
Sleep Spindle Detection by Using Merge Neural Gas
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Abstract— In this paper the Merge Neural Gas
(MNG) model is applied to detect sleep spindles in EEG.
Features are extracted from windows of the EEG by using
short time Fourier transform. The total power spectrum is
computed in five frequency bands and used as input to the
MNG network. The results show that MNG outperforms
simple neural gas in correctly detecting sleep spindles. In
addition the temporal quantization results as well as sleep
trajectories are visualized on two-dimensional maps by us-
ing the OVING projection method.

1 Introduction
Self-organizing neural networks [10] have been recently
extended for processing sequential and tree-structured data
[2][8][15][17]. Hammer et al. [7] presented a general
framework of recurrent self-organizing network models,
based on the context definition, i.e. the way how sequences
are internally represented.

In the Merge SOM (MSOM) [15] approach, the current
input is considered along with the context of the previous
time step. The context is compactly described by a linear
combination (merge) of the weight and the context of the
last winner neuron. It has been proved that MSOM con-
text leads to an efficient fractal encoding as the fixed point
of the training dynamic. MSOM can simulate finite au-
tomata thanks to its explicit representation of the context
as an independent part of the neurons. Since MSOM con-
text does not depend on the lattice architecture, it can be
combined with other self-organizing neural networks such
as Neural Gas (NG) [12]. The resulting model is called
Merge Neural Gas (MNG) [16]. The SOM vector quanti-
zation is constrained by a predefined lattice or output grid.
The NG algorithm overcomes this constraint by not defin-
ing an output space. As a consequence, the neural gas is in
general a better quantizer than SOM, outperforming the lat-
ter when quantizing topologically arbitrary structured man-
ifolds [12]. However, the lack of an output space has re-
stricted the applications of neural gas to visualization. Re-
cently, in [3] an output space was defined for the neural gas
network for visualization purposes. This allows projecting
the neural gas quantization results (codebook vectors) from
multidimensional spaces onto two-dimensional maps.

Human sleep is usually divided in five stages, one stage
called rapid eye movement (REM) sleep, and four stages

of non-REM sleep [9]. Encephalographic (EEG) signals
are analyzed to establish the presence or absence of sleep
spindles (SSs), which are sequences (trains) of fast (sigma)
EEG waves, lasting more than 0.5 s and with a magnitude
above 10 µV [4]. The frequency of sleep spindles ranges
between 10 and 15 Hz. SSs are normally detected in the an-
terior EEG derivations (FP-C channels) during non-REM
sleep stage II. Fig. 1 shows an example of SS activity in
EEG. Usually over one thousand SS events occur during
one night recording, so an automatic recognition procedure
is highly desirable. Many methods for SS detection have
been proposed in the literature. In [1] a two stage classifi-
cation procedure is proposed. Features are extracted from
windows of the EEG by using an autoregressive model.
The first stage eliminates definite non-SS patterns by us-
ing a discrete perceptron. In the second stage a support
vector machine (SVM) classifier is used. The results re-
ported are an average sensitivity of 94.6% and an average
false detection rate of 4.0% on six recordings for testing. In
[6] the short time Fourier transform is used for feature ex-
traction. The EEG signal is first multiplied by a Hamming
window and then the Fourier transform of the windowed
signal is taken. The feature vector contained 32 coefficients
between 2 and 64 Hz. This feature vector was used as input
to an MLP classifier (88.7% accuracy) and an SVM classi-
fier (95.4% accuracy). Another approach is to use wavelet
transform [14].

In this paper an application of the MNG model to sleep
spindle detection in EEG is presented. We focus here on

Figure 1: Example of SS activity in five EEG channels.



the neural gas model since it is a better quantizer than SOM
and its results can be projected onto a two-dimensional map
using an adaptation of the OVING projection method [3].
The MNG model is compared with NG on the task of sleep
spindle detection in real EEG recordings.

2 Merge Neural Gas
In this section a brief overview of MNG is given. Neurons
are a vector tuple

(
wi, ci

)
∈ <d×<d, where d correspond

to the dimensionality of the input signals.
Given the current entry x(n) of a sequence, the best

matching neuron In is the closest neuron according to the
following recursive distance criterion:

di(n) = (1− α) · ||x(n)− wi||2 + α · ||c(n)− ci||2 (1)

where the current context, c(n), corresponds to a linear
combination of the weight and context of the previous win-
ner, In−1, i.e. the best matching unit in the last time step.
The current context is defined as:

c(n) = (1− β) · wIn−1 + β · cIn−1 . (2)

Training takes place by adapting both weight and context
towards the current input and its context representation,
respectively. Adaptation is made by Hebbian learning as
shown in the following equation:

4wi = εw(k) · hλ(k) (r(di,d)) ·
(
x(n)− wi

)
(3)

4ci = εc(k) · hλ(k) (r(di,d)) ·
(
c(n)− ci

)
where k is the current training epoch, d is a vector
whose components are all the neuron distances at time n,
and r(di, d) denotes the rank of the ith neuron with re-
spect to the current input and its context representation.
hλ(k) (r(di, d)) represents the neighborhood ranking func-
tion which is defined as,

hλ(k) (r(di,d)) = exp

(
−r(di, d)

λ(k)

)
(4)

where λ(k) controls the width of the neighborhood func-
tion and is defined as follows,

λ(k) = λ0 ·
(

λf

λ0

) k
kmax

(5)

where kmax is the maximum number of epochs. The learn-
ing rates εw(k) and εc(k) are functions of the same type as
(5). The current context c(n) is updated during training in
the way described by equation (2).

It has been proved that Hebbian learning converges to
the following optimal weight and context vectors at time n
(i.e., are stable fixed points):

wopt(n) = x(n) (6)

copt(n) =
n−1∑
j=1

(1− β) · βj−1 · x(n− j),

provided that there are enough neurons and neighborhood
cooperation is neglected, i.e. for late stages of learning [7].

3 OVING Projection Algorithm
In order to project multidimensional vectors onto two-
dimensional maps we adapted a projection method called
OVING [3], which provides an output representation to
Neural Gas. In the original formulation, the projection part
is done simultaneously with the vector quantization. Here
only the projection part of OVING is applied to the result of
the temporal vector quantization of MNG. The initial topol-
ogy of the network is a set of m neurons. Each neuron j has
associated a 2 · N -dimensional codebook vector, [wj |cj ]T

in input space and a two-dimensional codebook position in
output space, zj , for (j = 1, . . . ,m). The following global
cost function is minimized:

E =
1
2

N∑
j=1

∑
k 6=j

(Dj,k − dj,k)2F (sj,k) =
1
2

N∑
j=1

∑
k 6=j

Ej,k,

(7)
where

dj,k = (1− α) · ||wj − wk||+ α · ||cj − ck|| (8)

is the distance between the jth and kth codebook vectors
in input space, and

Dj,k = ||zj − zk|| (9)

is the distance between the jth and kth codebook positions
in output space. The function F is defined as

F (f) = e
−

(
f

σ(t)

)
(10)

where σ(t) is the width of the neighborhood that decreases
with the number of iterations as in eq. (5).

(1) Initialize the codebook positions zj randomly.
(2) Present a codebook vector [wj∗ , cj∗ ]T (j∗ =

1, . . . ,m).
(3) Generate the ranking in output space sj∗j =

s(z∗j (t), zj(t)) ∈ {0, 1, . . . ,m − 1} for each vector
position zj(t) with respect to the vector position z∗j (t),
corresponding to the projection of codebook vector
[wj∗ , cj∗ ]T .

(4) Update codebook positions:

zj(t + 1) = zj(t) + γ(t)F (sj,j∗)

× (Dj,j∗ − dj,j∗)
Dj,j∗

(zj∗(t)− zj(t)) (11)

where γ(t) is the learning rate, which decreases with
the number of iterations t, in the same form as eq. (5).

(5) If t < tmax go back to step 2.
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The OVING projection algorithm tends to preserve well
the local neighborhood [3]. In contrast Sammon’s mapping
[13] preserves globally the interpoint distances between the
input and output spaces. We present below projections us-
ing both methods and compare their performance using the
topology preservation measurement qm [11].

4 Methods
Two 18-channel polysomnographic recordings of differ-
ent healthy infants, sampled at 250 Hz were used. These
recordings include five EEG channels and other signals
such as EOG, EKG, muscle tone, limb movements, etc.
For each recording, a continuous sample of 45 minutes was
drawn from EEG channel 1 containing all non-REM sleep
stages. One recording was used for training and the an-
other for testing. The EEG signal was pre-processed with
a Hamming window of 128 samples (0.512 s). Then the
fast Fourier transform (FFT) was taken for the windowed
signal. A step size of 16 samples (0.064 seconds) between
windows was used, i.e. windows are overlapped. The FFT
is computed as

X[k] =
N−1∑
n=0

x(n)Wnk
N k = 0, 1, · · · , N − 1 (12)

where x[n] is the windowed EEG data, N is the number
of samples in a window, and WN = e−j 2π

N . The power
spectrum for each coefficient is computed as

P [k] =
X[k]×X[k]∗

N
(13)

where X[k]∗ is the complex conjugate of coefficient X[k].
The total power in the following five frequency bands was
computed: delta-theta [0.5,7] Hz, alfa [7,10] Hz, sigma
[10,15] Hz, beta [12,30] Hz and high-frequency band
[30,60] Hz. The total power for each band is computed
as follows:

Pband[a, b] =
k≤b∑
k≥a

P [k] (14)

where a is the lower frequency of the band, and b is the
higher frequency of the band. A human expert labeled each
window as containing sleep spindles or not. If only part
of the window contained SSs then a number in [0,1] was
assigned.

The simulation parameters of NG and MNG were set as
follows:
For all simulations, the parameters of the neighborhood
function λ(k) in (5) were set to initial value λ0 = m,
i.e. equal to the number of neurons, and final value
λf = 0.001. The number of training epochs was set to
kmax = 2000, but in MNG training we use kmax = 1000
for the first training phase and kmax = 1000 for the second
training phase (see [5]).

For NG the number of neurons was set to m = 300. The
initial and final learning rate were set to ε0 = 0.3 and
εf = 0.01 respectively.
For MNG first training phase, the number of neurons was
set to m = 30. The initial and final learning rate, for both
weight and context adaptations were set in the same way
as follows: εw0 = εc0 = 0.3 and εwf

= εcf
= 0.01. The

context and merging parameters were set as α = β = 0.0,
thus not taking into account the context influence.
For MNG second training phase, ten replicas were made
for every neuron trained during the first phase. It is as-
sumed that these neurons are well located, so the initial
neighborhood size is set to λ0 = 10, i.e. the number of
replicas of each neuron. The weight learning rate was set
to εw(k) = 0.01, and the context learning rate was set as
in the first training phase. The context influence was set
to α = 0.45. The parameter β was selected by making
simulations for each value in the interval [0.0, 0.9] with a
step of 0.1. The parameter β was chosen as the value that
minimized the global classification error in the training set.

To evaluate the quality of the clustering done by the algo-
rithms, a classification task was performed, although MNG
and NG use unsupervised training. The network’s neurons
were associated to a probability of belonging to each of the
two classes. A histogram of two bins was computed for
each neuron. The EEG signal was swept by shifting the
window, and the best matching unit was calculated step by
step. The histogram bin of the winner neuron correspond-
ing to the class of the current input was incremented by
one. Histograms were accumulated during the swept of the
signal. Each neuron was associated to the category having
maximum histogram bin value.

After labeling the neurons, the classification task is done
step by step. Each window is assigned to the category of
the best matching unit. This was done for both the train-
ing and the testing data sets. The network classification is
contrasted with the labels given by an expert.

5 Results

Table 1 shows the results obtained on the training set for
β = 0.4, value for which the minimum classification error
was obtained. The true positives (TPs) are defined as win-
dows containing SSs. False positives correspond to win-
dows that do not contain SSs but are labeled as containing
SSs by the model. The accuracy is the global classifica-
tion rate using two categories. Table 2 shows the results
obtained on the testing set for β = 0.4. It can be observed
that the MNG model obtained a higher true positive rate
than NG maintaining the false positive rate. It achieved a
higher global accuracy too, showing the influence of taking
into account the context. Tables 1 and 2 show the classifi-
cation results per window of fixed size. The real SS events
however have a variable duration between 0.5 s and 3 s.
Table 3 shows the classification results for SS events. An
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SS event is considered detected if it is detected partially or
completely. The results show that nearly 90% of the SS
events were correctly detected in the testing set. The expert
agreement indicates what percentage of the total number of
events detected by the MNG model was labeled as SS event
by the human expert. The results show that nearly 63% of
the events detected by the MNG model are real SS events.

Fig. 2 shows an example of true positive detection of
an SS event. Fig. 3 shows an example of false negative
detection of an SS event. It can be seen that both the left
and right borders of the SS event are not detected by the
MNG model. The MNG model shows some difficulty in
getting the precise location of the beginning and ending of
the SS events.

Fig. 4 shows the projection of the neurons obtained with
MNG onto a two-dimensional map by using OVING. Fig.
5 shows the projection of the same data by using Sammon’s
mapping. In both maps it can be observed a good separa-
tion of the SS and non-SS categories.

Table 1: SS classification results on the training set using
overlapped EEG windows

Training

Model TP[%] FP[%] Accuracy[%]

NG 70.1% 1.3% 92.5%

MNG 74.7% 1.5% 96.4%

Table 2: SS classification results on the testing set using
overlapped EEG windows

Testing

Model TP[%] FP[%] Accuracy[%]

NG 52.3% 0.7% 95.8%

MNG 61.5% 0.8% 96.3%

Table 3: Classification results of SS events on the training
and testing sets using the MNG model

Recording Detection rate [%] Expert agreement [%]

Training 96.6 71.8

Testing 89.7 62.9

Table 4: Topology preservation measurement for OVING
and Sammon mapping

Method NG MNG

OVING 0.458 0.341

Sammon 0.444 0.303

Figure 2: Example of SS true positive detection.

Figure 3: Example of false negative detection at the left
and right borders of the SS event.

Table 4 shows a comparison of both projections using the
topology preservation measurement qm, which measures
the quality of the local neighborhood preservation. The
results show that OVING obtained a higher qm than Sam-
mon’s mapping. Fig. 6 shows a trajectory of EEG windows
within the map that starts in the SS region and finishes in
the non-SS region.

non−SS
SS

Figure 4: Mapping of MNG neurons by using OVING.

non−SS
SS

Figure 5: Projection of MNG neurons using Sammon
mapping.
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non−SS
SS

Figure 6: Map showing the trajectory of part of the
EEG, starting from a SS region (.) and ending in a re-
gion on non-SS (o).

6 Conclusions
The MNG model has been applied to the real-world
problem of detecting sleep spindles in EEG signals. In
this task, the MNG model outperformed NG showing that
the context is useful for distinguishing between different
temporal sequences. Although MNG is an unsupervised
model, the detection rates obtained are surprisingly high.
These promising results should be confirmed by using a
larger database. As the results may depend on the quality
of the feature extraction, other techniques may be imple-
mented and compared to short-time Fourier transform.
The MNG model may be used as a pre-processor, in order
to indicate which parts of the EEG signals are worth to be
analyzed in more detail. The proposed OVING projection
method gives to merge neural gas an output representation,
which is very useful for visualization tasks.
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