the address translation 
can be performed in parallel with the cache access. To deal with potential aliasing problems, the tags 
are normally generated from the physical address.

Load and store instructions have to take several steps in order to access the data cache. First, 
the virtual address of the memory access has to be calculated in the address generation unit (AGU), 
as will be discussed in Chapter 7. In the case of stores, the store queue is updated with this address, 
and in the case of loads, the store queue is checked for disambiguation (Chapter 6). When the dis-
ambiguation logic decides that a load can proceed (or when a store reaches its commit phase), the 
data cache is accessed.

C H A P T E R  2

Caches
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Instruction cache access is simpler, in that no disambiguation is required since stores to the 
instruction cache are not allowed. The only requirement is to calculate the virtual address of the 
instruction to be fetched. This process usually includes predicting the next instruction address, a 
process that will be described in Chapter 3.

The rest of this chapter is organized as follows. First, we explain how virtual addresses are 
translated to physical addresses. Then we discuss how caches are structured, and we describe several 
alternatives for cache designs. We focus this discussion on the data cache because it has a more 
complex pipeline compared to the instruction cache. Finally, we briefly revisit the several alternative 
cache designs, discussing the implications on the instruction cache.

2.1 ADDRESS TRANSLATION
The physical address space is defined as the range of addresses that the processor can generate on its 
bus. The virtual address space is the range of addresses that an application program can use. Virtual-
izing the program addresses serves two main purposes. First, it allows each program to run unmodi-
fied on machines with different amounts of physical memory installed or on multitasking systems 
where physical memory is shared among many applications. Second, by isolating the virtual address 
spaces of different programs, we can protect applications from each other on multitasking systems.

The virtualization of the linear address space is handled through the processor’s paging mech-
anism. When using paging, the address space is divided into pages (typically 4–8 KB in size). A 
page can reside either in the main memory or in the disk (a swapped-out page). The operating sys-
tem maintains a mapping of virtual pages to physical pages through a structure called the page table. 
The page table usually is stored in the main memory.

It is possible for two virtual pages to map to the same physical page. This is typical, for ex-
ample, in shared-memory multithreaded applications. When this occurs, the two virtual pages are 
“aliases” of the same physical entity, so this is called virtual aliasing. When implementing the data 
cache, load/store buffers and all related management mechanisms, it is very important to be able to 
handle virtual aliasing correctly.

When a program issues a load or store instruction, or an instruction fetch, the page map must 
be consulted to translate the linear address to a physical address before the memory access can be 
performed. A linear address is divided into two parts: the page offset and the page number. The page 
offset corresponds to the N least significant bits of the address—where N  log2(PAGE_SIZE)—and 
identifies a byte address inside a page. The page number—the remaining address bits—identifies a 
page inside the address space.

In a naive implementation, a load instruction (or instruction fetch) would have to perform 
several memory accesses in order to translate the linear address to a physical one (the page table is in  



CACHES 11

main memory). Since this is a critical operation, all modern processors implement a page table 
cache, called the translation lookaside buffer (TLB). The TLB is a small hardware cache structure 
that only caches page table entries.

In some processors, such as the Alpha series of processors, the TLB is entirely software con-
trolled. This means that the operating system has total freedom in how to organize the page map in 
main memory and also total control of which mappings it wants to be cached to the TLB (there are 
special instructions to add/remove entries from the TLB).

In the x86 architecture, the TLB is hardware controlled and is mostly transparent to the 
operating system. In this architecture, the page map has a specific format that the hardware is able 
to understand. It is the operating system’s responsibility to create the page map in a place in the 
memory where the hardware can find it and in the right format so that the hardware can parse it.

The TLB usually contains in the order of a few tens to a few hundred entries. Associativity 
may vary, but since it is critical for performance, its access time is usually a single cycle. The TLB is 
always indexed by the page number of the virtual address, and it returns the corresponding physical 
page number and some information for this page. The information includes the access rights for the 
page (if it can be read or written or if it is executable), and if it is mapped to a main memory page 
or if it is backed up in permanent storage.

2.2 CACHE STRUCTURE ORGANIZATION
A cache consists of two main blocks: the tag array and the data array. The data array stores the 
application data or instructions, while the tag array is used by the processor in order to match ap-
plication addresses into data array entries. In Figure 2.1, we can see graphically the cache logical 
organization.

The data array logically is organized as a group of sets. Each set is a collection of blocks. The 
number of blocks in a set is called the degree of associativity of the cache. We also say that a cache of 
associativity N is an N-way associative cache. The i-th cache way is defined to be the collection of 
the i-th blocks of all sets in a cache. A case with an associativity degree of 1 is called a direct mapped 
cache.

The memory address is split into three parts. The K least significant bits of the address are 
used to identify which bytes inside a cache block we want to access. This part of the address is called 
the block offset. Assuming the block size is Q bytes, then K  log2(Q). The next part of the address is 
called the index. As its name denotes, the index is used to identify the position of a set into the data 
array. For a data cache of S sets, we need M  log2(S ) bits of index.

Different addresses can map to the same set in the data cache (they have the same index), so 
we need a mechanism to reverse-map indexes to addresses. The tag array serves this purpose. The 
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tag array has the same logical organization as the data array (same number of sets and associativity). 
For each block in the data array, the tag array holds some metadata: the rest of the address bits and 
the state of the block (valid, etc.)

A memory request accesses both the data and the tag arrays using the index part of the ad-
dress, but in order to know if the block accessed corresponds to the given address, it must match the 
rest of the address bits with the tag bits. If the tag bits of the i-th block in the accessed set match, 
then the correct data is in the i-th block of the corresponding data array set (this is called a cache 
hit). If no tags in the set match the incoming address, then the requested data does not reside in the 
cache (this is a cache miss), and a request to the higher levels of the memory hierarchy must be issued 
and wait for the data to be installed in the cache before the access can proceed.

2.2.1 Parallel Tag and Data Array Access
The access to the tag and data array can occur in parallel or serially. In the first case (Figure 2.1), a 
whole set is read from the data array while the tag array is accessed. The address is compared with 
the tag entries to find in which block of the set reside the data that we are looking for. This informa-
tion is fed to a multiplexor at the output of the data array (the way multiplexor) that chooses one of 
the blocks of the set. Finally, the offset part of the address is used to extract the appropriate bytes 
from the chosen block (this process is called data alignment).

The cache access is typically one of the critical paths in a processor; thus, for high-frequency 
machines, it is pipelined. Figure 2.2 shows a typical pipeline for the parallel tag and data access 
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corresponding to Figure 2.1. In the pipeline shown, the address decoders of the arrays and the data 
aligner have been removed from the critical path by placing them in different cycles. There are two 
critical paths in Figure 2.2. The one is the path that goes through the tag array, the tag comparison 
and the way multiplexor control. The other is the one that goes through the data array and the way 
multiplexor data path.

2.2.2 Serial Tag and Data Array Access
An alternative design is one where the tag array is accessed earlier than the data array. The high-
level organization of such a design is shown in Figure 2.3. After we access the tag array and perform 
the tag comparison, we know exactly which of the ways of the data array we must access, so we can 
change the organization of the cache to take advantage of this fact and remove the way multiplexor. 
As can be seen in Figure 2.3, the per-way tag comparison signal can be used as a way read/write 
enable for the data array (shown here as being merged with the decoder output before the array ac-
cess). This way, the ways of the data array can share the same wires to the aligner. Another benefit 
of this design is that it has lower energy consumption: the way-enable signal only activates the way 
where the requested data resides.

Figure 2.4 shows a typical pipeline for the serial tag and data access design corresponding to 
Figure 2.3. It is easy to see in this figure another very important advantage of this design compared 
to the one in Figure 2.1. By removing the way multiplexor, we have relaxed the critical paths signifi-
cantly. First, the data array to way multiplexor data path is entirely removed. Second, the length of 
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the critical path through the tag array is reduced. This allows this design to run at a higher frequency 
than the previous one. On the other hand, this design requires one more cycle to access the cache.

It is evident that each design presents different tradeoffs. The parallel tag and data array ac-
cess design may have lower clock frequency and higher power, but it also requires one less cycle to 
access the cache. For an out-of-order processor that can hide memory latency, if the data cache is 
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the determinant factor for the frequency of the processor, it makes sense to implement serial tag and 
data accesses. On the other hand, for an in-order machine where memory latency is important, it 
may make sense to access tags and data in parallel.

2.2.3 Associativity Considerations
Direct mapped caches are the fastest to access. In case of parallel tag and data array access, it is the 
same as Figure 2.2 but without the way multiplexor in the critical path; we do not need the mul-
tiplexor because we have only one way. In case of serial tag and data array access, it is the same as 
Figure 2.4 but without the path from the tag comparison to the data array.

Unfortunately, direct mapped caches suffer more conflict misses than associative caches. A 
conflict miss occurs when N frequently accessed cache blocks map to the same cache set, and the 
cache associativity is M  N. Obviously, the higher the cache associativity, the less conflict misses 
the cache will suffer. On the other hand, the more ways a cache has, the bigger the way multiplexor 
becomes, and this may affect the processor’s cycle time.

Several proposals exists that attempt to address this situation by modifying the cache index-
ing function so that an N-way associative cache (where N is small; usually 1 or 2) gives the illusion 
of a cache of higher associativity [2,37,44].

2.3 LOCKUP-FREE CACHES
When a memory request misses in the first level cache, the request is forwarded to the higher levels 
of the memory hierarchy. The missing cache access cannot be completed until the forwarded request 
returns with the data. A blocking cache system will stall the processor until the outstanding miss 
is serviced. Although this solution has low complexity, stalling the processor on a cache miss can 
severely degrade performance.

An alternative is to continue executing instructions while the miss is serviced. This requires 
the processor to implement some dependence tracking mechanism (e.g., a scoreboard) that allows 
the instructions that do not depend on the missing instruction to proceed while the dependent ones 
are blocked, waiting for the request to be serviced. Such a mechanism of course already exists in 
out-of-order processors. Another requirement is a nonblocking or lockup-free cache.

A lockup-free cache is one that allows the processor to issue new load/store instructions even 
in the presence of pending cache misses. The concept of a lockup-free cache was first introduced 
by Kroft [28]. In his work, Kroft describes the use of special registers called miss status/information 
holding registers (MSHRs) to hold information about pending misses. Kroft also describes an input 
stack to hold the fetched data until they are written to the data array (this input stack is called the 
fill buffer in modern microprocessors). In the context of lockup-free caches, misses can be classified 
into three categories:
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Primary miss: the first miss to a cache block. This miss will initiate a fetch request to the 
higher levels of the memory hierarchy [28].
Secondary miss: subsequent miss to a cache block that is already being fetched due to a pre-
vious primary miss [28].
Structural-stall miss: a secondary miss that the available hardware resources (i.e., MSHRs) 
cannot handle [10]. Such a miss will cause a stall due to a structural hazard.

Several implementations of MSHRs are possible, with different complexity/performance tradeoffs. 
Here we focus on three such organizations.

2.3.1 Implicitly Addressed MSHRs 
This is the simplest MSHR design, proposed by Kroft [28]. This organization is shown in Fig-
ure 2.5. As shown in the figure, each MSHR contains the data array block address of the pending 
misses, along with a valid bit. The block address and the valid bit of an MSHR are set on a primary 
miss. A comparator also is included, in order to match future misses with this MSHR in order to 
record all secondary misses of a block in the same MSHR.

Assuming the cache block is divided into N words (typically 32-bit or 64-bit in size), then 
the MSHR also contains N entries recording miss information. Each entry contains the destination 
register of the missing instruction and some format information. The format field holds informa-
tion such as the size (in bytes) of the load instruction, whether the result should be sign or zero 
extended, the offset inside the word (e.g., for a byte-sized load), etc.

2.3.2 Explicitly Addressed MSHRs
One issue with the implicitly addressed MSHRs is that they can support only one outstanding 
miss per word. A secondary miss on an already active word field will become a structural-stall miss. 
The reason for this is that the block offset (the address inside the block) of a missing instruction is 
implied by the position of the field inside the MSHR.

In figure 2.6, we show another MSHR design proposed by Farkas and Jouppi [10] that im-
proves on the basic MSHR by adding block offset information to each MSHR field. Two misses 
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on the same word are allowed to occupy two different entries with the same block offset, inside the 
same MSHR. This organization also allows decoupling the number of fields from the block size: 
instead of being forced to have one field per block word, we can have as many as the number of total 
outstanding misses we want to support per block.

2.3.3 In-Cache MSHRs
An alternative organization that reduces the amount of storage required to hold MSHR informa-
tion was proposed by Franklin and Sohi [12]. This proposal is based on the observation that the 
cache block waiting to be filled can serve as the MSHR storage. With in-cache MSHRs, the tag 
array needs to hold one more bit per cache block, the transient bit, to indicate that the block is being 
fetched. When in transient mode, the tag array holds the address of the block being fetched, and the 
corresponding data array entry holds MSHR information. The in-cache MSHR can be implicitly 
addressed or explicitly addressed. The benefit of this design is that we can have as many in-flight 
primary misses as blocks in the cache.

2.4 MULTIPORTED CACHES
In order to sustain a high execution bandwidth, most modern microprocessors are able to issue up 
to two load/store instructions per cycle [9,24,26,48]. There are various methods to build a dual-
ported cache (a cache that supports two operations per cycle), each with different design tradeoffs. 
Below we describe a true dual-ported cache design, and then we describe how different commercial 
microprocessors try to approximate this design.

2.4.1 True Multiported Cache Design
In the true multiported design, all the control and data paths inside the cache are replicated. For a 
true dual-ported cache, this means that there are two address decoders for the tag and data array, 
two way multiplexors, double the tag comparators, two aligners, etc. The tag and data array are not 
replicated, but their internal design is changed to allow two parallel reads to each array cell (allow-
ing two writes per cycle in the cache does not necessarily imply two write ports to the arrays if the 
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processor can guarantee that 1 bit cannot be written twice in a cycle). Although this design provides 
the highest bandwidth, implementing two read ports to the arrays significantly increases the cache 
access time, which can affect the processor clock cycle. It is for this reason that no commercial pro-
cessor that we know of implements a true dual-ported cache.

2.4.2 Array Replication
This design is similar to the true dual-ported design, only, we replicate the arrays as well. Two al-
ternatives are presented: replicating both the tag and data array (i.e., replicating the whole cache) 
or replicating only the data array and maintaining a true dual-ported tag array. By imitating a 
dual-ported cache with two copies of a single-ported cache, we can achieve full bandwidth without 
hurting the processor cycle time. The downside is that this design wastes area, although compared 
to a true dual-ported design, the area difference is not big. This implementation must keep the two 
replicas of the data always synchronized, which means that store instructions, cache replacements, 
block invalidation and similar operations have to be broadcast to both copies of the cache. Several 
sources [22,35] indicate that the Alpha 21164 microprocessor follows this design, although it is not 
clear if it replicates only the data array of the entire cache.

2.4.3 Virtual Multiporting
The IBM Power2 [45] and the Alpha 21264 [26] are two examples of processors that implement 
virtual multiporting to provide dual-ported access to a single-ported cache. Virtual multiporting 
utilizes time-division multiplexing to perform multiple accesses to a single-ported cache in a single 
cycle. In particular, the Alpha 21264 double-pumps its data array to provide the illusion that it im-
plements two read ports. In this design, the first load operation accesses the array in the first half of 
the cycle, while the second load operation proceeds in the second half of the cycle. This technique is 
abandoned in the latest microprocessor designs because it does not scale. Modern microprocessors 
that operate at frequencies of several gigahertz cannot afford to double-pump the data array.

2.4.4 Multibanking
Multibanking divides the cache into multiple small arrays (banks), each single ported. Multiple re-
quests can be issued in a cycle if they access to different banks. When two requests map to the same 
cache bank, we say we have a bank conflict. With multibanking, a dual-ported cache still has to have 
two address decoders for the tag and data arrays, two way multiplexors, two tag comparators, two 
aligners, etc. Contrary to the true dual-ported cache, though, the tag and data arrays do not have to 
have multiple ports. When employing multibanking, there are several ways to organize the data in 
the cache depending on how the indexing function maps addresses to banks, how the cache block 
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is distributed (or not) among banks, how many banks there are, etc. Multibanking is the preferred 
method for emulating multiple ports in today’s high-performance microprocessors [24].

The MIPS R10000 implements multibanking to allow 2 loads and 1 store access per cycle 
[48]. The 32-KB data cache of the R10000 is divided into two interleaved banks. The cache is two-
way set associative with a block size of 32-B. Each cache bank is logically divided into two logical 
arrays, and the two ways alternate inside the arrays every 8-B. Figure 2.7 shows the arrangement 
of block data and ways inside one of the banks. Although we do not have detailed documenta-
tion for this, we believe that the least significant bit of the index is used to identify the bank to be  
accessed.

A different banking organization was chosen by the designers of the AMD Opteron [24]. 
The Opteron has a 64-KB first-level data cache, two-way set associative with a cache block of  
64-B. Each way of the cache consists of eight 4-KB banks. The total cache consists of 16 banks, 
but a memory instruction accesses one bank of each way for a total of two. Any combination of two 
load/store requests can issue at the same cycle if they access different banks.

2.5 INSTRUCTION CACHES
Instruction caches have a simpler organization compared to data caches. This is because of the dif-
ferent requirements of instruction fetching vs. program data accesses.

2.5.1 Multiported vs. Single Ported
Program instructions usually are placed consecutively in the main memory, and instruction fetch 
follows this sequential stream of addresses (except in case of control-flow instructions). To better 
take advantage of this program property, an instruction cache read usually outputs an entire cache 
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block of data (a data cache read could output as little a single byte if required), which contains 
multiple consecutive instructions. Thus, a single instruction cache access, on average, feeds multiple 
instructions to the rest of the machine. Due to this, instruction caches are implemented as single-
ported caches.

2.5.2 Lockup Free vs. Blocking
Instruction caches are normally blocking caches, i.e., they are not lockup-free caches. The reason 
lockup-free caches work for data requests is that we can find future instructions (after the missing 
load) to execute that do not need the load data. This is not true for instruction fetching. All instruc-
tions implicitly depend on their previous in-program order instruction. This is a requirement of 
correct execution. This means that if we miss in the instruction cache, we must wait for this miss 
to be satisfied before we can fetch the next instruction. Thus, there is no performance benefit in 
implementing lockup-free instruction caches.

2.5.3 Other Considerations
An instruction cache with parallel tag and data array access requires one cycle less to fetch instruc-
tions compared to one with serial access. This is usually the prefered design because it reduces the 
penalty of restarting the instruction fetch from the correct address whenever we mispredict the next 
instruction address. On the other hand, such a design may have lower clock frequency and higher 
power, so careful studies have to be performed to balance the tradeoffs in each case.

Instruction cache associativity is also another parameter that varies among designs. Similar 
to data caches, lower associativity caches have lower access time, which allows higher frequency, 
but higher associativity caches suffer less conflict misses. The sequential access nature of instruc-
tion caches produces less conflict misses compared to the random access pattern of data caches, but 
instruction cache associativity still requires careful tuning of the design.

•  •  •  •
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The instruction fetch unit is the responsible for feeding the processor with instructions to execute, 
and thus, it is the first block where instructions are processed. The fetch unit mainly consists of an 
instruction cache and the required logic to compute the fetch address.

High-performance processors can sustain one fetch operation per cycle, which implies that a 
new fetch address has to be computed every cycle. This means that the next fetch address calcula-
tion must occur in parallel to the cache access. However, branch instructions (including conditional 
branches, jumps, subroutine calls and subroutine returns) introduce a significant extra level of com-
plexity, since the correct fetch address cannot be calculated until we execute the branch.

For this reason, high-performance processors predict the next fetch address. There are two 
parts in this prediction. The first is predicting the direction of the branch, i.e., taken or not taken. 
This prediction is performed by what typically is referred to as the branch predictor unit. The sec-
ond part is predicting the target address of the branch. This prediction is performed by a unit typi-
cally called the branch target buffer (BTB). Some processors treat returns from subroutine as special 
cases and use what is called a return address stack (RAS) unit to predict them.

In Figure 3.1 we can see a high-level block diagram of an instruction fetch unit. There are 
many alternative fetch unit organizations (with multicycle predictors, multiple prediction levels, 
etc.), but we believe that the one shown in Figure 3.1 is a straightforward design demonstrating the 
most important principles of a high-performance and high-frequency fetch unit able to start a new 
fetch every cycle.

The instruction cache shown in Figure 3.1 accesses the data and tag arrays in parallel, as ex-
plained in Chapter 2. We can also see that the instruction TLB is accessed in parallel to the instruc-
tion cache. In this design, we assume that the cache arrays are indexed with the virtual address, but 
the tag matching is done with the physical address. Accessing tags, data and TLB in parallel allows 
a reduction in the total fetch pipeline depth, which is important for performance (it reduces the cost 
of restarting the fetch after branch mispredictions).

Figure 3.1 also shows all the relevant next-fetch-address predictors accessed in parallel in 
the first stage. We show that selecting which predictor output to use for the fetch address takes one 
more cycle, to emphasize the fact that this pipeline is designed for high frequency. Although this 
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The Instruction Fetch Unit
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particular design requires four cycles to fetch one block of instructions, since it is fully pipelined, it 
can start a new fetch every cycle, achieving high throughput.

In the following sections, we describe in more detail the different alternative designs for the 
instruction cache and the predictors used in modern microprocessors.

3.1 INSTRUCTION CACHE
The instruction cache stores some instructions that are likely to be needed in the near future. It is 
usually set associative and stores several tens of kilobytes arranged in cache lines of around 64 bytes 
each. The cache can be indexed with either virtual or physical addresses. In the former case, the ac-
cess can be initiated earlier since the address translation can be performed in parallel with the cache 
access. To deal with potential aliasing problems, the tags are normally generated from the physical 
address.

In superscalar processors, multiple instructions must be fetched per cycle. This is typically 
achieved by reading consecutive bytes from the cache that are part of the same cache line. In this 
way, a single memory port may provide the required bandwidth. Once the string of bytes is read, it 
has to be partitioned into instructions. This is trivial if instructions are fixed size and require some 
decoding if instructions are variable size.
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3.1.1 Trace Cache
Conventional caches store instructions in the same order as they appear in the binary (static order). 
However, there is an alternative organization that stores the instructions in dynamic order, and it is 
known as trace cache [36]. Figure 3.2 illustrates the key difference between both organizations. There 
are two key differences between these two organizations: data replication and effective bandwidth 
per memory port. In a conventional cache, any instruction of a binary appears once at most, whereas 
in a trace cache, it may appear multiple times, since it can be part of multiple different traces. On 
the other hand, the maximum bandwidth per memory port of the conventional cache is limited by 
the frequency of taken branches, which in some integer programs can quite high.

3.2 BRANCH TARGET BUFFER
Predicting whether an instruction is a branch can be done with a hardware table that is indexed 
with the current fetch address and, for every entry, has as many elements as instructions in a fetch 
block. A single bit per element may suffice. This bit indicates whether the corresponding instruc-
tion is expected to be a branch or not. By adding more bits, one can also predict the type of branch 
(conditional, call, return, etc.). Once the fetch block is available, the prediction is checked, and in 
case of misprediction, the table is updated.

To predict the outcome of a branch, the branch unit has to predict its target address, and in 
case of conditional branches, whether the branch is to be taken.

Most branch instructions encode their target address relative to their location (a.k.a. program 
counter relative, or PC relative for short) by means of an offset. This is usually the case for branches 
that correspond to conditional and loop structures in programs, which are responsible for the ma-
jority of branches. These branches have two important characteristics: first, their target address is 
always the same, and it is not very far from the branch instruction. Because of that, the PC-relative 
encoding is quite appropriate. For these branches, the target address can be computed in the cycle 
after they are fetched, instead of being predicted. This would just require a dedicated adder in the 

FIGURE 3.2: Conventional instruction cache and trace cache overview.
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front-end, but the main drawback is that it would introduce a 1-cycle bubble for every taken branch, 
which for high-performance processors can be an important penalty.

To avoid this bubble, the target address has to be predicted. This is normally accomplished 
by having a hardware table that is indexed with the fetch address and has an entry for every instruc-
tion in a fetch block. This entry contains the predicted target address if it corresponds to a branch. 
The prediction is just the target address of the previous time the branch was executed. This is guar-
anteed to be correct for PC-relative branches and happens to be quite accurate also for computed 
branches (i.e., those branches whose target address is not known at compile time and is computed 
at run time). Note that this table can be combined with the one described above for predicting if 
an instruction is a branch, and the combined table is normally called branch target buffer (BTB). 
Figure 3.3 illustrates its main structure.

3.3 RETURN ADDRESS STACK
There is a particular type of computed branches that deserve special attention. These are the return-
from-subroutine instructions. These instructions have variable target addresses, which depend on 
where the corresponding call to a subroutine is placed. A BTB could predict them with relatively 
good accuracy, since often a given subroutine is called multiple times in a row from the same loca-
tion (e.g., when the call is in a loop). However, there is a special mechanism that is very simple and 
is even more accurate. It is called the return address atack (RAS).

The RAS is a hardware LIFO structure, where every time the processor fetches a subroutine 
call, the address of the next instruction is pushed in. When a return instruction is fetched (or is pre-
dicted to be fetched by the BTB), the most recent entry of the RAS is popped out and used as the 
target address prediction for the return instruction. If the RAS had an unbounded number of en-
tries, it would be able to correctly predict practically all return instructions (all if the return address 
is not explicitly changed inside the subroutine, which is totally discouraged by good programming 
practices, and it is very rare in typical workloads). In practice, the RAS has a relatively small number 
of entries (e.g., a few tens). When a call instruction finds it full, the oldest entry is lost, and this will 

FIGURE 3.3: The branch target buffer.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00309ED1V01Y201011CAC012&iName=master.img-003.jpg&w=289&h=92
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cause a misprediction in a future store. However, this situation is very rare in many programs, since 
it only happens when the subroutine nesting level is higher than the number of RAS entries, and it 
has been experimentally observed that the nesting level is rarely higher than a few tens. Obviously, 
this is not the case for recursive subroutines.

3.4 CONDITIONAL BRANCH PREDICTION
Regarding whether the branch is to be taken, the prediction is a must practically in any processor for 
conditional branches, since the condition depends on run-time data and cannot be computed until 
the execution stage of the pipeline. From the time a branch is fetched until it is computed, it may 
easily take more than 10 cycles in many microprocessors, so waiting for its computation to fetch the 
next block is not an option in practically any processor.

Branch condition prediction can be done statically (i.e., by the compiler/programmer), dy-
namically or a combination of both.

3.4.1 Static Prediction
Static prediction can be done with profiling information, by collecting the most frequent outcome 
of each branch for a particular run and using it as the prediction. Without profiling information, 
it can be relatively accurate to predict that loop closing branches will be taken. For the rest (e.g., 
branches corresponding to conditional structures), it is, in general, tough to know a priori which 
direction they will take.

Static prediction of the condition is very simple from the hardware standpoint; it just requires 
some bits (one may be enough) in the instruction so that the compiler can encode the prediction. A 
minimalist form of static prediction is to predict the same outcome for all branches (i.e., all taken or 
not taken), which avoids the need for any extra bit in the instructions. On the other hand, dynamic 
prediction requires more complex hardware, but it is, in general, much more effective, so it is present 
in practically all processors. The advantage of dynamic predictors comes from the fact that they use 
the actual data of the running application and that they can change the prediction for every dynamic 
instance of the same static branch.

3.4.2 Dynamic Prediction
Dynamic prediction is based on some hardware that stores past information of the running applica-
tion and uses this information to predict every branch. A simple and quite commonly used predictor 
in the past consists of a table that contains 2n entries of 2 bits each (see Figure 3.4) [40]. The table is  
indexed with the address (the PC) of the branch instruction, for instance, using the n least signifi-
cant bits (if instructions are fixed size, the few least significant bits that represent the byte offset are 
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normally not considered). The corresponding entry is then used to predict the branch condition and 
is updated with the branch condition outcome once it is available, to reflect the most recent history 
of this branch. The two-bit entry implements a finite-state machine that is used for making the 
prediction and storing the recent history. The finite-state machine depicted in Figure 3.4 is often 
referred to as a two-bit saturating counter.

This predictor is called a local branch predictor since the prediction of each branch is made 
using the history of the same branch, if we ignore the effect of aliasing. This predictor is designed to 
work well with highly biased branches. Branches that are almost always taken will tend to be in the 
“11” state, whereas branches that are almost always not taken will tend to be in the “00” state. This 
predictor is also good if a branch changes its bias from time to time, as far as it keeps a particular 
bias for some time.

Since the table has a finite number of entries, sometimes two different branches happen to 
use the same entry. This is called aliasing and, in general, degrades the accuracy of the predictor. 
In particular, for this predictor, if the two aliased branches have the same bias, then this aliasing 
has minimal effect, but if they have opposite bias, the accuracy of their predictions is dramatically 
compromised.

A 2-bit local branch predictor typically has an accuracy higher than 80% and, for some pro-
grams, it can be as high as 99%. This may be adequate for some microprocessors, but for current 

FIGURE 3.4: A local branch predictor.
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high-performance processors, a 10% misprediction represents an important penalty. This is mainly 
due to the high penalty of each misprediction. As described in more detail in Chapter 8, a branch 
misprediction causes a flush of the pipeline, and the fetch unit is redirected to the correct path. This 
implies that instructions from the correct path will not be able to reach the execution stage until 
they traverse the entire pipeline from fetch to execute. In current high-performance processors, this 
is typically more than ten cycles, so for programs where branches are quite frequent (e.g., 1 every 10 
instructions), introducing a bubble of more than ten cycles every misprediction represents a signifi-
cant penalty. The penalty of a bubble in the front end depends on the particular microarchitecture 
(bandwidth of the frontend, bandwidth of the back-end, etc.) and the characteristics of the code, so 
it cannot be computed without a cycle-level simulator (or the actual hardware). However, note that 
current superscalar processors have a front-end bandwidth that can be around 4 instructions per 
cycle, so a 10-cycle bubble in the front end represents a lost opportunity to fetch 40 instructions.

To further reduce branch misprediction penalty, current microprocessors usually include a 
correlating predictor, also known as two-level branch predictor [49]. A correlating predictor makes 
a prediction of a given branch using history not only of the branch itself but from other “neighbor” 
branches too.

A simple and effective way to build a correlating predictor is shown in Figure 3.5 [31]. 
There is a register, which is called branch global history, that stores the outcome of the most recent 
branches (1 bit to indicate taken or not taken). Something like 10 to 20 bits of history may be ad-
equate. This history is combined with the PC of the branch through a hashing function to generate 
an index to a table that contains 2-bit saturating counters. The entry is used to make the prediction 
and is updated with the outcome of the branch in the same manner as for the local predictor de-
scribed above. This predictor is called gshare.

The basic idea behind gshare and, in general, all correlating predictors is to try to use a dif-
ferent finite-state machine for every different combination of static branch and history. In this way, 

FIGURE 3.5: A gshare predictor.
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the prediction is based on both what this particular branch did in the past and what its “neighbor” 
branches did. Of course, from the cost standpoint, it is more cost effective not to provide an entry 
for every potential combination of PC and history and tolerate some degree of aliasing. It has been 
experimentally proven that a bit-wise exclusive OR between the branch global history and the least 
significant bits of the PC is a simple and effective hash function in terms of minimizing aliasing.

Correlating predictors vary in the way that global history is used and how it is combined with 
the identity (i.e., PC) of the predicted branch. For instance, we may have multiple global branch 
history registers, as illustrated in Figure 3.6. A particular branch uses a concrete history register 
based on its PC, and this concrete register is hashed with the PC to get the index to the particular 
finite-state machine that will be used for the prediction.

The accuracy of correlating predictors depends on the amount of global history used, the 
number of finite-state machines (i.e., two-bit saturating counters) and how the global history and 
the branch PC are used to determine the concrete finite-state machine to be used in each case. 
There is no particular configuration that is the best for all codes. For instance, sometimes it is best 
to have more global history, whereas in other cases, global history does not help and may even cause 
degradation in accuracy. Because of that, some processors use hybrid branch predictors.

A hybrid branch predictor [31] consists of multiple predictors such as those described above 
and a selector (see Figure 3.7). The selector is responsible for deciding which of the individual 
predictors is more reliable for every branch prediction. When the hybrid predictor consists of two 
individual predictors, the selector resembles another branch predictor since it has to predict a Bool-
ean value. It can be implemented through a table of two-bit saturating counters that is indexed by a 
combination of the PC and some global history (or just one of the two). The uppermost bit of the 
counter indicates the preferred predictor. Once the actual outcome of the branch is known, the entry 
is updated in the following manner. If both predictors are correct, or both are wrong, the counter 
is not modified. If the first predictor is correct and the second is wrong, the counter is increased, 
whereas if the first is wrong and the second correct, the counter is decreased.

Hybrid predictors are interesting not only because different types of codes may be more ad-
equate for different predictors but also because of the different warm-up time of the predictors. We 
call warm-up time of a predictor the time required from an initial state where its different tables and 

FIGURE 3.6: A correlating predictor with multiple global branch history registers.
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registers contain irrelevant information (e.g., from another application) to the time when it reaches 
a steady state regarding prediction accuracy. The warm-up time of a local predictor is quite short; 
as soon as a bias branch is executed a couple of times, it is predicted correctly. On the other hand, a 
correlating predictor has a much longer warm-up since a given static branch makes use of multiple 
finite-state machines, one for each different global history. In order to reach its steady state, all these 
finite-state machines have to be biased towards its appropriate value, which requires that this branch 
be executed a number of times proportional to the different values of the global history. Taking into 
account that every time there is a context switch, the state of the predictor is irrelevant for the new 
process, the warm-up time may have an important impact in multiprogrammed systems. Because 
of that, one may consider using a hybrid predictor consisting of a local predictor and a correlating 
predictor. Right after each context switch, the local predictor would usually be better, due to its 
faster warm-up, but after some time, the correlating predictor will start to predict better than the 
local one.

•  •  •  •

FIGURE 3.7: Hybrid branch predictors.
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The purpose of the intruction decode stage is to understand the semantics of an instruction and to 
define how this instruction should be executed by the processor. It is in this stage that the processor 
identifies:

What type of instruction this is: control, memory, arithmetic, etc.
What operation the instruction should perform, for example, whether it is an arithmetic 
operation, what ALU operation should be performed, whether it is a conditional branch, 
what condition should be evaluated, etc.
What resources this instruction requires, for example, for an arithmetic instruction, which 
registers will be read and which registers will be written.

Typically, the input to the decode stage is a raw stream of bytes that contains the instructions to be 
decoded. The decode unit then must first split the byte stream into valid instructions by identifying 
instruction boundaries and then generate a series of control signals for the pipeline for each valid 
instruction. The complexity of the decode unit depends heavily on the ISA and the number of in-
structions that we want to decode in parallel.

In the first section of this chapter, we will briefly explain how decoding works in a RISC 
machine. In the following section, we will revisit the encoding of the x86 instructions, and we 
will comment on how each ISA feature affects the decoding complexity. Next, we will discuss the 
dynamic translation technique that modern x86 processors utilize, to translate x86 instructions to 
simple RISC-like operations. Finally, we will describe the decoding pipeline of a modern, out-of-
order x86 processor that dynamically translates x86 instructions into an internal RISC-like set of 
instructions.

4.1 RISC DECODING
A typical RISC decoding pipeline can be seen in Figure 4.1. In the figure, we show a superscalar 
RISC machine that can decode 4 instructions in parallel. For the discussion throughout the rest of 
this section, we will assume the architecture of Figure 4.1.

•
•

•
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Typically, RISC instructions are simple to decode. Most RISC processors have a fixed in-
struction length, which makes finding the boundaries of the instructions in the fetch buffer and 
passing the raw bits of the instructions to the decoders trivial. The only thing that we need is the 
index inside the fetch buffer of the first instructions (it may not be aligned to the beginning of the 
buffer), which is easy to obtain from the low-order bits of the PC.

Moreover, RISC ISAs have very few encoding formats, which means that there are very few 
variations in the position of the opcode and the operands in the instructions. This, combined with 
the fact that RISC instructions are “simple,” which means that they gerenate few control signals for 
the pipeline, makes the decoders relatively simple.

The simplicity of RISC instructions enables high-performance processor implementations 
to have single-cycle decoding, using simple PLA circuits and/or small look-up tables. This is, of 
course, one of the original goals of RISC: to allow easy decoding and simple execution control, to 
facilitate high-performance implementations.

4.2 THE X86 ISA
The x86 is a variable-length, CISC instruction set. The format of an x86 instruction is shown in 
Figure 4.2, borrowed from the Intel Architecture Manual [19].

An x86 instruction constists of up to four prefix bytes (optional), a mandatory opcode that 
can be from 1 to 3 bytes, and an optional addressing specifier consisting of the ModR /M byte and 
maybe the SIB (scale-index-base) byte. Some instructions may also require a displacement (up to  
4 bytes) or an immediate field (also up to 4 bytes).

The instruction prefixes serve several purposes. For example, a prefix can modify the instruc-
tion operands: the segment override prefix changes the segment register of addresses, while the 
operand-size override prefix changes between 16- and 32-bit register identifiers.

decoderdecoder decoderdecoder

pipeline latch

register rename

fetch buffer

fetch

FIGURE 4.1: Typical RISC decode pipeline.
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If we want to decode more than one instruction in parallel, we must know where each instruc-
tion starts. Having variable instruction length imposes a sequentiality on this task: we must know 
the length of instruction i before we can know where instruction i + 1 starts in the current fetch 
block. Thus, being able to quickly calculate the length of an instruction is critical for performance.

The first complication that an x86 decoder faces is identifying the instruction length. This is 
possible only after decoding the opcode and—if it exists—the ModR /M byte. The opcode defines 
whether there is a ModR /M byte and, if so, the ModR /M defines whether there is an SIB byte. 
The existence of displacement or immediate is also defined in the opcode.

There are two issues in decoding the opcode of an x86 instruction. First, the opcode is not 
always in the same offset from the beginning of the instructions. It could start anywhere in the first 
5 bytes of the instructions, since we could have up to 4 bytes of prefixes before it. The second prob-
lem is that the opcode itself is of variable size—up to 3 bytes of primary opcode—and sometimes, 
bits 3 to 5 of ModR /M are used as an opcode extension.

The second complication that an x86 decoder faces is identifying the operands of the instruc-
tion. For example, in the simple case of a register-to-register operation, an operand can be encoded 
either in the opcode or in the ModR /M byte. The ModR /M byte, in turn, can encode 2- or 1-register  
operands, depending on the opcode and bits 6 to 7 of ModR /M.

In the register-to-register example, the 3-bit operand defines a general-purpose register, but 
to know which one, we need information from the opcode, the current execution mode and, in some 
cases, from the prefixes (if we have an operand-size override prefix). This is because with 3 bits, we can 
encode only 8 general-purpose registers, but there are many more architectural registers in x86. Thus, 
in 32-bit mode, an operand of value 0 can be interpreted as AL, AX, EAX, MM0, or XMM0 [19].

It is evident from the above discussion that x86 decoding is far from trivial. In modern x86 
microprocessors, decoding takes several cycles, and it is a source of significant design complexity. 
In the following sections, we discuss possible decode unit implementations for high-performance, 
out-of-order, superscalar microprocessors.

Instruction
Prefixes Opcode ModR/M SIB Displacemnt Immediate

Up to four
prefixes of
1 byte each
(optional)

1-, 2-, or 3-
byte opcode

1 byte
(if required)

1 byte
(if required)

Address
displacement
of 1, 2, or 4
bytes or none

Immediate
data of
1, 2, or 4
bytes or none

Mod Reg/
Opcode R/M Scale Index Base

0202 35673567

FIGURE 4.2: The x86 instruction format.
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4.3 DYNAMIC TRANSLATION
An x86 instruction has a lot of semantic information and may require several actions from the 
execution core. For example, the “add [eax], ebx” x86 instruction encodes an add operation of reg-
ister EBX with the memory value at the address specified by EAX, with the result written back to 
memory at address EAX. This requires the processor to:

Calculate the address of the memory operand using EAX and the data segment regis-
ter DS.
Bring the value of the memory location into the core and add to it the value of regis-
ter EBX.
Store the result of the addition to the memory location calculated in step 1.

An out-of-order execution engine that tries to execute this instruction would require a lot of 
control state and signals to track at which stage of the instruction’s execution it is at each point in 
time (this will be more aparent in Chapter 6). The microprocessor must guarantee that the stages 
of this instruction’s execution happen in the correct order and that dependences with other instruc-
tions are guaranteed. If we want high performance, it would also be desirable to “parallelize” some 
parts of the execution of the instruction with other instructions. For example, the address calcula-
tion should not depend on a previous instruction producing the correct value for register EBX, but 
the addition stage should. Thus, it is evident that executing such complex instructions in an efficient 
manner on an out-of-order execution core is not an easy task.

On the other hand, a compiler for a RISC ISA would break this complex operation into three 
simple instructions. The following code sequence corresponds to such a code sequence (for a ficti-
cious RISC ISA). Here we use the x86 register names to make it easier to compare the two cases. 
Also, we assume the destination operand of the instructions is the leftmost one:

load r0, ds:[eax]

add r1, r0, ebx

store ds:[eax], r1

These instructions can be handled easily by an out-of-order execution engine. Each instruction will 
do one and only one operation, the dependences are clear for each instruction, the execution engine 
can intermix these operations with other nondependent operations freely, etc.

Because of the complexity the x86 CISC instructions introduce to the excution engine, early 
on, the x86 processor engineers decided to dynamically translate the x86 instruction stream to 
RISC-like instructions in the decode unit of the processor. The first implementations to follow 

1.

2.

3.
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this design were the AMD K5 and the Intel P6. This way, binary compatibility with the x86 ISA 
is maintained, while the execution engine—being similar to a RISC machine—is significantly  
simplified.

Nowadays, all modern out-of-order x86 microprocessors dynamically translate the x86 in-
structions into an internal RISC-like instruction format. In particular, Intel calls these internal 
instructions micro-operations, or µops for short. The P6 µops had a fixed length (118 bits) and 
a regular format, encoding an operation (i.e., the opcode) and three operands (two sources and a 
destination) [14]. The P6 µops use a load/store model. In the x86-vs.-RISC example above, the P6 
decoder would generate a sequence of µops very much like the one of the RISC case.

From the size of the P6 µops, we can derive that actually, a µop corresponds not so much to 
a RISC instruction but more to a decoded RISC instruction, i.e., to the pipeline control signals of a 
simple RISC-like operation. Naturally, from their nature, the µops of modern microprocessors are 
different from the ones of the P6, but we believe that they still follow the RISC philosophy.

4.4 HIGH-PERFORMANCE X86 DECODING
Figure 4.3 shows the high-level block diagram of the decode unit of the Intel Nehalem architec-
ture [21,23]. As it can be seen, x86 decoding is a multicycle operation. In this particular implemen-
tation, the process has been split into two decoupled phases: the intstruction length decoder (the 
“predecode” phase) and the dynamic translation to µops phase (the “decode” phase). The purpose 
of the ILD phase is to separate the raw byte stream into a sequence of valid x86 instructions and to 
pass these instructions to the second decode phase. The dynamic translation phase receives as input 
a stream of x86 instructions and generates a stream of functionally equivalent µops. The two phases 
are decoupled through the instruction queue (IQ ). The reason for this—an alternative would be a 
simple latch—is to hide bubbles in the ILD that may appear when complex x86 encodings arise 
and to also allow the ILD to proceed when complex translations are required from the dynamic 
translation unit.

4.4.1 The Instruction Length Decoder
The ILD unit receives sixteen aligned bytes from the prefetch buffers and performs some basic 
predecoding to facilitate the dynamic translation phase. The ILD determines the length of each 
instruction, it decodes all its prefixes, and it also marks various properties of the instruction that will 
help the second-phase decoding [21]. Instruction length decoding is sequential by nature, so it must 
be as fast as possible if we want to be able to predecode many instructions at high frequency.

The most common instruction encodings can be handled in a single cycle by the ILD. In the 
Intel Core and Core 2 microarchitecture (and presumably in Nehalem as well), the following two 
cases cannot be handled by the normal path though, and a slow six-cycle path is used [21]:
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An operand-size override prefix, preceding an instruction with a word immediate.
An address-size override prefix, preceding an instruction with a ModR /M byte.

These two prefixes are termed length-changing prefixes (LCP). To determine the length of the in-
struction with an LCP, the ILD unit must do some complex decoding of the instruction including 
the operands, not just the opcode as in the normal ILD path.

4.4.2 The Dynamic Translation Unit
In this phase, instructions are read from the instruction queue, and they are translated to µops. 
Many of the x86 instructions, especially the register-to-register ones, are translated to a single µop. 
Some x86 instructions that have memory operands or that use complex addressing modes are trans-
lated to more than one µops.

•
•

simple
decoder

simple
decoder

simple
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complex
decoderMSROM

instruction decoder queue (IDQ)

register rename

instruction queue (IQ)

instruction length decoder (ILD)
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fetch
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6 instuctions

4 μops 1 μop4 μops 1 μop 1 μop

4 instuctions

4 μops

4 μops

FIGURE 4.3: The Intel Nehalem decoding pipeline.
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The design of Figure 4.3 implements three “simple” decoders that handle instructions that 
are translated to a single µop and only one “complex” decoder that handles instructions that can be 
translated to up to four µops. This arrangement saves power and reduces complexity and, assum-
ing that the greatest part of the instructions fall in the “simple” category, no decode bandwidth is 
sacrificed.

There are some x86 instructions, such as string instructions, that require more than four µops. 
These instructions are sent to the complex decoder, which then stops the normal decode pipeline 
and passes control to the microsequencer (MSROM) unit. The MSROM comprises a sequencer 
circuit and an ROM array. The microsequencer outputs a microcode program to emulate the com-
plex x86 instruction. This program is nothing more than a preprogrammed sequence of normal µops 
(similar to those outputed by the other decoders).

•  •  •  •
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Allocation

Two main activities are performed at this pipeline phase: register renaming and instruction dispatch. 
The former has the purpose of removing false dependences due to reuse of registers, whereas the 
latter consists of reserving some resources that the instruction will require to be executed.

The dispatch consists of reserving some of the resources that instructions will use in the 
future, which normally include entries in the issue queue, the reorder buffer and the load/store 
queue. If any of the required resources is not available, the instruction is stalled until they become 
available. Sometimes, these resources are partitioned into multiple units, each one associated with 
some particular resources, so the allocation also has a side effect of determining which resources the 
instruction will later use for execution. For instance, there may be a different issue queue associated 
with each functional unit. In this case, the allocation also determines in which functional unit the 
instruction will be executed.

Register renaming is normally done only in out-of-order processors. Out-of-order processors 
execute the instructions of a program in an order that is different from the program order gener-
ated by the compiler or the programmer but has the same semantics. Instructions are reodered 
to increase the amount of instruction-level parallelism that is exploited. Instruction reordering is 
constrained by dependences among instructions. A dependence between two instructions forces a 
particular order between them. Dependences can be of two types (see Figure 5.1): data and name 
dependences. The former occurs when an instruction produces a data element that is consumed by 
another instruction. Obviously, in this case, the producer has to be executed before the consumer.

On the other hand, name dependences are caused by the reuse of storage locations, and they 
do not involve any particular data transfer among them. Name dependences can be of two types: 
write after write and write after read.

Name dependences are somewhat artificial; they are not due to the algorithm but to the 
fact that storage locations are reused. We could get rid of all name dependences by making every 
instruction write in a different storage location. This probably is not feasible for many applications/
systems since it would require more storage locations than available in today’s systems (e.g., an ap-
plication that runs for an hour in a single core may execute more than 1012 instructions). However, 
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even if there were enough memory, it may not be a good idea to do it, since it would cause a huge 
impact in performance due to the loss of locality.

Out-of-order processors have a much more modest target. They dynamically get rid of all 
name dependences but only for the in-flight instructions. Since typical instruction window size is 
around a hundred instructions, providing a different storage location for them is affordable. In this 
chapter, we are going to focus on register operands. Renaming is also applied to memory operands, 
as described in Chapter 6, when talking about the issue of memory instructions.

Most processors have a very small number of architectural registers (e.g., 32 integer and 32 FP)  
and, as a consequence, name dependences through registers are very common, and the benefits of 
getting rid of them in an out-of-order processor are huge.

Register renaming was first proposed by Tomasulo in his well-known scheme for out-of- 
order execution for the floating point unit of the IBM 360/91 in the 60s [43]. In that scheme, des-
tination operands were renamed using the identifier of the reservation station that would produce 
them. This scheme is not used by current microprocessors, since it requires that the reservation sta-
tion be occupied by an instruction until its execution completes. As described in Chapter 6, current 
microprocessors release the issue queue entries (reservation stations in Tomasulo’s nomenclature) 
right after being issued, which is more effective in terms of efficiency.

There are three alternative renaming schemes that are used by contemporary microproces-
sors. We will refer to them as renaming through the reorder buffer, renaming through a rename 
buffer and merged register file.

5.1 RENAMING THROUGH THE REORDER BUFFER
In this scheme, register values are stored in the reorder buffer and the architectural register file. The 
reorder buffer (ROB) stores the results of noncommitted instructions, whereas the architectural 
register file stores the latest committed value for each architectural register. There is a rename table 
that indicates for every architectural register whether its latest definition is in the ROB or the ar-
chitectural register file. In order to facilitate the access to operands in the ROB, the rename table 

r1 = r2 + r3 r1 = r2 + r3 r1 = r2 + r3
…. …. ….
r4 = r1+r5 r1 = r4 + r5 r2 = r4 + r5
Data dependence Name dependence Name dependence
Read after write Write after Write Write after read

FIGURE 5.1: Instruction dependences.
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also contains an additional field in the former case that indicated the location in the ROB where 
the operand is (see Figure 5.2).

When an instruction executes, its value is stored in the ROB. When it later commits, the 
value is copied from the ROB to the architectural register file. Note that a given operand may reside 
on two different locations in its lifetime. This may introduce some extra complexity to the scheme 
to read operands, as discussed below.

This is scheme is used by some microprocessors such as the Intel Core 2.

5.2 RENAMING THROUGH A RENAME BUFFER
This scheme is a small variation of the previous one. The motivation is the fact that an important 
percentage of the executed instructions (around one third, although it varies a lot across applications 
and ISAs) does not produce any register result. In the previous rename scheme, each entry in the 
ROB has a field to store a register result, which implies that about one third of this storage is wasted. 
The idea of the rename buffer scheme is to have a separate structure for the result of in-flight (i.e., 
noncommitted) instructions. In this way, only instructions that produce a result consume a storage 
location. Like the reorder buffer scheme, results are first stored in the rename buffer and moved to 
the architectural register file when the instruction commits. When an instruction is renamed, if it 
requires a rename buffer entry and there is not any one available, the instruction is stalled until an 
entry becomes available (deadlock cannot happen since older instructions that are in flight cannot 

FIGURE 5.2: Renaming through the reorder buffer.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00309ED1V01Y201011CAC012&iName=master.img-008.jpg&w=299&h=174
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depend on the stalled one, so eventually, they will commit and free the rename buffer entries that 
they allocated).

This scheme is used by the IBM Power3 processor, among others.

5.3 MERGED REGISTER FILE
In this scheme, there is a single register file that stores both speculative and committed values. Be-
cause of that, the size of this file is bigger than the number of architectural registers. Each register 
is either free or allocated. Free registers are kept track of in a free list. Allocated registers are in use 
and may contain a committed value, a speculative value or no value at all (in the case that it has 
been allocated but its results have not been produced yet). In addition, there is a register map table 
that stores the latest assignment (physical register identifier) for each architectural register (see 
Figure 5.3).

The free list can be, for instance, implemented through a circular buffer that stores the identi-
fiers of all free physical registers.

When an instruction is renamed, the rename map table is looked up to find out what its 
source operands are. In addition, if it produces a register result, a free physical register is allocated 
from the free list. If no free registers are available, the instruction is stalled until an older instruc-
tion commits and releases a register (see below for discussion on when registers are released). The 
destination operand is renamed to this free register, and the rename map table is updated to reflect 
this mapping.

Physical registers are freed when the processor can guarantee that they are dead (i.e., no in-
struction is going to use them anymore). Ideally, this could be done when the last instruction that 
uses this register commits. However, identifying the last use of a register is not straightforward for 
the processor (the compiler may know it, but current ISAs does not usually have a way to convey 
this information to the hardware). Because of that, the processor uses the following safe, conserva-
tive approach: a physical register is dead when the following instruction that uses the same archi-

FIGURE 5.3: Merged register file.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00309ED1V01Y201011CAC012&iName=master.img-009.jpg&w=319&h=93
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tectural destination register commits. This is illustrated in Figure 5.4. In this example, register p1 
is released when instruction (2) commits. Note that waiting until instruction (2) is fetched and all 
consumers of p1 before (2) commit is not enough, since instruction (2) may be squashed (e.g., due 
to a branch misprediction), and other consumers of p1 may be found later.

This is scheme is used by the Alpha 21264, MIPS R12000 and Pentium 4, processors among 
others.

5.4 REGISTER FILE READ
Another important aspect to consider is when register values are read, which has important implica-
tions in several key parts of the design. There are two alternatives: read before issue and read after 
issue.

In the former case, read before issue, the register file is read right before instructions are 
dispatched to the issue queue, and the values are stored in the issue queue. Obviously, not all the 
operands are available at that time, so only those available are read, and the rest are marked as non-
available in the issue queue. Nonavailable operands later are obtained through the bypass network, 
and the register file is not accessed again. One advantage of this scheme is that the register file may 
require a fewer number of ports since only a portion of the operands is provided by it. On the other 
hand, the issue queue requires a storage for operands, which in some way is similar to a register file, 
and thus is expensive in terms of area. Besides, some source operands need to be read twice and 
written once: read from the register file and written to issue queue, and read from the issue queue 
to be sent to the execution units. This activity consumes energy, which is a very precious asset in 
processors nowadays.

In the latter case, read after issue, the issue queue stores the identifiers of the register source 
operands, and the operands are actually read after the instruction is issued to be executed. Operands 
that have just been produced and could not be written yet in the register file are obtained through 
the bypass network. This scheme requires a larger number of ports in the register file since there are 
more operands provided by it but, on the other hand, source operands are read just once and do not 
have to be copied anywhere (apart from the stage latches).

(1) r1 = r2 + r3

...
(2) r1 = r4 * r5

(1) p1 = p2 + p3
...
(2) p5 = r5 * r6

After rename

FIGURE 5.4: Releasing a physical register.
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In theory, these two alternatives are orthogonal to the particular rename scheme being used, 
but there are important synergies that make some particular combinations quite common. In par-
ticular, for the rename schemes based on the reorder buffer and the rename buffer, read before issue 
has important advantages as described in the next section and is usually the preferred choice.

5.5 RECOVERY IN CASE OF MISSPECULATION
Instructions that are in flight have sometimes to be squashed due to multiple reasons (e.g., branch 
misprediction, exceptions). If these instructions have gone through the allocate stage, then the re-
sources that they reserved have to be released. Besides, the modifications that these instructions did 
in the rename tables have to be undone so that they reflect the same state they would have if these 
instructions never would have been executed. Chapter 8 discusses how this recovery is performed.

5.6 COMPARISON OF THE THREE SCHEMES
Regarding the allocation and release of physical registers, the scheme based on the ROB is very 
simple. There is no need to keep a free list since physical registers are part of the ROB entry as-
signment, which is basically a FIFO structure. For every new instruction, the tail of the FIFO is 
allocated, and when an instruction commits, the head of the FIFO is released. The same is true for 
the rename buffer scheme, since the rename buffer also is managed as a FIFO structure. On the 
other hand, the merged register file has a more complex management scheme. It requires a free list 
of physical registers. When a new physical register is needed, the head of the list is used. On the 
other hand, to release physical registers, each instruction has to keep in the reorder buffer the identi-
fier of the physical register that was mapped to the destination register right before this instruction 
was renamed. For instance, in the sample code of Figure 11, instruction (2) will store in the reorder 
buffer the identifier of p1, so that is released when (2) commits.

On the other hand, the merged register file has two main advantages. First, register values are 
written just once and never move, whereas for the other two schemes, they are written twice, first 
in the reorder buffer or rename buffer and later in the architectural register file. This extra activity 
represents additional energy consumption. Second, in the merged register file, all source operands 
come from a single location, whereas in the other two schemes, they may come from two different 
locations (the architectural register file or the reorder buffer/rename buffer). Having a single loca-
tion reduces the amount of interconnect that is needed and potentially may be beneficial in terms of 
area spent by the interconnect between the register file and the functional units.

Finally, the merged register file scheme can be used with the two read approaches described 
above (read before issue and read after issue) with no significant differences regarding its imple-
mentation. On the other hand, the reorder buffer and rename buffer schemes are more appropriate 
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for read before issue and present some challenges if one wants to use them together with read after 
issue. In particular, the challenge comes from the fact that the register values eventually move from 
one location (reorder buffer or rename buffer) to another (architectural register file). In the read-
after-issue scheme, the issue queue stores the identifier of the source operands. If when an instruc-
tion is renamed, a source operand is in the reorder buffer or the rename buffer, the issue queue will 
store a pointer to that location. If the instruction that produces this source operand commits before 
the operand is read by the consumer, the value will be moved to the architectural register file, and 
the pointer stored in the issue queue will not be correct anymore, since this entry may be allocated 
by a different instruction. In order to correct it, it would be necessary to do an associative search in 
the issue queue for every committed instruction to check if any entry is pointing to its destination 
register. If this is the case, the pointer should be changed to the corresponding architectural register 
file entry. All of this is very complex in hardware. The associative search is similar to the wakeup 
logic described later and, on top of that, additional write ports would be required to store the new 
pointer. Because of this, processors that use renaming through the reorder buffer or through the 
rename buffer normally opt for the read-before-issue scheme.

•  •  •  •
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6.1 INTRODUCTION
The issue is the pipeline stage in charge of issuing instructions to the functional units for execu-
tion. There are two main types of issue schemes: in order and out of order. The former one steers 
the instructions in program order, whereas the latter steers instructions out of order as soon as their 
source operands become available.

In general, in-order schemes check the oldest nonissued instruction and issue it whenever its 
source operands and the resources needed for its execution are available [46].

However, most of the latest processors implement out-of-order schemes. There are many 
different ways of implementing an out-of-order issue. Indeed, the final implementation is also very 
dependent on the design decisions made for the rest of the stages. For instance, we do not need the 
same hardware if the source operands of the instructions are read before or after the dispatch stage. 
Also, there are significant differences among issue schemes depending on whether they are based on 
reservation stations [30], distributed issue queues [27,33,48], or unified issue queues [39].

In this chapter, we describe the most common issue schemes implemented in existing  
processors.

6.2 IN-ORDER ISSUE LOGIC
In-order issue logic issues the instructions for execution in the same order they were fetched. There-
fore, instructions wait until all previous instructions have been issued. Then, the instruction is issued 
as soon as its source operands are available and the resources it needs for execution are ready.

This kind of issue logic is sometimes implemented at the decode stage of the processor due 
to its simplicity using scoreboarding. A typical scoreboard comprises two tables, a data dependence 
table and a resource table. These tables may vary depending on the actual hardware constraints of 
the processor.

The data dependence table is indexed using the source register identifiers of the instruction 
to be issued. Every entry on this table represents the state of a register value. This state ranges from 
nonavailable, so that the instruction cannot be issued yet, until value available, either at some bypass 
level or written into the register file. The reader will find more details regarding bypasses in Chapter 7.

C H A P T E R  6

The Issue Stage
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The resource table keeps track of the availability of execution resources like functional units. 
There are some functional units like divisors that are not able to accept one new operation request 
every cycle. In this case, the processor could not schedule an instruction that uses the divisor if it 
scheduled another instruction that used it one cycle before. Therefore, the issue logic uses this table 
in order to check whether a given execution resource is available on the current cycle.

Very long instruction word (VLIW) processors implement a simplified in-order issue logic. 
These processors do not implement any kind of scoreboarding since it is the responsibility of the 
software that generates the code to schedule every instruction far enough from the producer to have 
its inputs available when it is issued for execution. This software is usually a static compiler or a 
codesigned virtual machine like in Transmeta Efficeon [47].

6.3 OUT-OF-ORDER ISSUE LOGIC
The issue logic is a key component that determines the amount of instruction-level parallelism out-
of-order processors are able to exploit. It allows out-of-order execution by issuing instructions to the 
functional units as soon as their source operands become available. However, the hardware compo-
nents involved in the issue process sit in the critical path of the processor pipeline [1]. Therefore, it 
is very important to implement a good complexity-effective issue logic able to exploit instruction-
level parallelism without compromising the cycle time.

There are many different alternatives to address the multiple design decisions involving the 
implementation of an issue logic. However, the goal of this chapter is not to give a wide description 
of all possible implementations but to show the most common examples with the aim of giving an 
idea of the characteristics of the hardware.

In this chapter, we cover two main scenarios assuming a unified issue queue. Processors that 
use a unified issue queue implement a single queue where all renamed instructions are stored, wait-
ing to be executed. This is different from other schemes like reservation stations or distributed issue 
queues where instructions are allocated in separate buffers depending on the type of resources they 
need for its execution.

The first scenario represents an implementation of the issue logic for processors where in-
structions read their source operands before entering the issue queue like P6-like architectures. 
Then, as second scenario, we describe the main changes required to implement the issue logic 
where source operands are read after they are issued for execution like in MIPS R10000 or Alpha 
21264. These two scenarios are suitable for any of the different existing schemes to hold the values 
produced by the instructions (merged register file, rename buffers, reorder buffer, etc).

Nevertheless, since this is an orthogonal design decision, for the sake of clarity, we will assume 
a merged register file for both implementations. Note that we call a merged register file to a register 
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file that stores the architectural state and the speculative values as described in detail in Chapter 5. 
However, the described hardware easily can be adapted to any other register file scheme.

This chapter also covers other alternatives like distributed issue queues and reservation sta-
tions. These alternatives will be explained in less detail since most of the tradeoffs that need to be 
considered in the implementation already have been covered with the aforementioned scenarios.

Finally, we pay special attention to the implementation of the issue logic for memory opera-
tions. Conversely to the rest of operations where data dependences are checked at the renaming 
stage, memory dependences cannot be identified until the memory operations compute their ad-
dresses. This characteristic has significant implications on the management of these instructions, as 
we will decribe later.

6.3.1 Issue Process when Source Operands Are Read before Issue
The main characteristic of an issue queue where operands are read before the issue stage is that it 
needs to hold the information from the instruction to perform the issue and the values from the 
source operands that have been already produced. Figure 6.1 shows a general overview of the typi-
cal components used to store this information. Every block in Figure 6.1 represents a table with as 
many entries as the number of instructions that can be held by the issue queue. Moreover, for the 
sake of simplicity, we assume a processor with an ISA similar to a simplified MIPS [32], where in-
structions can have up to two source operands or one source operand and an immediate value coded 
as part of the instruction.

Src1 data Src2 data
Or ImmCtrl infoV1 V2R1 R2SrcId

1
SrcId

2
CAM
Dests

Destination Id of produced value

CAM
Dests

Produced value

Select Logic

To Functional Units

FIGURE 6.1: Hardware components of a typical issue queue where source operands are read before 
issue.
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In our simple example, there is a block called Ctrl info. This block is in charge of holding all 
the static information (type of required ALU, data size for memory operations, use of immediate 
operand, etc.) needed for the execution of the instruction. Then, there are two symmetric arrays 
called Src1Id and Src2Id. These arrays store the source operand identifier for source 1 and source 2, 
respectively. These identifiers are unique in the processor and have been generated by the renaming 
stage, as described in Chapter 5. In case one of the source identifiers is not used because the instruc-
tion does not have two source operands, the source ID for that operand becomes invalid. Invalid 
source operands are identified by using the valid arrays V1 and V2. These blocks implement 1 bit 
per entry that says whether Src1Id and Src2Id are valid, respectively. In this example, we assume that 
immediate values always go to Src2. Therefore, in case the instruction has an immediate value, the 
valid array would mark the source as valid, but the Src2Id would be set to 0 or any other identifier 
that is never used for renaming purposes. 0 is a good alternative since register 0 usually is hardcoded 
to 0 so that it is never a useful destination.

Blocks Src1 data and Src2 data or Imm are in charge of storing the input values. If the instruc-
tion has an immediate, it is stored in block Src2 data or Imm.

Finally, the ready bit arrays R1 and R2 notify whether the Src1 data and Src2 data or Imm 
have their values already produced. As soon as the ready bits are set for all the valid sources of an 
instruction, the instruction can be steered for execution.

Once we have introduced the main components, we describe the different events that occur on 
the issue queue and how this hardware structure interacts with the rest of the processor. These events 
are issue queue allocation, instruction wakeup, instruction selection and issue queue reclamation.

6.3.1.1 Issue Queue Allocation. Figure 6.2 shows an example of an integration of the issue queue 
inside a generic pipeline of an out-of-order processor. As we can see, the instructions are first re-
named at the renaming stage (a.k.a. allocation stage) and allocate and enter in the issue queue. In 
case there are no available entries, the allocation stage is stalled. Note that the renaming stage may 
not be able to use up-to-date information about the issue queue occupancy due to time constraints. 
In this case, the renaming could make conservative assumptions about the issue queue occupancy to 
avoid processing instructions that may not find issue queue entries available.

The register file is then accessed during the next cycle in order to read the source operands 
that are already available. Note that the renaming table does not only store the register ID for each 
source operand but also an available bit that says whether this is already available. Therefore, an 
instruction will have to read from the register file those inputs whose available bit is set.

Finally, the issue queue entry associated with the renamed instructions is filled with the re-
naming information plus the data read from the register file.
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6.3.1.2 Instruction Wakeup. Wakeup is the event that notifies that one of the source operands 
has been produced. This signal usually comprises the renaming ID of the produced value, the value 
itself and a valid bit. Then, the CAM logic compares this ID with the entries in the SrcId1 and 
SrcId2 arrays, as shown in Figure 6.1. In case of a match, the corresponding ready bit is set and the 
value copied on the corresponding Src Data entry. As soon as the ready bits of the valid sources of 
an instruction are set, the instruction becomes ready (we say it is woken up) and can be considered 
by the select logic to be steered for execution.

Note that the wakeup signal is produced only once, and consumer instructions may not be 
in the issue queue when it occurs. Therefore, it should be guaranteed that once a value is produced, 
all its consumers will know that the data is already available. This could be done by setting to 1 the 
aforementioned available bit at the renaming table.

Processors that read operands before issue usually require at least one extra cycle between 
the renaming stage and the allocation of instructions into the issue queue, as shown in Figure 6.2. 
Note that source operands of the instructions at this stage should also be compared with the coming 
wakeup IDs to prevent deadlocks. Otherwise, if some of their source operands are produced in this 
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FIGURE 6.2: Example of the pipeline stages involved in the instruction issue on a generic out-of-order 
pipeline.
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cycle, these instructions would never wakeup, since they read the available bit the cycle before, and 
they do not write the issue entry to perform the CAM matching until the next cycle.

A possible solution that would reduce the amount of pipeline stages that require CAM 
matching is to write SrcId1 and SrcId2 in advance. This information could be written right after it 
is obtained from the renaming table. Figure 6.2 shows a scenario where this information is written 
the cycle after renaming. Then, the issue queue will do the conventional comparisons between the 
wakeup events and the SrcId fields in order to keep the ready bits up-to-date as it happens with the 
rest of the entries. Once the values have been read from the register file, the Src1 data and Src2 data 
will be updated accordingly.

Another alternative that would save us from implementing CAM matching logic for all stages 
between renaming and the issue queue allocation is to implement the available bit as a separate table 
from the renaming table. In this case, the renaming table would be accessed at the renaming stage, 
but the available bit table would not be accessed until the instruction allocates their SrcIds into the 
issue queue.

Advancing SrcId allocation has some advantages over the other alternative since it allows an 
instruction to wake up at the same cycle it reads the source operands. Thus, it could be considered 
for execution the same cycle it writes the whole data into the issue queue, as shown in Figure 6.2.

As has been commented before, the wakeup signal notifies that a value is already available. 
However, this signal may be generated before the value actually is produced in order to minimize the 
distance between the execution of the producer and the consumer. The wakeup signal can be noti-
fied in advanced because an instruction does not need its source operands until it reaches the execu-
tion stage, one or more cycles after the instruction wakeup. For instance, the pipeline in Figure 6.3  
implements two stages between wakeup and execution.

Figure 6.3 shows the number of cycles between the execution of the producer and the con-
sumer depending on the moment when the wakeup signal is sent. In scenario 1, the wakeup signal 
is sent as soon as the producer is executed and the value is available. Then, the consumer is woken 
up the next cycle and executed three cycles after the producer generated the value. This three-cycle 
bubble could be avoided by generating the wakeup signal earlier, as shown in the scenario 2. In 
this case, the wakeup signal is sent three cycles before the producer generates the value. Then, the 
consumer will reach the execution stage right after the producer generates the value, allowing back-
to-back execution. Note that in the second scenario, the value should be transferred from the output 
of the functional unit to the input of another functional unit. This connection is called bypass, and 
its implementation is described in Chapter 7. Moreover, the scenarios shown in Figure 6.3 also as-
sume that the select of the producer and the wakeup of the consumer can be done in a single cycle. 
This design decision is also critical for performance because if the select and wakeup do not fit 
in one cycle, back-to-back execution cannot be performed for instructions with one cycle latency 
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incurring in significant performance drops [7]. In conclusion, back-to-back execution is critical for 
performance [34], and for this reason, most of the processors implement it [27,30,33,48] among  
others.

There are two common implementations to generate the wakeup signal. One alternative is to 
generate the signal in the pipeline stage where the instruction resides three cycles before its execu-
tion completes. Note that the number of cycles an instruction requires for execution depends on the 
functional unit it uses. For instance, an integer adder usually requires one single cycle to complete, 
whereas an integer multiplier or a floating point functional unit may require longer. Therefore, the 
pipeline should be able to generate the wakeup signal from the select stage, for single-cycle opera-
tions, until three cycles before the functional unit that takes longer ends.

Another alternative is to implement every entry of the valid bit array as a shift register plus 
the valid bit. These shift registers also may be implemented as a scoreboard with one shift register 
per physical register. Every shift register should have as many bits as the maximum number of cycles 
required by a functional unit to produce the value. Then, the wakeup signal is always generated at 
the select stage, and it sets to 1 the bit of the shift register in the position equal to the latency of 
the functional unit minus 1. The shift registers shift every cycle and, as soon as the bit 0 of the shift 
register becomes 1, the corresponding valid bit is set.

Note that these mechanisms are suitable when the latency of an instruction is constant and 
only depends on the instruction itself. This assumption applies to all arithmetic operations but 
not for memory operations. The latency of a memory operation (a load, for instance) depends on 
whether it hits or misses in the data cache or the data TLB. Unfortunately, this is known only when 
the load is issued, computes its address and accesses these structures.
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FIGURE 6.3: Timing of the wakeup signal to support back-to-back execution.
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Loads could be handled in a conservative manner by delaying the generation of the wakeup 
signal until we know whether the load will hit in the cache and the TLB. Then, in case of a, hit we 
could immediately wakeup the consumers. In case of a miss, we would not generate the wakeup 
signal until the miss is solved. However, the average number of load operations in a program is 
around 20% [16], and most of them have consumers, so that delaying the wakeup signal for these 
operations would have significant impact on performance. Therefore, some processors speculatively 
wakeup load consumers assuming hit latency and pay a penalty in the infrequent cases when a load 
misses in cache. The speculative wakeup is explained later in this chapter.

6.3.1.3 Instruction Selection. The selection logic (a.k.a. select logic) is in charge of choosing the 
subset of ready instructions in the issue queue that will be steered in a given cycle.

An instruction can be selected if its source operands are ready and the execution resources it 
requires are available. For instance, it is not possible to steer two multiply instructions in parallel if 
the processor does implement only one multiplier.

The timing of the selection logic is very critical since it has to be done after the wakeup logic 
to support back-to-back execution of single-cycle latency operations. For this reason, processors do 
not usually implement a single selection logic, but they distribute it into simple components called 
arbiters or schedulers [27,33,39]. For instance, a processor able to steer up to 4 instructions per cycle 
would implement either 2 or 4 arbiters, and every functional unit will be statically bound to a single 
arbiter. Instructions waiting on the issue queue are also bound to a single arbiter. This configuration 
allows parallelizing the selection logic for every functional unit. Otherwise, the arbiters should be 
synchronized to guarantee that they do not select the same instruction or they do not steer two dif-
ferent instructions to the same execution resource.

Figure 6.4 shows a possible implementation of a selection logic based on arbiters, as in the 
Alpha 21264 [33]. In this simplified example where we only focus on integer arithmetic operations, 
the maximum issue width is four, but limited to a maximum of three simple arithmetic operations 
and one multiply. Note that 4-wide issue processors do not usually allow issuing 4 instructions of 
any kind, but they are constrained by the functional units implemented. Common processor designs 
implement several units that execute simple arithmetic operations but only one or few of them that 
support complex arithmetic operations. The example shown in Figure 6.4 splits the issue width 
into two arbiters A and B, where arbiter A is bound to one simple funcitonal unit and a multiplier, 
whereas arbiter B is bound to two simple functional units.

Instructions in the issue queue are also bound to an arbiter. Once an instruction is renamed, 
it is assigned to an arbiter by the arbiter steering logic and allocates an entry on the subarray of 
the specified arbiter. This steering logic is usually very simple and sends instructions to the arbiter, 



THE ISSUE STAGE 55

whose functional units could execute them, trying to keep the same amount of instructions allocated 
per arbiter.

Every cycle, each arbiter checks its subarray for ready instructions available and selects the 
ones to be steered for execution. In the case of the Alpha 21264, when the number of ready instruc-
tions in the subarray exceeds the issue width, the oldest instructions always have priority. This algo-
rithm is relatively easy to implement in processors like the Alpha 21264, where instructions always 
are stored in order in the issue queue subarrays. However, other processor designs like MIPS or Intel 
P4, where the instruction order is not preserved in the issue queues, either implement pseudo-age-
based algorithms or simply prioritize based on the position inside the issue queue [48].

6.3.1.4 Entry Reclamation. Once an instruction has been selected and its data forwarded to the 
functional units, its issue queue entry can be safely reclaimed. However, some techniques like specu-
lative wakeup may require delaying the reclamation until we are sure the instruction can be ex-
ecuted. Speculative wakeup typically is used to reduce the latency between a load operation and its 
consumer. This technique is covered in Section 5.2.4.

6.3.2 Issue Process when Source Operands Are Read after Issue
This section describes the main differences between a scheme where source operands are read after 
the instruction is issued and the previous scenario.

The key difference between reading after issue and reading before issue is that reading af-
ter issue does not require the issue queue to store the source values. Therefore, the wakeup signal 
does not need to forward the values. Figure 6.5 shows the difference between the components of 
an issue queue when data is read before issue and after issue. The gray components are those that 
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are not required if we read after issue. Note that even though we fully remove Src1 data, Src2 data 
still remains, although it could be smaller. The reason is that this scheme still needs room to hold 
immediate values. However, these values are usually shorter than register values. Besides, there are 
few instructions that require this field so that it could be implemented as a separate structure with 
few entries. In this latter implementation, the issue queue entries that require an immediate would 
include the offset inside this structure where the immediate resides.

Figure 6.6 shows a possible pipeline for this issue scheme. As can be seen, the number of 
stages between the renaming stage and the issue queue allocation is reduced since data is not read 
yet. This implies a reduction in the number of required CAM-matching logic.

However, the number of cycles between the wakeup and the execution stages is increased by 
one cycle in order to read the source operands.

Another significant difference between reading before and after issue comes from the number 
of read ports required in the register file. Whereas the number of read ports required in the register 
file when reading before issue is determined by the machine width, which typically ranges between 
3 [27,39] and 4 [48], the number of read ports when reading after issue is determined by the issue 
width. Although it may look counterintuitive, the issue width is sometimes wider than the machine 
width. The reason is that the issue arbiters are not generic, but they are specialized in certain types 
of instructions. For instance, an architecture with specialized arbiters for arithmetic and memory 
operations able to execute up to 4 integer arithmetic operations or 4 memory operations would re-
quire an issue width of 8. We can find an example on the Netburst architecture [27] that is a 3-wide 
machine able to issue up to 6 instructions per cycle.
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FIGURE 6.5: Issue queue components when source operands are read after issue compared to an issue 
queue when data is read before issue. The grayed components are those required by the latter scheme that 
are not present in the former one.
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6.3.2.1 Read Port Reduction. The area, power and access latency of the register file increases with 
the number of read ports [7]. Therefore, it is important to minimize the number of ports in order 
to achieve a power-efficient design.

Some processor designs implement as many read ports as needed assuming the worst case 
scenario where the issue width is fully utilized and all instructions read their operands from the 
register file [29,33,48]. However, the Alpha 21264 reduces the number of read ports per register 
file by splitting it into two replicated physical register files with half the total number of read ports 
each. This solution reduces the number of read ports at the expense of penalizing in one cycle the 
back-to-back execution between producers and consumers that access different register files.

It has been shown in the literature [7] that most of the sources are read from the bypass net-
work instead of from the register file. Moreover, the issue width usually underutilized. Therefore, 
it also may be possible to implement a register file with fewer ports than needed in the worst case 
scenario with minimal impact on performance.

There are two possible alternatives to do this: active and reactive. The active alternative con-
sists of synchronizing the arbiters in order to compute the number of read ports that will be used 
by each of the selected instructions. If the number of required read ports exceeds the available ones, 
some of the arbiters will cancel the issue process. Note that the reason why the issue logic is distrib-
uted in arbiters is to reduce the latency of this logic by fully parallelizing it. Therefore, implementing 
this read port’s synchronization may have impact on the delay.
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FIGURE 6.6: Example of the pipeline stages involved in the instruction issue when reading after issue.
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The reactive alternative makes the arbiters issue instructions assuming that the total amount 
of read ports will never be reached and reacts in the rare case when it occurs. In this alternative, 
read ports are assigned when instructions are issued. Then, if the number of available read ports is 
exceeded, some of the issued instructions should be cancelled and reissued again. Cancellation and 
reissue could be done using any alternative implemented in processors that perform speculative 
wakeup. Some of these techniques are described in 5.3.

Finally, note that reactive mechanisms may incur in starvation among arbiters and even live 
locks. Thus, it is important to define a fair policy in order to perform the cancellation.

6.3.3  Other Implementations for Out-of-Order Issue
The discussion of the previous scenarios covers most of the main design decisions that need to be 
addressed on the implementation of an issue logic. However, for the sake of completeness, we briefly 
describe in this section two other issue implementations that can be found in modern processors: 
distributed issue queue and reservation stations.

6.3.3.1  Distributed Issue Queue. Processors that implement this scheme distribute the functional  
units in exection clusters where each of the clusters implements its own issue queue. For instance, 
Intel Pentium 4 implements two execution clusters with private issue queues: one for memory op-
erations and another for nonmemory operations. In this case, instructions are steered to one of the 
issue queues depending on operation type, and then it is bound to a specific scheduler inside the 
issue queue.

6.3.3.2  Reservation Stations. Reservation stations are private buffers per functional unit that 
store the instructions that are going to be executed on the specific functional unit and their input 
values. This scheme was proposed by R. Tomasulo for the IBM 360/91 in 1967, and it is the basis 
of modern superscalar processors.

Processors implementing this scheme steer instructions after renaming to the buffer of the 
specific functional unit where they wait until their input values become valid. Then, every instruc-
tion broadcasts its produced value to all reservation stations of all functional units. As can be seen, 
this technique requires some design decisions similar to the issue queue scenario where data are read 
before issue.

6.4  ISSUE LOGIC FOR MEMORY OPERATIONS
Memory operations have data dependences through memory that cannot be identified at the re-
naming stage. These memory dependences can be checked only once these instructions have been 
issued and their addresses computed.
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The mechanism in charge of handling memory dependences is called memory disambigua-
tion policy. Different processors implement completely different memory disambiguation policies. 
Table 6.1 shows some typical schemes implemented on different microarchitectures. These schemes 
can be classified into two main groups: nonspeculative and speculative disambiguation policies. 
The first group does not allow executing a memory operation until we are sure it does not have 
dependences with any previous memory operation. By contrast, the second group predicts whether 
a memory operation will have a dependence with another in-flight memory operation.

The selection of a proper memory disambiguation is critical for the performance and com-
plexity of a processor design. Around 30% of the instructions executed by a processor are memory 
operations. Therefore, implementing very conservative memory disambiguation policies may pro-
duce an unnecesary serialization of the execution that could significantly limit the instruction- 
level parallelism that can be exploited. On the other hand, very aggressive memory disambiguation  
policies may end up on complex recovery mechanisms and significant power increase due to  
misspeculations.

6.4.1  Nonspeculative Memory Disambiguation
Nonspeculative memory disambiguation policies do not issue any memory operation until all previ-
ous stores have computed their addresses. Therefore, memory dependences safely can be computed. 
There are three main types of nonspeculative memory disambiguation policies implemented by 
existing processors: total ordering, load ordering with store ordering and partial ordering.

TABLE 6.1: Memory disambiguation schemes.

NAME SPECULATIVE DESCRIPTION

Total Ordering No All memory accesses are processed in order.

Partial Ordering No All stores are processed in order, but loads execute out 
of order as long as all previous stores have computed 

their address.

Load Ordering 
Store Ordering

No Execution between loads and stores is out of order, but 
all loads execute in order among them, and all stores 

execute in order among them.

Store Ordering Yes Stores execute in order, but loads execute completely 
out of order.
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In total ordering, all memory operations are executed in order. Nowadays and from the best 
of our knowledge, there are no out-of-order processors that implement total ordering, because it 
constrains a lot the amount of parallelism we can exploit.

By contrast, the rest of the nonspeculative schemes allow load operations to execute out of 
order with respect to stores. In the case of load ordering with store-ordering schemes, loads proceed 
in order, and stores proceed in order. However, loads do not have to wait for previous stores to ac-
cess the cache. We can find this scheme implemented in processors like the AMD K6. In partial 
ordering, though, loads can be processed out of order. In this case, a load can be issued as long as it 
has its source operands ready and all previous stores already have computed its address. Examples of 
processors implementing partial ordering are the MIPS R10000 and the AMD K8.

Note that the memory disambiguation can be performed as soon as the memory addresses 
of the stores are computed. Thus, some processors split the store operations into two subtasks: one 
that computes the address and another that gets the data. Then, the store operation does not have 
to wait for the producer of the data to complete in order to compute its address. In some cases, even 
the processor computes the address as soon as possible and does not read the data until the store 
becomes the oldest in-flight instruction, like in the HP PA8000 [29].

In the next sections, we present two case studies of nonspeculative memory disambigua-
tion policies implemented in existing processors. The first example is the AMD K6 processor that 
implements the load-ordering, store-ordering scheme. The second example shows the implementa-
tion of partial ordering on a MIPS R10000.

6.4.1.1 Case Study 1: Load Ordering and Store Ordering on an AMD K6 Processor. The AMD 
K6 processor implements two separate pipelines for load and store operations. Both pipelines are 
decoupled with some level of communication, but instructions flow in strict order inside each pipe-
line. A simplified example of these two pipelines can be found in Figure 6.7.

This memory pipeline implements the following components in order to perform the  
disambiguation:

Load queue: this queue stores the load operations in program order. Loads are inserted in 
this queue after renaming and reside there until they become the oldest on the queue and 
their source operands are ready.
Address generation: this is the logic in charge of computing the access address of a mem-
ory operation based on its source operands.
Store queue: this queue stores the store operations in program order. Store instructions 
reside here since they have been renamed until they become the oldest instruction on the 
queue; the source operands they need to compute the address are available.

•

•

•
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Store buf fer: this buffer keeps the store operations in program order until they become the 
oldest in-flight instruction in the processor, and then they proceed to update the memory.

Loads flow through the upper part of the pipeline, as shown in Figure 6.7, whereas stores flow 
through the pipeline at the bottom. These operations are processed on every pipeline stage as fol-
lows.

Loads as well as stores are issued on the issue stage as soon as their source operands are ready 
and they become the oldest instruction on the load and store queue, respectively. Note that in the 
case of a store, the issue logic does not wait for the data to be stored in memory to be ready but only 
for the source operands required to compute the store address.

Then, loads and stores read the source operands required to compute the address from the 
register file on the read stage. These data may be either read from the register file or obtained from 
the bypass logic.

On the address generation stage, the address the memory operation will access is computed. 
In case of a store, the value to be stored in memory is read. If this value is not available, the whole 
pipeline for store operations is stalled.

Once the address is computed, the operations move to the disambiguation stage. In the case 
of a store, both the data and the address are stored in the store buffer. This information will reside  
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in the store buffer until the operation becomes the oldest instruction in the processor. Then, the 
cache will be updated accordingly on the memory stage.

In the case of a load, the load will compare its memory address with the addresses of the  
stores in the store buffer that are older than it. Moreover, the load also will perform a partial compar-
ison with the store that is on the address generation stage in case this store is older. This comparison 
is partial because this store does not have time to fully compute its address before the comparison 
takes place. Therefore, only few bits are compared, and the load is considered dependent on this 
store in case these bits match.

Finally, the load checks the scheduler to be sure that there is no older store that has not com-
puted its address yet. Then, the load and the whole load pipeline are stalled if the load hits with any 
previous store or there are older stores on the issue queue.

We may think that processing loads in order is an unnecessary constraint since loads do not 
modify the memory, and they do not have dependences among them. However, this is a simple way 
of implementing processor consistency as specified on the x86 reference manual: stores have to be 
visible in order, and loads have to be perceived as executed in order. It is possible, though, to support 
processor consistency without serializing the execution of the loads. For instance, AMD improved 
its memory disambiguation scheme on the AMD K8L by allowing loads to overtake previous loads 
under certain circumstances and still preserving the support for processor consistency. Another ex-
ample is the Intel Core architecture. In this case, processor consistency also is supported on top of a 
speculative memory disambiguation model that executes loads out of order, even overtaking stores 
that have not computed their addresses. The description of mechanisms to guarantee processor con-
sistency in processors that execute memory operations out of order is out of the scope of this chapter.

6.4.1.2 Case Study 2: Partial Ordering on a MIPS R10000 Processor. The MIPS R10000 pro-
cessor implements partial ordering. Therefore, loads can be executed out of order as long as all 
previous memory operations have computed their addresses. By contrast, stores are processed in 
strict program order. The schematics of the pipeline stages and components involved in the memory 
disambiguation are shown in Figure 6.8.

This memory pipeline implements the following components in order to perform the dis-
ambiguation:

Load/store queue: this is a 16-entry queue where loads and store instructions are stored 
in order after the renaming stage. Instructions do not leave this queue until their source 
operands are ready.
Indetermination matrix: this is a 16x16 half matrix where every column and row repre-
sents an entry on the load/store queue. A memory operation sets all entries on its column 

•

•
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to 1 and resets them when it computes its address. Then, a memory operation cannot be 
issued while there is a 1 on any position of its row belonging to an older memory operation. 
Figure 6.9 shows an example of an indetermination matrix for a 6-entry load/store queue.
Dependency matrix: this is a 16x16 matrix where every column and row represents an 
entry on the load/store queue. A load that depends on previous stores set to 1 all entries on 
its row for all the columns belonging to the stores it depends on. Then, it will not be able to 
resume its execution until all entries on its row are reset. By contrast, a store resets all bits 
on its column when it updates the memory. Figure 6.10 shows an example of a dependency 
matrix for a 6-entry load/store queue.
Address generation: this is the logic in charge of computing the access address of a mem-
ory operation based on its source operands.
Address queue: this queue keeps the memory addresses of loads and stores that want to 
access the cache. In the case of loads, besides writing their address on this queue, they also 
compare it with the addresses of all previous stores and, in case of matching, the corre-
sponding entries on the dependency matrix are set.

All memory operations activate the bits of their column on the indetermination matrix at the re-
naming stage. Note that the column associated with the instruction depends on the position it 
occupies on the load/store queue. Then, as soon as its row on the indetermination matrix does not 
include any one (all previous memory instructions have computed its address) and its source oper-
ands are available, the memory operation is issued and read its source operands at the read stage.
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Once the memory operation has computed its address, it is stored on the address queue. In 
the case of a store, it will reside there until it becomes the oldest instruction in the pipeline. Then, 
it will be issued resetting its column on the dependency matrix and read the data to be stored in 
memory from the register file using a dedicated read port. Note that these data are already com-
puted because since the store is the oldest instruction in the pipeline, all previous instructions have 
produced their outcome and retired already. By contrast, loads will compare their address with the 
addresses of previous stores and update their row on the dependency matrix accordingly. A load will 
wait on the address queue until its row on this matrix is fully reset.
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FIGURE 6.9: Example of a 6-entry indetermination matrix.
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The MIPS R10000 implements a 2-way data cache where instructions access out of order. 
In case of a cache miss, the instruction has to wait until the miss is solved, but other memory in-
structions can proceed in the meantime. This situation may incur on an undesirable situation called 
thrashing. Thrashing occurs when there is a memory operation miss on cache, and by the time the 
miss is solved and before it reads the data, another instruction has evicted the line again. Note that 
thrashing may incur on livelocks if it affects the oldest instruction in the pipeline. MIPS R10000 
avoids trashing by locking a way of the set that will be accessed by the oldest memory operation in 
the pipeline until it successfully reads the data. The oldest instruction locks a way of its set on the 
disambiguation stage.

Finally, loads and stores access memory as soon as they are allowed to leave the address queue, 
as commented before.

6.4.2 Speculative Memory Disambiguation
Some of the latest processor designs like the Alpha 21264 or the Intel Core architecture already 
implement speculative memory disambiguation. These processors boost performance by specula-
tively issuing loads that are predicted not to be dependent on any previous in-flight store. Therefore, 
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load operations do not have to wait for all previous stores to compute its address. Note that since 
this scheme speculates on the memory dependences, it may happen that we incur on mispredictions 
that would end up on the incorrect execution of the application. Therefore, these processors require 
special hardware in order to identify these mispredictions and recover the execution.

We describe the memory disambiguation pipeline of the Alpha 21264 as an example of this 
policy.

6.4.2.1 Case Study: Alpha 21264. This memory pipeline implements the following components 
in order to perform the disambiguation:

Load/Store Queue: this queue holds memory operations until they compute their source 
operands and can be issued for execution.
Load Queue: This queue stores the physical addresses of the loads in program order. A 
load allocates an entry on this queue at the renaming stage and reclaims it when it retires. 
This queue implements 32 CAM entries.
Store Queue: This queue stores the physical addresses of the store instructions and its data 
in program order. A store allocates an entry at the renaming stage, and it does not reclaim 
it until retirement. This structure also implements 32 CAM entries.
Wait Table: This table implements 1024 entries of 1 bit indexed by virtual pc. Whenever 
we identify that a load depends on a store it has overtaken, a store-load order trap is gener-
ated, and this table is updated setting the entry representing the virtual address of the load 
to 1. The fetch unit reads this table in order to tag the loads in case they have produced a 
memory violation in the past. Then, these loads would not be speculatively issued anymore. 
However, the wait table is reset every 16,384 cycles because we would end up with a table 
full of ones otherwise.

Loads and stores wait on the load/store queue until their source operands become ready. In the case 
of a store, we wait for the source operands required to compute the address and the data conversely 
to what happened on previous case studies. In case a load has its wait bit set, the load would not 
leave the load/store queue until all previous stores have been already issued.

Then, the source operands to compute the address are read in the next cycle, and the memory 
address is computed one cycle after.

Loads that have computed its address keep it on the load queue. Moreover, they compare its 
address with the address of younger loads, and in case they match, a load-load memory violation 
trap is triggered. This trap makes the processor to resume execution starting from the load that trig-
gered the trap. If there is no need for a trap, the load proceeds to access the cache.

•

•

•

•
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On the memory disambiguation stage, stores also write their memory address on their store 
queue entry. Moreover, they check the load queue looking for younger loads that match with its 
address. If this happens, a store-load memory violation trap occurs, and execution resumes from the 
load. Moreover, the wait table is updated in order to tag future instances of this load and avoid this 
situation to happen again. Note that stores do not check for store-store memory violations because 
even though stores are issued out of order, they do not update the cache until retirement. Since 
retirement occurs in program order, store-store memory violations never occur.

6.5 SPECULATIVE WAKEUP OF LOAD CONSUMERS
The latency of load operations is variable and mainly depends on whether the load hits on the TLB 
and data cache. There are also other factors that may affect the final cycle when the data will be 
available like, for instance, bank conflicts on the data cache, read port conflicts with other memory 
operations in the MOB, etc. However, the most common scenario is that loads provide data with 
the latency of a hit as shown in Figure 6.12. In this figure, we can see two possible scenarios where a 
consumer instruction reads a value produced by a load. As it can be seen, the load computes whether 
it hits on cache three cycles after select. Thus, if we implement a conservative wakeup where con-
sumers are only woken up if it is guaranteed that the load will hit, we would obtain a two-cycle 
bubble between the producer and the consumer as shown in scenario 1. However, if we speculatively 
trigger the wakeup signal assuming that the load will hit as in scenario 2, we will be able to imple-
ment back-to-back execution for load operations as well.

However, in the infrequent case where a load misses in cache or its execution is delayed for 
some other reason, the consumers will have to be cancelled and reissued again.

As soon as an instruction leaves the issue queue, it is not guaranteed that this instruction may 
have an empty slot on this queue in order to go back. The issue queue may be full of instructions 
that indeed may be dependent on the instruction being reissued. Therefore, making instructions to 
wait for free slots on the issue queue in order to be reissued may end up in deadlocks.

There are several solutions to avoid this deadlock with different advantages and disadvan-
tages. One solution is to flush all instructions in the pipeline younger than the one to be reissued 
and resume execution from there. This solution is similar to the aforementioned mechanism imple-
mented on the Alpha21264 to recover from memory disambiguation misspeculations. The main 
drawback of this scheme is the significant performance drop we may have if this situation occurs 
very often. This is one of the reasons why the Alpha21264 implements the wait table.

Another solution that reduces the performance penalty of instruction reissue is to postpone 
the reclamation of the issue entry allocated by an instruction until we are sure this instruction would 
not have to be reissued. In this case, every issue queue entry has a bit (issued bit) that says whether 
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this instruction has been already issued. Then, issued instructions are not considered by the selec-
tion logic. However, whenever instruction reissue is needed, the issued bit is reset for the affected 
entries so that these instructions are considered by the selection logic again for execution. This 
mechanism reduces the penalty of reissuing instructions compared to the previous one, but increases 
the pressure on the issue queue. Note that all issue queue entries allocated by already issued instruc-
tions cannot be used to look for further independent instructions.

Unfortunately, the number of issue queue entries is usually small so that solutions like the 
previous one may degrade the performance due to the utilization of entries by issued instructions. 
The netburst architecture implements small issue queues in order to fit them into its tight cycle 
time. Moreover, since it implements a deep pipeline, the number of cycles instructions should stay 
on the issue queue since they are issued until we are sure they would not be reissued is very large. 
Therefore, netburst architectures like P4 implement a replay queue. In this case, instructions leave 
the issue queue (or scheduler) as soon as they are steered for execution, but they are queued in an 
additional fifo structure called the replay queue. Then, instructions reside in this queue until it is 
guaranteed they would not have to reissue again. However, if instruction reissue is needed, the 
scheduler gives priority to the replay queue in order to reissue its instructions in the order they were 
allocated there.

•  •  •  •

L1 cache
AccessWake-Up Select Drive Address

computation
Hit/Miss

computation

Wake-Up Select Drive Execution

Wake-Up Select Drive Execution

2 cycles bubble

1

2

Wake-Up Select Drive

Producer

Consumer

Producer

Consumer

Conservative WakeUp signal generated after Hit/Miss Computation

Speculative WakeUp of load consumers

Wakeup signal

Data bypass

Time

L1 cache
Access

Address
computation

Hit/Miss
computation

Wakeup signal

FIGURE 6.12: Load pipeline and consumer pipeline assuming (1) conservative wakeup and (2) specu-
lative wakeup.



69

It is in the execute stage that the program results are calculated. In this stage, an instruction’s input 
operands (also known as source operands) are send to the processor’s computational units along 
with the operation encoded in the instruction. The processor operates on the sources of the instruc-
tion and produces the result of the computation.

There are several types of operations that the processor can perform in the execution stage. 
The most common are the arithmetic operations (addition, multiplication, etc.). Memory instruc-
tions operate on data either by loading them from memory to registers or by storing them from reg-
isters to memory. Control-flow instructions change the value of the Program Counter (PC) register. 
More infrequently, specialized instructions can change the machine state by operating on control 
registers (special registers that define how the processor behaves).

Naturally, the different types of operations have different complexity and, as a consequence, 
different latency. For this reason, in contemporary microprocessors, the execute stage is not a single 
pipeline stage, but several. What is more, there are usually several different paths in the processor 
pipeline that an instruction can follow when it reaches the execute stage. The most obvious ones are 
the integer path, the memory path, and the floating-point path, with varying latencies. All these 
paths are consolidated at the write-back stage, when the results of the operation are produced and 
are written to the machine registers.

Most general-purpose out-of-order processors share the execution unit organization shown 
in Figure 7.1. The gray-shaded area in the figure shows the functional units (FUs) of the proces-
sor. The functional units correspond to the actual computation resources of the processor. In the 
figure, we can see four different types of units. The floating-point units (FPUs) perform arithmetic 
operations on floating-point values, as the name implies. The arithmetic and logical units (ALUs) 
are units that perform integer arithmetic operations and Boolean logic operations. The address 
generation units (AGUs) calculate the memory addresses for load and store instructions. Finally, the 
branch unit calculates the resulting PC value of control-flow instructions.

The register file in Figure 7.1 corresponds to all the architectural and in-flight register stor-
age elements of the processor relevant to instruction execution. See previous chapters for possible 
organizations of this state (i.e., merged register file, architectural register file with values in the 
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reorder buffer, etc.). Throughout this chapter, for simplicity, we will assume a merged register file 
organization that holds both architectural and in-flight values.

The data cache is another important part in the execution unit of the processor (see Chap-
ter 2). The cache is used to provide fast access to frequently used data in memory and is an integral 
part of the load/store execution pipeline. The execution of load and store instructions implies the 
use of an address translation unit as well (not shown in Figure 7.1). The address translation unit is 
responsible for translating the virtual memory addresses encoded in the load /store instructions to 
the physical memory addresses that the Operating System has allocated for the program.

Another important aspect of the execution stage is the bypassing network. This is the net-
work responsible for moving the sources and the results of the computation among the various func-
tional units, the data cache and the register file. In modern microprocessors, some form of bypass 
is necessary if we want to provide back-to-back execution of dependent instructions. Because of its 
importance to performance and its complexity, the bypass network is one of the critical components 
of the execution stage.

Next, we describe the type of functional units typically found in contemporary processors, 
with special emphasis on functional units for multimedia support. Then, we describe several bypass 
network organizations: for a simple out-of-order machine, for a wide out-of-order machine and for 
an in-order machine. Finally, we study the design of clustered organizations, which have been used 
in some microprocessors to reduce power, area and the impact of wire delays.
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7.1 FUNCTIONAL UNITS
The functional units found on a modern microprocessor can be classified based on the kind of opera-
tion they perform and on the type of data they operate on. In this section, we identify the different 
types of functional units, and we provide a description on the operations that each unit can perform.

7.1.1 The Integer Arithmetic and Logical Unit
This unit operates on two integer values coming from the general-purpose register file or the 
memory and produces an integer result. An integer arithmetic and logical unit (ALU) performs 
arithmetic operations such as integer addition and subtraction. Depending on the ALU, it can also 
perform integer multiplication and integer division. The ALU also performs bit-wise logical AND, 
OR, NOT and XOR operations. An ALU can also provide bit-wise NAND, NOR and XNOR 
operations, and logical operations where the second operand is inverted, such as ANDN, ORN and 
XORN. Finally, the ALU performs data transformation operations such as left or right shifting and 
rotation, and transposition (such as byte-swap) of the bits of one of its two operands.

Some instruction sets, such as the Intel x86 and the IBM POWER, implement condition 
codes or flags. In the x86 ISA, for example, there are six arithmetic flags: sign, parity, adjust, zero, 
overflow and carry. These flags are generated as a result of an arithmetic or logical operation, i.e., any 
operation performed in the ALU. For this reason, typically, the ALU of an x86-compatible proces-
sor has facilities to calculate the arithmetic flags along with the result of each computation.

7.1.2 Integer Multiplication and Division
Integer multiplication and division, although it operates on integer values, is not supported by the 
ALU. Due to the high complexity and area cost of the circuits needed for these operations, they are 
built as separate execution units in the processor (we call them here the IMUL and the IDIV units).

Moreover, in order to save area and power, many processors do not implement these units. 
Instead they use the floating-point unit (FPU) to perform integer multiplication and division. The 
Intel Atom processor is one such processor [15,23]. To perform an integer multiplication this way, 
first, the integer sources are converted to floating-point values, then the two numbers are multiplied 
and finally the result is back-converted to integer to produce the final instruction result. This pro-
cess implies higher latency for the multiplication compared to having an IMUL unit, but depending 
on the applications, it may be worth the power and area savings (typical applications have very few 
integer multiplication and division instructions).

7.1.3 The Address Generation Unit
Memory instructions normally express the memory address that they want to operate on as a func-
tion of several source operands. It is the purpose of the address generation unit (AGU) to generate a 
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direct pointer to the address space of the program from the operands of a memory instruction. The 
operation of the AGU heavily depends on the memory model supported by the machine. There are 
two commonly used memory models in microprocessors today: flat and segmented memory.

In the flat memory model, memory appears to the program as a single continuous address 
space. We call this space the linear address space, and flat memory addresses are called linear addresses.

In the segmented memory model, memory appears to the program as a collection of indepen-
dent address spaces, the segments. A segment defines a single continuous address space starting at 
the segment base address. In this model, the program issues logical addresses to access memory. A logi-
cal address consists of a segment identifier and an offset inside the segment. The memory system 
of microprocessors internally uses only linear addresses, so the program logical addresses have to 
be translated to linear addresses by the processor’s AGU. This is done by adding the segment base 
address and the segment offset part of the logical address together.

In both memory models, the linear part of the address (i.e., the linear address in the flat 
model and the offset part of the logical address in the segmented model) is called the effective ad-
dress and is expressed as a function of one or more instruction operands. The addressing mode of an 
instruction defines how the source operands are combined to produce the effective address.

One of the ISAs with the most complex AGU requirements is the x86 ISA. The x86 follows 
a segmented memory model and has six different addressing modes. In x86, an effective address 
computation consists of the following components:

Displacement : an immediate value encoded in the instruction bits.
Base: the value of a general-purpose register.
Index: the value of a general-purpose register.
Scale: The constant 1, 2, 4 or 8 encoded in the instruction bits. The scale value is multiplied 
by the index value.

•
•
•
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4 × Index
8 × Index
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+ Offset Offset
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4 × Index
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FIGURE 7.2: An x86 AGU offset calculation. The left circuit uses a three-input adder, while the right 
one uses a chain of two adders.
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The six x86 addressing modes allow for all the combinations of the following expression:

 Offset  Base  (Index  Scale)  Displacement 

Figure 7.2 shows two different implementations of the offset calculation circuit for an x86 AGU. 
Calculating the offset is only part of the address calculation of the AGU. As mentioned earlier, the 
AGU must produce the linear address of the memory access by adding to segment base to the cal-
culated offset. Moreover, the AGU must perform limit checks on the offset; that is, it must check 
that the offset is inside the boundaries of the segment.

As it can be seen from the above discussion, calculating the linear address for an x86 processor 
is a complex operation. Modern microprocessors that operate at high frequencies cannot perform 
such a complex operation in a single cycle. Figure 7.3 shows the execution pipeline stages for a 
possible implementation of such an AGU. It is a two-cycle process. In the first cycle, the offset is 
calculated, and the segment base and limit information is read from the segment register file.

In the second cycle, three actions take place. First, the base address is added to the calculated 
offset to form the final linear address. Second, the offset is compared to the segment limit to check 
if it points inside the segment. Third, the access permissions for the segment are checked (i.e., if a 
load operation has read access for the memory area defined by the segment).

Another possible implementation is to split the address calculation into multiple µops (e.g., 
one for doing base plus scaled index and another for adding segment base and doing limit checks). 
In this case, the AGU becomes simpler because it can be implemented with a simple adder, but 
memory operations generate multiple µops which may have some performance impact: we sacri-
fice some issue bandwith, and we cannot use the simple decoders (see Chapter 4) for some load  
operations.

7.1.4 The Branch Unit
The branch unit is responsible for executing the control-flow instructions (branches, jumps and 
function calls/returns) and for producing the correct next instruction address (we will call this the 
Program Counter or PC for short here).

Control-flow instructions can be conditional or unconditional. Conditional control-flow in-
structions (e.g., branches) change the flow of the program based on the result of a test (e.g., if two 
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Data readSelectWake-up Drive

FIGURE 7.3: Address calculation pipeline for x86.
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register values are equal or if a condition code is set). If the test fails, the next instruction to be 
executed is the next instruction in memory. Unconditional control-flow instructions (e.g., jumps) 
always disrupt the program flow.

The destination PC of control-flow instructions can be defined in the following ways:

Direct absolute: the instruction defines the next PC value explicitly.
Direct PC-relative: the instruction defines the next PC value as an offset from the current 
PC (i.e., the PC of the control-flow instruction).
Indirect: the instruction defines an integer register which contains the next PC value.

A branch unit thus has to be able to calculate the next PC for all the above cases. Figure 7.4 shows 
the next PC calculation part of the branch unit.

7.1.5 The Floating-Point Unit
This unit operates on two floating-point values coming from the floating-point register file or the 
memory and produces a floating-point result. A floating-point unit (FPU) performs arithmetic 
operations such as addition, subtraction and multiplication. Depending on the implementation, it  
can also perform division, square root and other complex operations (trigonometric functions, ex-
ponentials, etc.).

Normally, floating-point and general-purpose state is kept in separate register files. Depend-
ing on the architecture, there may be instructions that convert the floating-point values to integers 
and vice versa (and transfer the converted values from one register file to the other). Conversion 
operations are also implemented in the floating-point unit.

IEEE 754-1985 specifies four formats for representing floating-point values: (a) single- 
precision format which encodes values in 32 bits, (b) double-precision format which encodes values 
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FIGURE 7.4: Next PC calculation in the branch unit.
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in 64 bits, (c) single-extended precision which encodes values in 43 bits or more and (d) double-
extended precision format which encodes values in 79 bits or more.

In reality, most processors implement (a) and (b) in hardware. The Intel® x86 processors 
implement (d) as well using 80 bits for the encoding. The x86 extensions for floating-point num-
bers are also known as the x87 instruction set because they first appeared in the Intel® 8087 math 
co-processor.

The FPU is a very complex unit, and it is generally several times bigger than the integer units. 
For example, on the Pentium Pro, the FPU area is the same as the total area of 2 AGUs, 1 ALU, 1 
IMUL and 1 IDIV unit [14].

7.1.6 The SIMD Unit
SIMD stands for single instruction multiple data, and as the name denotes, SIMD instructions are 
instructions that perform the same operation on a group of elements in parallel. SIMD instruc-
tions operate on SIMD registers. Normally, general-purpose and SIMD states are kept in separate 
register files. An example of the SIMD execution model is shown in Figure 7.5. Here we see the 
semantics of a SIMD instruction “z  x  y,” that sums two 4-element vectors (x, y) to a third 4- 
element vector (z).

The first SIMD machines were the vector machines of the 70’s (ILLIAC IV, CDC STAR-
100 and Cray-1). These machines were designed to work on very large vectors (1-dimensional 
arrays of elements) with a single instruction. In these vector machines, it was typical to operate on 
vectors of hundreds of elements directly from memory. A vector addition such as the “z  x  y” 
example from above would sequence the elements of the two vectors to be added (x and y) from 
memory a few at a time to the processor’s execution units. Computation and memory accesses are 
overlapped in this model, and very high performance can be achieved on data parallel computations, 
such as scientific computing.

In today’s machines, SIMD has a very different form. Modern SIMD machines are designed 
to work on short vectors, and modern SIMD instruction sets usually set an architectural vector 

x1 x0x3 x2

y1 y0y3 y2

+ + + +

x1+y1 x0+y0x3+y3 x2+y2

x :

y :

z = x + y :

FIGURE 7.5: Parallel addition in the SIMD model.
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length of 4–16 elements.1 One of the long vector operations of the 70’s machines would require 
multiple SIMD operations on today’s machines. This difference in philosophy stems from the fact 
that the original reason for modern SIMD instruction sets was to speed up multimedia applications 
and games rather than scientific computing. Because of this implementation (and philosophical) 
difference, the term “vector” usually refers to vectors of many elements, while “SIMD” usually refers 
to vectors of a few elements.

The most popular SIMD instruction sets today are the x86 SSE [19,20] and the POWER 
AltiVec [17] extensions. Here we will focus on the x86 as a proxy for all modern SIMD extensions. 
The Pentium processor with MMX™ technology was the first x86 machine to introduce SIMD 
extensions to x86, focused on integer operations. The AMD K6-2 with 3DNow! [3], and later the 
Pentium III processor, followed with the streaming SIMD extensions (SSE) to x86, focused on 
floating-point operations. The first complete set of SIMD extensions for the x86—and the most 
used by compilers today—was SSE2 introduced in the Intel Pentium 4 and AMD Opteron proces-
sors. Newer versions of SSE (SSE3, SSSE3 and SSE4.x) did not introduce any new data types to 
SSE2, only new instructions.

The SSE x86 extensions define 16 new SIMD registers to the x86 ISA of 128 bits each. 
Similarly, the AltiVec extensions define 32 new 128-bit SIMD registers to the POWER ISA. Each 
SIMD register can represent vectors of different types of elements as follows:

A vector of 16 byte-sized (8b) elements.
A vector of 8 word (16b) integer elements.
A vector of 4 doubleword (32b) integer elements.
A vector of 2 quadword (64b) integer elements.
A vector of 4 single-precision floating-point (32b) elements.
A vector of 2 double-precision floating-point (64b) elements.

The implementation of a SIMD unit must support all the vector types and operations defined by 
the ISA. In SSE, apart from the arithmetic operations, the ISA defines bit-wise logical operations 
on the entire vector registers and element permutation operations (shuffles).

Usually the SIMD unit is composed of individual sub-units: a floating-point unit, an inte-
ger/logical unit and a shuffle unit. Moreover, each unit is further divided into lanes. A lane is the 
minimum building block of a vector unit, i.e., a circuit that can operate on two vector elements 
and produce a one-element result. Remember that SIMD operations are parallel, so they are inde-
pendent of each other. Thus, a SIMD unit can be built just by putting next to each other multiple 

1 Vector length is typically measured in number of single- or double-precision floating-point elements.
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copies of the same lane. Moreover, the hardware for an integer SIMD lane is almost identical to the 
ALU hardware, while the hardware for a floating-point SIMD lane is very similar to the FPU hard-
ware (except for the support for 80-bit operations in x87), which helps when we want to reutilize  
components.

The width of the “scalar” execution units such as the ALUs and the FPUs is the same as the 
width of the architectural register (64 bits for the ALU and 80 bits for the FPU in x86), but we do 
not have this restriction in the SIMD unit. Given our definition of a lane, for a SIMD instruction 
set where the register size is N-lanes wide, we could implement the SIMD unit by utilizing any-
where from 1 to N lanes. In SSE, since the largest vector element is 64 bits, lanes are also 64 bits, so 
an SSE unit can be built with either 1 or two lanes side-by-side.

The two alternatives for the SIMD unit (1 lane vs. two lanes) are shown in Figure 7.6. In this 
figure, we show the execution of two SSE instructions “a  x op y” and “b  z op w” that operate 
on 32-bit elements. In this case, each lane can perform two operations in parallel. On the top part 
of the figure, we see the operands of two instructions. In the middle part of the figure, we see how 
these two instructions are executed when we have two lanes. Basically, we have enough execution 
bandwidth to operate on an entire 128-bit SSE vector per cycle.

An alternative design with lower performance but with half the hardware cost is shown in 
the bottom part of the figure. Here we only have 1 lane, so we split one SSE operation into “low” 
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FIGURE 7.6: One-lane (bottom) vs. two-lane (middle) SSE unit.
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and “high” parts. The SIMD unit will operate on the low part in one cycle and on the high part on 
the other. The issue bandwidth in this case is reduced by two (but latency per instruction has only 
increased by one cycle).

As mentioned earlier, one floating-point SSE lane is very similar to an FPU. It makes sense 
for an x86 processor to share the same hardware between the FPU and the SIMD unit by designing 
a hybrid unit that can do one 80-bit floating-point operation, or one 64-bit floating-point opera-
tion, or two 32-bit floating-point operations. This unit can operate as an x87 FPU in “scalar” mode 
(only one of 80/64/32-bit operations) or as an SSE floating-point lane (one 64-bit or two 32-bit 
operations).

The number of lanes does not have to be the same for all sub-units of the SIMD unit. For 
example, a design can implement a single floating-point lane, but two integer lanes. What is more, 
if a design implements multiple lanes of the same type, they do not have to be symmetrical. It is not 
uncommon, for example, a two-lane floating-point SIMD unit, to have only one lane for divisions 
or other complex operations, trading off some performance for significant area and power reduction.

One example of a non-uniform SIMD unit is the Intel Atom processor [15]. In Atom, the 
floating-point SIMD unit is single lane and shared with the FPU. The SIMD shuffle unit is also 
single lane, but the integer SIMD unit has two lanes.

7.2 RESULT BYPASSING
When executing instructions in a pipeline, the result of a computation does not update the machine 
state until the commit stage, which may be many cycles after the result was generated. The result of 
the computation becomes speculatively available after the write-back stage, though. The write-back 
stage is when the result of a functional unit is sent to the architectural register file, to the merged 
register file, to the reorder buffer, the rename buffer and so on, depending on the machine design 
(in-order, out-of-order, etc.).

In a pipelined processor, to improve performance, dependent instructions can execute specula-
tively by reading their source operands from the noncommitted machine state. In today’s pipelined 
processors, the write-back stage occupies the best part of a cycle. The same occurs for the read op-
erand operation. In the best case, the result being written can be read at the same cycle.

Figure 7.7 shows a best case scenario for the execution of two dependent instructions. In this 
figure, we assume a very short pipeline: instruction issue (wakeup and select), operand read, execute 
(ALU operation) and result write-back. As it can be seen, the two instructions cannot execute in 
consecutive cycles—there is a “bubble” cycle in between—because we have to wait for the result of 
the first instruction to be written to the machine registers before the second instruction can read 
it (it’s an input to its operation). This pipeline can be representative of a low-frequency in-order 
machine or out-of-order machine.
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A more typical pipeline for a high-frequency out-of-order execution core is shown in Fig-
ure 7.8. Here we assume a pipeline with a merged register file. Similar to the discussion in Chap-
ter 6, we assume that the source operand values require a whole cycle to reach the ALUs after they 
are read from the register file. The result also requires a whole cycle to travel from the output of the 
ALUs to the register file. In this case, the minimum number of lapsed cycles between two depen-
dent instructions is four.

In the two examples above, it can be seen that we are losing performance if we have to wait 
for the result of an operation to be written to the register file before the dependent instructions can 
use it. Of course, the compiler can alleviate some of this by reordering program instructions in such 
a way that dependent instructions do not appear back-to-back. This is not always possible, though. 
It is also evident that an in-order pipeline will suffer more since an out-of-order processor can dy-
namically schedule independent instructions to fill the bubbles.

The hope is that for a pipeline such as the one shown in Figure 7.7, the compiler and the out-
of-order engine can fill most of the bubbles with useful instructions, but fully utilizing the pipeline 
of Figure 7.8 is an almost impossible task: for a single issue processor, the program must have a sus-
tained instruction-level parallelism (ILP) level of four, i.e., there must be four (almost) independent 
streams of instructions in any given point in time.

The immediate observation by looking at Figures 7.7 and 7.8 is that we do not really need to 
wait for the result to be written back to use it; the correct value is available at the end of the ALU 
stage of the producer. Also, the consumer will not really use the data until the beginning of its ALU 
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stage, so we could build a pipeline that forwards or bypasses values directly from the execution (ALU) 
stage of an instruction to the execution stage of the next, as shown in Figure 7.9.

In this case, two dependent instructions can execute back-to-back with no bubbles. This 
significantly improves performance, but it requires a new data path in the processor dominated 
by wires and multiplexors (that is why it is typically called the bypass network). Depending on the 
pipeline, the bypass network can be from relatively simple to very complex. In all cases, though, the 
bypass is one of the most critical aspects of the execution engine design because it affects the area, 
power, critical path and physical layout of the execution stage.

Implementing a bypass network, like most other aspects of processor design, is a tradeoff. 
Having bypasses improves the executed instructions per cycle metric (IPC), but it may affect the 
cycle time and/or power of the microprocessor. Most processors today implement some form of 
bypass. The notable exception is the IBM POWER4 [42] and IBM POWER5 [38] processors, 
where the designers opted to not implement a bypass network in order to keep complexity low 
(and frequency high). In these machines, executing two dependent integer instructions requires a 
one-cycle bubble, while executing two dependent floating-point instructions requires six cycles of 
bubbles. Nondependent instructions of course can execute during these bubble cycles since both of 
these processors employ out-of-order execution.

7.2.1 Bypass in a Small Out-of-Order Machine
Figure 7.10 shows a simple execution engine of two functional units. In this case, we assume a low-
frequency machine, with a shallow pipeline (Figure 7.9 top). Our design also assumes a merged 
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register file, although the bypass will work the same in the case of an ROB-based write-back. Com-
paring the no-bypass design (Figure 7.10 left) to the design with a bypass network (Figure 7.10 
right), we can immediately see how the complexity of the execution engine increases.

In the no-bypass case, each input of a functional unit is connected directly to a read port of 
the register file to read the source value. Similarly, the result of the functional unit is connected di-
rectly to a write port of the register file. If we want to implement value bypassing, the source value of 
a functional unit can come from three different places in the machine in this design: the register file 
(i.e., no bypass), the functional unit itself and other functional unit. Thus, we need a 3:1 multiplexor 
at the input of each functional unit. Also, the results of the functional units, instead of connecting 
directly to the register file, now form a bus that spans the width of the execution engine (called the 
result bus) and connect to all the functional unit input multiplexors.

7.2.2 Multilevel Bypass for Wide Out-of-Order Machines
It is obvious from the above discussion that a bypass network increases the complexity of an execu-
tion engine. What is also true is that the more complex the execution engine (more functional units, 
deeper pipeline, etc.), the more complex the bypass network. In Figure 7.11, we show a deeply pipe-
lined execution engine with two functional units. In this case, we assume a machine with the same 
pipeline as in Figure 7.9 (bottom). We also assume a merged register file, although the bypass will 
work the same in the case of an ROB-based write-back.

At the left of Figure 7.11, we can see the execution engine without value bypassing, and at the 
right, we can see a possible implementation of a bypass network for this machine. In the no-bypass 
case, each input of a functional unit is connected directly to a read port of the register file (through 
a latch) to read the source value. Similarly, the result of the functional unit is connected directly to 
a write port of the register file (again, through a latch). At the right of Figure 7.11, we can see the 
execution engine with value bypassing. In the following paragraphs, we explain the details of this 
design.
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R0 R1 R2 R3W1W0
register file

FU0 FU1

R0 R1 R2 R3W1W0

FIGURE 7.10: Simple execution engine with two functional units, without (left) and with (right) value 
bypassing.
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This case is different from the one of the previous section; depending on the distance in time 
(in clock cycles) the producer and the consumer are scheduled, the data can be forwarded from 
different stages of the producer to different stages of the consumer. Figure 7.12 shows the possible 
forwarding paths for this pipeline from an instruction I1 to instruction I2–I4 scheduled in different 
cycles. Here we assume that write-back and data read can overlap to simplify the discussion. For 
this design, we have also assumed that we forward from the producer to the consumer as soon as 
possible. For example, an alternative for the “ALU” to “source drive” bypass would be a path from 
“result drive” to “ALU.”
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FIGURE 7.11: Deeply pipelined execution engine with two functional units, without (left) and with 
(right) value bypassing.
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In Figure 7.11, the “r” latches are placed at the end of the “source drive” and at the begin-
ning of the “ALU” pipe stage. Also, the “w” latches are put at the end of the “result drive” and at the 
beginning of the “write-back” stage. Not shown in Figure 7.11 is the output latch of the FU that 
latches data at the end of the “ALU” stage to the beginning of the “result drive” stage. Given this 
design, in Figure 7.13, we can see the paths shown in Figure 7.12 between instruction I1–I4 and 
which hardware blocks are involved. In the figure, we only show the pipeline latches, the register file 
and the ALU. The only paths shown are the data flow of I1 and the bypasses from I1 to I2–I4. By 
looking at this figure, it is easy to derive the design of Figure 7.11 (right).

7.2.3 Bypass for In-Order Machines
Although it is generally believed that in-order machines are simpler than out-of-order ones, this 
is not necessarily true for the result bypassing part of the processor. In-order machines must delay 
the write-back stage of execution until the slowest FU operation in the pipeline has finished (e.g., a 
multiplication, a memory access, etc.); otherwise, we could produce architectural state out-of-order. 
The process of delaying the result write-back is called staging of the result (the latches involved are 
called the staging latches). Some form of staging takes places in out-of-order machines also, for 
example, the “result drive” stage of Figure 7.12, but in-order machines—especially high-frequency 
ones—may employ deeper staging (Intel Atom has two to five cycles of staging [15], and ARM 
Cortex A8 has between one and three staging cycles [4], depending on the operation). If we do 
not want to introduce bubbles, we must forward results from all staging latches in addition to the 
outputs of the FUs.
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As an example, in Figure 7.14, we show the pipeline of the Atom processor [15]. The Atom 
pipeline is optimized for the x86 ISA that has load-op instructions, that is, instructions where one 
of the operands can come from memory. For this purpose, the execution pipeline of Atom has, first, 
the AGU stage, then the data access stage (two cycles) and, third, the ALU stage. Write-back is 
staged for two cycles after ALU in order to synchronize with the floating-point execution pipeline 
(not shown) to check for exceptions and faults and to handle multithreading.

Although we have no detailed documentation of the Atom bypass design, in Figure 7.14, we 
show a reasonable implementation for all the possible forwarding paths for this pipeline from an 
instruction I1 to instruction I2–I7 scheduled in different cycles. As shown in the figure, AGU, load 
or ALU results can be bypassed to both the AGU and ALU. This means that an AGU input can 
come from seven different pipeline stages. Comparing this single-issue example to the 2-way super-
scalar, out-of-order forwarding paths in Figure 7.12, we can immediately appreciate the similarity 
in complexity of the in-order bypass (Atom is 2-way superscalar as well, but we do not explore this 
dimension here for simplicity).

Given this design, in Figure 7.15, we can see the paths shown in Figure 7.14 between instruc-
tion I1–I7 and which hardware blocks are involved. The only paths shown are the data flow of I1 
and the bypasses from I1 to I2–I7. Here we have made some assumptions in our design. First, we 
cannot have too many inputs directly into the ALU/AGU sources (the input multiplexor into the 
ALU can affect cycle time if it becomes too big). That is why we try to bypass into the previous 
pipeline stage (in “data read” for AGU, for example). Second, we assume that once bypassed, data 
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travel horizontally through the correct channels in the pipeline. This means that a result forwarded 
at the AGU stage can be consumed in the ALU stage of the instruction (e.g., the forwarding of the 
I1 ALU or AGU result to the I5 ALU operation).

Another difference between out-of-order and in-order result forwarding is the storage ele-
ments required. For example, out-of-order machines use a merged register file (or ROB or rename 
buffers) to hold results not yet committed to architectural state (in-flight results). The bypass net-
work is thus either (a) direct FU result to FU source or (b) RF/ROB to FU source. In-order ma-
chines use the staging latches for holding in-flight results. Figure 7.16 shows a conceptual block 
diagram for the bypass of Figure 7.15. In this figure, A and B are the FU sources, and C is the FU 
result.

A straightforward implementation of the staging latches would implement one latch per re-
sult per staging cycle. This implementation would then require a different data bus for each staging 
latch that we want to forward results from. This creates a significant wiring problem for the bypass. 
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Another issue with this implementation of staging is that data gets copied from one latch to the 
next every cycle. This consumes a lot of unnecessary power.

The preferred way to do the staging is by implementing a register-file structure with as many 
entries as the depth times the width of the execution pipeline (let us call this the SRF for the rest of 
our discussion). At the instruction issue time, an SRF entry is allocated to hold the instruction re-
sult. The result is written into the SRF as soon as it is produced and waits there until the write-back 
stage when it is copied into the architectural state. This design is conceptually the same as having an 
ROB structure to hold in-flight results (although its complexity is much reduced). Bypassing in this 
scenario becomes very similar to the out-of-order case then: results can come either directly from 
the FUs, or the architectural state or the SRF.

7.2.4 Organization of Functional Units
From the discussion in Sections 7.2.2 and 7.2.3, it is evident that for modern microprocessors that 
have high-frequency, wide execution engines (i.e., many functional units), it is not possible to bypass 
values from any functional unit to any other: the bypass network would grow too large (even the two 
FU network in Figure 7.11 is not simple) and would impact the cycle time of the machine.

Luckily, we do not have to interconnect all functional units. In most microprocessors, for ex-
ample, the floating-point and SIMD units have their own bypass network that does not connect the 
integer part of the execution engine. The rationale behind this separation is that integer operations 
very rarely, if ever, have sources that are the result of a floating-point operation and vice versa. On 
the other hand, address calculations often utilize the results of integer instructions, so it is logical 
that the AGUs and the ALUs of the execution engine are connected in a single bypass network.

AGU ALU

staging latches bypass

register file
RA RBWC

WA WBRC

R0 R1 R2 R3W1W0

FIGURE 7.16: In-order execution engine with AGU and ALU, with AGU-to- ALU and ALU-to-
AGU/ALU value bypassing.
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One unit that we have not discussed so far is the memory. In Chapter 2, we discussed the 
cache memory in more detail, but as far as the bypass is concerned, it is just another set of functional 
units: load operations generate results that are put in the result bus, while store operations read data  
off of the result bus. Since memory instructions are important in both integer and floating-point /
SIMD operations, usually, the memory is connected to both the ALU/AGU and the floating-point / 
SIMD bypasses.

7.3 CLUSTERING
The latest generations of high-performance superscalar microprocessors have increased significantly 
the width, depth and amount of speculation in the pipeline. All of these trends have increased per-
formance many-fold, but they come at a significant increase in hardware complexity as well. Other 
limiting factors for continuing in this direction—apart from complexity—are power and tempera-
ture, and the scalability of global /long wires such as those found in bypasses and multiported array 
structures.

A design philosophy that has proven effective is to partition the layout of critical hardware 
components—whenever feasible—so as to maintain most of the parallelism while improving the 
scalability. Examples of this technique are the array replication in caches, explained in Chapter 2, 
and the distribution of the issue logic (see Chapter 6). Clustered architectures extend this divide and 
conquer philosophy into all the execution core resources, such as the register file, the issue queue 
and the bypass network. By its nature, clustering can be applied to different levels, with varying 
granularity. Here we explain different clustered designs, from most “conservative” to the most ag-
gressive.

7.3.1 Clustering the Bypass Network
This is the simplest form of clustering. This design may become necessary when the complexity of 
the bypass network increases so that it can affect the cycle time of the processor. In Figure 7.17, we 
can see an example of how this works. On the left side, we can see a non-clustered multilevel bypass 
design, typical of a deeply pipelined processor (this is the same as the right part of Figure 7.11).

By clustering the bypass, we do not allow values to be forwarded from FU0 to FU1 and vice 
versa, although we do have a local bypass to each functional unit. Unlike the no-bypass case (left of 
Figure 7.11), we can issue dependent instructions without bubbles if they go to the same functional 
unit. When dependent instructions are issued to different functional units, though, communication 
happens through the register file, which will incur bubbles.

As can be seen in Figure 7.17, this design has much less complexity. We have much less wires, 
and we have removed a whole pipeline stage from the execution core. This means lower power 
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consumption and higher execution frequency, which may result to a net benefit, even though we 
introduce some bubbles in the pipeline.

7.3.2 Clustering with Replicated Register Files
The register file is a challenge for a wide machine if we want high frequency. As the number of read 
and write ports of the register file increases, the access latency increases. The designers of the Alpha 
21264 processor were faced with this issue [25]. The solution they decided to adopt was to cluster 
the design. In the execution engine, there are a total of four integer units, divided into two clusters. 
Each cluster also includes a copy of the register file. The two copies are kept coherent by broadcast-
ing the values of the functional units to both register files. Broadcasting requires one extra cycle for 
a value in cluster 1 to be available if it is produced in cluster 0 and vice versa.

The Alpha 21264 uses a unified issue queue for all four integer units (i.e., for both clusters). 
The issue queue uses two arbiters, one for each cluster to decide where instructions will be issued. 
Each instruction is statically assigned to an arbiter upon entering the issue queue, based on instruc-
tion fetch position [25]. The goal of the arbiter assignment algorithm is to balance the utilization 
of the two clusters.

Figure 7.18 shows a simplified block diagram of the Alpha 21264 execution engine. In the 
figure, we do not show the load and store buses, and their connections to the bypasses. This design 
compared to a nonclustered one has half the read ports in the register file and much simplified by-
pass, which allowed the Alpha 21264 to reach its very aggressive (for the time) execution frequency. 
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register file

FU0 FU1

R0 R1 R2 R3W1W0

FIGURE 7.17: Simplifying a multilevel bypass using clustering (right). On the left, we can see the non-
clustered design.
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The unified issue queue does not reduce wakeup complexity but allows delaying the cluster assign-
ment, which is most effective to avoid inter-cluster communication penalties and to balance the 
load of the two clusters.

7.3.3 Clustering with Distributed Issue Queue and Register Files
More aggressive clustered architectures have been proposed that do not replicate the register file, 
but instead they distribute it. That is, instead of two copies of the entire register file, like in the Al-
pha 21264, the processor has one register file but divided into two parts, each half the size (both in 
number of ports and number of entries). Distributed register file clustered architectures distribute 
the entire execution datapath, the issue queue and the issue logic as well. Some of the earliest works 
on this type of clustering include the multicluster architecture [11] and the work of Canal et al. 
[6,7] and Zyuban [50] and Zyuban and Kogge [51].

With a distributed register file, only one copy of each physical register is kept in the system, 
and an instruction does not broadcast its results, but it writes to its local register file only. Also, an 
instruction can only read its operands from the local register file. The architecture provides explicit 
mechanisms to communicate values from one register file to the other. One such mechanism is by 
maintaining a small register file with registers that are replicated; another is by providing a special 
“copy” instruction that does an intercluster register-to-register move.

Another characteristic of this type of clustered architecture is that the issue queue is also dis-
tributed and is local to a cluster. Instructions are assigned a cluster at the rename stage through an 
instruction steering mechanism, and then they only compete for resources in that cluster. Intercluster 
dependences among instructions are handled at the rename stage.

register file
r0 r1 r2 r3w1w0

FU0 FU1

register file
r0 r1 r2 r3w1w0

FU0 FU1

w3w2 w3w2

Cluster 0 Cluster 1

FIGURE 7.18: Simplified block diagram for the Alphsa 21264 execution engine, showing the two 
clusters.
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Figure 7.19 shows a high-level diagram of this type of clustering. This design reduces power 
consumption and complexity compared to the previous ones, but it puts significant pressure on the 
instruction steering mechanism. The best steering mechanisms try to reduce the expensive interclus-
ter communications by steering dependent instructions to the same cluster, while at the same time, 
they try to balance the workload among the clusters in order to avoid unnecessary resource-induced 
stalls (one cluster saturates its resources, while another one is idle).

•  •  •  •
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FIGURE 7.19: Simplified block diagram for a multicluster-type design, showing two clusters.
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8.1 INTRODUCTION
Most current processors are based on an execution model based on sequence of instructions where 
one instruction is executed right after the previous one completes. Therefore, processors behave 
as if they would be executing instructions one after the other in the original sequential order [41]. 
However, neither in-order nor out-of-order processors really begin executing an instruction right 
after the previous one completes. Current processors are pipelined so that they always have several 
instructions in-flight at different phases of their execution. Thus, instructions may modify the pro-
cessor state in an order different than the sequential order. For instance, if we execute a sequential 
program comprising instructions A and B where A is older than B, even in an in-order processor, it 
may happen that if A triggers an exception at the final stages of its execution, B may have already 
modified some register value if it had time to reach the write-back stage. In this case, the processor 
would not be able to provide the architectural state after A and before B to process the exception.

The most common solution for existing processors in order to emulate the sequential execu-
tion of instructions is to implement an additional stage called commit at the end of the pipeline. 
Instructions flow through this stage in the original program order. Then, any changes instructions 
do on previous pipeline stages are considered speculative and do not become part of the architectural 
state until they reach commit. At this point, we say that the instruction commits.

In the previous example, the exception triggered by A would be handled when A commits. 
Moreover, since instructions are committed in order, B would not have committed yet so that its 
changes would not be part of the architectural state. This way, the exception produced by A could 
be handled as if any instruction younger than A would have never been executed. We say that a 
processor supports precise exceptions if it provides the correct architectural state as it was before the 
execution of the instruction that triggers an exception.

A processor operates with two separate states: the architectural state and the speculative 
state. The architectural state is updated at commit as if the processor would execute instructions in 
sequential order. By contrast, the speculative state implies the architectural state plus the modifi-
cations performed by the instructions that are in-flight in the processor. This latter state is called 

C H A P T E R  8

The Commit Stage
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speculative because it is not guaranteed that these modifications will become part of the architec-
tural state. Note that conventional processors rely on speculative techniques like branch prediction 
or speculative memory disambiguation in order to keep executing instructions. Thus, if some of 
these speculations fail or an exception occurs, the speculative state becomes invalid, and it never 
turns into architectural state.

In constrast to RISC processors like Alpha or MIPS, some CISC processors like the latest 
x86 processors (Intel Pentium III, Intel Pentium 4, Intel Pentium M or Intel Core architecture) 
split the x86 instructions into simple micro-operations in order to facilitate the implementation of 
the out-of-order engine. In this case, an x86 instruction commits and updates the architectural state 
of the processor when all the micro-operations belonging to the x86 instruction have successfully 
completed their execution. The only exceptions to this rule are those x86 instructions that are split 
into a large number of micro-operations like memory copy instructions. In this case, the instruction 
does periodic partial commits at specific points of its execution since this is accepted by the x86 
semantics as detailed in the Intel reference manual [19].

Finally, since the commit is the last stage on the execution of an instruction, this is the place 
where execution hardware resources allocated by the instruction like reorder buffer (ROB) entries, 
memory order buffer (MOB) entries or physical registers are reclaimed. Note that an instruction 
should only reclaim those resources that are not used anymore. Therefore, for those configurations 
where the instructions write their outcome in a physical register, the reclamation of this physical 
register should be done by the time we know for sure that the content of the register would not be 
needed anymore. Thus, before reclaiming a register, we need to be sure that all instructions that may 
require the value of this register in the future have already read it or they will be able to read it from 
a different place.

In the next sections of this chapter, we describe some alternatives in order to update the ar-
chitectural state. Moreover, we also explain several mechanisms in order to recover the speculative 
state and resume execution when branch mispredictions or exceptions occur.

8.2 ARCHITECTURAL STATE MANAGEMENT
The architectural state comprises the memory state plus the value of every logical register.

As part of the architectural state, the memory cannot be modified until an instruction com-
mits. The reason is that we cannot propagate memory updates to the rest of the system (devices, 
other cores, etc.) until we are sure that the updates are correct. Thus, all store operations do not 
update the memory state until they commit. In the meantime, they reside in an entry of the store 
buffer along with the memory address they modify, the size of the modification and the value to 
store in memory at commit. Some processors like the PA8000 or the MIPS R10000 do not store the 
data on the store buffer, but they read it from the register file using a dedicated port at commit time. 
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Therefore, all load operations should check whether there is any older store in the store buffer that 
updates the memory space they read. In case a load finds an older store matching with the memory 
addresses it is going to read, the load should either get the data from this store instead of from the 
cache or wait for the store to update the cache. Further details regarding the memory management 
can be found in Chapter 6.

There are several ways of keeping track of the latest architectural state for the logical registers. 
These methods are also dependent on the allocation scheme implemented on the processor. In this 
section, we will cover two methods: the architectural state management based on a reorder buffer 
(ROB) and retire register file (RRF) like in P6 [39] or Intel Core, and the management based on a 
merged register file that holds the speculative and architectural values. This latter method is used in 
processors like the Intel Pentium 4, Alpha 21264 or MIPS R10000 [27,33,48].

8.2.1 Architectural State Based on a Retire Register File
Processors like the P6 implement a reorder buffer (ROB) where instructions store the produced 
values until they retire and become part of the architectural state. Then, the values are copied into 
a register file with as many entries as logical registers available. This register file stores the architec-
tural state for every logical register and is usually called retire register file (RRF).

Figure 8.1 shows this scheme. The ROB is a circular FIFO where instructions allocate a new 
entry at the allocation stage (a.k.a. renaming stage), and this entry is reclaimed as soon as the in-
struction commits or is squashed due to branch mispredictions or exceptions, among others. Then, 
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every entry in the ROB includes two main sections: instruction information and the produced 
value. The instruction information implies data about the type of the instructions, the status of its 
execution and the identification of the architectural register they produce. On the other hand, the 
produced value field holds the value produced by the instruction. Therefore, the values produced by 
the in-flight instructions (shaded in the figure) represent the speculative state of the machine. As 
soon as an instruction commits, the architectural register modified by the instruction is updated in 
the RRF with the value stored in the ROB, and its ROB entry is reclaimed. Thus, the RRF always 
holds the authoritative copy of the architectural state of the processor.

Note, however, that the place where a value is stored on this scheme varies during its lifetime. 
First, the value is stored in the ROB so that consumer instructions will read it from there. However, 
as soon as the instruction that produced the value commits, its ROB entry is reclaimed, and the 
value is written into the RRF. When the value is moved to the RRF, all consumers that have not 
read it yet should know that it is not available on the ROB anymore but on the RRF instead. This 
fact could complicate the implementation of certain pipeline stages depending on the characteristics 
of the microarchitecture as described later.

Most of the ROB-based architectures read the operands before issuing the instructions, right 
after the renaming stage. This situation is shown in Figure 8.2. As it can be seen, all consumers read 
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the produced value from the ROB until the producer instruction commits. At this cycle, the value 
still resides on the ROB entry since the entry has not been reused yet. Therefore, instructions read-
ing their operands at this moment could still get it from the ROB. However, the allocation stage 
should be notified in order to update the renaming table and mark this value as available in the 
RRF. Note, though, that the renaming table is only affected by this change if any of its entries is still 
pointing to this value. As soon as the renaming table is updated, all consumer instructions renamed 
since then will know that the value is available in the RRF instead of in the ROB.

However, implementing an ROB-based architecture with RRF where consumers read their 
source operands after issue complicates this notification. In this case, the commit logic does have to 
notify the invalidation of the ROB entry not only to the allocation stage but also to all instructions 
residing in pipeline stages between allocation and issue, including instructions in the issue queue. 
Then, each of these instructions should check whether the notification affects to any of their sources 
and update their information accordingly in order to read their sources from the right place when 
they are issued.

8.2.2 Architectural State Based on a Merged Register File
Processors that implement a merged register file like the MIPS R10000, the Alpha 21264 or the 
Intel Pentium 4 use the same register file for the values belonging to the architectural state and the 
speculative values. Basically, a physical register is allocated by an instruction to store its produced 
value, and this register will hold this value until it is not needed anymore, even if the instruction 
commits. This characteristic offers three main advantages compared to ROB-based schemes.

Values do not change location when they commit. Thus, the renaming table and in-flight in-
structions that have not read their source operands do not need to be notified when a value becomes 
part of the architectural state. This makes this scheme suitable for processors where instructions 
read their source operands after issue.

A ROB-based implementation requires space for as many produced values as the number of 
in-flight instructions supported by the ROB. However, around 25% of the instructions in typical 
applications are usually store operations and branches that do not produce any value [16]. A regis-
ter file exploits this feature by implementing a more power effective hardware structure where the 
number of registers to write the produced values is lower than the number of in-flight instructions 
supported by the architecture.

The ROB is a centralized structure that has to be accessed by all instructions that need to 
read their source operands. Therefore, this design is suitable if instructions read their source oper-
ands after the renaming stage where the instruction management is still centralized. However, an 
ROB would complicate decoupled architectures where instructions read their sources after issues 
like the Intel Pentium 4, MIPS R10000 and Alpha 21264. These processors steer the instructions to 
different execution clusters depending on the type of resources it needs for execution. In these cases, 
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implementing centralized structures like the ROB where decentralized hardware like the execution 
clusters should access is not recommended. A register file-based architecture is more suitable for 
these latter scenarios where separate register files could be implemented on every execution cluster.

The first advantage is related to the fact that the speculative state and the architectural state 
share the same hardware structure. However, the other two advantages come from the fact that we use 
a physical register file to store the values instead of an ROB. Therefore, we could observe similar advan-
tages using other schemes to keep track of the architectural and speculative states like future files [41].

By contrast, a merged register file, as any other hardware scheme that relies on a register file, 
complicates the renaming compared to an ROB-based architecture. In a nutshell, whereas ROB-
based architectures take advantage of the ROB entry that is assigned sequentially to store the pro-
duced values, the register file-based architectures require an additional list on renaming that stores 
the register file identifiers that are available. A more thorough description of the implications on the 
renaming stage can be found in Chapter 5.

The resource reclamation is also more complicated on this scheme. Whereas the ROB entries 
are reclaimed sequentially as soon as the instruction commits, a merged register file cannot reclaim 
any physical register until it is guaranteed that the value it holds would not be needed anymore. 
Processors that implement a merged register file use a conservative approach to reclaim physical 
registers. In general, a processor reclaims a physical register allocated by instruction A when another 
instruction B younger than A that writes the same logical register as A commits.

In the next section, we describe the way the speculative state could be recovered, and execu-
tion resumed in the event of a branch misprediction or exceptions.

8.3 RECOVERY OF THE SPECULATIVE STATE
One of the reasons why in-flight instructions are not finally committed is because they were fetched 
in a wrong path due to branch mispredictions or a younger instruction raised an exception.

In any of the two cases, the speculative state should be recovered to undo the modifications 
produced by the renaming of the instructions that would not be committed. The next two sections 
describe typical recovery mechanisms used in case of branch mispredictions and exceptions. These 
schemes depend on whether the processor design is based on an ROB with a separate RRF or a 
merged register file.

8.3.1 Recovery from a Branch Misprediction
In the event of a branch misprediction, the speculative state of the machine is incorrect because it 
has been fetching, renaming and executing instructions from a wrong path. Therefore, when we 
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identify a branch misprediction, the speculative processor state and the program counter should be 
restored to the point where we started processing instructions from the wrong path.

The processor recovery after a branch misprediction is typically split into two separate tasks: 
front-end recovery and back-end recovery. The front-end recovery is usually simpler than the back-
end recovery. In general, recovering the front-end implies flushing all intermediate buffers where 
instructions fetched from the wrong path are waiting to be renamed, restoring the history of the 
branch predictor and updating the program counter to resume fetching instructions from the cor-
rect path. By contrast, recovering the back-end implies removing all instructions belonging to the 
wrong path residing on any buffer like the memory order buffer, issue queue, reorder buffer, etc. 
Moreover, the renaming tables should be restored as well in order to properly rename instructions 
from the correct path. Finally, back-end resources like physical registers or issue queue entries al-
located by wrong-path instructions should also be reclaimed.

Figure 8.3 shows the recovery process on a hypothetical x86 pipeline in the event of a branch 
misprediction. As commented before, the front-end is recovered earlier than the back-end so that 
it can start fetching instructions from the correct path early. Then, the back-end recovery is over-
lapped with the fetch of the first instructions from the correct path. These instructions can flow 
through the front-end pipeline until the allocation stage. Note that the allocation stage cannot 
properly handle these new instructions until the renaming tables are fully recovered, and the re-
sources allocated by wrong-path instructions are reclaimed. Therefore, if the front-end pipeline is 
shorter than the back-end recovery, these instructions are buffered before the renaming stage until 
the back-end recovery ends.

8.3.1.1 Handling Branch Mispredictions on an ROB-Based Architecture with RRF. ROB-
based architectures that implement a retire register file (RRF) could implement any of the recovery 
techniques that we will describe for merged register files. However, it is also common for these 
architectures to implement a mechanism similar to the Intel Pentium Pro.

Execution
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Recovery

Mispredicted
branch

Fetch Instruction
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X86 to
micro-ops Decode ... Allocation

Resume FrontEnd

BackEnd Recovery

Correct path
instruction
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FIGURE 8.3: Generic pipeline for branch recovery.
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When a branch misprediction is encountered in an Intel Pentium Pro, the processor does not 
recover the speculative state until all instructions previous to the mispredicted branch and also this 
branch have been committed. At this point, it is guaranteed that the architectural state in the RRF 
represents the application state after the execution of the mispredicted branch. Then, the renaming 
table at the allocation stage is restored by making all its entries to point the values in the RRF in 
order to begin the renaming of instructions from the correct path.

8.3.1.2 Handling Branch Mispredictions on a Merged Register File. Processors implementing 
a merge register file do not usually wait for the mispredicted branch to commit in order to recover 
the speculative state.

These processors keep a log of the way the renaming table is modified when an instruction is 
renamed and the resources this instruction allocated. Then, in the event of a branch misprediction, 
this log is traversed in order to recover the correct state by the time the branch was renamed.

This log usually comprises one entry per renamed instruction where every entry contains the 
following fields: the logical register the instruction overwrites and either the physical register identi-
fier assigned to this instruction or the physical register identifier assigned to the previous writer of 
the same logical register. The log includes the physical register identifier assigned to this instruc-
tion or the previous writer of the same logical register depending on whether the traversal is done 
forward or backwards.

Traversing this log may take a very long time if there are many instructions in flight to be 
walked. Therefore, processors like the MIPS R10000 or Alpha 21264 rely on a checkpoint mecha-
nism in order to reduce the distance between the point we start the traversal and the mispredicted 
branch. These processors periodically take a snapshot of the content of the renaming table so that 
the log does not have to be fully traversed, but the traversal begins on an instruction where a check-
point was taken.

For example, in case of a MIPS R10000 processor, the first checkpoint younger than the 
branch is copied into the renaming table, and the renaming log is traversed backwards until the 
mispredicted branch is found. Every entry on the log includes the previous mapping of the logical 
register that the renamed instruction overwrote. Then, the renaming table is restored based on this 
information in order to reflect the renaming mappings it had by the time the mispredicted branch 
was renamed. If there is no any valid checkpoint available younger than the mispredicted branch, 
the traversal begins on the youngest renamed instruction and updates the existing renaming table.

Besides the renaming table, other information like, for instance, the list of available physical 
register identifiers should be updated to include those registers allocated by the instructions in the 
wrong path. Some processors like the Alpha 21264 implement the list of free physical registers as 



THE COMMIT STAGE 99

part of the checkpoint. Then, this list is restored starting a log traversal from the checkpoint the 
same way it is done for the renaming table.

8.3.2 RECOVERY FROM AN EXCEPTION
Exceptions are usually handled at commit time. The reason is twofold: first, we need to be sure 
that the instruction that triggered the exception is not speculative; for instance, it does not belong 
to a wrong path. Second, we need to provide the architectural state the way it would be as if all 
instructions previous to this one would have been executed on the original sequential order. Then, 
all in-flight instructions are flushed because the exception should be handled before resuming the 
execution of the application. At this point, the speculative state is recovered using one of the mecha-
nisms explained in the previous section. Finally, the front-end is redirected to start fetching instruc-
tions from the exception handler.

•  •  •  •
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