Mathematical Symbol Table

Set Theory			
$\mathcal{A} \subset \mathcal{B}$	\mathcal{A} is a subset of \mathcal{B} ie. if $a \in \mathcal{A}$, then $a \in \mathcal{B}$ also.	$\mathcal{A} \subseteq \mathcal{B}$	\mathcal{A} is a subset of \mathcal{B}, and
$\mathcal{A} \sqcup \mathcal{B}$	The disjoint union: $\mathcal{A} \sqcup \mathcal{B}=\mathcal{A} \cup \mathcal{B}$, with the assertion that $\mathcal{A} \cap \mathcal{B}=\emptyset$.	$\mathcal{A} \times \mathcal{B}$	The Cartesian product of \mathcal{A} and \mathcal{B} : $\mathcal{A} \times \mathcal{B}=\{(a, b) ; a \in \mathcal{A} \& b \in \mathcal{B}\}$
$\bigcup_{n=1}^{\infty} \mathcal{A}_{n}$	$\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup$	$\bigcap_{n=1}^{\infty} \mathcal{A}_{n}$	$\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \ldots$
$\bigsqcup \mathcal{A}_{n}$	$\mathcal{A}_{1} \sqcup \mathcal{A}_{2} \sqcup \mathcal{A}_{3}$	II	$\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times$.
$\stackrel{n=1}{\mathcal{A}} \backslash \mathcal{B}$	The difference of \mathcal{A} from \mathcal{B} : $\mathcal{A} \backslash \mathcal{B}=\{a \in \mathcal{A} ; a \notin \mathcal{B}\}$	${ }^{n}{ }_{\mathcal{A}} \triangle \mathcal{B}$	The symmetric difference: $\mathcal{A} \triangle \mathcal{B}=(\mathcal{A} \backslash \mathcal{B}) \sqcup(\mathcal{B} \backslash \mathcal{A})$

