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The Simplex Algorithm of Dantzig
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Abstract: In this chapter, we put the theory developed in thelast  solution, in such a way that the value of the dfbjec
to practice. We develop the simplex method algorithm for LP  function at each iteration is better (or at leastwvorse) than

problems given in feasible canonical form and standard form. at the preceding step.
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The Simplex method is a method that proceeds from o

N INTRODUCTION BFS or extreme point of the feasible region of aR L

The fundamental theorem of linear programming whicRroblem expressed in tableau form to another BirSuch a
states that if the given linear programming problems an 4y as to continually increase (or decrease) theevaf the
optimal solution, then at least one basic feasgakition o _ ) o )

must be optimal forms a firm base for the solutidrL.P.  Objective function until optimality is reached. Thenplex
problem. According to this theorem we can searod thyethod moves from one extreme point to one of its
optimal solution among the basic feasible solutiomy ) ) ) ] .
which are finite in number. Also it is easy to fiad optimal neighbouring extreme point. Consider the followidg in
among the basic feasibles than to find that amdhthe  feagible canonical form, i.e. its right hand sidecter
feasible solutions which may be infinite in numbier.this

way a L.P. problem can be solved by enumeratinghall b=0:

B.F. solutions. But it is not an easy job to enwmterll the

B.F. solutions even for small values of m (numbér o

constraints) and n (no. of variables). To overcothis Mmax Xo =cTX
difficulty a method known aSimplex Method (or Simplex A <b
Algorithm) was developed byGeorge Dantzigin 1947 subject to { X =
which was made available in 1951. This method is an X=0

iterative procedure in which we proceed in syst&rseps
from an initial B.F. solution to other B.F. solui® and o .
finally, in a finite number of steps, to an optimalF. Its initial tableau is

X Xo ... Xg .o Xy Xn=1 -+ Xn4r - Xn+em D
-1 411 412 ... ag ... ajp 1 0 0 bl.
Xhn-2 |d21 Qa2 ... Adx ... Ay 0 0 0 bz

Xn-r |&i &2 ... &g ... a5 O ... 1 .. 0| b

Xn+m @1 @m2 - 83 - m O ... 0 .. 1| by
€y

X —C —Co —Cg o .. o .. 0 0
Here Xn+i, i = 1 ..., m are the slack variables. The
original variablesxi,i =1,.... n are called the structural
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The Simplex Algorithm of Dantzig

Xj are set to zero. Note that this corresponds totigin e, XSDB . This of course amounts to a different

(selection of columns of matrix A to give a diffatg basis

+

of the n-dimensional subspaR1 of M B. We shall achieve this change of basis by a pivot
In Matrix form, the original constraintAx < b has be operation (or simply called pivot). This pivot opgon is
augmented to designed to maintain an identity matrix as the basithe

X tableau at all time.

[AI]{ }=AX+IXS=b (1)

Xs [l PIVOT OPERATION WITH RESPECT TO

Here X5 is the vector of slack variables. Since the colsimn THE ELEMENT s

of the augmented matrixA: 1] that correspond to the slack 5\ .o \ve have decided to replade [ BbeS 20N

variables {x, , } ™ =1 is an identity matrix which is
the drg in the tableau will be called the pivot elemeahe

i i i m _ . i L
clearly invertible, the slack variablefsx, ..} 7 =1 aré | see later that the feasibility condition imgdi that
basic. We denote bg the set of current basic variables, i.e.a,s>0 The r-th row and the s-th column of the tableau

_ m _ - - : _ . .
B={xp+i} i =1- The set of non-basic variables i.egre called the pivot row and the pivot column resipely.
The rules to update the tableau are:

(1) In pivot row, & — &;j/ gsfor j=1,..n+m.
We consider now the process of replacing)fpr’D B by an (2) In pivot column,

XgLIN. we say that) is to leave the basis andg isto & < 1gs — Ofori=0,.mj#r.

{x} " =1 will be denoted by.

enter the basis. Consequently after this operatiép,
(3) For all other elementsyj « &j ~ &; * sl as.

becomes non-basic, i.eX LJN and X5 becomes basic, _
Graphically, we have

j S j

i i gis becomes aj ~ ajas/ arg 0
rlon ars ayj / g
Or, simply,
bc
a-— |0
alb b d
T |becomes
c|d |1
d

This pivot operation is simply the Gaussian elintimasuch
V. SIMPLEX METHOD FOR PROBLEMS IN
FEASIBLE CANONICAL FORM

equation, and in the r-th equation, the co-effitieh X5 is Example 1.1
equal to 1. In fact, Rule (1) above amounts to radization

that variable X5 is eliminated from allm + 1 but the r-th

of the pivot rows such that the pivot element beesri. X — Xo = X3— X4 =3
Rule (2) above amounts to eliminations of all timéries in ) _
the pivot column except the pivot element. Rule i@ro Consider 2% =3Xo =Xz —Xg =
compute the Schur’'s complement for the remainingiesn o 2X2 — X3 + Xg= 1

in the tableau.

The Initial Tableau is given by Tableau 1:
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X Xo X3 X4 Xg Xg b =
x ' 1 -1 1 0 o0|4H 100
010
2 -3 1 0 1 0| 3
% 001
x5 -1 2 -1 0 0 1|1

The current basic solution [@, 0,0,5, 3, l]— which is clearly feasible. Suppose we cho@_@l as our pivot element.

Then after one pivot operation, we have
Tableau 2:
X Xp X3 Xg4 X5 Xg b B,
x| 1 1 -1 1 0o o 5 |1 00
x| 0 -5 3-2 1 0|-7
Xs | O 3 -2 1 0 1f 6

We note that the current basic solutio% 0, 0, 0,— 7, 6-]- which is infeasible. Using the new (2, 2) entrypast, we
have

Tableau 3

X Xo X2 Xa4 Xg Xg b
1 X2 3 X4 X5 Xg By
wl1 0 -2 3 1 o8| |2 27
1 5 5 5 5 2 30
-1 2 1

wlo 2 2 2.1 o7

5 5 5 5

1 1 3 9

o 0o -=-—-= = 1| =

% 5 5 5 5

T
The current basic solution F’sf, —g, 0,0, O,—ﬂ and is feasible. Finally, let us eliminate thet lslack variableXg by

replacing it by X3.

Tableau 4
X Xo X3 X4 Xg Xg b B,
1 0 0 1 -1-2( 0 1 1 -1
X[ 0 1 0 1-2-3[-4 2 -3 1
X3 0 0 1 1-2-5|-9 -1 2 -1

. . . A operations on the tableaus, are being recordedhén t
Th? c_urr_ent b_aS|c solution '5[0’ 4,-9,0,0, O]- tableaus at the columns that correspond to thekslac
which is infeasible and degenerate. Thus we seedh@ variables. In the example above, one can easilgictieat
cannot choose the pivot arbitrarily. It has to desen Tableau | is obtained from Tableau 1 by pre-muyiim

according to some feasibility criterion. There difeee Tableau 1 by the matrix formed by the columns of
important observations that we should not herestRine

pivot operations which amounts to elementary A x5andx6 in Tableau. In the Tableaus, the inverse of
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these matrices are computed and are denotea by et the ﬁ
5
columns in Tableau 1 be denoted as usuala?yand the 7
columns in Tableau i be denoted Mf , then since S ﬁ
5
. A 0 5
[y, 8, Anen] STA T =BIB AR 1 =Bl Yo ooy Ynad ., _ B 7| _
A:l]= =Bz | —|=1]3|=D
Itis clear thatBin = aj . Comparing this with equation 0 g 1
(2.20), we see thaa are the change of basis matrices from 0 L 5 |
Tableau 1 to Tableau 4.
Our second observation is the following one. Sithee last 9
column in Tableau 1 is given by b, the last column | 5 |

Tableaul, which we denote byygy = (Y10, -.- ymO)T ,

T
will be given by BYp =D . since B is invertible, Yo i.e. the current solution is given {yl—8, —7, 0,0, 0,—9} :
gives the basic variables of the current basictgsiyi.e. the SIS 3
basic solutionX B corresponding tdBi is given by For Tableau 4, sincB4:A _we have
X5 =Yo=8 b A lp
. L [1:A] =Ab
For this reason, the last column of the tableau, YQ , is 0

called the solution column.

The third observation is that the columns aare the  Which is equivalent to
columns of the initial tableau. For example, théuoms of A[A_l]o -10=b

% are the first, second and the sixth columns ofl@ab1.

In fact, Tableau 3 is obtained by moving (via eletaey je. the current solution in Tableau 4 is given by
row operations) the identity matrix in Tableau lthe first, _1b T

second and the sixth columns in Tableau 3. It sgig that [A ’0]

in each iteration of the simplex method, we aré ¢h®osing In the following, we consider the criteria that gugtee the
different selection of columns of the augmentedrinab feasibility and optimality of the solutions.

give a different basic matrix B. In particular, teelution

obtained in each tableau is indeed the basic solubt our V. FEASIBILITY CONDITION
original augmented matrix system (3, 1). In facpleau 3
means that Suppose that the entering variab®has been chosen

according to some optimality conditions, i.e. th&op
column is the s-the column. Then the leaving baartable

X must be selected as the basic variable correspgrdi

the smallest positive ratio of the values of therent right
hand side to the current positive constraint cgeiefiit of

the entering non-basic variab¥e.

To determmuane j[row o o v Rarico
Miw
Mis M1 )
10
) S
Mo Moo ==
V20
L | ». |
o T - AL - . -
= —mdny 3 s WM S L_:ul
Mo o
e
. - TS
Mg Ly La] §
Mo
.
, Nrres
Merrs Vs .
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VI. OPTIMALITY CONDITION

For simplicity, we consider a maximization probledve
first denote the entries in the row that correspdod

XOb)’YOj-The (m+1,m+n+1)-th entry in the

By adding slack variable$q, X5@N0Xg, we have the

following initial tableau.
Tableau 1 Initial  tableau, current BFS is

x=[0,0,0,2,5,6] and Xy =0.
tableau is denoted by . We will show in the next

section that X X0 X3 X4 Xg Xg b Ratio
¥ij == (¢ —z), j=1.--.n-m (3) "
2 1 2 2 0 0 2 2_,
The negation of the reduced cost co-efficient dygteared 1 2 3 0 1 0 & 1
in Theorem 2.6. Here7.j is defined in (2.25). Moreover, we b § —25
will show also that X5 2 2 2 0 0 2 3»
—~T
Yoo =CB Xg @ xy-3-2-30 0 00 5_5
i.e. Yoo is the current objective function value associated 2

with the current BFS in the tableau. Thus accordiag We chooseX as the entering variable to illustrate that any

Theorem 2.6, the entering variab)%z N can be selected as hon-basic variable with negative co-efficient candhosen

a non-basic variabIeXshaving a negative co-efficient. as entering variable. The smallest ratio is givgnXgrow.

Thus X4 is the leaving variable.

yO Tableau 2: Current BFS is
negative YUs . If all co-efficient ij are non-negative, x=[0,2,0,0,1, 2]' and<0 —
then by Theorem 2.7, an optimal solution has beantred.

Usual choices are the first negativyos or the most

Summary of Computation Procedure X Xo X3 X4 X5 Xg b Ratio

Once the initial tableau has been constructed,siimplex >
procedure calls for the successive iteration offthiewing X2 2 1 1 1 0 0| 21 =2_ 2
steps. * 1
1. Testing of the co-efficient of the objective fumcti (-3 0 1 -2 1 0|1 1 «
row to determine whether an optimal solution has -=1
been reached, i.e., whether the optimality conaitio 2 0 1 2 0 1)2 1
that all co-efficients are non-negative in that riew %o -1 0 -2 1 0 ol 2
satisfied.
2. If not, select a currently non-basic variab¥g to Tableau 3: Current BFS is
enter the basis. For example, the first negative co _ _
efficient or the most negative one. x=[0,110,0, 3]— and<0 -
3. Then determine the currently basic variafe to
leave the basis using the feasibility conditioe, i. i
g y X X X3 X4 Xg Xg b Ratio
select X where "
o . |5 1 0 3 -1 0|1 1
YrO/Yrs_m'n{ViO/Y'Syis>q 5
4. Perform a pivot operation with pivot row *3 |~ 3 01 -21 01
corresponding to X% and pivot coumn Xg|—-5 O O -4 1 1| 3
corresponding toXs. Return to 1. X|-7 0 0 -3 2 0Of 4

Example 3.2.Consider the LP problem:

M ax Xg = 3X1 - Xp + 3Xg3 . .
Tableau 4 Optimal tableau, optimal BFS
2)(1 + Xo — X3 < 2 T
X + 2X, — 3X < 5 |1 8 *
Subject to ! 2 3 X _{3’0’3’0'0'4 X
2)(1 + 2X2 - X3 < 6
X1, X2, X3 > 0
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X Xp X3 X4 Xg Xg b
W1 Lo 3.1 g1
2 5 2 2
wlo 31 -1 3 (3
2 2 2 2
x6010—101%
3 5 3 3

O - 0 - = 0 -
%0 2 3 2 4

We note that the extreme point sequence that tielsk
method passes through are

{x x5 x¢ {Xpx5¥6 4 X2X3}eb XX XK

VII. SIMPLEX METHODS FOR PROBLEMS IN

STANDARD FORM

Our previous method is based upon the existencanof
initial BFS to the problem. It is desirable to hareidentity
matrix as the initial basic matrix. For LP in fdasi
canonical form, the initial basic matrix is the nmat
associated with the slack variables, and is antiigematrix.

Consider an LP in standard form:
max Xo = c'x

subject to {
x=0

Where we assume thdg > 0. There is no obvious initial

starting basi® such thaB= |m .For notational simplicity,

assume that we pick B as the last m (linearly ietejent)
columns ofA, i.e.
A is of the form A=[N:B]. We then have for the

augmented system:
Nyy * Byy =b

Xa —c§xy—c§xy=0

Multiplying by B_l to the first equation yields,
B™IN,y +X3 =B b

Xg = B~l- B_]ny

Hence theX( equation becomes

Xg ~ c{,xy— CE (Bl -BINxN) =0

Thus we have

14

B~INxy +xg =B b

Xg — (C1,\—| —CEB_lN)xN = cEB‘lb

Denoting ZTN = ZTBB_lN (an (n- m) row vector)
gives
BINx, +xg =B
T_.T B
X0 —(cn —2zn)xn =cgB b
Which is called the general representation of an ihP

standard form with respect to the basis B. Itdahg&implex
tableau is then

XN XB b
xg | BTN 1 | B
X [-(ch-zy) 0 |cgB™o

We note that the j-th entry o\ is given by

CEB_le =C15—B_laj =cEyj = Zj

Where Zj is defined as in (2.21). Thus in the table, we see

that the entries in the&Q row are given by
- (Cj —Zj) Xj N and zero forX; [B. Thus they are the

negation of the reduced cost co-efficients. Thisesa
equation (3.3) that we have assumed earlier. Maedy
(3.2), we see that

_ ToL._.T
Yoo =CgB "b=cgXg

Which is the same as (4.4)

We remark thatX is now expressed in terms of the non-
basic variables,

_ n
><0:ch b+ > (cj —zj)xj (5)
X; [IN

Hence it is easy to see that for maximization peoblthe
current BFS is optimal Wheth - Zj >0 for all j- For

minimization problem, the current BFS will be op&im
when Cj —Zj , O for allj.

Example 3.3.Consider the following LP

max Xg =X+ X2
2% +Xo24

subjectto {x + X, = ¢
X1, X020

Putting into standard form by adding the surplusiaide
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X3 the augmented system is:

2% + Xo —X3=4
=6
=0

X1+2X2
X0 =X~ X2

The simplex tableau for the problem is:

Tableau 1
X Xo X3 Db
2 1 -1]4
1 2 0f6
X -1 -1 0|0

Here we do not have a starting identity matrix. fige we

let X1 and X9 to be our starting basic variables, then

2 1 -1 1
B= , N= andcg =
1 2 0 1
In this case
_ 2 -
gt=1
3|-1 2

_ 2 —1][-1
X3:BlN:?1«;{ 1 ZM 0}

ee=3 1

It is also easily check that
1| 2 -1||-1 1
3|-1 2| 0] 3

And the current value of the objective functiomgigen by
- 2 -1l 4
csB b=[-1 —]]1 =10
3|-1 2||6] 3

Hence the starting tableau is:

Wl WIN

Wlg win

z=c'Ba; =[-1 -1

Tableau 2

Xl X2 X3 b
Xl 1 0 - 2— 2—
3 3

1" 8
X 0 1 — —
2 3 3
XO 0 O - 1_ ﬂ
3 3

15
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2

T
Thus x = {5 g 0} is an initial BFS. We can now apply

the simplex method as discussedXp to find the optimal
solution. The next iteration gives:

X Xo X3 Db
x| 1 2 0|6
3|0 3 1|8
|0 1 0|6

Thus the optimal solution is

We note that if we choos®] and X3 as our starting basis
variables, then we get Tableau 3 immediately and no

iteration is required. However, i &N0X3 are chosen as

starting variables, then we have
Tableau 3

Xl X2 X3 b

1
x| = 1 O0f 3
o2

3
X2|-—— 0 1]-1
3| 2

1

-— 0 O0f 3
XOZ

Hence the starting basis solution is not feasibid ae
cannot use the simplex method to find our optiroaitson.
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