DESIGN and Implementation of

Restful Web Services for Blackbook
Technical Report UTDCS-25-09

Department of Computer Science
The University of Texas at Dallas
August 2009
Pranav Parikh, Murat Kantarcioglu, Latifur Khan
and Bhavani Thuraisingham

DESIGN AND IMPLEMENTATION OF
RESTFUL WEB SERVICES
FOR BLACKBOOK

- TECHNICAL REPORT
Pranav Parikh
Murat Kantarcioglu
Latifur Khan
Bhavani Thuraisingham

The University of Texas at Dallas

August 2009

ABSTRACT

The main objective of the Blackbook project is to improve intelligence analysis by
coordinated exposition of multiple data sources across intelligence community
agencies. The Blackbook system is a JEE server-based RDF processor that provides
an asynchronous interface to back-end data sources. It is an integration framework
based on semantic web technologies like RDF, RDF Schema, OWL and SPARQL. It
relies on open standards like Jena, Jung, Lucene, JAAS, and D2RQ among others to
promote robustness and interoperability.

At the University of Texas at Dallas, under the KDD (Knowledge Discovery and
Dissemination) Program funded by IARPA (Intelligence Advanced Research Projects
Activity), we are (1) conducting research on semantic web (which includes ontology
alignment and RDF query processing), (2) making enhancements to the Blackbook
system (e.g., REST Interface, Geospatial Proximity techniques, and Hbase/Lucene
integration) and making contributions to open source products (e.g., Large RDF
Graph management techniques into JENA open source system).

In this report we will describe the enhancements we have made to Blackbook with
respect to RESTful web services. The main objective of this sub-project was to
integrate RESTful Web services in BLACKBOOK. Previously, BLACKBOOK supported
only the SOAP web services. BLACKBOOK is a semantic web based infrastructure.
Since semantic data is a collection of different vocabularies, REST allows visualizers
to show semantic data in an easy manner as compared to SOAP. Hence, a pressing
need was felt to incorporate the RESTful Web services in BLACKBOOK. We will
describe the design and implementation of the Blackbook RESTful web services we
have carried out.

~ ACKNOWLEDGEMENT

We thank IARPA for their support for this effort. We also thank Scott Streit and Lance
Byrd for their extensive feedback and discussions of our work for IARPA.

This work will be part of Pranav Parikh’s MS Thesis at the University of Texas at Dallas.

TABLE OF CONTENTS

1 INTRODUCTIONccorotriritierererineeeenresieeesssessessessesssessassessasssssssssssessessessesssessanes 5
LT Project ODJECHIVE.uvuiemirierieireniriete ettt ettt et st ns 5

2 SEMANTIC WEB CONCEPTScoctrtretetririnientnieesensenissessesessossesssssssessenssnens 6
2.1 OVEIVIBW ..c.viiiiriieenieeteetentestesrsesresstessessesanessnesesssesssesssesssesssesesnsessesssensseenne 6
2.2 ATCHILECIUTE. ... cueererirreeerieeetesteee st et e aessee e st e st e eestnsaeese e sesaensasesensensassonne 6
2.3 APDLCALION ATEESeeeverrierereieririenieesisrestesreeserssessestessssssssessessessessassasssessassessanss 7

3 BLACKBOOK.....cootiierrtrietreterentseetestesesrestestessessesessssensessasasssessassessassasssossessanes 8
3.1 OVEIVIEW ..cvereireieeneeienrertre st e stse e s e st st e tesseesesseestesesansestesseraassesassnsensensenne 8
3.2 ODJECLIVES .everreueererierieiinreeenieeestessessesissstessassessesseessessessassesseessensansensassasssensanse 8
3.3 BusSiness FUNCHONS........cerviruirieeririenireneectenierieseeteeestesae st esesneseesssesesaessenns 8
3.3.1 TEXE SEAICH ...ttt e 8
3.3.2 DD, ettt ettt s st s e st ee s e et e sa e beeas 9
333 MaLEIIALIZEeeoeeveereenieretenee ettt e sete s e steesesasaesenesesaneanes 9

3.4 INEETTACES ...cceereetrieerertrere sttt sttt sae s st st s et bt e sne e st e s ee 9
34.1 IMPOTE PIOCESS .ccouviirirerrerieirniienieiintessrtesseesinesssseesseeesssesssnesssesssesssseessssenss 9
342 MIME type of RDE/XML........ccoceerieerirnieneeererenrenreseeesesstsessneseessessessnennes 9
343 Business Process Execution Languagecccooeevvevveverienneeneinnneeneneeneenees 9

3.5 WED SEIVICES ..ooveverereiiriiriiriesteessesteetesseesesssessssnesessessessssassessessasssssssassensessasans 10

4 RESTFUL INTERFACE - DESIGNccccvietirtninrrrirenieneneeesnssesessessessesesssseres 12
4.1 OVEIVIEW ...iitiriiiininieteteer sttt ste e sesbesee e saesbete s enesssssesseanoseseensensesereas 12
4.2 REST VS. SOAP. ... eteteerieintetststeestssessetsieseessesaesessassasaessssnssessesessessons 14

5 RESTFUL INTERFACE — IMPLEMENTATIONccecceeuvinureerenrennens e 16
5.1 RESTEASY ...ocericrreerieerietrieesteesrestessestesesessessessessesessessssnesessessessesssesessssassnns 16
5.2 WOIKSPace-blackDOOK........ccceurreeruererreenirieriereneressesteesteressesessesessosesessesesssseseons 17
5.3 Workspace-WOrkflOW.......ccceceviiieiiiiniieiineeenieiiesientes s cee s e see e ssee s eseena s 20
5.4 WOIKSPACE-WOTKSPACEcueuveuereuruirrenteuetreesentesetssetesestesesesenessesessesesessesesesenss 23

6 DIRECTIONS......ooiteeteeertetrerttsteestetseessssesessssssasssessssesssssssesassesessssesansssensasens 26
7 REFERENCES ...ttt estee s st et e steseesssess st e s sssessasanssessasassssassens 27

1 INTRODUCTION
1.1 Project Objective

The main objective of the project was to integrate RESTful Web services in
BLACKBOOK. Previously, BLACKBOOK supported only the SOAP web services.
BLACKBOOK is a semantic web based infrastructure and since, semantic data is
a collection of different vocabularies, REST allows visualizers to show semantic
data in an easy manner as compared to SOAP. Hence, a pressing need was felt
to incorporate the RESTful Web services in BLACKBOOK.

The organization of this report is as follows: In section 2 we discuss briefly the
semantic web concepts. In section 3 we provide an overview of Blackbook. The
design of our system is discussed in section 4. Implementation details are
given in section 5. We discuss directions in section 6. References are given in
section 7.

2 SEMANTIC WEB CONCEPTS

2.1 Overview

Semantic Web provides a common framework that allows data to be shared
and reused across applications, enterprise, and community boundaries. It is a
collaborative effort led by W3C with participation from a large number of
researchers and industrial partners.

The current web represents the information using natural languages, graphics
and multimedia objects which can be easily understood and processed by an
average user. Some tasks on the web require combining data on the web from
different sources e.g hotel and travel information may come from different sites
when booking for a trip. Humans can combine this information and process
them quite easily. However, machines can’t combine such information and
process it.

So we need to have the data that should be available for machines for further
processing. Data should be possibly combined and merged on a Web scale.
Data may describe other data and machines may also need to reason about
that data. So we need a Web of data. ‘

The vision of semantic web is to extend the principles of the Web from
documents to data. Data should be accessed using the general Web
architecture using e.g URI's. Data should be related to one another like
documents are. This also means creation of a common framework that allows
data to be shared and reused across applications, enterprise and community
boundaries, to be processed automatically by tools as well as manually,
including revealing possible new relationships among pieces of data.

2.2 Architecture

The Semantic Web principles are implemented in the layers of Web technologies and
standards. The Unicode and URI layers ensure that we use international character
sets and provide means for identifying objects in Semantic Web. With the XML layer
with namespace and schema definitions, we can integrate the semantic web
definitions with the other XML based standards. With RDF and RDFSchema, it is
possible to make statements about objects with URI's and define vocabularies that
can be referred to by URI's. This is the layer where we can give types to resources
and links. The Ontology layer supports the evolution of vocabularies as it can define
relations between the different concepts. The Logic layer enables the writing of rules
while the Proof layer executes the rules and evaluates together with the Trust layer
mechanism for applications whether to trust the given proof or not.

Semantic:Web Layes

2.3 Application Areas

Semantic Web can be used in a variety of application areas:

Data Integration - whereby data in various locations and
various formats can be integrated in one seamless application

Resource Discovery and Classification - to provide better,
domain specific search engine capabilities

Cataloging - For describing the content and content
relationships available at a particular web site, page or digital
library

By Intelligent Software Agents - to facilitate knowledge sharing
and exchange

Content Rating

In describing collections of pages that represent a single
“logical” document

For describing intellectual property rights of Web pages
and many others.

3 BLACKBOOK

3.1 Overview

The main objective of the Blackbook project is to improve intelligence analysis
by coordinated exposition of multiple data sources across intelligence community
agencies.

The Blackbook system is a JEE server-based RDF processor that provides an
asynchronous interface to back-end datasources.It's an integration framework based
on semantic web technologies like RDF, RDF Schema, OWL and SPARQL.

It relies on open standards like Jena, Jung, Lucene, JAAS, D2RQ etc to
promote robustness and interoperability. Blackbook provides a default web
application interface, SOAP interface and RESTful interface.

Blackbook connects several datasources

911 Report (Unstructured transform via NetOWL -> RDF)
Monterey - Terrorist incidents (RDBMS -> RDF transform)
Medline - Bio-data (XML -> RDF)

Sandia - Terrorist profiles (RDBMS -> RDF transform)
Anubis - Bio-equipment and bio-scientists (RDBMS -> RDF
transform)

Artemis - Bio-weapons proliferation (RDBMS via D2RQ)
BACWORTH - DIA (web-services)

Google-Maps - NGA (via Google-map API)

CBRN Proliferation Hotlist - CIA (RDBMS -> RDF transform)
Global Name Recognition service and 3 DBs - JIEDDO
ICRaD Mediawiki w/ Semantic extension — CIA (dbPedia-like
adapter)

e CPD Hercules - CIA (RDBMS via D2RQ)

3.2 Objectives

The purpose of BLACKBOOK is to provide analysts with an easy-to-use tool to access
valuable data. The tool federates queries across datasources. These datasources are
databases or applications located either locally or remotely on the network.
BLACKBOOK allows analysts to make logical inferences across the datasources, add
their own knowledge and share that knowledge with other analysts using the system.

3.3 Business Functions

3.3.1 Text Search

A user performs a text search against all available datasources. These datasources
include those available through Web Services. Text searches search for matching
values in the database. For example, if a text search is for "Smith,” the results may
be for a person with the same surname or a street named “Smith Street”.

The results from a text search bring back the URI of the RDF document.

332 Dip

Dips perform searches on user-specified datasources. These searches look for name-
value pairs, so that a Dip for a person named “Smith” will not return a street named
“Smith Street”.

The Dip analogy is to take a value from a text search and “dip” that value into other
datasources to see what will stick.

3.3.3 Materialize

Text searches also return the Uniform Resource Identifier (URI). These URIs return
the source of the RDF document. The source may be a RDF or non-RDF document
stored locally or in a remote location.

For example, a URI may point to a MS Word Document (.doc) stored in a database
located across the network. The URI goes across the network as an HTTPS link. This
allows an encrypted data exchange via SSL. The user’s web browser knows how to
visualize the document returned based on its MIME type. In this case, the web
browser will visualize the .doc file with MS Word.

3.4 Interfaces
34.1 Import Process

The import process allows an analyst to manipulate the OWL representation of an
RDF document. Analysts build their own logical inferences through a user interface.

This interface also includes importing algorithms developed by researchers. These
algorithms perform social network analysis. The algorithms run against the
datasources as a batch process, without any analyst input. Text Search, Dip,
Materialize the Text Search, Dip and Materialize interfaces are the Business functions
of BLACKBOOK. The description of these functions is in the previous topic.

3.4.2 MIME type of RDF/XML

The purpose of this interface is to plug-and-play open source visualizers. The system
sends a RDF/XML document, with a MIME type of “"RDF/XML,” back to the user’s web
browser. The web browser will then know to visualize the RDF/XML document. If the
web browser does not know what to do with the RDF/XML document, it asks the user
to download it as a file.

3.4.3 Business Process Execution Language

BPEL lets the user build a sophisticated query for the workflow of the Text Search
and Dips. Using BPEL the user may specify the search order of datasources.

3.5 Web Services

BLACKBOOK is using Web Services to automate the data exchange mechanism with
any capable enterprise application belonging to organizational partners. Other
technologies, such as RMI or JMS, are capable in building the data exchange
mechanism. However, Web Services gives three features other technologies do not
provide:

1. Two-way SSL

2. Use of the Web protocol
3. No dependency on JEE server implementation

10

Server

Searializable

HTTP

H]
JASCI

[ASCH]

The Client / Bereer could communicate without Web Bervices
using the Ssnglized Enterprise Jave Beans [EJB) but this
would foros an entical implementation for sending snd
receiving on all systems 1o be able o undersiand the seralized
message. Web Services provides an implemeniation
independent fomm of communication allowing systems to wn on
other servers, bul since # is bagically serializing the data a
second time {nto HTTP [ASCH]H adds 8 considerable

YIS .

11

4 RESTFUL INTERFACE - DESIGN

4.1 Overview

REST is a term coined by Roy Fielding in his Ph.D. dissertation to describe an
architectural style of network systems. REST is an acronym for
Representational State Transfer.

REST is not a standard but an approach to developing and providing services
on the Internet and is thus also considered an architectural style for large-scale
software design.

Roy Fielding's explanation of the meaning of Representational State Transfer is:

"Representational State Transfer is intended to evoke an image of how a well-
designed Web application behaves: a network of web pages (a virtual state-
machine), where the user progresses through an application by selecting links
(state transitions), resulting in the next page (representing the next state of
the application) being transferred to the user and rendered for their use."

REST emphasizes

The scalability of component interactions

The generality of interfaces

The independent deployment of components

The existence of intermediary components, reducing
interaction latency, reinforcing security and encapsulating
legacy systems

The present day Web has certainly achieved most of the above mentioned
goals. The fundamental way how REST achieved these goals is by imposing
several constraints:

o Identification of resources with Uniform Resource Identifier
(URI) means that the resources that are identified by these
URI’s are the logical objects that messages are sent to.

¢ Manipulation of resources through representations means
that resources are not directly accessed or manipulated, but
instead their representations are used.

¢ Self-descriptive messages refer to the fact that the HTTP
messages should be as self-descriptive as possible in order to
enable intermediaries to interpret messages and perform
services on behalf of the user. This in turn is achieved by
standardizing several HTTP methods (e.g GET, POST etc), many
headers and the addressing mechanism. Also, HTTP being a

12

stateless protocol allows the interpretation of each message
without any knowledge of the preceding messages.

+ Hypermedia as the engine of application state, enabling
the current state of a particular Web application to be kept in
one or more hypertext documents, residing either on the client
or the server. This enables a server to know about the state of
its resources, without having to keep track of the states of the
individual clients.

REST uses standards such as

HTTP, the Hypertext Transfer Protocol
URL, as the resource identification mechanism
XML / HTML / PNG etc as different resource representation
formats
¢ MIME types such as text/xml, text/html, image/png etc

The use of these standards is based on the fundamental characteristics of
REST:

e Client-server: a pull-based interaction style: consuming
components pull representations.

+ Stateless: each request from client to server must contain all
the information necessary to understand the request, and
cannot take advantage of any stored context on the server.

¢ Cache: to improve network efficiency responses must be
capable of being labeled as cacheable or nhon-cacheable.

» Uniform interface: all resources are accessed with a generic
interface (e.g HTTP GET, PUT, POST, DELETE).

« Named resource: the system is comprised of resources which
are named using a URL

+ Interconnected resource representations: the
representations of the resources are interconnected using URL,
thereby enabling a client to progress from one state to another.

o Layered components: intermediaries, such as proxy servers,
cache servers, gateways etc can be inserted between clients
and resources to support performance, security etc.

The RESTful systems follow the principles of REST, which evolve around resources,
their addressing and the manipulation of their representation. It is still argued
whether the distinction between resources and their representations is too
impractical for the normal use on the web, even though it is popular in the RDF
community.

13

These applications require the identifier of the resource and the action it wishes to
invoke. There is no need to know whether there are any intermediaries, such as
caching mechanisms, proxies, gateways, firewalls, tunnels etc between it and the
server actually holding the information. Applications still have to be able to
understand the format of the information (representation) returned, which is
typically an HTML or XML document, depending on the further use. Currently, most
resources are intended for consumption by humans and hence are represented by
HTML. But in areas like semantic web, where machine-to-machine communication
becomes more important, the representation of the resources can be done in
different formats such as RDF.

Adherence to REST will enable the reference of resources available on other
machines, using resource identification mechanisms, such as URL. While a URL
represents the noun, the operations such as GET, POST etc represent the verbs that
can be applied to them. These basic functionalities are provided by the HTTP protocol
and form the basis of the web and its functioning.

4.2 REST vs. SOAP

Both SOAP and REST are the ways to implement web services.
SOAP applies the Remote Procedure Call (RPC) approach. In RPC, the emphasis is on
the diversity of protocol operations or verbs. For example, an RPC application might
define operations such as the following;

getUser()

addUser()

removeUser()

updateUser()

REST emphasizes the diversity of resources or nouns. So a REST application might
define the following two resource types:

user()
location()

In REST each resource has its own location, identified by its URL. Clients can retrieve
representation of these resources through the standard HTTP operations, such as
GET, manipulate it and upload a changed copy, using the PUT command, or use the
DELETE command to remove all representations of that resource. Each object has its
own URL and can be easily cached, copied and bookmarked. Other operations, such
as POST can be used for actions with side-effects, such as placing an order, or adding
some data to the collection.

To update for instance a user’s address, a REST client would first download the XML

record using HTTP GET, modify the file to change the address and upload it using
HTTP PUT. ~

14

" The “generality of interfaces” in REST makes it a better basis for a web services
framework than the SOAP-based technologies. In contrast to SOAP, where all the
method names, addressing model and procedural conventions of a particular service
must be known, HTTP clients can communicate with any HTTP server, without
knowing any configuration because HTTP is an application protocol whereas SOAP is
a protocol framework.

It is noteworthy that the HTTP operations do not provide any standard method for
resource discovery. Instead, REST data applications work around the problem by
treating a collection or set of search results as another type of resource, requiring
application designers to know additional URL's or URL patterns for listing or searching
each type of resource.

As per Berner-Lee’s point of view, the first goal of web is to establish a shared
information space. Legacy systems can participate by publishing objects and services
into this space. The core of the web’s shared information is the URI. The SOAP-based
web services specifications have not adopted the notion of web as a shared
information space and thus have not fully adopted the web’s model of URI usage.
They have always rather presumed that every application would set up its own
unique namespace from scratch, instead of using URI's as an addressing mechanism.
Each WSDL describes one and only one web resource and provides no way to
describe links to other resources. SOAP and WSDL use URI's only to address
endpoints, which in turn manage all of the objects within them. Technologies like
semantic web can only work with web services that identify resources with URI’s and
hence REST is an ideal platform for implementing web services for semantic-web
based systems.

The requested content is rendered as a web feed for the user. A web feed or news
feed is a data format used for providing users with frequently updated content.
Content distributors syndicate a web feed, allowing users to subscribe it, hence web
feed is also known as syndicate feed. Making a collection of web feeds accessible in
one spot is known as aggregation, which is performed by an Internet aggregator.

A content provider publishes a feed link on their site which end users can register
with an aggregator program(also called a 'feed reader' or 'newsreader') running on
their own machines. When instructed, the aggregator asks all the servers in its feed
list if they have new content; if so, the aggregator makes note of the new content or
downloads it. Aggregators can be scheduled to check for new content periodically.

15

S5 RESTFUL INTERFACE - IMPLEMENTATION

The RESTful interface has been implemented for the following modules in the
Blackbook project:

s Workspace-Blackbook

s Workspace-Workflow

o Workspace-Workspace

5.1 RESTEasy

BLACKBOOK uses Resteasy API for implementing RESTful Web Services.

Resteasy is a portable implementation of JAX-RS, JSR-311 specification that provides
a Java API for Restful Web services over the HTTP protocol. RESTEasy is a JBoss
project that provides various frameworks to help you build RESTful Web Services and
RESTful Java applications. It is a fully certified and portable implementation of the
JAX-RS specification. JAX-RS is a new JCP specification that provides a Java API for
RESTful Web Services over the HTTP protocol.

RESTEasy can run in any Servlet container running JDK 5 or higher, but tighter
integration with the JBoss Application Server is also available to make the user
experience nicer in that environment. While JAX-RS is only a server-side
specification, RESTEasy has innovated to bring JAX-RS to the client through the
RESTEasy JAX-RS Client Framework. This client-side framework allows you to map
outgoing HTTP requests to remote servers using JAX-RS annotations and interface
proxies.

Features:

Fully certified JAX-RS implementation

Portable to any app-server/Tomcat that runs on JDK 5 or higher
Embeddable server implementation for junit testing

Rich set of providers for: XML, JSON, YAML, Fastinfoset, Atom, etc.
JAXB marshalling into XML, JSON, Fastinfoset, and Atom as well as
wrappers for arrays, lists, and sets of JAXB Objects.

¢ Asynchronous HTTP (Comet) abstractions for JBoss Web, Tomcat 6,
and Servlet 3.0

EJB, Spring, and Spring MVC integration

Client framework that leverages JAX-RS annotations so that you
can write HTTP clients easily (JAX-RS only defines server bindings)

16

5.2 Workspace-blackbook

1) Dependencies
Add the following dependencies in blackbook-war/pom.xmi

<dependency>
<groupldresteasy</groupli>
<antifactid>jaxrs<fartifactid>
«<version>1.0.1.GA</version>
<fdependency>

<dependency>
<grogpldsresteasy</groupki>
<artifactid>scannotation</artifactid>
«<vyersion>1.0.2</version>
<fdependency>

<dependency>
<grouplid>resteasy</grouphi>
<griifactid>jaxrs-api</artifaciid>
=version>1.0.1.GA</version>
<fdependency>

<dependency>
<groupldrresteasy</groupld>
<artifactideslfdj-api-<dartfactid>
<version>1.5.2</versions
</dependency>

<dependency>
<groupld>resteasy</grouplds
<artifactid>slfdj-simple</artifactid>
<version>1.5.2</version>

<fdependency>

<dependency>
<groupld>georss</groupid>
<artifactid>georss</artifactid>
<version>0.9.8</version>

<dependency

<dependency>
<groupld>rome«</groupld>
<artifactidsrome</artifactid>
<version>0.9</version>
<fdependency>

17

2) Jar files

The following jar files are required under the .m2/repository/resteasy
directory:

jaxrs/1.08beta/jaxrs-1.0.1.GA.jar

jaxrs-api/1.08beta/jaxrs-api-1.0.1.GA.jar
scannotation/1.0.2/scannotation-1.0.2.jar

slf4j-api/1.5.2/slf4j-api-1.5.2.jar

_slf4j-simple/1.5.2/slf4j-simple-1.5.2.jar

3) Add the following in web.xml

RESTEasy is deployed as a WAR archive and thus depends on a servlet
container. It is implemented as a ServletContextListener and a Servlet and
deployed within a WAR file.

<COtexi-parars
<PAEI-NAINESTeSteasy. SCan</ param-name>
<param-valuestrue</param-valoe>
<feontext-param
<Hsteners
<hstener-class>
org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
</listener-class>
</listener>
<servien>
<servigt-name>Blackbook</serviet-namen
<serviet-class>
org.jboss.resteasy.plugins.server.servlet. HttpServletDispatcher
</serviet-class>
<fserviet>
<serviet-mapping>
<serviet-name>Blackbook</serviet-name>
<url-pattern/rest/*<furl-patieme
<fserviet-mapping>

The ResteasyBootstrapListener initializes some basic components of RESTEasy
as well as scannotation classes in the WAR file.

4) RESTFUL Serviet

The Restful Servlet “Blackbook.java” is placed in the blackbook-war directory
under the package blackbook.web.restful.

The @javax.ws.rs.Path annotation must exist on either the class and/or
resource method. If it exists on both the class and method, the relative path
to the resource method is a concatenation of the class and method.

The serviet class is annotated with the following annotation: @Path ("/rest”)
This maps to the url-pattern we defined in web.xml (*/rest/*").

18

The setup() method gets a reference to the remote EIB

The getAllAlgorithmClasses() method is annotated with
AGET
fPath (Malgorithms/ {feedtype}")

This means that the URL
https://localhost:8443/blackbook/rest/aigorithms/{feedType} via HTTP GET
method invokes the method getAllAlgorithmClasses(). The value of feedType
can be atom_1.0 or rss_0.93.

We get the list of all the algorithm classes by invoking the DataManager
bean's getAllAlgorithmClasses(). We use the Java Syndication utilities for the
generating the ROME feed for the output. We use the ROME feed for the
output because any application can consume the output and utilize the resuit
in its own way.

@PathParam is a parameter annotation which allows mapping variable URI
path fragments into the method call.

public String getAllAlgorithmClasses(@Pathiaram("feedtype") String
feedType)

This allows embedding variable identification within the URI of the resources.
The “feedtype” parameter is used to pass the feed type the user wants the
output.

Here is the list of all the methods and its corresponding URL's with the
arguments.

Sr. URL Method Name HTTP
No Method
1 https://localhost:8443/blackbook/rest/algorithms |getAllAlgorithmClasses() GET
/{feedType} '
2 https://localhost:8443/blackbook/rest/getFieldNa |getAllDataSources() GET
mes/datasources/{feedType}
3 https://localhost:8443/blackbook/rest/localdataso | GetLocalDataSources() GET
urces/{feedType}
4 https://localhost:8443/blackbook/rest/fieldnames |getFieldNames() GET
/{datasources}/{feedType}
5 https://localhost:8443/blackbook/rest/keyword/{ getKeyword() GET
datasource}/{search}/{feedType}
6 https://localhost:8443/blackbook/rest/lucenekey |luceneKeyword() GET
word/{datasource}/{keyword}/{feedType} :
7 https://localhost:8443/blackbook/rest/keyword/{ |postKeyWord() POST
datasource}/{feedType}
8 https://localhost:8443/blackbook/rest/lucenekey |postLuceneKeyword() POST

word/{datasource}/{feedType}

19

5.3 Workspace-workflow

1) Dependencies

Add the following dependencies in workflow-war/pom.xmi

<dependency>
<grouplisresteasy</grouphds>
<artifactidejaxrs</artifactid>
<version>1.0.1.GA</version>

dependency>

<gopendency»
<groupli>resteasy</groupid>
<artifactidscannotation«</artifactid>
<version>1.0.2<fvergion>

<fdependency>

<dependency>
<groupkdsresteasy</groupid>

<artifactid>jaxrs-api</artifactid>
<version>1.0.1.GA</version>
</dependency>

<dependency>
«<groupld>resteasy</groupid>
<artifactidyslfdj-api</artifactid>
<version>1.5 2</version>
<fdependency>

<dependency>
<groupld>resteasy</groupld>
<artifactid>slf4j-simple</artifactld>
<version>1.5.2</versions
<fdependency>

<dependency>
<groupld>georss</groupid>
<antifactid>georss</artifactid>
<version>0.9.8</version>
</dependency>

<dependency>
<groplderome</gronpld>
<artifactid>rome</artifactids>
<version>0.9</ versions
<fdependency>

20

2) Jar files

The following jar files are required under the .m2/repository/resteasy
directory: :

jaxrs/1.08beta/jaxrs-1.0.1.GA.jar
jaxrs-api/1.08beta/jaxrs-api-1.0.1.GA.jar
scannotation/1.0.2/scannotation-1.0.2.jar
slf4j-api/1.5.2/slf4j-api-1.5.2.jar
slf4j-simple/1.5.2/slif4j-simple-1.5.2.jar

3) Add the following in web.xml

RESTEasy is deployed as a WAR archive and thus depends on a serviet
container. It is implemented as a ServletContextListener and a Servilet and
deployed within a WAR file.

<CORICK-DArgns
<paran-pamerresteasy.scan<’/param-name>
<pararrevaluestrue</param-value>
<fcontexi-param>

<listeners
<listener-clags>
org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
<flistener-class>
</Hsteners

<servie
wserviet-names>Workflow</servist-name
<serviet-class>
org.jboss.resteasy.plugins.server.serviet. HttpServletDispatcher
<fserviet-class>
<fserviet>
<servict-mapping>
<servist-name>Workflow=/serviet-name>
<url-pattenrest/*</url-pattern>
</serviet-mapping>

The ResteasyBootstrapListener initializes some basic components of RESTEasy
as well as scannotation classes in the WAR file.

21

4) RESTFUL Serviet

The Restful Serviet “Workflow.java” is placed in the workflow-war directory
under the package “restful”.

The @javax.ws.rs.Path annotation must exist on either the class and/or
resource method. If it exists on both the class and method, the relative path
to the resource method is a concatenation of the class and method.

The servlet class is annotated with the following annotation: @Path("/rest")
This maps to the url-pattern we defined in web.xml (*/rest/*").

The setup() method gets a reference to the remote EJB.

Here is the list of all the methods and its corresponding URL's with the

arguments.
Sr. No URL Method Name HTTP
Method
1 https://localhost:8443/workflow/rest/processdef | CreateProcessDefinition() PUT
inition/
2 https://localhost:8443/workflow/rest/processdef | readProcessDefinition() GET
inition/{feedtype}/{processdefinitionid}
3 https://localhost:8443/workflow/rest/processdef | DeleteProcessDefinition() DELETE
inition/{processdefinitionid}
4 https://localhost:8443/workflow/rest/processins |StartProcessDefinition() PUT
tance/{processdefinitionid} :
5 https://localhost:8443/workflow/rest/processdef |updateProcessDefinition() POST
inition
6 https://localhost:8443/workfl6w/rest/processins getProcesslnstance() GET

tance/atom_1.0/{processInstanceld}

22

5.4 Workspace-workspace

1) Dependencies

Add the following dependencies in workspace-war/pom.xml.

<dependency>
<groupld>resteasy<fzroupld>
<ariffactidjaxrs<fartifactids>
<version>1.0.1.GA</version>

<fdependency>

<dependencys>
<groupld>resteasy</groupld>
<ariifactid>scannotation</artifactld:»
<version>1.0.2</ version>

<fdependency>

<dependency>
<groupldsresteasy</grouplds
<artifactid>jaxrs-api</artifaciid>
<version>1.0.1.GA </versionz

<fdependency>

<dependency>
<groupld>resteasy</gronspli>
<artifactid>slfdj-api</artifactid>
<version>1.5. 2« versions
<fdependency>

<dependency>
<grouplderesteasy</groupld>
<astifactid>slfdj-simple</artifactld>
<version>1.5.2</versioa>
<fependency>

<dependency>
<groupld>georss</groupkis
<griifactid>georss</uriifactid>
<version»0.9.8</version>
<fdependency>

<dependency>
<groupld>rome<grovpld>
<artifactid>rome</artitactid>
<versions>0.9< version>
<fdependency>

23

2) Jar files

The following jar files are required under the .m2/repository/resteasy
directory:

jaxrs/1.08beta/jaxrs-1.0.1.GA.jar
jaxrs-api/1.08beta/jaxrs-api-1.0.1.GA.jar
scannotation/1.0.2/scannotation-1.0.2.jar
slf4j-api/1.5.2/slf4j-api-1.5.2.jar
slf4j-simple/1.5.2/slf4j-simple-1.5.2.jar

3) Add the following in web.xml

RESTEasy is deployed as a WAR archive and thus depends on a servlet
container. It is implemented as a ServletContextlistener and a Servlet and
deployed within a WAR file.

CCORERE-DRTANLT
<param-namesresteasy.scan<’/pararo-names
<parar-valuestroe<param-value>

<foontexi-parany>

<lisioners>
<listener-classs
org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
<flistener-class>
<flistener>

<servigt>
<serviet-name>Workspace</serviet-name>
<ssrviet-classs
org.jboss.resteasy.plugins.server.servlet. HttpServletDispatcher
</rerviet-clases
<fservicis
<serviet-mapping>
<serviet-name>Workspace</serviet-names
<uel-patterfrest/*</url-patten
<fserviet-mapping>

The ResteasyBootstrapListener initializes some basic components of RESTEasy
as well as scannotation classes in the WAR file.

4) RESTFUL Serviet

The Restful Servlet “*Workspace.java” is placed in the workspace-war directory
under the package “restful”.

The @javax.ws.rs.Path annotation must exist on either the class and/or

resource method. If it exists on both the class and method, the relative path
to the resource method is a concatenation of the class and method.

24

The servlet class is annotated with the following annotation: @Path("/rest™)
This maps to the url-pattern we defined in web.xml (*/rest/*").

The setup() method gets a reference to the remote EIB.

Here is the list of all the methods and its corresponding URL's with the

arguments,
Sr. URL Method Name HTTP
No Method
1 https://localhost:8443/workspace/rest/rootfolder/ getRootFolder() GET
2 https://localhost:8443/workspace/rest/subfolder/{subf |CreateSubFolder() PUT
oldername}
3 https://localhost:8443/workspace/rest/subfolder/{pare |CreateSubFolder() PUT
ntfolderid}/{subfoldername} '
4 https://localhost:8443/workspace/rest/item/{feedType |getChilditems() GET
}/{itemid} .
5 https://localhost:8443/workspace/rest/processdefinitio |CreateProcessDefinition() |PUT
n/{parentFolderld}/{ProcessDefinitionName}
6 https://localhost:8443/workspace/rest/processdefinitio |GetProcessDefinitionID() GET
n/{username}
7 https://localhost:8443/workspace/rest/item/{itemId} |Removeltem() DELETE

25

SUMMARY AND DIRECTIONS

In this report we have described the design and implementation of RESTful web
services into Blackbook. As we have stated earlier, we are making several
enhancements to Blackbook and these enhancements will be reported in future
reports.

REST is widely used to implement web services in the industry recently. For
example, Amazon.com relies heavily on REST for its cloud computing services
like Amazon S3. There are certain security issues like access control techniques
that need to be designed and implemented for such services. Our current
research is focusing on designing and developing access control for cloud
computing services. We will also integrate the security technology we develop
into Blackbook.

26

7 REFERENCES

http://rabasrv.jhuapl. edu/karma/

OWL: Representing information using the Web Ontology Language - By Lacy Lee

http://www.ics.uci.edu/~fielding/pubs/dissertation/

http://www.w3c.org

27

