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Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent
problems such as resource scarcity, frequent disconnections, and mobility. Mobile cloud computing
can address these problems by executing mobile applications on resource providers external to the
mobile device. In this paper, we provide an extensive survey of mobile cloud computing research, while
highlighting the specific concerns in mobile cloud computing. We present a taxonomy based on the key
issues in this area, and discuss the different approaches taken to tackle these issues. We conclude the
paper with a critical analysis of challenges that have not yet been fully met, and highlight directions for
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1. Introduction

The increasing usage of mobile computing is evident by the
study by Juniper Research, which states that the consumer and
enterprise market for cloud-based mobile applications is expected
to rise to $9.5 billion by 2014 [1]. In recent years, applications
targeted at mobile devices have started becoming abundant
with applications in various categories such as entertainment,
health, games, business, social networking, travel and news. The
popularity of these are evident by browsing through mobile app
download centers such as Apple’s iTunes or Nokia's Ovi suite.
The reason for this is that mobile computing is able to provide
a tool to the user when and where it is needed irrespective of
user movement, hence supporting location independence. Indeed,
‘mobility’ is one of the characteristics of a pervasive computing
environment where the user is able to continue his/her work
seamlessly regardless of his/her movement.

However, with mobility comes its inherent problems such as re-
source scarceness, finite energy and low connectivity as outlined
by Satyanarayanan in [2]. These pose the problem of executing
many useful programs that could aid the user and create a perva-
sive environment. According to Tim O’Reilly ‘the future belongs to
services that respond in real time to information provided either by
their users or by nonhuman sensors’ [3]. Real time applications are
just one type of mobile applications that demand high levels of re-
sponsiveness, that in turn, demand intensive computing resources.
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Some mobile applications, such as location based social network-
ing, process and make use of the phone’s various sensor data. How-
ever, extensive use of sensors, such as obtaining a GPS reading, is
expensive in terms of energy and this limits the mobile phone in
providing the user a better service through its embedded sensors.
Furthermore, consider applications that require extensive process-
ing - image processing for video games, speech synthesis, natural
language processing, augmented reality, wearable computing—
all these demand high computational capacities thus restricting
the developers in implementing applications for mobile phones.
Considering the trends in mobile phone architecture and battery,
it is unlikely that these problems will be solved in the future. This
is, in fact, not merely a temporary technological deficiency but in-
trinsic to mobility [4], and a barrier that needs to be overcome in
order to realize the full potential of mobile computing.

In recent years, this problem has been addressed by researchers
though cloud computing. Cloud computing can be defined as the
aggregation of computing as a utility and software as a service [5]
where the applications are delivered as services over the Internet
and the hardware and systems software in data centers provide
those services [6]. Also called ‘on demand computing’, ‘utility
computing’ or ‘pay as you go computing’, the concept behind cloud
computing is to offload computation to remote resource providers.
The key strengths of cloud computing can be described in terms
of the services offered by cloud service providers: software as a
service (SaaS), platform as a service (PaaS), and infrastructure as
a service (IaaS) [7]. Extensive surveys on cloud computing such as
[6,5,8,7,9,10] can be found in the literature, and here we focus
on the potential of, and the challenges faced by mobile cloud
computing.

The concept of offloading data and computation in cloud
computing, is used to address the inherent problems in mobile
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computing by using resource providers other than the mobile
device itself to host the execution of mobile applications. Such an
infrastructure where data storage and processing could happen
outside the mobile device could be termed a ‘mobile cloud'. By
exploiting the computing and storage capabilities of the mobile
cloud, computer intensive applications can be executed on low
resource mobile devices.

Some of the key questions needing to be answered are: How
does mobile cloud computing differ from cloud computing? What
approaches have been made towards mobile cloud computing and
how do they differ from each other? How can computation be
offloaded and distributed to the cloud efficiently and in which
ways does this differ from traditional distributed computing?
What incentives can be used to persuade surrounding surrogate
devices to participate in sharing the workload? How can context
information be used in a beneficial way? How does mobility affect
the performance of a mobile cloud?

The goal of this paper is to discuss in detail the current research
that addresses these issues. We review the proposed solutions,
and explore the upcoming research challenges in mobile cloud
computing.

Organization of paper

The remainder of this paper is organized as follows: In Section 2,
we present the motivation for mobile cloud computing, and
discuss potential applications and scenarios. In Section 3, we
briefly introduce cloud computing and mobile cloud computing,
and identify three definitions of mobile cloud computing. Next, in
Section 4 we propose a taxonomy of mobile cloud computing based
on the key issues, and review how each issue has been tackled in
related research. We provide a discussion on the current challenges
in Section 5. Finally, conclusions and directions for future research
are identified in Section 6.

2. Motivation: the need for a mobile cloud

The case for mobile cloud computing can be argued by consider-
ing the unique advantages of empowered mobile computing, and
a wide range of potential mobile cloud applications have been rec-
ognized in the literature. These applications fall into different ar-
eas such as image processing, natural language processing, sharing
GPS, sharing Internet access, sensor data applications, querying,
crowd computing and multimedia search. However, as explained
in [11], applications that involve distributed computation do have
certain common characteristics, such as having data with easily de-
tectable segment boundaries, and the time to recombine partial re-
sults into a complete result must also be small. An example is string
matching/manipulation such as grep and word frequency counters.
The different applications and scenarios presented in recent liter-
ature are described in detail below:

1. Image processing: In [11], the authors have experimented with
running GOCR,! an optical character recognition (OCR) program
on a collection of mobile devices. In a real life scenario, this
would be useful in a case of a foreign traveler who takes an
image of a street sign, performs OCR to extract the words, and
translates words into a known language. A similar scenario
is given in [12] where a foreign tourist Peter is visiting a
museum in South Korea. He sees an interesting exhibit, but
cannot understand the description since it is in Korean. He
takes a picture of the text, and starts an OCR app on his phone.
Unfortunately his phone lacks the resources to process the

1 http://jocr.sourceforge.net/.

whole text. Although he could connect to a remote server via
the Internet, that would mean he use roaming data which is
too expensive. Instead, his device scans for nearby users/devices
who are also interested in reading the description, and requests
sharing their mobile resources for the task collaboratively.
Those who are interested in this common processing task create
an ad hoc network with Peter and together, their mobile cloud
is able to extract the text, and then translate it to English. This
can be applied to many situations in which a group is involved
in an activity together. Another example is a group performing
archaeological expeditions in a desert.

2. Natural language processing: As mentioned above, language

translation is one possible application, and this is mentioned
in [11] as a useful tool for foreign travelers to communicate
with locals. Translation is a viable candidate since different
sentences and paragraphs can be translated independently, and
this is experimentally explored in [11] using Pangloss-Lite [13].
Text-to-speech is also mentioned in [11], where a mobile user
may prefer having a file read to them, especially in case of the
visually impaired.

3. Crowd computing: Video recordings from multiple mobile

devices can be spliced to construct a single video that covers
the entire event from different angles, and perspectives [14].
In [15], two scenarios of this nature are described in detail: ‘Lost
child’ and ‘Disaster relief’.

The ‘Lost child’ scenario takes place at a parade in Manhattan.
John, a five year old child who is attending the parade with his
parents goes missing among all the people, and his parents only
notice he is missing after some time. Fortunately, a police officer
sends out an alert via text message to all mobile phones within
a two mile radius, requesting them to upload all photographs
they have taken in the parade during the past hour, to a server
that only the police has access to. With John's parents, the police
officer searches through these photographs via an app on his
phone. After looking through some pictures, they are able to
spot John in one of the images, which they identify to be taken at
a nearby location. Soon, the relieved parents are reunited with
their child.

In the ‘Disaster relief’ scenario, a massive earthquake measuring
9.1 on the Richter scale has occurred in Northern California,
resulting in much human loss, and infrastructure and property
destruction. Disaster relief teams are facing an uphill task
because of limited manpower, lack of transportation, and poor
communication. Internet infrastructure has been destroyed.
Previous maps on terrain and buildings are suddenly rendered
obsolete, contributing to slow disaster relief. Data on Google
Earth and Google Maps on this area is now useless since
highways, bridges, landmarks and buildings have now all
collapsed. To conduct efficient search and rescue operations,
new data must be gained and a clear picture of the terrain and
buildings state must be constructed. To do this, the relief teams
use camera based GigaPan sensing.? Local citizens are asked to
use their mobile phones to photograph disaster sites, and these
are collected at a central server. The collected images are then
sewn together to create a whole, panoramic image. The new
face of the area emerges, and relief teams can now conduct their
work with accurate maps and information on inaccessible areas.

4. Sharing GPS/Internet data: It is more efficient to share data

among a group of mobile devices that are near each other,
through local-area or peer-to-peer networks. It is not only
cheaper, but also faster [14]. Rodriguez et al. [16] present a
case study of a hiking party at Padjelanta National Park, which
is a deserted land in the Arctic circle lacking power access

2 http://www.gigapan.com/.


http://jocr.sourceforge.net/
http://www.gigapan.com/

86 N. Fernando et al. / Future Generation Computer Systems 29 (2013) 84-106

points and network coverage. A data set contains Bluetooth
scans for discovering devices and GPS reads of 17 persons.
The paper reports up to 11% energy savings by sharing GPS
readings. However colocation of most participants was low, so
this energy savings should be much higher in a conventional
hiking party, or other social situations such as pubs, restaurants,
and stadiums where energy saving could be up to 40%. A similar
scenario is a mobile device requesting to access a p2p file which
is downloaded or is currently being downloaded by another
mobile in the vicinity [12].

5. Sensor data applications: Since most mobile phones are
equipped with sensors today, readings from sensors such as
GPS, accelerometer, light sensor, microphone, thermometer,
clock, and compass can be timestamped and linked with other
phone readings. Queries can then be executed on such data to
gather valuable information. Such queries could be “What is the
average temperature of nodes within a mile of my location?”
or “what is the distribution of velocities of all nodes within
half a mile of the next highway on my current route?” Sample
applications for this are traffic reporting, sensor maps, and
network availability monitoring [ 14].

6. Multimedia search: Mobile devices store many types of
multimedia content such as videos, photos, and music. For
example, Shazam is a music identification service for mobile
phones, that searches for similar songs in a central database. In
the context of the mobile cloud, the searching could be executed
on the contents of nearby phones [14].

7. Social networking: Since sharing user content is a popular way
we interact with friends on social networks such as Facebook,
integrating a mobile cloud into social networking infrastructure
could open up automatic sharing and p2p multimedia access,
and this will also reduce the need to back up and serve all of
this data on huge servers [14].

2.1. Example scenario: using mobile cloud with distributed computa-
tion, and collective sensing

Now let us consider the following detailed scenario: In the
aftermath of a natural disaster such as the Indian Ocean tsunami in
2004, the immediate provisioning of emergency services becomes
of great importance. Among these services, searching for missing
persons is one of the most critical yet excruciating tasks. In
this kind of chaotic situation, infrastructure is destroyed, limiting
access to computers and data, making such a search even more
difficult. Often, missing person reports are filed, but the persons
in question may be injured with no means of communication, or
even deceased. One way of dealing with this is to photograph
every person found, gather all images to a central location, and
perform search and match operations with images of missing
persons. However, this approach is not very realistic considering
the limited human and machine resources in such a situation.
Several questions exist in this scenario:

1. How and who would capture the images necessary?
2. How would the captured images be collected?
3. How would the collected images be processed?

The first question is easily answered. Anyone with a camera phone
of decent quality could contribute to this. However, the second and
third questions—data collection and processing, are more tricky.
Acquired data could be uploaded to a remote server, but as is often
the case in such disaster sites, connectivity would be a problem.
Also this method could take a while, especially if a centralized
server node is not already set up. Images could be processed
locally, but mobile devices are typically not equipped with enough
resources to carry out such operations (individually).

Let us now consider the possibility of employing a local mobile
cloud for the aforementioned scenario. In this case, photographs
taken by various individuals would constitute the data against
which the missing persons will be matched. Relief workers
and communities working together at the disaster site could
collaboratively ‘lend’ their mobile devices’ storage and processing
resources to a ‘local mobile cloud’, that could effectively carry out
the image processing needed to identify the missing persons.

A key challenge here is the fact that the number of, and
the type of available resources cannot be known or predicted
beforehand. How then, can the work be efficiently distributed and
load balanced? Furthermore, in such situations it most likely that
devices will encounter other unknown nodes, rather than familiar
devices. Therefore, it is important that the mobile cloud be able to
give a performance gain even without prior information.

The aforementioned scenario is only one example demon-
strating the need for a mobile cloud computing framework. In
wearable computing, two major challenges are to reduce the bulk-
iness of systems for every day use and not having enough battery
power [17]. This could be solved by offloading/sharing the compu-
tational jobs to the local ‘mobile cloud’, while sensors and periph-
erals facilitate the pervasive experience for the user. In the area
of augmented reality, it has been suggested that using cloud re-
sources [18] can solve similar problems. In biomedical engineer-
ing, wearable medical devices forming Body Area Networks (BANs)
can enable real time collection and analysis of patients’ medical
data [19].

2.2. Remote proxy versus local resources

Today we do have mobile applications connected to the cloud,
such as Apple iCloud,> Google’s Gmail for Mobile,# and Google
Goggles.> Using mobile devices for disaster situations has also
been explored in work such as [20-22]. However, current mobile
cloud applications, or apps connect to a remote server where the
brunt of the computations are performed. The mobile devices exist
purely as thin clients that connect to a remote proxy providing
complex services. Although these apps are becoming popular, they
can perform well only under high speed connectivity. However,
it is not practical to assume speedy connections, affordable data
access fees and good response times in most places of the
world. Except city areas, this holds true even in most developed
countries. In contrast, short range communication consumes less
energy, and this is a key factor since mobile devices usually
operate on a limited energy source. Also, connecting to local
resources would be cheaper and promise faster connectivity
and better availability. As explained in [23] by Satyanarayanan,
compared to WiFi LAN bandwidths of 400 Mbps, mobile wireless
Internet operates at a bandwidth of 2 Mbps. Depending on user
interaction, latency could vary significantly. For example, it is
80 ms versus 16 ms for a 4 MB image, and this would greatly
hinder the execution and usefulness of the app, as well as the
user experience. Satyanarayanan [23] predicts that, considering
the current trajectory of Internet evolution, although bandwidth
is likely to improve, latency is not.

Therefore, considering the data access fees, issues with latency
and bandwidth [24], and also the high demands of energy
when using 3G connectivity, the local cloud would be a better
alternative to the remote cloud [23]. Furthermore, using the local
mobile resources is an efficient way of making use of available

3 http://www.apple.com/icloud/.
4 http://www.google.com/mobile/mail/.
5 http://www.google.com/mobile/goggles/#text.
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computation power, that would otherwise be idling [25]. Since
typically mobile devices are equipped with sensing capabilities, a
cloud made up of mobile devices will be able to provide the users
with context and location aware services as well, leading to a more
personalized experience.

By combining the local cloud with other mobile devices as
opposed to local servers, we are able to support mobility without
needing additional infrastructure. Considering the trends for smart
phones, which shows that they are getting more powerful each
year, a local mobile cloud will be able to provide sufficient
resources for intensive mobile apps. It is feasible to envision the
future mobile clouds as hybrids, where the users themselves would
act as cloud resources, but with the ability to connect to remote
servers in cases of good connectivity and other conditions such
as access fees, available battery, and response time. This would
require the mobile cloud architecture to be proactive, self-adaptive
and equipped with cost-benefit analysis capabilities.

To summarize, the reasons for sharing/offloading work from a
mobile device would be: limited computational capability, limited
battery power, limited connectivity, opportunity to gather more
sensing data (such as encountering other mobile devices with
different sensing abilities), access to different content/data sets,
and to make use of idling processing power.

The advantages of sharing work with local nearby resources
versus a remote proxy would be due to: limited connectivity to
remote servers (such as in remote areas, and dead zones), limited
battery power inhibiting long range communications, data access
fees, and high availability of local resources.

However, concerns about privacy and security are a major issue
when sharing work. Would users be comfortable sharing their
resources with unfamiliar people? Would mobile clouds consisting
of ‘known groups’ such as co-workers, friends and family be more
feasible? What incentives can be provided to entice people to share
their resources, and what security and privacy measures can be
taken to ensure safety? Even from a trusted user, his/her mobile
device may be unfamiliar. Furthermore, mobile environments are
typically dynamic and unpredictable. In such cases, how can a
mobile cloud function opportunistically to ensure maximum gain?
These are valid challenges that concern the future of mobile cloud
computing, and we shall discuss these in detail in later sections.

3. Cloud computing vs. mobile cloud computing

3.1. Cloud computing

“Cloud computing refers to both the applications delivered as
services over the Internet and the hardware and systems software
in the datacenters that provide those services” [6].

A cluster of computer hardware and software that offer the
services to the general public (probably for a price) makes up a
‘public cloud’. Computing is therefore offered as a utility much like
electricity, water, gas etc. where you only pay per use. For example,
Amazon’s Elastic cloud, Microsoft’s Azure platform, Google’s App
Engine and Salesforce are some public clouds that are available
today. However, cloud computing does not include ‘private clouds’
which refer to data centers internal to an organization. Therefore,
cloud computing can be defined as the aggregation of computing
as a utility and software as a service.

Virtualization of resources is a key requirement for a cloud
provider—for it is needed by statistical multiplexing that is
required for scalability of the cloud, and also to create the
illusion of infinite resources to the cloud user. Ambrust et al. [5]
holds the view that “different utility computing offerings will be
distinguished based on the level of abstraction presented to the
programmer and the level of management of the resources”. To
take an example from the existing cloud providers, an instance

of Amazon’s EC2 is very much like a physical machine and gives
the cloud user almost full control of the software stack with a
thin APIL. This gives the user a lot of flexibility in coding; however
it also means that Amazon has little automatic scalability and
failover features. In contrast, Google’s App Engine enforces an API
on the user but offers impressive automatic scalability and failover
options. Microsoft’'s Azure platform is something in between the
aforementioned providers by giving the user some choice in the
language and offers somewhat automatic scaling and failover
functions. Each of the aforementioned providers has different
options for virtualizing computation, storage and communication.

3.2. Mobile cloud computing

There are several existing definitions of mobile cloud comput-
ing, and different research alludes to different concepts of the
‘mobile cloud’:

1. Commonly, the term mobile cloud computing means to run
an application such as Google’s Gmail for Mobile® on a remote
resource rich server (in this case, Google servers) as displayed in
Fig. 1,” while the mobile device acts like a thin client connecting
over to the remote server through 3G. Some other examples
of this type are Facebook’s location aware services, Twitter for
mobile, mobile weather widgets etc.

2. Another approach is to consider other mobile devices them-
selves too as resource providers of the cloud making up a mobile
peer-to-peer network as in [14]. Thus, the collective resources
of the various mobile devices in the local vicinity, and other
stationary devices too if available, will be utilized as shown in
Fig. 2. This approach supports user mobility, and recognizes the
potential of mobile clouds to do collective sensing as well. Peer-
to-peer systems such as SATIN [26] for mobile self-organizing
exist, but these are based on component model systems rep-
resenting systems made up of interoperable local components
rather than offloading jobs to local mobile resources. This paper
focuses primarily on this latter type of work.

3. The cloudlet concept proposed by Satyanarayanan [23] is
another approach to mobile cloud computing. Fig. 3 illustrates
this approach where the mobile device offloads its workload
to a local ‘cloudlet’ comprised of several multi-core computers
with connectivity to the remote cloud servers. PlugComputers®
can be considered good candidates for cloudlet servers because
of their form factor, diversity and low power consumption.
They have the same general architecture as a normal computer,
but are less powerful, smaller, and less expensive, making
them ideal for role small scale servers installed in the public
infrastructure. These cloudlets would be situated in common
areas such as coffee shops so that mobile devices can connect
and function as a thin client to the cloudlet as opposed
to a remote cloud server which would present latency and
bandwidth issues.

Mobile cloud computing would also be based under the basic
cloud computing concepts. As discussed by Mei et al. in [10]
there are certain requirements that need to be met in a cloud
such as adaptability, scalability, availability and self-awareness.
These are also valid requirements for mobile cloud computing.
For example, a mobile computing cloud also needs to be aware
of its availability and quality of service and enable diverse mobile
computing entities to dynamically plug themselves in, depending

6 http://www.google.com/mobile/mail/.

7 Google translate image from http://www.ausbt.com.au/iphone-app-review-
google-translate.

8 http://www.plugcomputer.org/.
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Fig. 2. A virtual resource cloud made up of mobile devices in the vicinity.
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Fig. 3. A cloudlet enabling mobile devices to bypass latency and bandwidth issues
while benefitting from its resources.

on the requirements and workload. And in order for mobile users
to efficiently take advantage of the cloud, a suitable method of self-
assuming one’s own quality is needed—since the internal status

and the external environment is subject to change. However, in
addition to the similar requirements, a mobile cloud needs to
consider other aspects such as mobility, low connectivity and finite
source of power as well.

4. A taxonomy of mobile cloud computing

We present a taxonomy of current approaches in mobile cloud
computing research based on issues related to Operational, End
user and Service levels, and also in areas of Security, Context
awareness and Data management as illustrated by Fig. 4. Our
criteria for defining the taxonomy is based on the key issues
in mobile cloud computing, and how they have been tackled in
academia. We focus on:

Operational level issues

End user level issues

Service and application level issues
Privacy, security and trust
Context-awareness

Data management

as the main areas.

These issues at the top tier of the taxonomy are applicable
to many areas, and not just mobile cloud computing. We believe
these similarities would help give a comparison on how mobile
cloud computing relates to other fields. Moreover, we expand each
issue to highlight the unique set of challenges in mobile cloud
computing, and how they have been tackled in existing work.

4.1. Operational issues

Operational issues refer to underlying technological matters
such as the method of offloading computations, cost-benefit
models that aid in taking the decision to offload or not, how
the mobility of devices is managed/supported, and connection
protocols used.

4.1.1. Method of offloading
The main operation in any mobile cloud would be the offloading
of jobs that take place from the resource constrained mobile

Issues
. : ' — Privacy & Tontext Data
Operational End user Service level Y
Security awareness Management
. — [ o [ T .
: . . : — : General cloud - Service : Lo
Incentives Applications security f Provisioning Estorag:' ;l:d rnoi)deE
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Connection LENErgy awareness: | yaiabases
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Fig.4. A taxonomy of issues in mobile cloud computing.
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device to the cloud. Because of issues such as the physical distance
separating the mobile device and the cloud and the heterogeneity
of the underlying systems, different research has tackled this in
a variety of ways. Current research discusses offloading methods
in three main directions; Client-Server Communication methods,
Virtualization, and Mobile agents.

Client-Server Communication. In the Client-Server Communica-
tion process communication is done across the mobile de-
vice(offloader) and surrogate device via protocols such as Remote
Procedure Calls (RPC), Remote Method Invocation (RMI) and Sock-
ets. Both RPC and RMI have well supported APIs and are consid-
ered stable by developers. However, offloading through these two
methods mean that services need to have been pre-installed in the
participating devices. This is a disadvantage when considering the
ad hoc and mobile nature of a mobile cloud and restricts the mo-
bility of users if in the vicinity of devices that do not support the
needed services.

Spectra [27] and Chroma [28] are two examples of systems
that use pre-installed services reachable via RPC to offload
computation. Applications use RPC to invoke functionality in
remote and local Spectra servers. When the device needs to offload
an application, the Spectra client consults a database that stores
information about Spectra servers such as their current availability,
CPU load etc. These servers are pre-installed with application
code acting as services. Developers need to manually partition the
applications by specifying which methods might be candidates for
offloading. Spectra decides at runtime depending on the resource
pool, which of those aforementioned methods, if any will be
offloaded and to which surrogate.

Marinelli [14] has presented ‘Hyrax’ for Android smartphone
applications which are distributed both in terms of data and
computation based on Hadoop® ported to the Android platform.
Hyrax explores the possibility of using a cluster of mobile phones
as resource providers and shows the feasibility of such a mobile
cloud. As a sample application, they present ‘HyraxTube’; whichis a
simple distributed mobile multimedia search and sharing program.
The objective of HyraxTube is to allow users to search through
multimedia files in terms of time, quality, and location. Apache
Hadoop is an open source implementation of MapReduce [29] and
provides a virtualized interface to a cluster of computers scaled
randomly. In Hyrax, a central server with access to each mobile
device coordinates data and jobs, and the phones communicate
with each other on an isolated 802.11g network. Just like in a
normal Hadoop implementation, Hyrax also has a NameNode and
a JobTracker instance running on a central server with access to
each of the client mobile devices. The central server does not do
any of the processing, and is responsible for coordinating data
and jobs. Each mobile phone runs instances of the DataNode
and the TaskTracker in separate Android services. Additionally,
each phone runs threads that stores the phones’ multimedia data
on the Hadoop Distributed File System (HDFS) and threads that
record sensor data. The TaskTrackers and DataNodes use a periodic
heartbeat call through RPC to JobTracker and NameNode, and
vice versa on heartbeat response. The heartbeat is sent from
TaskTrackers to show the JobTracker that they are ‘alive’ and
JobTracker can assign jobs in the response of this heartbeat.

Another framework based on Hadoop is presented by Huerta-
Canepa and Lee [12], for a virtual mobile cloud focusing on
common goals in which mobile device are considered as resource
providers. They argue that people’s location plays a major role
in their activities; hence, collocation leads to common activities,
especially place bound tasks such as visiting a museum, and

9 http://hadoop.apache.org.

performing archaeological expeditions. The system’s Offloading
manager module organizes sending and receiving jobs to and from
other devices and creating virtual machines on surrogates. On a
surrogate device, the tasks are executed on a virtual machine acting
as a protected space thus ensuring the security of device data. The
implementation was tested using a Korean OCR application. Their
results do not show a speedup, however, though they suggest an
energy saving, since the processing time is actually less than when
executed on a single mobile device.

The ‘Cuckoo’ framework [30] presents a system to offload mo-
bile device applications onto a cloud using a Java stub/proxy model.
Cuckoo can be offloaded onto any resource that runs the Java
Virtual machine, be it a commercial cloud such as Amazon EC2'? or
a private mini cloud comprised of laptops and local clusters. How-
ever, other mobile phones have not been mentioned as potential
resource providers. Implemented for Android, Cuckoo’s offloading
objectives are to enhance performance and reduce battery usage.
The Ibis High Performance Programming System [31] is used as the
basis for Cuckoo’s communication component. To use Cuckoo, the
applications need to be re-written such that the application sup-
ports remote execution as well as local execution. For this purpose,
a programming model, functioning as an interface of the system, is
made available to application developers. The programming model
uses the Android’s existing ‘activity/service’ model that separates
the services (compute intensive methods that are candidates for
offloading) and activities (interactive methods of the application).
A proxy object is created at the activity which is linked to the ac-
tual implementation. Here, in addition to the normal local imple-
mentation, Cuckoo generates code for the same implementation
for the remote service that may or may not be identical to the
local one, since the remote version could be run on a multi-core
computer for instance, and take full advantage of parallelism. If re-
mote resources are not available (network connectivity is not avail-
able) then the application can run on local resources (the phone)
entirely. They have re-implemented two existing applications
‘eyeDentify’ and ‘PhotoShoot’ in Cuckoo to demonstrate the effec-
tiveness of the framework and report that they gained a speedup
of a factor of 60 and reduced the battery consumption by a factor of
40 in ‘eyeDentify’ by offloading. Although they mention that they
have gained considerable speedups for ‘PhotoShoot’ as well, exact
figures are not mentioned. However, they do not provide a method
to decide whether to offload or not. This has been included as a fu-
ture research step, but for now, the framework always offloads by
default if the phone can connect to a cloud of resources.

The Mobile Message Passing Interface (MMPI) framework [32]
is a mobile version of the standard MPI over Bluetooth where
mobile devices function as fellow resource providers. Instead
of the typical star network structure of normal piconets, MMPI
employs a fully interconnected mesh structure so that each node
can communicate with the other. Tasks such as device discovery,
and connections are handled by the libraries provided in the
framework, eliminating the need for writing any Bluetooth specific
code explicitly. The framework is implemented in Java and the
third party library BlueCove [33] is used to handle Bluetooth
operations. The master mobile device passes job parameters to the
slave devices, which they then proceed to execute. As a sample
application, they have tried with fractal generation over different
devices (phones, laptops, PDAs) on cross-platforms and reported
the time cost. However, they do not give the cost in terms of using
just one machine (in the conventional way) so it is not clear what
the speedup was. The setting up of MMPI system is in three steps:
Device discovery, Service discovery, and Network formation. Their

10 http://aws.amazon.com/ec2/.
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tests show that service discovery time increases as more devices
are discovered. Network formation takes the smallest time with
136 ms for a two node network and 2.3 s for a four node network.

In [34], Deboosere et al. propose a grid model, where a mobile
device connects to a server as a thin client over a classic thin client
protocol such as VNC (Virtual Network Computing) or a streaming
protocol. In this system, user input is sent via the wireless network
to the server, and after processing the input, the server sends
back the appropriate graphical output, which is then displayed on
the mobile device. In particular, this research focuses on server
selection algorithms that are needed when the mobile device’s
location changes. To minimize the delay from server, and provide
a quick response time, the application may need to be migrated to
a nearby server, which may affect the performance. The authors
aim to provide effective algorithms to minimize this degradation
in performance, while supporting user mobility as well.

Virtual machine (VM) migration. VM migration refers to transferring
the memory image of a VM from a source server to the destination
server without stopping its execution [35]. In such a live migration,
the memory pages of the VM are pre-copied without interrupting
the OS or any of its applications, thereby providing an illusion of
seamless migration. This method ensures that no code changes are
needed when programs are offloaded, and provides a relatively
secure execution, since the VM boundary insulates the surrogate
device. However, VM migration is somewhat time consuming and
the workload could prove to be heavy for mobile devices.

Rather than connecting to a distant cloud, Satyanarayan
etal. [23] suggests ‘cloudlets’ as a solution. A cloudlet is similar to a
small data center that is situated on designated areas/places and is
connected to a larger cloud server via the Internet. They state that
“internally, a cloudlet resembles a cluster of multi-core computers,
with gigabit internal connectivity and a high-bandwidth wireless
LAN".

Thus, the mobile devices are in physical proximity to the
resource rich cloudlet and it can function as a thin client
while all the resource intensive computation happens inside the
cloudlet. The mobile device would be connected to the cloudlet
by a low-latency one hop high bandwidth wireless connection,
thereby guaranteeing real time interactive response. If the user
moves away from the cloudlet, the mobile device could fall back
to a degraded service mode that connects to a distant cloud
server—or at worst case—even operate offline. Cloudlets would
be decentralized, widely dispersed and self-managing requiring
little power, internet connectivity and control for setup. They could
be owned by a particular local business (as opposed to cloud
ownership by companies such as Amazon, Google etc.), such as
a coffee shop or a dentist’s office. Also, a cloudlet would only
contain cached data that is available elsewhere, so that the loss
of a cloudlet would not be disastrous. Instead of tightly restricting
the software that can be run on the cloudlet, the research suggests
having minimal restrictions on the software and simplifying
management. Their solution is to use “transient customization
of cloudlet infrastructure using hardware VM technology”. The
transient nature means that pre-use customizations and post-use
cleanups would restore the cloudlet infrastructure to its original
software state after each use. The VM would encapsulate and
separate the guest software from the cloudlet’s host software. A
VM based approach is more stable than other alternatives such as
process migration and would also be more flexible than language-
based virtualization. Two approaches are considered to transfer the
VM state from the mobile device to the cloudlet: VM migration,
and dynamic VM synthesis. Of those two, the authors propose
to use dynamic VM synthesis because its performance depends
solely on local resources and WAN failure wouldn't affect synthesis
(in which case base VMs could be transferred to the cloudlet via
physical media).

MAUI [24] uses a combination of VM migration and code
partitioning. Their objective is to save energy. Applications are
offloaded from phones to surrounding infrastructure—i.e. local and
remote servers. Implemented in.NET, MAUI's partitioning is done
at runtime and is very dynamic. It can use either 3G or WiFi for
connectivity. Developers annotate which methods can be offloaded
and at the time of execution, if there is a remote server available,
MAUI decides whether or not to offload these methods.

CloneCloud [36] also uses VM migration to offload part of their
application workload to a resourceful server through either 3G
or WiFi. Because they use device clones, the mobile applications
are unmodified and there is no need of even annotating methods
such as done in MAUI [24]. They have a ‘cost model’ that analyses
the cost involved in migration and execution on the cloud and
compares the cost against a monolithic execution. CloneCloud
was tested using Android phones with the clones executing
on a Dell desktop running Ubuntu. For testing purposes, they
considered three applications; a virus scanner, image search, and
a privacy-preserving targeted advertising and report speedups up
to 21.2x with WiFi giving better performance over 3G. However,
they assume that the clone VM environment is by default a trusted
one, and mention establishing trust as future work.

MobiCloud [37] discusses using cloud computing technology for
MANETSs (mobile ad hoc networks) in a secure way. Traditional
MANETs can be transformed into a service oriented architecture
by MobiCloud. Each mobile node is considered as a ‘Service Node’
that can be used as a service provider or a service broker depending
on its computation and communication capabilities and available
resources. Every service node is incorporated on to the cloud
as a virtualized component and is mirrored in the cloud. These
Extended Semi-Shadow Images (ESSIs) are not exactly the same
as virtual images since an ESSI could be an exact clone, a partial
clone, or merely an image that has extended functions of the
physical device. A virtualized MANET routing and communication
layer is established by these ESSIs to assist the physical mobile
nodes that they represent. The key focus of MobiCloud is to
provide a security service architecture and they present ‘Virtual
Trusted and Provisioning Domain’ (VTaPD), which is a service
to handle information flows in various security domains, using
programmable routing [38].

Mobile code. Scavenger [39] is another framework that employs
cyber-foraging using WiFi for connectivity, and uses a mobile
code approach to partition and distribute jobs. It also introduces
a scheduler for cost assessment. Its method of cost assessment
is based on the speed of the surrogate server and it uses a
benchmarking method to do this. Using its framework, it is possible
for a mobile device to offload to one or more surrogates and its
tests show that running the application on multiple surrogates in
parallel is more efficient in terms of performance. However, it does
not discuss fault tolerance mechanisms and since its method is
strictly about offloading on surrogates and not sharing, it is not
really dynamic. Also its surrogates are all desktops and it is unclear
if Scavenger is too heavy to run on mobile phones.

Discussion. With the exception of Hyrax [14], Virtual cloud [12]
and Cuckoo [30], the most recent works have used either VM
migration or Mobile code to offload tasks. Even the aforementioned
projects, are based on much older frameworks; Hadoop [40] and
Ibis [31], designed for distributed and grid programming. Therefore
it is safe to say that the trends in this particular area favor VM
migration and Mobile code over the conventional Client-Server
Communication systems. The advantages of these two approaches
over Client-Server Communication methods such as RPC can be
given as a reason for this. Although Client-Server Communication
methods have well supported APIs and are robust, they require
the applications to be pre-installed. Also, disconnected operations
are not supported in this method. Considering the ad-hoc nature
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Fig. 5. An overview of the major approaches in offloading methods for mobile cloud computing, and their advantages and disadvantages.

of mobile systems, this is a disadvantage. Furthermore, the
continuous on-going interaction and communication between the
client and server may lead to network congestion.

VM migration is used by a majority of frameworks, including
Cloudlets [23], MAUI [24], CloneCloud [36], and MobiCloud [37].
Virtualization greatly reduces the burden on the programmer,
since very little or no rewriting of applications is required.
However, full virtualization with automatic partitioning is unlikely
to produce the same fine grained optimizations as that of hand
coded applications, although rewriting each and every application
for code offload is also not practical. MAUI [24] actually does
not rely on pure VM migration as done in CloneCloud [36] and
Cloudlets [23], but uses a combination of VM migration and
programmatic partitioning. However, in cases where the mobile
device user is within range of a surrogate device for a few minutes,
using VM migration may prove to be too heavyweight, as is pointed
out in [39] which uses mobile agents in light of its suitability in a
dynamic mobile environment.

Fig. 5 provides a general overview of these points discussed.

Although the evaluation results have been given in some
projects, comparing them against each other is difficult since the
performance and energy savings depend on the application as well.
In fact even when using the same framework, performance varies
for different applications. The input size and connection protocol
(whether 3G or WiFi) also plays a key role. For example, MAUI [24]
reports maximum energy savings of 90%, 45%, and 27% for three
applications (face recognition, chess, video game) and maximum

performance speedups of roughly 9.5, 1.5, and 2.5 for the same
respectively. CloneCloud [36] also reports test results on three
applications; virus scanning, image search, behavior profiling. They
show maximum speedups of 14.05, 21.2, and 12.43 respectively
for the aforementioned applications. Scavenger [39] also reports
test results evaluated using an image editor application, and their
results show a maximum speedup of 38.7 and a maximum power
saving of 24%.

4.1.2. Cost-benefit analysis

It is important to analyze the costs of offloading on to the
cloud such as time, energy and monetary, versus monolithic
execution/storage beforehand.

Walker et al. [41] discusses when a consumer should take the
decision to offload storage to a remote cloud such as Amazon
EC2. Their model for evaluating the benefits of leasing storage
from a cloud service as opposed to buying hard drives, takes into
account factors such as cost of electricity, cost of hard disks, disk
power consumption, cloud storage price per GB, expected storage
requirement, and human operator salary.

Li et al. in [42] propose a model with a suite of metrics to
calculate the cloud cost. They consider two main costs of cloud
computing; namely, Total Cost of Ownership (TCO) and Utilization
Cost. Total Cost of Ownership (TCO) is generally used as a
financial estimate to determine the costs attributing to owning and
managing an IT infrastructure. With respect to cloud computing,
TCO is deemed appropriate to function as a basis for providing
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Fig. 6. Cost-benefit analysis and decision making in a mobile cloud.

an estimate for the commercial value of cloud investment, and
takes into account server cost, software cost, network cost, support
and maintenance cost, power cost, cooling cost, facilities cost,
and real-estate cost. Utilization Cost refers to the actual resources
being consumed by a particular user or application according to
the dynamic demand. Because of the ‘elasticity’ in a cloud, the
amount of resources such as servers, software, power and facilities
including UPS and battery system, can be dynamically added or
removed as per demand from the resource pool. Therefore rather
than statically summarizing the cash outlays, cloud cost analysis
must consider the impact of elastic utilization. Furthermore, Li
et al. argue that virtual machines are the unit of resource in
cloud, since virtualization is widely adopted in cloud computing.
Therefore VMs are considered as the inputs in a three layer
derivation based method that also takes cloud amortization into
account.

Although some of these issues such as power consumption and
cloud pricing are applicable to mobile cloud computing as well,
additional issues and perspectives need to be considered.

The importance of cost-benefit analysis. In a mobile cloud, because
of the essential mobile hence dynamic nature, the resources are
likely to change in any given moment. Therefore, a cost-benefit
analysis is essential to weigh the benefits of offloading against the
potential gain by evaluating the predicted cost of execution with
user specific requirements as illustrated in Fig. 6.

Cost models using resource monitoring and profiling. Spectra [27]
and Chroma [28] are two of the earliest cyber-foraging systems
for mobile devices that employ methods to weigh the cost
vs. the benefit of offloading to surrogate servers. In Spectra,
contradictory goals such as performance, energy conservation, and
quality are evaluated when considering if an application should be
offloaded, and if so, on to which surrogate device. The performance,
energy consumption and quality are predicted for each potential
surrogate, and the selection is made by balancing the competing
goals with each other so as to give the best possible trade-off.
Since a pervasive environment is made up of mobile devices
constantly changing in terms of resource availability, Spectra
constantly monitors the resources such as CPU, network, battery,
file cache state, remote CPU, and remote file cache state. Changes
in these resources are taken into consideration when estimating
the best placement. A ‘self-tuning’ approach is adopted to match
the available resources with the application’s resource demands
since it is not practical for the applications to define a priori
the exact resource requirements. Rather, the self-tuning method
observes application execution and maintains profile histories for
each known surrogate. These profiles are continuously updated,
and consulted for future actions.

To estimate the best trade-off, the gain also needs to be
predicted. For this, Spectra uses previous work done by Narayanan
et al. [43] by using a prediction model based on the assumption
that a resource consumption of an operation is similar to recent
executions of similar operations. In the case of encountering a new
operation for which history data does not exist, the model employs
linear regression to give an estimate. Chroma uses a somewhat
similar approach called ‘tactics’ specified in a declarative language,
while building on ideas from the same earlier work Odyssey [44].
Chroma also employs resource monitoring and history based
predictions to weigh the outcome of each tactic plan against the
estimated cost. History data for applications are logged offline,
and the predictors update the logs online and use machine
learning to optimize the predictions. To come to a decision,
Chroma performs a trade-off using utility functions that perform
comparisons between attributes such as power consumption and
speed. However, unlike Spectra, the adaptive policies are separated
from the decision making and policy enforcement at runtime.

The Scavenger [39] framework also employs a cost assessment
method to decide whether offloading should be done or not. This
is carried out by the ‘scheduler’ component which considers the
following factors:

1. Relative speed and current utilization of the surrogates:
A CPU benchmarking method is employed to evaluate the
performance of potential surrogate devices. Scavenger does
not use the CPU clock speed values of devices since it would
make little sense for comparison purposes due to the vastly
heterogeneous nature of the device set. The benchmarking
method uses the NBench suite!! to get a score that gives an
assessment of the strength of a device. The number of tasks
running in the potential surrogate is used as a measurement of
current resource utilization.

2. Network bandwidth and latency to the surrogates: Network
connection information is statically configured to avoid unnec-
essary traffic using and this information on expected band-
width, Scavenger estimates the cost of remote execution.

3. Task complexity: This does not refer to the Big O asymptotic
time, rather this means an estimation of how much time
it would take to execute the task on the surrogate device.
History data recorded whenever a task is performed is used
for this estimation similar to Spectra and Chroma. However,
unlike Spectra and Chroma, for each task Scavenger employs
a ‘dual profiling’ technique where not one but two profiles
are recorded per task; a task-centric profile using global task
weight and a peer-centric profile for each device-task pair.
The peer-centric profile is consulted first, and if the peer is a
hitherto unknown device, the scheduler looks into the task-
centric profile. Eq. (1) shows the calculation of global task
weight, where Tgyration iS the time taken to complete the task,
Pstrength is the NBench score, and Pyctivity is the number of other
tasks being run on the device at the time.

P strength

(1)

Tweight = Tquration .

Pactivity

4. Input and output size: Input size is available at runtime, but the
programmer needs to specify the information on output size.

MAUI [24] carries out a cost-benefit analysis by profiling each
method in an application through serialization. Measurements
of network bandwidth and latency are also taken to incorporate
into the cost. Specifically, MAUI's profiler takes three issues into
consideration:

11 http://www.tux.org/mayer/linux/bmark.html.
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1. The devices’ energy use: An energy profile of the mobile
phone is prepared by first measuring the battery usage from a
hardware power meter. A JouleMeter [45] style benchmarking
system is used to measure the CPU utilization. Initially the
profiler is ‘trained’ on the device by collecting data on CPU
utilization and energy consumption. These values are used to
construct a linear model that is able to estimate how much
energy will be consumed by a method. This estimate is given
in the form of the number of CPU cycles it requires to execute
that particular method. They report that the model’s mean error
is less than 6% with a standard deviation of 4.6%.

2. Application characteristics: Since profiling an application for
each of its possible paths will be expensive, MAUI uses the past
invocations of methods to predict the future invocations.

3. Network characteristics: They follow a simple procedure to
measure network throughput. 10 kB of data is sent to a MAUI
server and is observed to obtain an idea of network bandwidth
and latency. Also, the profiler records the statistics of network
quality every time a method is offloaded, and this history data
is utilized for future estimates.

The data from the profiler as mentioned above is then fed into
the MAUI ‘Solver’ to decide if a method should be executed
locally or remotely. The Solver tries to give the best possible
partitioning strategy that will give the least amount of phone
battery consumption.

Clonecloud [36] employs a ‘Dynamic Profiler’ to collect data
used in the cost-benefit analysis, that is then fed in to the
‘Optimization Solver’ to decide which methods needs to be
migrated, such that the cost of migration and execution will be
minimized. Here, the cost could refer to execution time, energy
consumption or resource footprint.

In [46] Zhang et al. take four attributes into consideration when
calculating the cost of migrating mobile apps to the cloud: power
consumption, monetary cost, performance attributes, and security
and privacy. These are inferred from various sensing modules in
the mobile device and cloud, that monitor data such as battery,
network, device loads, cloud loads and latency. After processing
these inputs, the cost model decides on a suitable course of action
such as, migrating apps to the cloud/mobile device, switching
between different networks and allocating cloud resources.

Cost models using parametric analysis. In [47], Kumar and Lu
provides an analytical model for comparing energy usage in the
cloud and the mobile device. The model takes the following
parameters into consideration; the speeds of the mobile device
(M) and the remote cloud (S), the number of instructions of the
computation (C) (assuming both mobile and cloud versions have
the same number of instructions), the number of bytes to be
transferred (D), network bandwidth (B), the energy consumed by
the mobile device in idle (P;), computing (P.) and communicating
(Py) states. Assuming the cloud is F times faster than the mobile
device, they infer the amount of energy saving to be given by the
Formula (2).

C B D

v {Pc - F} - PUE. (2)

When the formula gives a value greater than zero, an energy saving
is possible, i.e. % should be lower compared to % and F should
be sufficiently large. Thus, according to this model, offloading
is beneficial in cases where heavy computation is needed with
comparatively low amounts of communication.

Analyzing the conditions for optimal computation offloading,
Wang and Li in [48] identify four kinds of cost factors; Computation
cost, Data communication cost, Task scheduling cost and Data
registration cost. These costs are expressed as functions of run-
time parameters such as buffer size, input size and command line

options. These are then fed into their partitioning algorithm to
determine an efficient partitioning depending on the parameters.

Cost models using stochastic methods. For a mobile cloud service of
the model given in MobiCloud [37] Liang et al. [49] proposes an
economic mobile cloud computing model based on Semi-Markov
Decision Process (SMDP) [50] for resource allocation. MobiCloud
describes a system where mobile devices use application compo-
nents named ‘weblets’ which can be either migrated to the cloud,
or run on the mobile device itself. The SMDP model is based on
three states in the mobile cloud; new weblet request or an inter-
domain request, intra-domain transfer weblet request, and weblet
leaves domain. When the cloud receives a request for migration
from a mobile device, it will only accept it if there is an overall sys-
tem gain. The overall system gain is based on maximizing the cloud
profit and reducing the expense of the mobile user. The expense
of the mobile user depends on the trade-offs of energy consump-
tion in a mobile device vs. the monetary cost of offloading to the
cloud. They argue that an intra-domain weblet transfer from one
service node to another would usually generate more profit than
a new weblet migration from a mobile device, or an inter-domain
transfer in which the transfer happens from another cloud service
provisioning domain. Besides the monetary gain, the overall sys-
tem gain also takes into consideration the CPU cost in the cloud
server due to virtual image occupation. A ‘reward model’ is used to
calculate the costs based on the system state and its corresponding
action.

Discussion. Existing cost models in current mobile cloud computing
systems mainly fall into three categories: history based profiling,
parametric, and stochastic. An overview of these are given in
Table 1.

Spectra and Chroma have two of the oldest history based
profiling cost models, and are quite similar, with Chroma being a
result of lessons learned from Spectra. Several later works build
on concepts from these two lines of research while adding new
methods to address their shortcomings. For example, the cost
models of aforementioned work and MAUI rely on the assumption
that past invocations of the same, or a similar operation is a
good indicator of its current resource usage. However, the energy
consumption of an operation in MAUI is expressed as a function
of the number of CPU cycles it requires, while in Spectra, energy
measurements are directly taken from the mobile device’s battery.
Scavenger also records history data and maintains profiles similar
to Spectra, but optimizes the concept by recording dual profiles per
task.

While a thorough cost-benefit analysis is crucial for optimal
performance, the cost of cost analysis itself should not be
overlooked. This issue is discussed in MAUI, where the overhead
of performing frequent profiling and accurate estimations based
on latest data, are balanced to give a positive outcome.

4.1.3. Mobility management

One of the key issues encountered in a mobile cloud is
the design of intelligent mobility management techniques that
support user mobility while providing a seamless service. Although
research has been done in location management in wireless
networks [51], here, we focus on the methods followed to
manage and support mobility in mobile cloud computing systems.
Determining a device’s current location is helpful to assess its
potential to move away from or towards the active mobile cloud.
Work on localization primarily falls into either infrastructure
based techniques, or peer-based techniques. Infrastructure based
methods use technologies such as GSM, WIFi, ultra-sound with
RF, GPS, RFID, and IR. Among these, current GPS very rarely
works indoors, and the more accurate techniques need additional
infrastructure and need dense deployment of access points as well.
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Table 1
Overview of cost models in mobile clouds.

Name and type

Objective

Resource monitoring

Benchmarking

Assumptions

Spectra [27], Chroma [28]:
History based profiling

Scavenger [39]: History based
profiling

MAUI [24]: History based
profiling

CloneCloud [36]: History based
profiling

Analytical model by Kumar and
Lu [47]: Parametric model

Analytical model by Wang and
Li [48]: Parametric model
MobiCloud [37]: Stochastic
method

User specifiable; reduction in
execution time, energy usage,
and increasing fidelity

Improve performance and
energy saving

Primary goal is saving energy.
Speed is also considered.

User specifiable; reduction in
execution time, energy usage.

Saving energy

Improve performance and
energy saving

Saving energy and minimize
monetary cost

Yes: CPU, network, battery,
file cache state, remote CPU,
memory usage and remote
file cache state

No

Yes: CPU, network bandwidth
and latency

Yes: CPU, network, storage

Yes: network bandwidth,
energy consumption

No

Yes: CPU, battery state,
network

No

Yes. Uses the
NBench suite.

Yes. Uses a method
similar to
JouleMeter.

No

No

Yes

No

Resource usage of an operation will be
similar to the amount used by recent
operations of similar type.

Task duration is proportional to the
NBench rating such that a task that
takes 1 s to perform on an idle
surrogate with an NBench rating of 40,
should take about 2 s to perform on
an idle surrogate with a rating of 20.

Past invocations of a method can be
used as a predictor of future
invocations concerning energy usage.
All objects have the same cost per
byte.

The number of instructions in the task

is similar in the cloud version and the
mobile version.

Furthermore, these methods are energy consuming and hardly
suit the conservative needs of mobile cloud devices. In contrast
peer-based techniques are better suited to manage the mobility of
participating devices, considering that relative location information
is adequate, and most can be implemented with short range low
power protocols such as Bluetooth.

Peer based techniques for determining the position of a mobile
device. In ‘Escort’ [52], a human localization system using Mobile
Phones is presented. Without using GPS or WiFi, the position of a
person is inferred using social encounters between users via audio
signaling, and monitoring the walking traits of different individuals
via phone compasses and accelerometers. Their experiments in
parking lots and university premises show that a user can be
brought to within 8 m of their target using this technique. Each
user’s movement is captured by his/her mobile phone by using
its compass and accelerometer, and when it encounters another
phone, the encounter is recorded in along with the timestamp.
These movement traces are then used to construct a global view
of users positions and paths. For example, if A wants to locate B,
‘Escort’ creates a route composed of various encounters. If A had
met C recently, and C had met B, the route is first calculated to
the point where A met C, then to the place where C met B. Of
course, since there could be many possible paths, the ‘Escort’ server
will select the optimal one. Although this system deals exclusively
with electronic escorting, with the existence of a dedicated ‘Escort
server’, the idea behind this localization method can be used to
determine the position of a participating mobile node in the mobile
cloud. For example, in the case where a delegating device is about
to assign work to a worker device, or if it is waiting for results from
a worker device, it will be beneficial to know if the aforementioned
worker is moving away, i.e., about to disconnect. Not using GPS or
WiFi, which are both battery draining methods, is especially useful
as well. In the case of ‘Escort’, fixed beacon transmitters placed at
random locations are used to correct errors in routing, since they
deal with fairly long distance paths. However, for the purpose of
mobile cloud, where devices operate in relatively close range, such
error correction methods will not be needed.

In ‘Virtual Compass’ [53], short range protocols such as
Bluetooth and WiFi are used to construct a two dimensional
representation of nearby devices. Peer-to-peer messaging is
used to estimate the distance via signal strength, and to pass
information about each device’s neighbors and their distances. The

latter information makes it possible for devices to gain knowledge
about nodes that are beyond the immediate range. In the context
of the mobile cloud, this is beneficial to assess the potential of
new devices about to join or previous nodes returning to the cloud
environment. Furthermore, since communication in the mobile
cloud is most likely to happen via short range protocols such
as Bluetooth and WiFi (since it uses nearby devices as resource
providers), passing information related to this techniques will not
necessarily add an extra burden. In fact, localization data can
piggy-back on the general cloud communication messages. One
challenge in mobile cloud is to trade off between the possibility
of energy drain with continuous scanning, opposed to missing
out on encountering potential resources without. A solution exists
in the method followed in ‘Virtual Compass’, where it employs
a self-adaptive scanning technique that regulates its scanning
intervals by keeping track of changes in its neighbor graph. This
regulation makes use of a central server however, where ideally a
decentralized solution is preferable in the context of mobile cloud.

One such decentralized implementation is ‘Friends Radar’ [54],
which employs location updates in peer-to-peer fashion using
XMPP. Friends Radar differs from the previously discussed systems
in that only ‘known’ contacts, or friends’ locations are visible,
and that it uses GPS. In a situation where the mobile cloud is
comprised opportunistically with random unfamiliar devices, and
conducted indoors, this method will fail. However, in cases where
all participating devices are pre-known and trusted, such as work
sharing among a group of friends for example, and the computation
is being done outdoors, this can be viable solution. However, using
only known contacts can also be a plus point in terms of privacy and
security. As the authors have mentioned, this work would be more
applicable in terms of mobile cloud, if it is extended for indoor use
using signal strength techniques instead of GPS only.

Similar peer-based localization methods such as NearMe [55],
and Beep Beep [56] also exist, but these do not work for more
than two nodes. DOLPHIN [57] needs to have special ultrasound
hardware, that cannot be expected to exist on a normal phone.

Managing mobility via fault tolerance methods. In [12], the location
and the number of surrogate devices are important since the
cloud’s objective is to provide support for users with similar
goals. They argue that users in similar locations tend to share
similar goals. Hence, a context manager tracks potential and
existing surrogates corresponding to people moving in groups.
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Also, the number of devices in the vicinity is needed in the scaling
of applications. Using an ad hoc discovery mechanism, a p2p
component monitors the resource pool, and notifies the context
manager if a change occurs; i.e. new devices come in, or existing
ones leave. The authors mention that they hope to use mobility
traces to establish ‘communities’ moving together that are stable
environments for task distribution. Furthermore, mobility tracking
is an important part of fault tolerance. If an unstable node could
be identified beforehand, the system could take precautions by
promoting task redundancy.

Mobility is one reason in mobile clouds for disconnectivity, and
disconnection, similar to hardware failure in a distributed system.
In Hyrax [14] disconnectivity arising from the mobile nature of
devices is handled through the fault tolerance mechanisms of
Hadoop. As given in [40], one of the main assumptions of Hadoop
and the HDFS architecture is that ‘hardware failure is common’.

In [58], the availability of a mobile device as a resource
provider is determined by its mobility. Hence, devices/users with
a high degree of mobility are termed as less reliable due to them
being prone to disconnection. To predict the ‘availability status’,
recordings of changes in mobile resources over time are used
with a Markov chain model. For example, users are classified
into three groups: low mobility users, middle mobility users, and
high mobility users, and this is used to calculate the probability
of mobility. Although this is sound in a contained environment
such as a workplace or university, where information about user
mobility patterns is known, for a mobile cloud operating in a public
area with little or no prior information, this method will not be
viable.

Supporting mobility via component and proxy migration. MoCA
(Mobile Collaboration Architecture) [59], is a middleware for
collaboration on context-aware mobile devices. MoCA currently
works with 802.11 and follows the client-server model with
a framework for implementing application proxies and basic
services for collaborative applications. The servers and proxies
run on static networks, while clients run on mobile devices. A
proxy acts as the intermediary between the client and server.
Here, user mobility is supported by monitoring the locations of
the users and switching to an application proxy more suited to
the new location. Mobile clients query the service—which contains
registered information on available application server proxies—
and discover the means to access a collaborative service at their
closest proxy. The ‘closest proxy’ is determined by the location of
the mobile device which is inferred using its radio frequency signal
pattern as done in project RADAR [60]. Measurements gained at
predefined reference points are used for comparisons.

Hydra [61] facilitates developing distributed mobile applica-
tions in a pervasive environment by the construction of a virtual
computer through the participation of a networked set of pervasive
computers so that the application satisfies a mobile user’s require-
ment changes based on location, current tasks and number of peo-
ple. User mobility is supported by moving the mobile agent based
software components to other servers situated along users move-
ment. In cases when components are dependent on each other and
the moving of one may affect another, this component migration is
carried out by way of ‘hooks’, which dictate two types of policies;
either a component will be able to ‘follow’ another, or replicate it-
self and make the replicate follow. In the second policy, the clone
becomes independent of the source component. Which of the two
policies to follow is decided on by the component itself. Using RFID,
spatial regions such as parts of a room or a building can be identi-
fied within a meter. The positions of objects (mobile devices) are
identified by identifying these spatial regions that contain them.

In [62], a mobile service cloud based on an overlay-based
distributed infrastructure is presented. This is an extension of
previous work in Service Clouds [63] where an overlay-based

network supports dynamic and on demand prototyping and
deployment of services. Here, mobile devices connect to overlay
hosts who implement services on the wireless edge. User mobility
is handled by migrating the proxy service to different locations
following the user. This proxy migration is done to maintain
quality of service, minimize resource consumption, and ISP policy
which may not allow mobile devices connecting to access points
belonging to another provider.

Discussion. A majority of mobile clouds support mobility through
component and proxy migration. Although this works for mobile
devices connecting to remote servers, it is not a viable mechanism
in the following cases; where mobile devices are resource
providers themselves and are moving in ad-hoc manner, and
where the mobile device offloads tasks to a local resource provider
such as a cloudlet. A potential solution for the cloudlet model
is to use the same technique as in ‘Follow Me’ [64], a localized
and decentralized location sharing system using PlugComputers
as Bluetooth scanners. As mentioned in [12] keeping track of
other mobile resources moving together with the client to form
‘communities’ is the only solution proposed so far in a mobile cloud
of this type, and even that has not yet been fully implemented.

4.1.4. Connection protocols

The current mobile cloud computing research uses a variety
of connection protocols for communication including WiFi,
Bluetooth, and 3G, though the majority has employed WiFi for
many reasons.

WiFi. WiFi (wireless Ethernet 802.11b) and Bluetooth both operate
in the unlicensed 2.4 GHz ISM band. WiFi was initially intended as
replacement for cabling for resource and peripheral sharing (such
as printers, shared storage devices) among PCs, terminals etc. for
wireless local area networks (WLANs). WiFi has a longer range,
with a radius within 100 m and supporting up to 11 Mbps data
rates.

Bluetooth. Bluetooth on the other hand, was intended for nonres-
ident equipment and applications such as wireless headsets etc
wireless personal area network (WPAN), and is characterized by
its low power requirements and low-cost transceiver chips [65].
The range for Bluetooth is typically in a radius of 10 m, depending
on the device class, power, and physical obstacles in the environ-
ment. However, according to Bluetooth specifications, future ver-
sions will be faster up to 24 Mbps and consume less energy.?

3G. 3G (third generation mobile telecommunications) is a technol-
ogy for mobile service providers and it shares the basic business
model with that of the telecommunications services model. The
infrastructure is owned and managed by the service provider and
sold to customers typically on a monthly usage basis. Although the
focus of cellular technology has been voice telephony, data services
has also started to attract attention. Mobile broadband access of
several Mbps is available via recent 3G releases such as 3.5G and
3.75G [66], although this is substantially lower than the data rate
of WiFi.

Experimental results. Based on the experimental results presented
in related research on mobile clouds, the energy consumption of
3G is shown to be higher than WiFi [24], though data for similar
statistics for Bluetooth exists.

In MAUI [24], the mobile phone using 3G to offload work to a
remote server consumed three times as much energy as WiFi with
a 50 ms RTT, and five times the energy of WiFi with a 25 ms RTT,
meaning that downloading a 100 kB file repeatedly over 3G will
deplete the battery in less than two hours.

12 https://www.bluetooth.org.
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Table 2
Overview of connection protocols used in mobile clouds.
Protocol ~ Frameworks Pros Cons
WiFi Spectra [27], Better range than  Inter-operability
Chroma [28], Bluetooth issues between brands
Cuckoo [30], (100 m), better or deviations can
Cloudlets [23], performance and cause limited
MAUI [24], lower energy connection or lower
CloneCloud [36], consumption output speeds,
MobiCloud [37], compared to 3G security threats
Hyrax [14],
Virtual cloud [12],
Scavenger [39]
3G Cuckoo [30], Near-ubiquitous Round-trip times over

MAUI [24],
CloneCloud [36]

coverage [24] 3G are lengthy and
bandwidth is limited,
poor performance and
high energy

consumption

Bluetooth Cuckoo [30], Low power Limited range (10 m)
MMPI [32] usage [67],
widespread

availability as
opposed to other
protocols [68]

In CloneCloud [36], experiments conducted on three appli-
cations with WiFi displayed a latency of 69 ms and bandwidth
of 6.6 Mbps, while offloading with 3G resulted in a latency of
680 ms, and bandwidth of 0.4 Mbps. Concerning speedups, WiFi
gave speedups of 12x, 20x, and 10x while the energy consump-
tion was 12x, 20x, and 9x less energy than the monolithic appli-
cation. However, test results of 3G offloading gave lower gains; 7 x,
16x, and 5x speed-up, and 6%, 14x, and 4 less energy for the
same applications respectively. Greater latency and lower band-
width of 3G is given as the cause of this.

An overview of connection protocols used, and their advantages
and disadvantages regarding a mobile cloud is illustrated in
Table 2.

4.2. End user issues

End users issues relate to issues that directly involve users such
as incentives for participating, interoperability and cost. When
using a mobile cloud, one of the key challenges experienced by
the end users is the transaction infrastructure. In particular, we
hope to answer the following questions in this section; in what
ways would users of mobile cloud services be billed? In cases of
collaborative mobile clouds, how is credit represented? And how
can users be persuaded to contribute to the resource cloud? What
are the presentation and usability issues that need to be addressed
for mobile cloud services?

4.2.1. Incentives to collaborate

In cases of mobile devices themselves acting as resource
providers as discussed in Section 3.2 and in works such as
Hyrax [14], the participating devices need to have incentives
as to ‘loaning’ their resources. Furthermore, there need to be
mechanisms to prevent ‘free riding’.

In [12], users are enticed to participate in sharing their mobile
resources by ‘common goals’. If many users need to execute the
same task, it can be partitioned so that each user only has to do
a small part. The result of the task will be shared among all the
participants. For example, consider the case of a group of people
performing an activity together, such as visiting a museum. Say
someone is interested in translating a foreign text on an exhibit,
but his/her phone does not possess the capabilities or resources
to process such a task. Connecting to a remote server via the
Internet would mean paying for data roaming. His/her solution is

to collaborate with other people in the same group who would also
be interested in translating the aforementioned text. The authors
argue that people sharing the same location are also likely to share
common objectives, thereby providing them with an incentive to
share their resources.

For the same kind of collaborative cloud computing, monetary
incentives can also be considered in the means of micropayment
schemes as discussed in [69,70]. In [71], the use of monetary
and social incentives for mobile distributed systems based on
opportunistic networks have been discussed. Their focus is on
message transmissions in delay tolerant networks (DTN) formed
by typical mobile devices. The monetary incentives are proposed
to be implemented in the form of prioritizing the payload in the
order of importance. Thus, a selfish mobile host will only relay
a message with a certain priority or higher since it implies the
sender is willing to pay a price for successful delivery. The authors
argue that, as the mobile hosts become more and more selfish, the
delivery rate of high priority messages become higher while the
low priority message delivery rate slowly decreases. However, this
result depends on the high to low priority ratio as well, since if all
messages have a high priority, there will be no discrimination.

The social incentives are based on the premise that even a
selfish host will have a set of social relationships, and hence, will
not display the same behavior towards all the other hosts. The
authors surmise that since the selfish host will also need to send
messages using other hosts at times, it is in the selfish host’s
interest not to ask for monetary payment from hosts in its work
group/community. They also implemented a simulation where
each host records encounters with other hosts. Whenever a selfish
host receives a message from another host, it refers to these records
and calculates the percentage of meeting days, and the standard
deviation of the daily meetings. Based on this, the selfish hosts
display an altruistic behavior towards hosts they meet often, and
the authors show that these hosts are better off than the hosts who
are always selfish.

Other methods include enforcement schemes employed in
peer-to-peer file sharing systems to control free riding [72].

4.2.2. Presentation and usability issues

Although there is lack of focus in this issue in mobile cloud
computing research, presentation in the user interface does pose
a valid challenge. This has been frequently discussed in mobile
computing research [73-76], and lessons can be drawn from these
to apply for mobile clouds as well.

User interface issues in mobile computing. Mobile devices span
a large number of heterogeneous platforms. To design and
develop separate user interfaces (Uls) for each and every type of
device would be highly inconvenient and unrealistic for the Ul
developers [74].

Since the display area of a mobile device is small, which
information and the way to present it to the user is a problem.
Applications designed for mobiles may interact differently with
users from normal desktops, for example, less data entry, and using
popup menus to conserve the meager screen space [75].

Furthermore, user interaction methods with the application
may depend on the user’s context such as location, bandwidth and
remaining energy [76].

In addition, users of mobile cloud computing frameworks
would also need some user level controls in the interface specific
mobile clouds. For example, users may need to specify constraints,
select from available surrogates, define their priorities, and deal
with cost negotiation.

4.3. Service and application level issues

Service and application level issues relate to the factors
concerned with performance measurements of the system, and
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the QoS of the system. For example, in what ways do mobile
cloud computing systems ensure availability? What are the fault-
tolerance (FT) mechanisms employed to ensure smooth execution
and uninterrupted service? Cloud APIs providing libraries to
support cloud application development for mobiles are also
discussed.

4.3.1. Fault-tolerance for meeting availability requirements

Fault-tolerance is a highly important aspect in a mobile cloud,
even more so than a conventional cloud because of the mobile
nature of the devices, i.e. “mobility is inherently hazardous” [2].
Disconnection can happen due to user mobility as devices enter
and leave a network. Running out of battery power, network signal
loss, or hardware failures are other common factors.

Redundancy. The FT support in Hyrax [14] comes from the FT
mechanisms of Hadoop on which Hyrax is based. Hadoop recovers
from task failure by re-execution and redundancy. If node failure is
anticipated, the task is replicated on another node/s that is deemed
to be stable. In their testing and evaluations, where applications
such as Sort, Grep and Word Count were ported, it was found that
Hyrax was able to recover more effectively when the number of
nodes was higher.

In [12] although FT is not implemented, it is mentioned as
future work, where the authors suggest using context-awareness
for fault-tolerance purposes. Context information would be used
to judge if a node is unstable, and if so, task redundancy could be
carried out to increase the success level of task completion.

Proxy migration. In [62] FT is achieved by migrating the proxy
service. In the event that a proxy node fails, its place is taken
up by another node in the service cloud so as to ensure
minimal disruption to the communication stream/s. This was
tested using a testbed comprising PlanetLab nodes and hosts on
a university intranet, and two strategies were implemented: on
demand backup where another service is migrated as soon as
system detects failure, and ready backup where a backup node is
configured by default at the time of service composition. Of these
two strategies, the ready backup was slightly faster, as can be
expected, since the system only needs to reconfigure the relay to
forward the stream in that case. The authors also suggest using the
client middleware to trigger reconfiguration faster in future work.

Resource tracking. In [77], Palmer et al. proposes using the Ibis
grid computing platform to address similar problems in mobile
computing. The Ibis framework enables users to integrate their
mobile devices onto the grid taking advantage of the grid’s
computational power. Here, FT is achieved by the Ibis system’s
resource tracking model using the ‘JEL’ API standing for ‘Join,
Elect, Leave’. As the name suggests the JEL API gives the system
malleability, enabling it to adapt as new mobile nodes join and
leave the network. The ‘Join’ operation notifies the application
when a new node connects to the distributed system, thereby
facilitating the applications to scale up. The ‘Elect’ operation is
used to elect a node into the coordinating role. Whenever a node
is disconnected, whether by choice or fault, the ‘Leave’ operation
notifies the application and triggers an ‘Elect’ to select a new node
to fill in.

4.3.2. Supporting performance at service level

A majority of Application Programming Interfaces used to build
mobile applications targeted for cloud computing are based on
service oriented architecture such as REST and/or SOAP. Mobile
applications are able to connect to and request services hosted on
a remote cloud through interfaces. However, mobile Web services
need to consider additional constraints other than standard
Web services: frequent loss of connectivity, low computational
resources, and low bandwidth.

Web service caching. To improve the user experience that can be
hindered because of disconnection, caching and prefetching has
been proposed in research [78,79]. This approach enables the user
to continue his/her work for a period of time while in offline mode.
Furthermore, caching and prefetching also gives an increased
response time. In [78], CRISP, a SOAP cache that can be embedded
in client side application, or deployed as a separate proxy, is
introduced. In [79] a dual caching strategy is proposed, where
both the nomadic client and server have caches running, storing
request-response pairs. Even though the overhead of storing
these pairs is considerable over time, the performance gain is
significant.

4.3.3. Cloud APIs

Mobile clouds have been implemented using APIs provided
by distributed computing frameworks such as Hadoop [14] and
Ibis [77]. Futhermore, there are cloud APIs catering to mobile
devices as well. For example, the Funambol Cloud API'® provides
server and client side SDKs to develop mobile cloud applications
and services that make use of images, calendar, contacts etc. stored
in a Funambol server. Other open source APIs include Eucalyptus, '
Nimbus," and OpenNebula.'® Commercial cloud APIs include
frameworks such as Dropbox,!” Azure,'® Amazon and Google

Apps.
4.4. Privacy, security and trust

Whether offloading intensive computations, or data storage,
using the cloud for mobile devices does pose questions of security
and trust issues. In her article in [80], Kharif outlines the potential
pitfalls in using cloud services for mobile devices. Because of the
low capacity of mobile device storage, many users are starting to
store data such as contacts, calendars and SMS on clouds. However,
these cloud services are stated to be vulnerable and users may lose
their data if the services go out of business, or simply if the services
fail due to technological problems.

Recent examples. For example, in the October of 2009, a large
number of T-Mobile Sidekick users discovered that their personal
data stored in the mobiles had disappeared due to a server
failure [81]. The Sidekick data, such as users’ contacts, photos and
calendar appointments, was stored in a cloud service operated by
the Microsoft company Danger. Although the majority of users
did recover most of their personal data by November, this outage
caused many difficulties, and raised many questions about how
secure and robust the cloud really is.

Is cloud security applicable to mobile clouds as well? Mobile cloud
computing inherits the security threats of conventional cloud
computing in cases when the definition of mobile cloud means
to connect mobile devices to a remote cloud. In this case, the
remote cloud server would be the same as a conventional cloud
computing provider, making the general cloud security threats
valid. At the same time, mobile clouds present a group of issues that
are particular to mobile devices offloading jobs through wireless
communication channels. Furthermore, security concerns that are
specific to mobile devices such as battery exhaustion attacks [82],
mobile botnets and targeted attacks [83] should also be considered.

13 https://capi.forge.funambol.org/.

14 http://open.eucalyptus.com/.

15 http://www.nimbusproject.org/.

16 http://opennebula.org/.

17 https://www.dropbox.com/.

18 http://www.microsoft.com/windowsazure/products/.
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4.4.1. General cloud security
In [84] Brodkin outlines seven security risks users need to
consider in Cloud computing;

1. Privileged user access: offloading sensitive data to the cloud
would mean the loss of direct physical, logical and personnel
control over the data.

2. Regulatory compliance: the cloud service providers should be
willing to undergo external audits and security certifications.

3. Data location: the exact physical location of user’s data is
not transparent, which may lead to confusion on specific
jurisdictions and commitments on local privacy requirements.

4. Data segregation: since cloud data is usually stored in a shared
space, it is important each user’s data is separated from others
with efficient encryption schemes.

5. Recovery: it is imperative that cloud providers provide
proper recovery mechanisms for data and services in case of
technological failure or other disaster.

6. Investigative support: since logging and data for multiple
customers may be co-located, inappropriate or illegal activity
should they occur may be very hard to investigate.

7. Long-term viability: assurance that users data would be safe
and accessible even if the cloud company itself goes out of
business.

4.4.2. Mobile cloud security

In addition to the aforementioned concerns, securing a mobile
cloud introduces the following challenges as discussed in [85]
where the authors propose a security model for elastic applications
made up of ‘weblets’ that can be migrated to and from a cloud to a
mobile device:

1. authentication between the weblets that would be distributed
between the cloud and the device,

2. authorization for weblets that could be executing on relatively
untrusted cloud environments to access sensitive user data, and

3. establishment and verification of trusted weblet execution
cloud nodes.

Their security framework is based on the assumption that the cloud
elasticity service (CES), including the cloud manager, application
manager, cloud node manager, and cloud fabric interface (CFI),
is trustworthy. The security threats are categorized as threats
to mobile devices, threats to cloud platform and application
container, and threats to communication channels. The authors
propose a framework with the following security objectives:
Trustworthy weblet containers (VMs) on both device and cloud,
authentication and secure session management needed for secure
communication between weblets and multiple instantiation
concurrently, authorization and access control enforcing weblets
on the cloud to have the lowest privileges, and logging and auditing
of weblets.

MobiCloud [37] aims to provide a security services architecture
for MANET clouds in three ways:

1. Acting as an intermediary for identity, key, and secure data ac-
cess policy management: Identity management is supported
by Attribute-Based Identity Management (ABIDM), which sup-
ports user-centric identity management schemes also known as
Identity 2.0. They propose ABKM, a system for key management,
which is an extension of identity-based cryptography. However,
in ABKM, the Trust Authority (TA) generates private key compo-
nents for each user depending on their public attributes, and the
key exchange protocol is not required. Therefore, this is effec-
tive for delay tolerant MANETs where the source and the desti-
nation do not usually talk prior to sending the data.

2. Protect information belonging to mobile users by means of se-
curity isolations: MobiCloud has Virtual Trusted and Provision-
ing Domains (VTaPD), which are virtual domains enforced with

resource isolation. A VTaPD contains various nodes correspond-
ing to different physical systems. Nodes in the same VTaPD
support the secure MobiCloud communication system when
passing messages to each other. A cryptography based approach
is used to enforce data access control and information isolation.

3. Assess risks by monitoring MANET status: the centralized data
collection and processing in the MANET is used by the risk man-
agement service to identify malicious nodes and take preven-
tive measures according to estimated risks.

4.4.3. Privacy

As the recent incident regarding CarrierlQ being installed
and collecting information from mobile phones [86] shows, it is
important for mobile phone users to have transparency and choice.
Users need to be aware of what personal information is exactly
visible to the public, and to have control over their personal data
that is stored on their smartphones. It is vital that any personal
data that is shared is done so with users consent, and that they can
choose to opt out of any data collecting program at any time.

In [87], Fahramair et al. present the following requirements
of a mobile and ubiquitous system that satisfies user privacy:
protection against misuse, identification of pirated datasets,
adjustment of laws (to provide additional security under certain
circumstances), and ease of use.

These are valid requirements for a mobile cloud as well. In a
mobile cloud where mobile device share work with other mobile
devices, a primary concern is malicious devices. In a setting where
the device users are unknown and the mobile cloud is formed
opportunistically, this is a most serious concern. Although the
Public Key Infrastructure (PKI) is an appropriate method for the
security issue, the problem is that it draws a high operational
overhead that is not practical on resource constraint mobile
devices. Furthermore, the connections between the devices in a
mobile cloud are highly dynamic, and adaptive. At a given moment,
new devices may be joining while current devices may be leaving.
In such a scenario, the frequency of user authentication requests
will increase to such an extent that it could result in insufficient
resources to perform asymmetric key operations and transmit
heavy messages [87]. A solution to this problem is proposed
in [88], in which PKASSO, a PKI based authentication protocol
is introduced. To solve the resource constraint problem, PKASSO
offloads the complicated PKI operations from the mobile device,
to a remote resource rich server. Although this is a valid option in
hybrid clouds that have connectivity to Internet, this is not viable
in cases that long range connectivity is a problem. However, the
cloudlet concept [23] is useful in this scenario: cloudlets could
operate as the local infrastructure to which the PKI operations can
be offloaded.

Techniques of anonymous routing such as onion routing
can also be used to provide privacy for mobile nodes in a
decentralized mobile cloud. Examples exist in the p2p domain,
such as [89-91]. However, there are certain overheads and a risk of
unreliable delivery associated with most anonymous p2p routing
protocols [92]. As a solution, the degree of anonymity should be
flexible and depend on the context. For an example, a mobile
cloud operating in a public environment where the potential for
malicious nodes are high, should have a high level of privacy,
but this would incur higher transmission (e.g.: longer paths) and
computation costs (e.g.: cryptography processing overheads).

In addition to an authorization scheme, users of the mobile
cloud should also have the ability to change their privacy settings
and dictate what information can be seen. For example, a mobile
cloud participant may not want other devices to record his/her
location information. In [93], the authors propose such a system,
called the Privacy Rights Management for Mobile Applications
(PRIMMA) project. PRIMMA'’s key objectives are to provide the
users with a tool to control and add privacy policies, resolve
inconsistencies between user privacy policies, and predict the
privacy requirements using monitoring mechanisms.
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4.5. Context-awareness

Schilit et al. [94] describes the three important aspects of
context as: the user’s location, other users in the vicinity, and
the resources in the user’s environment. For example, in a mobile
user’s perspective, ‘context’ means things such as lighting, noise
level, network connectivity, communication costs, communication
bandwidth, and even the social situation.

Importance of context-awareness for mobile clouds. Systems with
context-awareness are able to use contextual information to
change and automatically reconfigure their configurations to adapt
to the context [44]. This behavior is very useful in the case of
mobile systems since these deal with an execution environment
that is subject to constant change. In the case of mobile cloud
computing, context awareness can be used in forming resource
clouds as well as processing information. For example, a device can
infer its location through GPS, Bluetooth, or some other forms of
positioning and use that information to prepare itself for upcoming
processing.

In the rest of this section, we review the use of context-
awareness for mobile cloud computing systems, and also discuss
a key concern of mobile device, energy awareness.

4.5.1. Context-aware service provisioning

It has been suggested that, mobile clouds can utilize the sensing
abilities of their mobile devices such as location, acceleration,
etc. and act as providers of context awareness/information.
In [95] the authors suggest utilizing the sensing capabilities of
mobile Internet devices to provide such context-aware service
provisioning. Consider a mobile device connected to a remote
cloud service through the Internet. As the context of the user
changes, this prompts invocation of different cloud services based
on the current context. With this kind of context-awareness, a
service would not be bound to a user. Instead, when a mobile user
invokes a cloud service, the request is accompanied by his/her
context information, and the most suitable service is selected
based on that information. Therefore, context is used to provide
personalized services, and also as fault tolerant mechanisms such
as rectifying low quality of service problems. Here, the authors
identify a model consisting of four layers of context elements:

1. Monitored context: refers to current monitored context con-
sisting of: device context which includes the environmental and
device settings, user preference for user-specific preference set-
tings, such as those regarding services selection and invocation,
situational context relating to monitored data on user location,
time etc., and Service Context information such as QoS.

2. Types of gaps: refers to gaps that happen as a result of content
changes. For example, when the user’s service is changed from
Servicel to Service2 owing to a context change, there is a
gap between the two services. Mainly, two types of gaps are
identified: gap on functionality that relates to an available
service and the needed service, and gap on nonfunctionality
relating to differences in QoS values between the previous
service and the current one.

3. Types of causes: refers to the factors that can cause the
aforementioned gaps. A service may have multiple interfaces,
and an interface may have different implementations. Similarly,
there can be different component instantiations for the same
service component. The gaps arise because of the mismatches
between these: Service-level Unmatched, Service Interface-
level Unmatched, Service Component-level Unmatched, and
Component Instance-level Unmatched.

4. Adapters: refers to the remedial actions that should be taken to
remove the aforementioned causes.

Based on this model, the authors propose a context aware service
provisioning architecture consisting of three tiers: User Layer that

is made up by the mobile devices where the applications run on,
Agent Layer that adapts the services according to context, and
Service Layer that deploys the services.

Volare [96] introduces a middleware for monitoring the
context of a mobile device that is connected to a cloud service,
and dynamically adapts the services so as to make them
more resource efficient, reliable and cost efficient. Acting as
an intermediary, VOLARE intercepts service discovery requests
from applications while monitoring mobile device’s context such
as battery consumption, CPU usage, network bandwidth, user
preferences like low power operation etc. Depending on this
contextual information, VOLARE tries to adapt each service request
by comparing the current QoS level with predefined thresholds.
Instead of modifying the applications, a declarative language has
been created to describe the adaptation policies. If at any time,
the QoS level and the cost changes beyond the predefined values,
VOLARE will automatically rebind to another service that can
satisfy the requirements.

In MoCA [59], a proxy can register an ‘interest expression’ on
a mobile, i.e., “FreeMem< 10 kB” for a particular client, which
would result in the proxy getting notified if and when the client’s
free memory drops below 10 kB. These context specific “interests”
depend on those specific applications requirements. For example,
if the proxy gets an update that a client’s wireless connectivity has
gone down a certain point, it could take certain actions such as
compressing the data.

Using ‘Intelligent access’ for Mobile Cloud Computing is
discussed in [97], where use of context information provided by
terminals, network nodes, or sensors deployed in the users
environment enables efficient network access management across
different Radio Access Technologies (RATs) such as GPRS, WCDMA/
HSPA, LTE, WiMAX, cdma2000 and WLAN. Conventional intelligent
access schemes assume that all categories of dynamic context
information such as user profiles, terminal status and sensor
information and external sensor networks would aid in improving
mobile access. However, mobile cloud computing requires a
wireless connection with a set of different necessities than classical
heterogeneous access scenarios: connectivity for long periods,
scalable bandwidth, network selection and usage based on energy
costs. To satisfy these requirements, the paper proposes Intelligent
Radio Network Access (IRNA). The status and attributes of each
RAT is considered, while at the same time effort is taken to
entertain the user requirements based on environmental factors.
Their proposed context management architecture (CMA), based
on the producer-consumer role model such as given in [98], is
responsible for acquiring, processing, managing, and delivering
context information. To control the supply of context information
according to the mobile cloud’s requirements, the framework has
a Context Quality Enabler (CQE). The CMA is made up of three
components:

1. Context Provider (CP): this is where the context information
originates from and is provided to other components of
the architecture. The communication between CPs and other
components are done through context requests.

2. Context Broker (CB): acting as a middleman, the CB keeps a
registry of available CPs and their capabilities, and provides a
CP look-up service. Also, the CB itself is able to forward the data
it receives from CPs.

3. Context Consumer: these are the entities that take context data
as inputs for their actual functionality, e.g.: network services,
applications for end users, and service enablers.

In MiPeG [25], a middleware for integrating mobile devices
into grid environments, several mechanisms for providing and
using context awareness are discussed. Context information such
as location, resources and environment conditions is used to



100 N. Fernando et al. / Future Generation Computer Systems 29 (2013) 84-106

adapt the services provided by the grid, using Semantic Web
technologies, thus supporting the ‘pervasive grid’ concept. The
‘Context Reasoning Engine’ forms the main component of the
context service. Its responsibilities include handling the context,
information gathering from sensing devices, and forming higher
level semantic rules depending on the context information
received.

4.5.2. Risk assessment using context-awareness

In MobiCloud [37], context information is used to facilitate risk
assessment and routing decisions. MobiCloud introduces Virtual
Trusted and Provisioning Domains (VTaPDs), which is a service
that can isolate different information flows in in different domains
by way of programmable router technologies. VTaPDs identify
these separate flows and create virtual domains. By doing this,
a user is able to securely run multiple applications on different
security domains, and to separate services for different settings
based on context. The MANET’s contextual information such as
device sensing values, location, and neighboring device status are
recorded by the VTaPD manager, and used for risk management
and intrusion detection procedures. Parameter values related to
devices, network, content, and security such as battery level,
connectivity, predefined goals, and privacy, are used to provide
context-aware service migrations. Risk management is aided
through context information because the status of the entire
system (end-to-end communication delay, reachability of the
destination, security status of each mobile node, etc.) is available.
From this centralized data collection and processing, knowledge of
the full MANET system is gained, and MobiCloud can easily identify
malicious nodes.

4.5.3. Identifying potential resources and common activities using
context-awareness

In [12], a Context Manager component is deployed to sense
context information and store it to be used for other components
such as Application Manager, which launches, intercepts and
modifies an application according to the current context. Location
and number of nearby devices in the vicinity are the key contexts,
with location information used for mobility traces, and number
of devices used to aid the forming of the mobile cloud. Thus,
the system is made aware if a new device enters the resource
pool, or leaves it, thereby leading to better scalability and content
distribution. Furthermore, this information is used to infer if a
particular device is ‘stable’ or not, which is essential to decide if it
is following a common movement pattern with the other devices,
leading to common activities.

4.5.4. Energy awareness

Because a mobile device operates on a finite supply of energy
contained in its battery, energy is one of the key resources
that needs to be used carefully [99]. In the context of mobile
clouds, the cost of participation (such as power consumption)
should be less than the benefit gained [100]. Also, it will
enable the mobile device to take appropriate component level
action to minimize unnecessary energy consumption, and hence,
lengthen the system’s life span by unloading unneeded software
components, redeploying energy intensive components to more
resourceful hosts, and collocating frequently communicating
hosts, as suggested in [101]. For these reasons, being aware of a
device’s energy usage is vital.

In the following we discuss the research on energy consumption,
mainly focusing on work on energy profiling and energy usage
estimation.

Energy profiling. In PowerScope [102] the authors present a
profiling tool for mobile applications. The tool maps power usage

to specific code components in applications and the operating
system, allowing an analysis of power draining procedures. Using
this analysis, the developers can modify their software to be
more energy efficient. The authors report a 46% energy saving
by using PowerScope to profile an adaptive video application run
on the Odyssey platform [44]. Experiments were carried out with
several laptops and pocket computers. Profiling is done offline after
collecting data, to ensure no overheads are added to the analysis.
A digital multimeter measures the electric current used by the
profiling computer and the energy profile is generated using these
correlated current measurements. The apps can only be profiled on
an open source operating system however, as small modifications
to the kernel are required.

In [103], Rice and Hay present a power consumption measure-
ment framework, specifically for mobile phones. In particular, they
explore the effect of message size and send buffer size when trans-
mitting data on two Android 1.5-based phones. Power usage dur-
ing connection to a WiFi network and idle power costs for WiFi,
3G and 2G are also discussed. Power consumption is measured by
sampling the voltage drop across the phone battery and a high pre-
cision resistor. The mobile device first downloads the test script
from a central server and uploads the results to the same server.
The central server aligns the test results with the traces and logs.
Their findings can be summarized as follows:

1. When connecting to a WiFi network through DHCP, a significant
portion of the time and therefore power, are taken by the ARP
Probe packets and the delay between them.

2. In the case of idle power, WiFi has the lowest energy cost,
followed by 3G and 2G respectively. However, it should be
noted that the locations of the base stations will also affect radio
transmission.

3. Although it would be logical to expect that the energy cost per
byte will decrease as the message size increases, results show
that this is not the case. There appears to be a sharp increase of
power cost from sending a 7 kB message to 8 kB. However, the
reason for this is not clear.

4. The choice of buffer size can significantly affect the power
consumption.

The work discussed previously measures the energy via
hardware. A different approach is to take the measurements via
software to query battery levels as done in PowerSpy [104],
implemented in the Windows operating system. PowerSpy
operated in two stages; event tracking and analysis. In the event
tracking stage, the application is run and tracked for CPU time,
I/O activity and energy consumption. In the analysis stage, the
data acquired in the previous stage is processed. To filter out the
energy consumed by I/O activities, an estimation of energy usage
by various devices to run particular tasks (such as energy used by
the disk to read 1 kB) as specified by the devices manufacturer,
is used. This estimation is subtracted from the total of recorded
energy use, and the remainder is taken as the energy taken up
by CPU threads. Next, energy consumption is drilled down to
individual threads, on the assumption that CPU power usage is
proportional to the number of CPU cycles spent on a thread.

Work done by Cano et al. [105,106] provides insight into the
energy consumption of the Bluetooth protocol. The focus of their
work is on the different states of Bluetooth such as Startup,
Standby, Inquiry, Connection and especially the low power modes
provided by the protocol.

Energy usage estimation. Work done by Chiyoung et al. [101] and
Seo et al. [107] focused on the energy (electrical) consumption
estimation of Java based pervasive systems at the level of its
system level components. The initial estimation in [101] is done
prior to runtime—during construction time. Then the estimation is
refined during runtime automatically depending on certain system
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parameters such as size of data exchanged over the network,
inputs to the components’ interfaces, and invocation frequency
of components’ interfaces. The exact formulas for calculating the
estimation are given in [107]. Their methodology gives an Energy
Cost Framework as follows:

e Overall Energy cost = Computational energy cost + Communi-
cational energy.

e System Energy cost = Overall Energy cost + Overall infrastruc-
ture energy cost

where infrastructure cost is the cost incurred by the operating
system. The computational cost is determined by the level of its
public interfaces and the computational cost of an jth invocation of
an ith interface on a given JVM is modeled in terms of byte codes,
native methods and monitor operations. Communication cost due
to the jth invocation of component c;’s interface I; on host H; is
calculated in terms of the size of the transmitted and received data
and the energy consumption of transmission/receive cost of Hy.
The authors claim that based on their evaluations in which they ran
distributed applications on Kaffe 1.15 JVM on Compaq iPAQ PDAs,
their estimations are within 5% of the actual power consumption.

4.5.5. Discussion

Context-awareness has been utilized in mobile cloud frame-
works for several tasks, including service provisioning with a better
QoS, risk assessment, identifying resources and common activities.
A majority of the works discussed use context information to pro-
vide a better service by personalizing the services, and providing
fault tolerance through context such as user preferences, location,
current QoS, network bandwidth, battery consumption, and CPU
usage.

However, the performance and energy costs of employing the
sensing capabilities and the trade-offs with benefits gained have
not been discussed. Although certain contextual information such
as monitoring battery consumption will not add an extra toll, other
information such as location monitoring could prove to be too
expensive.

4.6. Data management

For many cloud users and providers, managing data on the
cloud raises many complications. In mobile cloud computing, as
the name itself suggests, data that would traditionally be only
accessible only to the mobile device’s owner, would now be stored
on, accessible to, shared with external devices or users. For many
mobile users, this raises privacy and security questions. Also, data
representation in mobile devices vary, and in a heterogeneous
mobile cloud, this would lead to problems with portability and
interoperability. Computations in a mobile cloud would be spread
across a distributed file system, where multiple devices may need
to access and modify files.

Furthermore, special considerations must be given to accessing
files from mobiles over wireless networks. In a mobile cloud,
users geographical locations are not fixed, and bandwidth must be
conserved because of data access costs. However, it is also vital
that mobile databases contain policies to safeguard against data
loss while ensuring it conforms to mobility constraints. We discuss
these issues in the following subsections. Issues regarding data
privacy and security are not discussed here, since they have already
been explained at length in Section 4.4: Privacy, Security and Trust.

4.6.1. Personal data storage on mobile cloud

One of the key concerns for people about using a mobile
cloud is that their personal data on mobile device could be
stored on, or accessed by the cloud. A mobile device contains
contact lists, text messages, personal photos and videos, calendars,
location information, and these data can reveal many things about
someone’s personal life. However, a personal computer also stores

many such personal data such as photos and other multimedia,
chat logs, emails, passwords, financial records or access to such
records, calendar and contact lists. Today, thousands of monetary
transactions are being done in online shopping sites such as eBay,
and Amazon. Therefore, the risks involved in mobile cloud are
not necessarily greater than those involved in traditional clouds.
However, the issue here is whether the means of handling those
risks have been properly implemented in the mobile cloud. Despite
reservations, people do tend to use their mobile devices with the
cloud. Some recent examples of mobile cloud storage are Apple’s
iCloud, Google Drive and Dropbox. Apple iCloud enables users of
iOS devices to synchronize their application data such as photos,
iTunes music, calendars, email, and messages. An initial 5GB of
iCloud storage is free for an Apple user, with additional storage
available for a monthly fee. Although iCloud offers an Apple user an
impressive user friendly feature suite (such as Find my Phone), it is
only for data related to Apple devices. In contrast, Dropbox is less
specialized, but works across heterogeneous platforms including
Microsoft Windows, Linux, Mac OS, i0S, Android, and Blackberry.
Dropbox also allows sharing stored data with friends, and file
revisions.

4.6.2. Data access issues

Compared with traditional cloud computing, mobile cloud
computing poses a challenge in the way mobile devices access
data stored on the cloud. This is due to the inherent challenges
of mobile computing such as low bandwidth, mobility and limited
storage. I/O operations performed at the file level consume a lot
of bandwidth, which is a problem for limited connectivity options
in the mobile cloud [108]. Methods to minimize the I/O costs such
as [109] exist, but do not take access methods into consideration.
An approach more suited for mobile cloud is the concept of ‘Pocket
Cloudlets’ [110], where a local storage cache based on nonvolatile
memory is used to store parts or full cloud services in the mobile
devices. However, this method needs the mobile device to decide a
priori which portions of cloud services it will need to cache locally.
Hence, the dynamic nature is compromised.

4.6.3. Data portability and interoperability

The mobile cloud will cater to many different mobile devices
including Android, BlackBerry, and iPhone. In addition, these
participating devices have various sensing capabilities, and as a
result, contain sensor specific data as well. Since a mobile cloud will
also have to communicate with typical cloud structures containing
large scale servers, and PCs in addition to mobile devices, it is
important that a platform independent representation is provided.
Consider these cases regarding data interoperability in mobile
cloud services [111,112]:

1. Palm Pre users were in dismay when updates from Apple’s
iTunes disabled the Palm Pre’s ability to sync its multimedia
with iTunes software.

2. For people using Funambol cloud services'® with their iPhones,
only syncing contacts were allowed by the Apple SDK through
the official client. It was possible to sync calendars via the SQLite
database, but in order for this to happen, the iPhone needed to
be unlocked, which would make the warranty void.

Open cloud computing standards could be the answer to such data
lock-in problems. An open standard would incorporate multiple
cloud computing service providers to present a uniform interface.
One possible solution for the mobile cloud is the Mobile Agent
Based Open Cloud Computing Federation (MABOCCF) [113], where

19 http://funambol.com/.
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data and code are transferred from one device to another via
mobile agents. When a user encapsulates code/task inside a
mobile agent, there should be certain information in the data
structure at the head of the agent such as, whether or not if
it is a mobile agent, resources needed for that particular task,
mobile agent code, and application code. Each mobile agent is
executed in a virtual machine called Mobile Agent Place (MAP),
and the mobile agents are able to move between MAPs, and also to
communicate and negotiate with each other, realizing portability
among heterogeneous cloud computing service providers.

4.6.4. Embedded mobile databases

Because of obvious limitations, mobile databases (or embedded
mobile databases, as they are called) cannot possess all the
functionalities of a traditional database. In the context of the
mobile cloud, mobile databases need to be lightweight, and require
the ability to download data from a remote repository and execute
on this data even in a disconnected state, and also should be
able to synchronize the modified data during the downtime with
the enterprise whenever the network becomes available again.
Furthermore, databases for mobile clouds need to have a quick
start up time since faults in mobile devices can be more frequent
than for a fixed host. Security constraints regarding access and real
time processing are also important [114].

These are usually integrated with the operating system and
specific application, and in essence are similar to traditional
databases which could be relational or object oriented. However,
mobile embedded databases are directly driven by procedure calls,
as opposed to traditional databases which are not bound to the
operational system or a particular application, and are designed for
data storage in persistent media [114].

SQLite is popularly used by mobile platforms (e.g.: Android and
iPhone) and web browsers (e.g.: Mozilla Firefox). Others include
database systems such as MiniSQL, BerkelyDB, and Sybase.

Database technologies used in p2p systems such as PeerDB
[115], and CouchDB?® and recently CouchOne Mobile?! derived
from the peer-based CouchDB, can also be facilitated for the mobile
cloud, especially in cases where mobile devices act as resource
providers and form decentralized p2p connections.

5. Challenges

Based on the related literature, we find that the following
issues have not been sufficiently solved. These are the gaps in the
reviewed work that would prove to be directions for future work.

e Supporting continuous mobility while ensuring connectivity to
the cloud: While mobile devices connecting to remote cloud
servers to run apps such as Google translate can connect while
mobile, this depends on the user’s 3G connection. Even if the
reception is sufficient, data costs and latency has a huge impact
on these kinds of mobile cloud computing apps.

The ‘cloudlet’ concept [23], presented to address the aforemen-
tioned problems could aid in this issue somewhat, but this does
not fully support a mobile user who needs to work while on the
move. Cloudlets, or other frameworks such as CloneCloud [36]
that offload jobs to a local resource rich server could only sup-
port the needs of mobile device users who are actually station-
ary for the time being, such as waiting at a coffee shop, or at
the airport, and are within range of such a resource rich server.
Moving away out of range from the server, while the job is still

20 http://couchdb.apache.org/.

http://www.couchbase.com/press-releases/couchio-becomes-couchone-
launches-couchone-mobile.

being processed, would prove fatal to the task—unless there are
such resource providers along the path of user’s movement. This
is highly unrealistic as of today, even in most developed coun-
tries. The need for additional infrastructure in public places is
another problem in this method.

Other research such as Hyrax [14] where mobile devices
themselves act as resource providers, are promising, but there
are gaps in supporting a decentralized ad hoc cloud mechanism.
For instance, Hyrax relies on a central server that is responsible
for task allocation. While distributing computing frameworks
such as Hadoop [40] are useful in laying the groundwork
for such frameworks, they do not fully support decentralized
task scheduling. Unlike in distributed processing, thorough
cost-benefit analysis needs to be carried out when considering
mobile resources. Except in MAUI [24], the cost of cost analysis
has not been evaluated in many works, even though this is a
valid concern when considering the low resources on mobile
devices.

When supporting mobility and connectivity, some of the
questions we need to contemplate are; How can a user device
know of impending disconnectivity? In what ways can the most
‘stable’ and ‘efficient’ surrogates be chosen so as to ensure
seamless connectivity? What fault-tolerance mechanisms can
be employed to minimize potential failures?

e Security in mobile clouds: Although an issue of paramount
importance, little research has been carried out in this regard.
Users would need to feel confident when offloading their
jobs to other surrogates such that their privacy would not be
violated. Although many of the reviewed frameworks mention
the need for security and trust, very few of them have
actually implemented it and have left the implementation for
future directions. As discussed in [23], consider a mobile user
offloading a language translation program to a surrogate server,
and a malicious VM manager distorting the translation with
the intention of sabotaging the user’s business transaction. As
suggested in [23], avenues towards this need to be examined,
possibly with trust establishment methods or reputation-based
trust.

e Incentives for surrogates: If users are to be persuaded to
collaborate and share their resources with others, there needs
to be motivation either through monetary or social incentives
to do so. An interesting method is using common goals [12],
but in the absence of common activities this will not prevail.
In the case of monetary incentives, several questions need to
be answered such as: how is credit represented in a mobile
cloud? how will monetary transactions proceed in a secure
method? how will the price of resources be decided? Using
social incentives such as suggested in [71] also raises challenges
such as preventing free riding and enforcing standards.

5.1. Proposed architecture

For an operational mobile cloud, that exploits the locally
available mobile resources, while ensuring user privacy, security,
and operates at optimum cost, we propose an architecture such
as shown in Fig. 7. Our proposed system is mainly composed of
five components; Job handler, resource handler, cost manager,
privacy and security manager, and context manager. The resource
handler shall be responsible for searching for and discovering
other mobile resources, connecting, maintaining connections
and communicating with the external mobile devices, and also
monitoring them for potential nodes entering or leaving the cloud.
Due to the high probability of disconnectivity, the resource handler
must opportunistically exploit available resources, while ensuring
that the system gain, privacy, and security is also not compromised.
The cost manager must determine the user priorities (e.g.:
battery conservation, fast execution, monetary gain) and by taking
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Fig. 7. A generic architecture for implementing a mobile cloud.

into account the job at hand, available resources, and required
resources, come to a decision whether to offload or not. The job
handler dynamically partitions the application and or data set
required, offloads the generated jobs, and maintains the job pool.
Of course, for these modules to function, intercommunication
is needed. For example, the cost model needs inputs from the
resource handler about the capabilities of the available resources,
and the resource handler needs sensor inputs from the context
manager in resource monitoring, to manage mobility inside the
mobile cloud. The privacy and security manager needs inputs
from sensors and user in addition to network interfaces to
determine the most suitable policy to enforce. For example, the
strict authentication settings needed in a public setting will not
be needed when operating among a group of trusted devices such
as among a group of friends or family. Or the user might decide
on less resource consuming privacy policies since his or her other
requirements such as conserving battery are prioritized. Here, we
highlight a key characteristic of the mobile cloud: adaptability.
Adapting according to the user’s requirements, context, and
system resources is vital in order to ensure cost efficiency.

6. Conclusion and future work

Mobile cloud computing aims to empower the mobile user
by providing a seamless and rich functionality, regardless of the
resource limitations of mobile devices. Although still in its infancy,
mobile cloud computing could become the dominant model for
mobile applications in the future.

We have given an extensive survey of current mobile cloud
computing research in this paper. Highlighting the motivation
for mobile cloud computing, we have also presented different
definitions of mobile cloud computing in the literature. We have

presented a taxonomy of issues found in this area, and the
approaches in which these issues have been tackled, focusing on
operational level, end user level, service and application level,
security and context-awareness.

These are still early days in mobile cloud computing, with recent
workshops in the area such as MobiSys,?> MCCTA,>®> CMCVR,*
and MCNCS.® As we pointed out, mobile cloud computing has
overlapped with other areas such mobile peer-to-peer computing,
application partitioning, and context-aware computing, but yet
has its own unique set of challenges. There are numerous new
mobile applications that a mobile cloud framework can enable,
when many more resources can be made available to the mobile
device (via the mobile cloud facility). The future could also explore
the potential of local mobile clouds formed from collections
of computers in ubiquitous devices in shoes, clothing, watches,
jewelry, furniture and other everyday objects, as indeed such
embedded computers will become more powerful. And so, the
infrastructure, platform or application available as services will be
of new forms: the infrastructure could be a powerful massively
distributed set of cameras on stationary and mobile devices
formed ad hoc and metered to cover an event, or a collection of
distributed computers formed to compute a job seamlessly from
the user’s mobile device while the user is shopping. A car can
sell its computational resources and pay for its own parking, or
the collection of computers on crowds of people in a busy area
forms an “elastic” collective resource for ad hoc use. There is also

22 http://www.sigmobile.org/mobisys/2011/workshops.html.
23 http://web.ftrai.org/mccta2011/.

24 http://www.cmcvr.org/CMCVR11.html.

25 nttp://dblab.csie.thu.edu.tw/MCNCS_2011/.


http://www.sigmobile.org/mobisys/2011/workshops.html
http://web.ftrai.org/mccta2011/
http://www.cmcvr.org/CMCVR11.html
http://dblab.csie.thu.edu.tw/MCNCS_2011/

104 N. Fernando et al. / Future Generation Computer Systems 29 (2013) 84-106

potential to have context sources or sensors (and sensor networks)
in the vicinity of a mobile user sold as services to the mobile user,
to support context-aware applications. However, challenges are
present in order to “elastically” on-demand form clouds of services
and resources efficiently, seamlessly and in a robust manner.
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