TECHNIQUES AND DATA STRUCTURES FOR
PARALLEL RESOURCE MANAGEMENT

Jit Biswas
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-42 November 1987




TECHNIQUES AND DATA STRUCTURES
FOR

PARALLEL RESOURCE MANAGEMENT

APPROVED BY

SUPERVISORY COMMITTEE

7

/ - ‘7——-’:-’7

/>< . /j{,ﬁ,_&,“
(/,:

Mm,__, W

W ﬁm?/w




Copyright

by

Jit Biswas

1987



To Baba and Ma

i e el AT



TECHNIQUES AND DATA STRUCTURES
FOR
PARALLEL RESOURCE MANAGEMENT
by

Jit Biswas, B.E., ML.S.

* DISSERTATION

Presented to the Faculty of 'the”Graduate School of
“The Uﬂiversiiy of Téxas at Austiﬁ |
| in Partial Fulfillment

~ of the Requirements

fbr the D_egr_ée of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 1987



Acknowledgements

I would like to gratefully acknowledge the constant encouragement, support and
great leeway given to me by my supervisor Dr J. C. Browne. 1 am also indebted to
other members of my committee for their helpful suggestions from time to time. Dr
Al Mok and Dr Clement Leung have been sharp critics and I shall always be grateful
to them for goading me into seeking nothing but the best in terms of the quality of
my work. In addition I would especially like to thank Dr Vipin Kumar who has been
a believer and a supporter. He has also been very generous with his time and finan-
cial support. Dr Carla Ellis (of Duke University) has been very helpful in pointing
me toward relevant literature 611 concurrent data structures, especially in the initial
stages of my work. Ireally appreciate her guidance.

To Pradeep Jain and Raghu Ramakrishnan I am especially indebted for countless
discussion sessions over innumerable cups of coffee. Pradeep’s painstaking reading -
of my dissertation has greatly improved its readability. I also wish to express my
gratitude to my colleagues of the Parallel Programming Group, especially Paul
Suhler, Steve Sobek, Ashok Adigzi, S. L Kim; Mary McShea, Steve Eubank, Bob
O’Dell, Nicolas Graner, T. T. Ramgopal and many others who have suffered through
my Wednesday afternoon presentations. I would also like to thank Sanjay Desh-
pande and V. N. Rao for their suggestions. Finally, I wish to thank my roommate
Avi Saha for his support and encouragement during my travails as a graduate stu-
dent.

This thesis is dedicated to my parents.



TECHNIQUES AND DATA STRUCTURES
FOR

PARALLEL RESOURCE MANAGEMENT

-Publication No. _

Jit Biswas, Ph.D.
The University of Texas at Austin, 1987

Supervising Professor: James C. Browne

The problem of managing the resources of a highly parallel system is viewed as the
problem of simultaneously updating data structures that hold system state, We
approach this problem in an abstract data type framework. Simultaneous update
may be attained in two ways: by decomposing abstract states into components and
allowing operations to concurrently transform the state of these components in a
controlled manner, and by weakening the specification of abstract data types in ways
that are acceptable to entities using instances of abstract data types.

This thesis contributes to parallel resource management in both ways. First, we have

considered management of system state for computation structures consisting of

arrays of computations that differ only in indexing parameters. We have proposed

simple decompositions of the externally visible state into simultaneously updatable
vi



components. Second, we have considered the management of system state for weak-
ened priority gueues. The two priority structures proposed in this thesis, a concurrent
heap and a software banyan, have been found to be efficient and effective.

We have, in addition, contributed in the area of language tools for computations that
utilize predefined abstract data type implementations. A mechanism for abstract data
type definition is presented. To promote simultaneity of update we have defined a
significant extension of the linguistic construct of path expressions and used it as a
basis for defining implementation of sequencing within abstract data types. The main
advantage of using extended path expressions is that in addition to synchronization
requirements, binding of activities to object decompositions may be specified, along
with runtime consistency checking, while leaving the object implementation to the
underlying system. We have developed algorithms for the automatic synthesis of
sequencing and synchronization code. '

A task level data flow language designed and implemented by us has provided a con-
text and a testbed for ideas presented in this thesis. -
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Chapter 1 - Introduction

-1. The problem

. This research addresses the problem of resource management, or the management
of system state, for highly parallel large scale multiprocessor systems. The alloca-
tion of a resource to a computation, or alternatively the assignment of a computa-
tion to a resource, results in a change of state of the system. In order to perform

- correctly, a data structure that holds system state must obey consistency relations

just as any other data structure. In executing the functionality of the state manage-

ment one must avoid serializing bottlenecks resulting from update of system data
structures, since this results in-performance. bottlenecks. '

2. The solution approach

The obvious approach is to apply parallelism to resource management or the
management of system state. The requirement is to decompose the data structures
defining the state of the system so that the partitions of the decomposition can sup-
port parallel or simultaneous update, and to establish algorithms which execute
simultaneous updates with maintenance of the consistency specifications for the
system state data structures. We approach this problem in an absiract data type
framework. We define semantics and consistency properties for the data structures
which maintain system state such that these data structures can be partitioned and
parallel algorithms defined on them. A fundamental guideline which is the basis for
our work is the separation of the external specifications from the implementation
specifications for objects (abstract data type instances) implementing system state
management.

3. Results and contributions

We have targeted two particular problem domains of resource management. The
first is ma’nagément of system state for computation structures consisting of arrays
of computations that differ only in indexing parameters. In this case we have pro-
posed simple decompositions of the externally visible state into simultaneously

1



updatable components. The second is the management of priority structures. Paral-
lel abstract data types, including data structures and parallel algorithms implement-
ing priority queues supporting simultaneous update, are defined and characterized.
We have also contributed in the area of language tools for computations that utilize
predefined abstract data type implementations. An illustrative framework for an
abstract data type definition facility is defined. We identify a class of computations
which support implementation of the models of computation directly from current
~programming langnages. To promote simultaneity of update we have defined a
significant extension of the linguistic construct of path expressions and used it as a
basis for defining implementation of sequencing within abstract data types. The
- main advantage of using extended path expressions is that in addition to synchroni-
zation requirements, binding of activities to object decompositions may. be
specified, along with runtime consistency checking, while leaving the object imple-
mentation to the underlying system. We have developed algorithms for the
automatic synthesis of sequencing and synchronization code.. The two priority
structures proposed_in this thesis, a concurrent heap and a software banyan, have
been found to be efficient and effective. Variants of both algorithms can be easily
implemented in specialized hardware, gaining additional performance.



Chapter 2 - Background

1. Highly Parallel Arch:tectures

A highly parallel archltecture is a MIMD [Flynn ’66] multlprocessor archxtecture
that has no inherent limitation upon the number of processors. that it can have.
These architectures have been traditionally divided into three broad classes. The
first class consists of shared memory multzprocessors with hlgh speed intercon-
nection networks Examplcs are the Butterﬂy [Butterﬂy ’85] RP3 [Pfister ’85],
NYU Ultracomputer [Gottlieb '83b] and Cedar [Gajski "83]. The second class is
that of distributed memory architectures, where no memory is shared by proces-
sors, and information must be sent from one processor to another across hardware
channels. The hypercube machine first built at Caltech [Seitz *85] and commercial-
ized by Intel [Intel *87] and other manufacturers are examples of this class. Finally,
- there are hybrid ¥ architectures, that support memory sharing within clusters of
processors and messaging passing, or messaging between clusters, Examples are
C.mmp [Wulf *72], Cm* [Swan *77] and FLEX [Matelan ’85].

The data structures and algorithms described in this thesis apply to resource
management for highly parallel architectures in all three above cétcgories, though
our implementation and some of our illustrative examples deal with machines in
- the first category.

2. Guidelines for highly parallel resource management

In our view, the following guidelines are essential for doing resource management
for highly parallel architectures.
1)  Multiple serialization points. Traditional views of Tesource management
have been centralized. This is because, a resource has always been modelled
~as.a ceniralized entity with global critical sections. For example, a monitor

T Sometimes researchers prefer to classify some of the shared memory multiprocessors
as being hybrid, because there is a dichotomy in the amount of time taken between local
and nonlocal MEmMOry ACCesses. - :



[Hoare *74] guarantees that no two processes shall be inside it at the same
time, thereby bringing about a global serialization point. Arvind [Arvind *77,
’83] breaks away from this restriction with the use of dataflow resource
managers, but these managers are defined within the framework of dynamic, .
instruction level dataflow. We would prefer to have a solution that apphes in
more general situations.

ii)  Multiple binding times. Activities should be bound to the object of their com-
put'atic}n bnly when such a binding is required. This can be at load time, if the
object is frequently requlrcd or at runtime, if the Ob_}CCt is not frequently
required or shared by sevcral activities.

ili) Parterns. Frequently occurring patterns of object partitioning and mapping
should be optimized and provided in libraries for programmers to use.

~iv) Database concurrency for multiprocessors. The field of concurrency has

| been very well researched in distributed databases. Well known techniques
exist for achieving simultaneous update for databases in a manner that
preserves consistency and integrity constraints [Kung *80a}. These ideas may
be adapted to achieve concurrency in data structures for resource management
on highly parallel architectures.

In order to achieve the above guidelines we partition data structures that hold the
state of computations. Partitioning obviously brings about multiple serialization
points, since different activities may access different partitions at the same time in
an overlapped manner. Binding activities to partitions of an object can be done at
different times, to exploit performance advantages. To incorporate patterns, we
develop control abstractions around path expressions, which are synchronization
specification constructs. Often, it is beneficial to rélegate non-urgent tasks of res-
toration of data structures, to restructuring activities, so that more immediate
activities can proceed faster. This is a technique used in the preservation of data-
base indexes. We demonstrate how this technique can be applied to resource
management for highly parallel architectures.

Our work is thus centered around control and data abstractions. To put this work in



perspective we now discuss the related literature.

3. Control and data abstractions
3.1 Specification of control d_ep_andénci_es

Programs written in sequential programming languages such as Fortran must be
carefully analysed to extract dependency information [Kuck '81], to permit the
generation of code that cXploits features of the target machine. This paradigm of
programming ‘and code optimization is stﬂl the one with largcst followmg among
users of hlgh performance computcrs ' ‘

An alternate paradigm, and one that makes- thc _]Ob of the compller writer much
simpler is to.impose certain restrictions upon the constructs that a programmer is
allowed to use, and thereby restrict the class of dependcncc graphs that will be gen-
. erated at runtime. If these graphs have certain attractive properties, such as having
only disciplined access to shared data structures, or having restrictions upon the
kinds of cycles permitted, then it is straightforward to perform efficient resource
management for them. Data flow languages, for example, VAL:[Ackcrmarr"79] Id
[Arvind '78], and SISAL [McGraw. ’85], are so structured that once-a program is
~written in these languages, the parallelism naturally falls out of the program.
~ Another example of this paradigm is the SPMD (single program multiple data) pro-
gramming style introduced in the programming of the RP3 multiprocessor [Darema
. ’85]. In this approach, each program is written as. a single Fortran program with
_special system calls for parallel constructs. Some of our work has been influenced
by this.approach and some of the tools that we propose are directly usable within
this framework.

In addmon, our work has focussed o~ an alternate paradlgm, in that although we
| provxde constructs to thc programmer w1th which to compose programs, the
schedulable units of computanon are at the task level. The programrncr programs
in large grain units called tasks, (approxrmate]y at the level of subroutines in For-
tran, or procedures in Pascal), that are the natural units of computation. We wish to
. exploit parallelism at the level of tens or hundreds of instructions, rather than that



of a single instruction, as has been the case with traditional data flow. Many regular
structured problems, can exploit parallelism at this level. For example, graph algo-
rithms such as the maximum concurrent flow problem [Biswas "86] and problems
from computational physics, such as the computation of trajcctones of pamcle in
motion in a plasma, [Biswas 87al, have identifiable parallehsrn at the level of
blocks of instructions.

We have demgned and 1mp1erncr1ted a sunple graphlcal task Ievel language called
TDFL (Task-Level Data Flow Language) [Suhler ’87] The language provides a set
of constructs that programmers are inclined to use frequently. Separation of con-
cerns between the program’s specification and its imp]ementation is maintéined,
" since the spebiﬁcation is a graph. Thus irrespective of the sequence in which the
nodes of the graph fire, or compute, the outcome of a'computation is always ‘the
same. Cycles in the program graphs must belong to a restricted class of allowable
cycles. We have parallehzed the scheduling of ready nodes, and other constructs in
the language ' '

- 3.2. Specification of synchronization i

The genealogy of path expressions start with regular path expressions [Campbell
*74], which have closed semantics, in the sense that operations in an expression are
assumed to execute in mutually exclusive mode, unless otherwise specified: These
were succeeded by open path expressions, OPEs, [Campbell *77], that had uncon-
strained semantics. Thus an unrestricted number of paré.llel invocations of an
operation on' an ‘object may be active simultanéously if ‘o explicit restriction is
mentioned:in the associated OPE. It has been demonstrated [Oldehoeft *84] how to
synthesize data flow resource managers of the same ilk as Arvind’s, from OPEs,
and [Headington *85]. to incorporate predicates associated with these path expres-
__smns making them ‘open predlcatc path expressions (OPPEs). The authors also
" demonstrate how to convert an OPPE into a network of controllers w1th data ﬂow
nodes 1mplcmented ina purer message based environment.

While writing and implementing programs for execution on multiprocessors, we
- see two levels at which there is-the necessity for specifications. The first is at the



level of user programming, i.e. when only what needs to be done is specified. The
second is the specification of synchronization between user level programs; here
we must specify the allowable sub-sequences of interleavings. For example the
writing of a TDFL program is programming at the user level whereas programming
.the TDFL scheduler itself is at the second level. If we consider the writing of con-
trollers or schedulers as a programming task (which it is), we immediately feel the
necessity of automating this task. Synchronization specifications can be provided,
to automate the task of code generation for controllers required for the language
Thus if the language has a pr0v1510n for setting up mutual exclusion dependenmes
then it should be poss1b1e to specify an appropnate mutual exclusion constraint at a
very hlgh level, by means of an appropriate language, and have code for the preser-
vation of the mutual cxc1u31on dcpendency, gencrated automatlcally Automation
of code generation can also be made to apply to other areas such as bmdmg and
consistency constraints. In this thesis we examine an extension to path expressions
as a means of specifying synchronization, binding and consistency constraints to be
satisfied by implementations. -

3.3. Data abstraction

The guidelines of section 2 can be met by partitioning implementations of abstract
data types (adrs) [Guttag *80]. There are two.types of issues here, namely those
related to- formal properties of adrs and those related to adt implementations.
Abstract data types are defined by giving them semantics and abstract propernes
which the 1ranerncntauon must then satisfy.and preserve.

Data structures have always been thought of in sequcnual settmgs whercas data-
bases have always been thought of in concurrent settings. The key difference is in
the application. Most of the earlier work with abstract data types was centered
around the abstract semantics of types and their operations. The application of
objects such as stacks and queues were in strictly sequential domains. In contrast,
-databases are shared by definition, and different applications require different kinds
~of consistency or serializability requirements from their databases.

" New application areas such'_és dat_abaées for computer aided design [Bancilhon



'835], atomic data types [Weihl *84], and distributed operating systems [Rashid *86]
have introduced a class of objects that we call simultaneously updatable objects,
with formal properties that are quite different from those of conventional ads.
Computations using these objects have consistency requirements that are based on
- the semantics of adrs and adt computations rather than syntactic serializability

requirements that are to be found in traditional database concurrency control [Papa
’86). - '

Various issues have emerged as being important in charactcfizing this new class of
objects. These are atomicity properties [Weihl *84], object implementation states
and correctness of implementations [Shasha ’871, new notions on interleavings in
computationsl 'cbncerning concix_rrent objects [Herlihy ’87], semantics of conflict
and commutativity in shared abstract data types [Schwarz ’83] and implementation
of shared abstract data types [Bottos "85]. - |

" Database concurrency control has furnished a rich body of results, which can be
used to characterize formal properties and develop efficient implementations of
simultaneously updatable objects. Among the most significant contributions from
this area (in relation to our work), are contributions in locking protocols, and those
in the concurrent manipulation of data structures used to maintain large database
indexes. We briefly discuss the relevant results. The two phase locking protocol
[Easwaran "76] is a simple protocol for locking data items in such a way that serial-
izability is preserved. Tree locking protocols [Silberschatz *80], use a simple stra-
tegy of progressing down a tree-structured collection of data items, preserving seri-
alizability of the resulting computation without locking the entire tree. Con-
' currency can be enhanced [Korth *83] by granularizing a database in such a way
that locks at higher levels of granularity may be released once those at lower levels
are obtained. ' ' |

The results mentioned above have found application in designing concurrent data
-structures for database indexes. Two techniques predominatc, the link based tech-
nique and the lock coupling technique. The link based technique [Kung ’80b] relies
on the property that a very small atomic state change is all that is necessary to -
preserve the structure and semantics of a binary search tree, for an unrestricicd set



of input operations. The basic idea in lock based techniques [Bayer *77] is a direct
application of the tree protocol, called lock coupling, i.e. the paradigm that a parent
lock (i.e. the lock at a parent node), is released only when a child lock is obtained.
These algorithms and their derivatives have been proposed for binary search trees
‘ [Manber ’83], AVL trees [Ellis ’80b] and B Trees [Lanm ’86].

Most of the above work concerns software structures. The balanced cube object
{Dally ’86} is an attempt at reflecting the physical structure of a hardware architec-
ture in a search structure. This object has been proposed as a concurrent object that
scales up and down with the size of the hypercube upon whlch it is currently
" mapped. Concurrent smalltalk has been used by Dally as a programmmg language
for his ObJCCt 1rnplemcntat1on In our work we demonstrate how general purpose
programrmng languages can be used in similar snuauons

The issue of efficient abstract data types has been analysed from the perspective of
- distributed systems in. the work of Bastani et al [Bastani ’87]. In addition to the
notions of periodic and concurrent maintenance, the authors also use invariants to
specify properties of implementations of an abstract data type. If the strongest
(weakest) invariant is satisfied then the performance is best (worst). In our
approach we also propose weakening of specifications to introduce performance
gains in implementations of abstract data types.

Simultaneous update of data structures that maintain system state information is the
focus of our work, We have considered two ways of obtaining simultaneous
- update, decomposition of externally visible or abstract states of an object, and
- weakening specifications of an object at external and internal levels. In chapter 3
~ 'we present our terminology and address the decomposition aspect of simultaneous
update. We introduce an event based model consisting of objects and activities,
where abstract specifications are provided for each object. Internal or object imple-

-+ mentation states are characterized in terms of decomposition functions upon

abstract states. Based upon these definitions we develop the notion of correct
external histories and internal histories. In chapter 4 we develop tools for obtaining
simultaneous update. We propose an abstract data type definition facility and illus-
trate its use with examples. The augmented synchronization specification language



of extended path expressions is presented in this chapter and code synthesis algo-
rithms provided.

The issue of weakened specifications is addressed in the remaining chapters of this
thesis. We identify a specific object class namely priority structures, and character-

- ise under what conditions such structures may be weakened for performance gains.
We outline serial and concurrent algorithms for managing priority structures,
demonstrating such weakening at external and internal levels. The proposed struc-
tures are analysed in chapter 6. -

The gfanulmﬁzation approach taken in this thesis was inspired by related research
in concurrent rhanagemeht of index structures for databases [Lanin 86, Kung *80b,
Ellis 85, ’83, *80a, *80b). We know of no‘existing parallel algorithms for priority
structures for general purpose multiprocessbrs. Specialized hardware has been pro-
posed for priority applications and dictionary machines [Leiserson *79]. This topic
" is discussed further in section 4 of chapter 6 where we develop systolic structures
for priority applications and contrast these with those existing in the literature. '

10



‘Chapter 3 - Terminology and a model for simultaneous update

1. Introduction

" 'lnforrnally two_activities are said to simultaneously update an object if their opera-
tions upon that object are overlapped in time. For e){ample two activities simultane-
ously update a file Ob_]CCt if their updates on different records overlap in time. Thus
simultaneous update is achievable by partitioning an ObjCCt into smaller granularity
units (records for example) and overlappmg updates to these units 1n conformance
w1th con51stency spec1ﬁcauons for updates of records. '

In this chapter we definé simultaneous update using ten‘ninology'from a model
based upon objects and activities. We are mainly concerned with the definition of a
model of computation which separates external specifications from internal
specifications so that simultaneous update can be. tolerated. in the external
specifications. We consider two ways of achieving simultaneity of update. The first
is partitioning or decompositioh of the externally visible state of an object so that
the components may be coztcurrently updated. The second is the introduction of
weakened specif ications at both external and internal levels. In this chapter and
the next we look at the former. In chapter 5 we addtess _t_he_ issue of weakened
specifications. o

First we present in 'sec:tion.Z, an analogy ﬁSing a bank account e)taniple to provide
an intuitive feel for what we mean by partitioning. In the succeeding section we
characterize simultaneous update of objects in terms of a system model for objects
and their implementations. We define object spec1ﬂcat10ns usmg a state ‘machine
model with partial functions and annotations using a standard event based model
[Weihl *84]. Then we define object implementation states in a snmlar manner as
that introduced by Shasha [Shasha ’87] in the context of sea:ch structures. We
show how an abstract state can be decomposed into a set of components at the
implementation level such that these components are concurrently updatable. We
generalize the composition of these constituent components back to form the
abstract state that they implement. Internal histories are also characterized in sec-

11



tion 3 and it is shown how an external history may be obtained from an internal
history. We compare our system model with the Karp and Miller model [Karp ’69].

In section 4 we illustrate our model by the bank account example and two more
examples and examine their performance in section 5. We examine the correctness
of internal histories and address the role of a scheduler for an object in the process
of witnessing and permitting overlaps. To provide a concrete illustration of our
ideas we briefly discuss a construct of a task level data flow language and demon-
strate how computations resulting from prpgramis written in this language perform
simultaneous update. Issues that are related to partitioning are time of update, to
take advantage of performance tradeoffs on parallel architectures and restructur-
ing ; to perform asynchronous maintenance of object implementations. We charac-
terize multiple binding times and restructuring using the terminology developed.

2. An analogy - The joint account

~Let us say that Mary and Bob hold a joint account with savings and checking com-
' pon'ents (see Fig 2.1). We assume that both accounts are protected by an automatic
overdraft scheme whex_'eby mdney is transferred automatically from one to the other
in case of inadequate funds in the latter. Let us assume that the bank has been
‘informed that Bob’s transactions will always be associated with the checking
account and Mary’s with the savings account. Initially the checking account con-
tains $ O and the savings account contains $ 0. The following history is possible:
(Events occur chrohologically with the i # event occurring at time 7;.)

t1 Bob requests withdrawal of $ 50 from the joint account.
tz Mary requests deposit of § 5‘0‘ into the joint account.
t3 A bank employee transfers $ 5_0 from savings to checkin g.
t4 Bob gets $ 50. | | | . '
ts M_z_iry gets acknowledgement.

12
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Mary | ~ Bob
Fig 2.1: The joint account object

Notice that at the time Bob requested withdrawal there was no money in either
component of the joint account. However at the time the bank employee performed
the transfer, Mary had already requested_ a 'deposi't ‘and it had been internally
recorded.  Admittedly the manner in which partitioning is done in the above exam-
- ple is somewhat contrived. However, this example illustrates three points. Firstly
the joint account is an object which is simultaneously updated at an abstract level,
although internally each update is channelized to a different partition of the object.
Within a partition updates are not simultaneous. Secondly the binding of account
‘holders to account components is statically performed, i.e. at creation time of the
joint account object. We may have a dynamic or runtime binding of account hold-
ers by randomly. picking an account component for every request. This illustrates
time of binding. Finally we have a maintenance activity namely the "transfer”
operation carried out by the bank employee. Such maintenance activities carry out
restructuring of the internal state of a bank account in order to support the correct
behaviour of the implementation of an account with respect to its specification.
Informally this means a chcnt must be able to w1thdraw moncy if sufﬁc1ent funds
are in elther component of her (hzs) account

3. System Mddél

Our system consists of activities and objects that interact through events. Objects
are instances of abstract data types that have internal state and have external
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specifications that allow for simultaneous update. (The type definitions themselves
are in objects called managers that support the create operation. We shall see an
example of this in the application domain of work management in the next
chapter.) A computation is a history of events invelving activities and objects.

Formally, a systém consists of a quadruple < OB, AC, ¥, C >, where OB = {x,
¥, * -} is a finite set of objects, AC = {A, B, -- -} is a finite set of activities, Y. =
RES \ INV () PARMS (described below) is the set of symbols that cause state
transitions, and C = {cy, c9, - - - } is a finite set of components that are analogous
to memory locations in the sense that théy hold the state of object implementations.
For each component ¢; € C there is a domain D; or set of possible values that the

component can have,
3.1 Events, operations and histories

Activities are analogous to processes in that they are threads of control of finite
duration that invoke operations on objects. We do not specify activities any further.
The behaviour of our system is captured by a sequence of events that occur
between activities and-objects, called a history. An event may be an invocation or
a termination event. An invocation event is a four tuple < invok, args, act, obj >
and a rermination event is a four tuple < resp, results , act, obj > where act € AC,
-obj € OB, invok € INV (the set of invocation symbols), resp € RES (the set of ter-
mination symbols), and args, results € PARMS (the set of parameter values that
' ‘may be elementary values such as booleans and integers.or structured values such
as pairs of elementary values). If x is an object and A an activity of a particular
event ¢, then ¢ is said to involve A and x.

A complete history is a sequence of events of a system such that for every invoca-
tion event there is exactly one ter'mination_revcnt that is matching, i.e. agreeing in
the activity and object fields, the termination event appears after the invocation
event, there are no other events involving the same activity between these two

eventsT, and there are no unmatched evernts.

t The requirement that there is no more than one outstanding invocation event at a time
from a single activity arises from our application domain.
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3.2 The serial specification of an object

The scrlal spe(:lﬁcanon of an object i isa state machmc that describes the behaviour
of that Ob]CCt in the absence of concurrency. Formally, for each object x € OB is
associated a quadruple < Sy, Iy, Oy, Tx >, called the serial specification of x,
where Sy is a set of states, /x is a designated initial staté, Oy is a set of op;rétions
and T, is a transition function. Ty : Sy X Oy ¥—>p Sy is a partial function describing
how the state changes with each permissible operation. The partial nature of Ty is
specified with the help of preconditions discussed below. We shall now character-
ize the set of operations Oy. '

An operation is a pair of events << invok, args,A,x >, <resp,results ,A,x >>,
where the first event is an invocation event and the second event is a matching ter-
mination event. Preconditions in the specification of the transition function T
are predicates associating the state, the argumcms and the results in the form of a
boolean valued function which must be satisfied for thé't_ran'sition to occur.

Example 3.1. Serial specification of the two element set object

Let us assume that we have an object x € OB that behaves as a set of values with
the operations "put" and "get", where the universe cons1sts of two elements "a" and
"b". The serial specification of this object is as follows: '

x={51,52, 53,54}
where s =(},52={a},s3={b},s4={a, b}

Iy=s51

Oy ={01,02030405}
where 0 = << get, NULL,A,x >, <ok, a,A,x >>
op=<<get, NULL,A,x >, <ok,b,A,x >>
'03~—.<<get NULLA X >, <sorry,NULLA x >>
04= <<putaA x >, <ok, NULL,A,x >>
05-<<put bA x >, < ok, NULLA x >>
and A € AC
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The partial function Ty is depicted in Fig 3.1. Not every operation is defined at
every state in this diagram. Thus it represents a partial function. For the two ele-
ment set object it is possible to enumerate the states and the operations exhaus-
tivcly”(except for the activity field). For more complex objects such exhaustive
enumeration is infeasible and we shall introduce variable names and predicates on
these variable names to denote entire sets of states and classes of operations. |

Fig 3.1: T, for the two element set object x

3.3 Sequences of operations

The serial specification of an object may be extended to apply to sequences of

operations in the usual way as follows: If Seq denotes a sequence of operations

with Last (Seq) denoting the last (most recent) operation in the sequence and Past
(Seq) denoting the previous sequence of operations before the last operation then
for a given 5 € S;: T, (5, Seq) = T, (T, (s, Past(Seq)), Last(Seq)) if T, (x,
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Past(Seq)) is defined, and is undeﬁned otherwise. °

Given a hlstory H, the pro;ecnon of H onto act1v1ty A (denoted H 1A)is the sub-
sequence of H restricted to only and all events 1nv01v1ng activity A. Similarly the

| proJectxon of H onto obJect X (denoted HI x) is the sub- sequence of H restricted to
only and all events involving object x. If H is a history we use <y to denote the
(total) orderin g on its events. - : '

Two operauons <invy,res ;> and <mv2 res 2> on an obJect x are said to overlap
at x in history H, if ezther invq <n mv2 <H res, or invy <g znv1 <H ress.

Simultaneous Update. G1ven activities A and B and complete hlstory H, we say
A and B simultaneously update object x in history H if there are two operations

= <invy,res1> and o0, = <inv,,resy> that overlap in H | x, such that 01
‘1nvolves activity A- and o 5 involves activity B .

3.4 Correct histories B

The consistency constramt of systems using Ob]CCtS is deﬁned as a predlcate upon
the states of all the ob_]ects In the most general case [Kung ’83], such a constraint
isa subset of the cartesian product of all the object state- domams We focus on a
class of such con51stency const:ramts that can be put in conJunctlve normal form
{Korth_ *85), where e_aeh eonJ_u_nct mvo_Ives only a single object.

‘Thus, given objects {x1', X2, *** , X, } Our consistency constraint is of the form
CC={ccihccyA -+ Acc, } where cc; involves only object x;. Each conjunctive
term is stated as an invariant on the correspondmg ob]ect state, which must be
maintained through each state transition in the serial spe01ﬁcat10n of the obJeet A
‘history involving several objects is equivalent to an arbitrary interleaving of the set
of projections of the history upon each object. For example, let us suppose that Bob
‘and Mary have two joint accounts, with Bob requesting transactions before Mary in

:some {correct) history. from both accounts. A history, in which Bob precedes Mary
in one and succeeds Mary. in the other, is deemed to be an equivalent and correct
history. The benefit of restricting ourselves to this class of computations is.that we
do not have to worry about preservation of consistency across objects.
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Since we are not interested in preserving consistency across multiple objects, hen-
ceforth we shall restrict our attention to histories that involve a single object. Thus
unless otherwxse specified, whenever we mention a history H it w1ll be understood
' that this hlstory mvolves a smg]e Ob_]f:Ct x, and p0831b1y multlple act1v1tles A,B
and s0 on. ' '

Given a history H a reordering transformation of H is a new history H', that is
obtainable from H by pelmuting the events in H, in such a way that

| a) the ordenng of events in each operatlon in H is preserved in H

b) there are no 51multaneously updatm g operatlons inH and

c) 1f a termmatmn event el precedes an invocation event ez in H, it does the

same in H

Since H " does not contain any simultaneously updating operations the sequence of
events in H ' may be transformed into a sequence of operations, Seq by con51der—

no successive invocation - I'CSPOIISC palrs

A complete history H involving x is correct if there 1s a history H' such that H ' is

a reordemng tra.nsfonnatlon of H and the sequence of Operatlons Seq composed of
the sequence of successwe palrs of events in H' is con31stent with the serial
specification of x. Thus a complete h1story H involving an obJect x is correct if a
reordering can be found for H that satisfies the serial speciﬁeation of x. The notion
‘of reordering is also present in the work of Herlihy and Wing [Herlihy '87] who
- call 'such histories linearizable . - ‘

3.5 Object Vimplement'atio'n s:fates and internal histories |

An object’s implementation realizes its abStract specification [Shasha ’87]. Thus if
- the object’s transition function maps state s to state s “with a certain set of result
values for a given operation, then the implementation maps some underlying
~ representation of state s to some underlying representation of state s” with the same
result values. The issue of pamuomng primarily deals with an object’s implemen-
tation. ' :
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It is beneficial (as we saw in the joint accounis example) to visualize objects as

bem g coherent entities, while allowing simultaneous update in their implementa-

tions. Accordingly, we define an ObjCCt 1mplemcntat10n state to include the notion

“of components of an abstract state of an object. Components may be thought of as

constituents of a decomposition of the externally visible state of an object that may

~ be simultaneously updated, in a manner that will still preserve the specifications of

the object. Components may also be thought of as granules of data that must be

treated as unit entities, or sets of unit entities for synchronization purposes.

Formally, corresponding to each state 5 € S, for some object x is a quadruple <

Dec, Cval, Dec 41, Crel >, called the object i)nplementafion state of 5.

%

Dec : 8, —»2C isa function assigning to each state s in Sy a subsct of com-

~ ponents from C, that 1s called the decomposmon of thc state s, denoted

__Dec (s). o 7
Let Dec (s) = { :cil, Cip e ¢;, } for some s £ Sx. Then the component
value function Cval (CiysCip * o Ci ) =(Fipy Ty~ 1y ) Where ry €Dy, ¢
1</ <k. r, is also denoted as Cval (c,,) form € { iy, i -, ix }. Thus

- Cval is an assignment of values to components.

If (r;,,ri, -+ 1y ) is the tuple of values of components (¢;, ¢, ~ " ° ;)
then Dec™ (r;,7i, *+- 1y ) = 5. Thus Dec~! : X £y Dy — Sy is an
inverse decomposmon function that collapscs the values of the cornponents

back mto the abstract state that the components constitute.

Crel is aset of functions { f1,f2, ", f N(x) } where each funct1on is a one

o one assoczauon identifying a pair of components. Thus f; : C = C :

1<i &N (x) are a set of binary component relanonsth ‘functions. The com-
ponent relauonshlps capture some relation, logxcal or structural;, between
cornponents in a state decomposmon N(x) is a non-negative integer that
represents the number of component rclatlonshlp functions for a glven object
x. Information provided by the component relation functions (for example

Parent, Left_child, Right_child of a component representing a node of a tree .

structured object) is used by restructuring activities (see below) to perform
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changes of object implementation states.

An internal event is similar to our earlier notion of an event which applied to
external event or events at the abstract level. The differences between internal and

external events are:

i)  Aninternal event may involve either a restructuring activity or a user activity
whereas an external event may not involve restructuring activities.

ii)  The set of state transitions caused by pairs of internal events that constitute an
internal operation includes those caused by restructuring activities. Thus in
addition to the invocation and response symbols and parameter lists for exter-
nal operations, internal events may also involve a new set of symbols and
parameter-values, namely those corresponding to restructuring operations.

iil) An internal operation (a matching pair of internal events) may involve a set of

components of an object implementation state, whereas an external event may

" -involve only a single object. For a given activity and a given internal opera-

tion at a given component there is associated a set of components called the

window of that invocation. The window is often expressed in terms of the

component relationship functions in Crel. It need not be a function of all
three parameters indicated above.

For the sake of clarity we shall not introduce additional notation to represent these
new operations, activities and transition symbols. It will be clear from the context
whether a history, event, operation, activity etc. is internal or external.

~Each internal event is an internal invocation event or an internal termination event.
Internal events are four tuples where the first three fields are similar to the
~ corresponding fields in external events (with the provision for internal activities
-and opération symbols and parameter values). The fourth field in an internal event
is a set of components that constitutes the window of the corresponding operation
invocation. | | |

3.6 Correctness of internal histories

A definition for correct external histories was given in section 3.4. In this section
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we consider internal histories and relate them to external histories in terms of
correctness. We characterize internal histories, define when an internal history is
correct, demonstrate how an internal history can be transformed into an equivalent
external history, and thereby how to verify if a given internal history is a correct
"implementation of a given external history. Our development hinges around a
notion of atomicity of window up'dates. Atomicity is the absence of simultaneous
update or overlap. (This restriction will be relaxed in chapter 4).

An internal history is a sequence of internal events where each internal termina-
tion event is preceded by a matching internal invocation event. A complete inter-
nal history is an internal history with no unmatched events.

- Atomicity dssumption. We shall assume that there are no simultaneous updates at
the internal level. Thus each pair of matched internal events constitutes an atomic
operation that transforms an object implementation state in mutual exclusion. Real-
ization of the atomicity assumption amounts to implementatibn of mutual exclu-

sion by all operations at each component. .

The atomicity assurhption allows us to transform a .s_equencé of events into a
sequencé of 6peratic_)ns very easily. Given an internal history £, we simply consider
each operation as taking effect at the time of its termination event. Thus the subse-
quence of termination events in % gives the sequence of operations Opseq (h) in
“that history, such that if Opseq (k) is applied to the initial object implementation
state (ois) of the history, the system will move through precisely the same
sequence of object implementation states as it did with 4.

Associated with each component is a consistency constraint or an invariant for that
component. A correct internal history is an internal history that satisfies the atom-
icity assumption and causes a state transition if and only if the consistency con-
straint of each component in the window of each operation is preserved as an
invariant. ‘Intuitively an internal operation should not be allowed if it invalidates
the consistency constraint at a component. If each operation in an internal history
preserves the consistency constraint at each component, the overall consistency
constraint of the object must be preserved. Therefore such an internal history is
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correct.
‘3.7 Relating internal histories to external histories

Given a correct intemél history h, we say h is an implementation of an external
history H if the subsequence of Opseq () consisting of Opseq (h) with all restruc-
turing operations removed and with the object name replacing the component

names in each operation in Opseq (k) is a valid reordering of H.

In example 4.1 in the following section we demonstrate external and internal his-
tories of the joint account object. The latter can be shown to be a correct imple-
mentation of the former.

Given the above notation for object implementation states, we can discuss parti-
tioning, binding and restructuring in more concrete terms.

3.8 Partitioning, binding and restructuring

Informally, partitioning is described as the task of creating state decompositions or
the task of designing an object implementation that consists of components that are
' simultanéoﬁsly updatzible. We shall not attempt to characterize partitioning more
fonnally, since this intuitive notion is adequate for our purposes'.

Given a set of activities, A, a state s of an object x, and an object implementation
state of s given by the quadruple < Dec, Cval, Dec-!, Crel >,Bisa binding if it
is a many to.many mapping from A to Dec (s), the set of components in the
decomposition of 5.

Binding is thus the association between activities and components of an object.
- Such an association may take place statically, at time of creation of the object, or
dynamically, at runtime. A binding of an activity A to an object x- is static if B(A)
is fixed at the time of creation of x, and this binding never changes. Similarly, a
binding is dynamic if it is different at different times in the same history. For
example in the case of the joint account object of section 2, B(Bob) = "checking”
and B(Mary) = "savings", and this is a static binding.
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- Partitioning can also take place at different times. For example, an implementation
of Balanced Cube object'on a Hypercube [Dally *86] dynamically alters the parti-
tioning as the size of the structure grows and shrinks, thus resulting in dynamic par-
tiﬁoning, or the alteration of the number of components of an- object implementa-
tion state in the course of a computation. We shall see examples of dynamic bind-
ing.in chapter 4.

Informally, fes_tructuring is the_fask of changin_g an object’s implementation state
without changing the cxfc_r_ne_ﬁly visible state of the object. Formally, restructuring
is defined as a transformation in the object implementation state from ois to ois” in
such a'way that the inverse decomposition of both object impIcmcntatidn states are
equal to the same object state, s. Note that we do not specify how the transforma-
tion is to take plaec. It could be brought about by a change in the decomposition
function or a change in the component value function, or possibly even a change in
the component relationships.

3.9 The scheduler of an object and motivation for path expressions

We shall informally define the scheduler for an object as an active encapsulation
{because of internal activities such as restructuring activities) that allows certain
sequences of events while disallowing others. The scheduler permits internal
events to occur by issuing permissions to access partitions of an object’s imple—
mentation state and receiving acknowledgements that signify the conclusion of
such access. Simultaneous updates refer to overlapping event pairs witnessed by
an external observer. An overlap witnessed externally need not correspond to an
overlap permitted internally by the scheduler of an object. In fact, we have stipu-
lated (by means of the atomicity assumption) that the only overlaps that occur
~ internally are those that act on different components. Consider an object which
may be snnultaneously read but must be updated atormcally A valid history for

h this object is shown in Flg 3.2 (where the subscripts PERM and ACK denote the

1nternal gvents permlsszon and acknowledgement above)

- By considering semantics of operations such as those of "read" and "write” we find
that we can relax the atomicity assumption in certain cases. In chapter 4 we intro-
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duce the language of extended path expressions for specifying when a scheduler
may allow concurrent access at an object partition or component. The motivation
“for path expressions has traditionally come from a desire to specify a different set
of concerns from those that motivate dependency relations in a programming
language. Path expressions have been used for specifying the synchronization pro-
perties of objects (resources) that are in general shared by multiple activities, stat-
ing what operations can commute and what operations must be done in serial order.
We use path expressions to capture sequencing restrictions in panitions of object
implementation states. Qur path expressions go beyond specification of synchfoni-
zation and commutativity to including the capability to partition the set of activi-

ties.

history
: witnessed
W externally-

Rpvv - Rpepy Wiy Rack Wperm  Rpesp Wack Wresp

, history
' R ' H W {  permitted
mternally

‘Fig 3.2 Valid history for multiple reader single writer synchronization

3.10 Comparison with the Karp and Miller model

At an abstract level our model of an object is similar to that of an instance of an
abstract data type created by a Type manager [Browne '84] for the type of that
object. The adr implementation details remain hidden. In our model we not only
hide the implementation, we also guarantee that the implementation will meet the
property of simultaneous update. With respect to the object implementation states
we would like to compare our model with that of Karp and Miller.
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Karp and Miller [Karp ’69] have presented a model to represent a general class of
detérminate computations. This model provides for computational state to be
~simultaneously updated by introducing memory locations. A parallel program

schema 1is a triple < M, A, C >, where M is a set of memory locations, A is a set
.. of operations and C is a control defined by means of a state machine. Operations
may asynchronously read and update memory locations as long as they preserve
the property that two or more concurrent executions of an operation terminate in
the order of their 1n1t1at10n An operatlon is initiated by means of an initiation sym-
bol, and upon termination produces one of a finite set of symbols denonng the set
of possible outcomes for that operanon The values that are to be written into
memory and the pamcular choice of the outcome Symbol are funcuonally deter-
mined by the values read from memory. Thus rcgardless_of the relatl_ve speeds of
execution (times of completion of operations) the outcome of each computation (a
string of symbols accepted by this schema) is unique, in the sense that every
memory cell contains a single possible sequence of values. This propéfty is known

as determinacy .

Determinacy has been further characterized [Weng ’75, Kahn ’74] as the property
that given an arbitrary directed graph with a function g; at each node i of p nodes,
and some initial conditions, the sequence of values on all arcs is uniquely deter-
mined. The streams (sequences of values) in the arcs is precisely the fixed point of
the system of equations ¥; = g; ( X; ) : 1£i <p, where ¥; and X; represent
-respectively the output and input. stream tuples corresponding to node i{. The
notion of histories or streams (lacking in the Karp and Miller mb_dcl) is a notion
that we have found very useful.

In contrasting our model of computation with the Karp and Miller model we make
the following observations:

*  Our internal operations are analogous to Karp and Miller’s operations; how-
ever, at any given time there may be only one outstanding initiation of an
operation on a component in our model. This is necessitated by the atomicity
assumption. This requirement is relaxed through the use of extended path
expressions in chapter 4. We do not assume that operations terminaté in the
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. order of their initiation.
*  Memory locations in the Karp and Miller model are similar to components in
our model.

*  Karp and Miller have a single global control that characterizes the state transi-
tions taking place over the entire schema. In our case the state machines are
distributed in the serial specifications of different objects and there is no
attempt to unite these state machines into a global state machine.

*  Since their model is an unintérpreted (based on syntax rather than semantics
~ of the operations) the state transition function in the Karp and Miller model is
a total function on all possible outcome symbbls; In our model since we have
added interpretation and semantics of the abstract data types for our objects

we have undefined transitions. | o '

' 4. Examples
Example 4.1. The joint account object

~ The joint account can be expressed in terms of the notation presented in section 3.
The state domain is the set of non-negative integers, with the initial state being
zero. The operation invocation symbols are "deposit" and "withdraw", each with an
integer argument. The response symbols are "ok” and "sorry". The system may
‘contain several objects and activities but we are only interested in the object x
~which is the joint account object, and the external or user activities Bob, Mary, and
the restructuring activity Bank Employee. We assume that the Bank_Employee
can detect the state when a client is waiting for a withdrawal and there is not

enough money. In such a case the client will receive a response "sorry".
Serial specification:

Sx:{iliis an integer > 0 ) i

I.:0

O, : { < withdraw,v,4,x >, <ok, v, 4,x >,
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<« withdraw, v, A, x >, < sorry, NULL, A, x >>,
<« deposit, v, A, x >, <ok, NULL, A, x >
where v, v’ are integers and A € {Bob, Mary} }

T, (s, <<mthdrawv A, x> <o, Vv,A,x )=
s=vif (s2v Av'=v A a="0k")
sif(s<v Av'=NULL A o= "sorry") .

undefined otherwise

T, (s, dep051t v,A,x >, <ok, NULL A,x >>)—' '
s+v if(v20)
undefined otherwise

Cy ' - C2

savings Transfer | c_hcckin g

Fig 4.1: An ois for the joint account object

An object implementation state (Fig 4.1):-

We show an ObjCCt 1mplementat10n state for which s, the abstract state is 50, and
the internal state has 50 in ¢ 1, which is the savmgs componcnt and 0in €2, which

is the checking component.

In this case the decomposition function never changes. Thus for all s & S,
Dec (s)={ci,co} withD;=Djy=(i:120) '
Thus Dec (50) = (¢, c2}

Cval (<c1,c2>)=<50,0> _ _ )

The inverse decomposition Dec 1 is the addition func'tion_. Thus:

Dec1 (< Cval (c1), Cval (c9) >)=Cval (c1) +Cval (c2) =5 =50

Crel={ (c1,¢2),(c2,c1) }

window (Mary, op ) = c 1, window (Bob, op) =c, and
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window (Bank__Enﬁponee, op) ={c1, c2} where op € {withdraw, deposit}

Shown below is an internal history k in which Mary makes a deposit of 50 dollars
into the savings account, which is transferred to checking to cover Bob’s with-
drawal. '

internal history A

< deposit, 50, Mary, ¢, >

<ok, NULL, Mary, ¢ >

< withdraw, 50, Bank_Employee, ¢ >
< ok, NULL, Bank_Employee, ¢ > _
< deposit, 50, Bank_Employee, ¢, >

< ok, NULL, Bank_Employee, ¢, >

< withdraw, 50, Bob, ¢ >

< ok, 50, Bob, ¢» >

The sequence of operations Opseg (k) of the above history is shown below.

Opseq (h)

<<deposit, 50, Mary, ¢ >, <ok, NULL, Mary, ¢ ;>>

<< withdraw, 50, Bank_Employee, ¢ >, < ok, NULL, Bank_Employee, ¢ >>
<< deposit, 50, Bank_Employee, ¢3 >, < ok, NULL, Bank_Employee, c 3 >> '
<< withdraw, 50, Bob ca>, <0k, 50, Bob, ¢y >> .

The reduced operation sequence of Opseq (k) with the internal restructuring
operations removed is shown below.

reduced Opseq (h) _
<<deposit, 50, Mary, ¢ ; >, <ok, NULL, Mary, ¢ ;>>
<<withdraw, 50, Bob, ¢3 >, <ok, 50, Bob, ¢ ,>>

The operation sequence of H', a valid reordering of the external history H is shown |
.below.
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Seq (H)
<<deposit, 50, Mary, x >, <ok, NULL, Mary, x>>
~<<withdraw, 50, Bob, x >, <ok, 50, Bob, x >>

Finally we show the external hlStOI'y H and a posmble internal history h that is
correct 1mplementat10n of H. The events are shown in chronologlcal order.

~"External history H .~ .~ 'Internal history /-
< withdraw, 50, Bob, x >
< deposit, 50, Mary, x >
: SR < deposit, 50, Mary, ¢ >
<ok, NULL, Mary, ¢ >" =
< withdraw, 50, Bank_Employee, ¢4 >
- <ok, NULL, Bank_Employee, ¢, >
< deposit, 50, Bank_Employee, ¢2 >
< ok, NULL, Bank_Employee, ¢, >
< withdraw, 50, Bob, ¢4 >
<ok, 50,Bob,cy>
< ok, 50, Bob, x > R
<ok, NULL, Mary, x >

Example 4.2. The index server object

Often, a set object consists of an ordered set of values, such as.a sequence of
integers over a given range (or an array holding elements of a set, in such a manner
that a sequence of integers represents indices into the array) We introduce a cer-
tain kind of object called an index server object, abbreviated iso, that returns
integers from a given range.

Say we have an index server object for the integer interval [lo,hil. LetZ={x | lo
<x£hi:x,loand hi are integers } be an ordered set of integer values. The object
domain of the index server object is the powerset of Z, since it may contain any of
the 2'2! possible subsets of Z. The initial state is the set Z. The only operation of
interest is an index acquisition. The transition function defines the effect of
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removing an index from an iso. The transition function is interpreted as follows: If
for some v {v €}, then the precondition that holds at an object state s, of the iso,
then a ger operation upon the iso returns the value v, modifying the object state s
accordingly.

The index server object cou.ld' be implemented with n 7 co_r_nponent's.{ C1co e,
¢, }, each component initialized to hold a partition of Z. Let the i #* component, ¢;,
1<i<n, have associated state variables lo; and hi;, such that component ¢; con-
tains the integers lo; to hi;. ; .

Initially Dec! < Cval (¢1),Cval (¢2) -+ ,Cval (¢,)> = Z. Thus each
component is suitably initialized to "contain" a subset of Z. Taken together the

components implement the entire set.

Serial specification:
Sy : 2%, the powerset of Z where Z ={ i | lo <i<hi: 1, 1o and hi are integers }
I, . Z o '

Oy :{ = get, NULL,A,x >, <ok, v,A,x >,
<« get, NULL, A, x >, < sorry, NULL, A, x >,
where v is an integer between o and hi and A € AC }

Ty (s,<< get, NULL,A,x >, <o, v,A,x »)=
s— {v}if(vies A o= "ok") _
sif(s={}) Av'=NULL A o ="sorry")
undefined otherwise - - ‘

An object implementation st;ite: (.s‘ is the initial staté)'
Dec (s)={c¢;:1<i<n )

Cval (c; y=<lo;, hi; >:1<i<n

‘where lo; = (i - 1) * 'MQ%L_{@'.{'.{, 1 hi; =i * Iﬂdeszimil‘

Dec™! (< Cval (c1),Cval (c2), -+, Cval (cpy>)

1 nis a parameter to be tuned foi"pe'rl‘onnancé. ‘



=Cval (¢c1)\YCval (co) - Cval (tny=2Z

The above ois applies to the 1n1t1al state. In gencral the inverse decomposnum
function gives the external state of the object as follows

Dec—l (< Cval (cy), Cval (¢p), - Cval (cpy>) =
. . {tOl,'-'.','hilleZs"',hiz,"'.lon;"”shin} = g

Crel=((cicim):1<i<n ) (e cr)

The window function associates an activity doing a particular operation upon the
index server object with a single component, i.e. the one to which the activity is
currently bound. The component relationships represent a circular list. Note that
our implementation will be capable of yielding only a subset of possible sequences
from the set Z. In this sense it does not implement the full behaviour of the set.
However it does satisfy the serial specification of the set since the serial
specification does not require that all possible sequences should be obtainable.

Example 4.3. The software combining tree

A replace add interconnection network can be regarded as a collection of fan-in

trees, or inverted trees with memory cells at the root and processing elements at the
leaves. A fan-in tree may get requests much faster than the requests are satisfied,
thereby causing the tree to get congested. Congested trees of this nature are severe
bottlenecks because they impede the flow of traffic that is otherwise unrelated.
Yew et al [Yew ’87] propose to rediice such contention for a given memory cell
by distributing accesses to it across several memory cells, and imposing a global
structure across these cells. This structure can be simultaneously updated at several
points, thereby relieving contention at the bottleneck. The structure selected by the
authors is a k —ary tree called a software combining tree. However, there is no rea-
son why it should not be some other structure (such as that of the last example). It
is clear that in order to reduce contention the authors have introduced structure into
the object, and then introduced partitioning. Let d be the depth of the software
combining tree, k the arity and L the largest value (assuming the initial value is 1).
N denotes the number of processors, Taking the values of L, N, k, and d from the
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example in [Yew *87], we have L=N=1000, d=2 and k=10, we have 111 memory
cells in the tree, with 100 cells at the leaf level. We partition the processors into
100 sets of ten processors each, with each set sharing a leaf level memory cell.
When the last processor in each set decrements the contents of its memory cell to
zero, it then decrements the value in the parent cell. Thus there are 111 bottlenecks,
each with 10 accesses. Fig 4.2 illustrates this software combining tree. We illus-
trate the ois with a simplified version of this tree with three leaf components and
one root component (see Fig 4.3). |

1.10 91.. 100 901..210 © 9911000
Fig 4.2 A software Combining tree with N = 1000,k =10and d =2

Serial specification. The serial specification are the same as those of the iso, and
therefore not being repeated here.



Fig 4.3: An ois of the software combining tree

An object implementation state (Fig 4.3):

Dec (s)={cy, " ,cq) _ |

Cval (i) =<ly, wp >:2<k< 4, Cval (c1) = NULL.

Dec~1 is the union function which is the same as the inverse decomposition func-
tion of the index server object. ‘ :

Crel = { <c, co>, <C1, €3>, <C 1, C4> }
5. Performance tradeoffs in partitioning, binding and restructuring

- What is unique about the index server object and software combining tree? ‘At an
abstract level, both thése objects behave exactly as a set data type with the opera-
tion get (in the case of a combining network this operation is done by the RepAdd
or "replace-add” primitive instruction) being analogous to the operation of remov-
ing an element from a set. Thus, if an activity invokes a get operation, and there is
no element (i.e. index) in the partition to which it is bound, the operation must not
return failure without making sure that there is indeed no index available in any
partition of the object. In the case of the iso  the linked list of partitions may, if
desired, be traversed by a request until a non-empty partition is found, or all parti-
tions are seen to be empty in which case the request returns with a failure.

In the case of a software combining tree, a request that finds a partition empty will



continue to be an outstanding request until all indices are exhausted from all parti-
tions. At this time the request will return with a failure, thus retaining consistency
with the abstract specifications. A tree of barriers’ is used to 'implemcnt the syn-
chronization necessary for all requesting activities to terminate at the same time. At
each internal node of this tree only one activity is pre-selected to propagate a termi-
nation request up, and confirmation down the tree. Thus even though a large
number of activities may be actually waiting at a barrier, at a given time only few
of them are actively waiting at a specific memory location. Thus memory conten-
tion is greatly reduced. This is the performance advantage of the software combin-
ing tree. '

The main questions are: _ _
i} Under what conditions are such partitioning and binding strategies useful?
ii) What exactly is gained by having multiple binding times?

These questions are addressed by means of simple performance models.

Say the index server object is mapped onto a distributed memory machine, where

the activities are organized as a ring, A natural way to map the circular list of com-
ponents of an ois is as a ring upon this ring. Let us assume that the number of parti-
tions equals the number of processors, n. We assume that activities are statically
bound to partitions, with one éctivity being assigned to each processor, and that ter-
mination is signalled by a token that propagates. through the linked list of com-
ponents (processors). The time taken to complete the consumption of all indices,
~ called the completion time of the index server object, is given by:

‘ Tiso = Maxe; {Tpart; r+n* Tnessage

- where Tpart; is the time to complete consumption of all indices in partition { , and
- Tnessage 18 the time for propagation of a message down one link of the ring. The
maximum is taken over all partitions. Tj,, is obviously dependent upon the distri-
- bution of computation times at partitions. Skewed distributions of computation

1T A barrier is a shared memory location used to implement a synchronization point for a _
.- set of activities, T : _
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times at partitions can seriously affect the overall completion time. We therefore
propose an alternate implementation using compile time partitioning initially, but
with a provision for sharing work at runtime through dynamic binding of activities
to partitions. Assuming that k% of the requests are directed at other partitions
where k (a small positive integer less than n) is the distance propagated by a
request increases as we near completion of the computatlon Thus the distance pro-

pagated by the last 1% is larger than that propagated by the last but one 1% and so -

on. This sc_heme can capture skewed d_lStI‘lbutlQI‘lS by distinguishing between the
values of k at different corhponents. The analysis of this _scheme_is a little more
| eo'mplex Let us assume that the computation time for an indek Tindex» 18 much'less
than the communication time Tinessage - Thus once commumcatlon starts, the time is
dominated by the commumcatlon time. We also assume that the i component
directs k; % of its requests at other pamuons Thus skewed index dlsmbutlons are
captured by skewing the distribution of values given to k We assume 100 requests
are made at each partition. T nessage 18 the average nme for a message to travel a

single hop in the presence of other messages.

T = Maxiy {( 100 k; ) Tindex + [n+(n—1) +o 4 (n—k +1) :' Tnessage }

' ki i+ 1) |,
= Maxt {( 100~ k; ) * Tingex + L (’5+1) - ¢ 12 ) } * Tmssage

5.1 Restructuring

_The above ana1y31s assumes one acuwty per component There could be many
acuvmes per component, exemphﬁed by several processes on a single processor.
Indeed, it would be very inefficient if in the presence of skewed data, as above,
each activity were 10 incur the messaging overhead shown above. Instead, we pro-
pose restructuring activities that dynamically alter the bounds of the implementa-
_tiox_i‘ of partitions of the index server object. The analysis of restructuring is as fol-
Jows. At each processor we have a fixed number of activities and a restructuring
activity. Activities are statically bound. Termination is signalled by messages
between restroct_uring activities. Assuming the computation is equally distributed
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by the restructuring, the time for the index server object is the time for R rounds of
message exchanging to accomplish a uniform distribution of indices.

Ty, = Number of Indices 4 T

n +n *R* Tmessage.

- 5.2. Degrees of simultaneity and contention

Two other performance measures by which simultaneously updatable objects can -

be rated are the degrees of simultaneity and the degree of contention. The degree of
simultaneity of an object is the number of operanons that it allows to proceed con-
currently or in an overlapped fashion. The degree of contention is the number of
activities that may potentially access an,object pamtlon_. For example, the degree of
simuitane'it'y”of an index server object implementation, is precisely the number of
partitions, n. The degree of contention is 1 in this case. The degree of simultaneity
for the software combining tree with arity & and depth d is the number of leaves in
the tree, i.e. k4. By dividing L', the'la'rgest value, into k4 memory cells, and bind-
ing a different set of processors to each memory celf, we have guaranteed that the

maximum number of contending réqucsts at a single cell is ml—nk%ﬂ)—. This is

the degree of contention of the software combining tree. We shall use these perfor-

mance measures once again in chapter 5 when we characterize the performance of
the concurrent heap.

6. The Doall node of TDFL

The Task-Level Data Flow Language (TDFL) is a graph oriented language for con-
verting existing sequential programs to run in parallel, or writing entirely new pro-
grams. Computations in this language are expressed as static or dynamic directed
graphs. Each node contains a subroutine-sized task and each arc holds data tokens
that cause nodes to fire and emerge from nodes that have fired (Fig 6.1). The task
functions are written in standard high-level languages. At any given time in the
execution of a TDFL program, several nodes may be in execution, having con-
sumed tokens from their input arcs and in due course, providing tokens on their
output arcs. This language has been used to write application programs for a shared
- memory multiprocessor machine, with good speedups over a range of appliéations
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‘and close to linear speedup in one application [Biswas ’87a]. Further detalls of this
language and its implementation appear in [Suhler 87].

F1g61 '

We are interested in looking for efﬁ01ent 1mplementat10ns of the Doall node of this
language. The Doall node receives a token (an array or a structure) on one of its
inputs and a non-negative integer value on another. The latter detenmnes the
number of parallel iterates. The computation encapsulated in the Doall is repeated
- _once for each iterate, incrementally computing output tokens. When all iterates
have finished executing, the Doall node is said to have compléte'd‘its firing. At this
time tokens on the output arcs of the Doall riode are rcady for consumpuon

One way to 1mp1ement iterate acquisition for the Doall node is with a single
memory cell that holds the state of the shared integer object. This scheme is
inefficient since it relies upon a single shared object. On a highly. parallel architec-
ture, such a scheme presents an unacceptable bottleneck. It is necessary to decom-
pose the single variable that represents the range of indices for simultaneous
update. We can carry out this decomposition' by viewing the input arcs of a Doall
node as delivering decomposable objects that are instances of the index server
object as introduced in section 4 of this chapter, Index server objects may be imple-
mented efficiently on parallel machines, either by hardware pl'imiﬁVCS (such as the
RepAdd) or by software (such as the index server object presented in chapter 4).
An activity doing a Dequeue upon an input arc of a Doall node removes an index
from an index server object. The Dequeue operatlon ‘does not rely on global ‘seriali-
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zation points, since the implementation of an iso object does not rely on global
serialization points.

7. Conclusions

It is desirable for performance reasons, to partition an object implementation state
so that simultaneous update can take place at different partitions or components at
the same time. By early binding of different activities to different components, run-
time contention and traffic in general can be reduced on highly parallel architec-
tures. There is evidence to show that such objects would indeed prove useful on
parallel machines. The software combining tree is a case in point. In order to pro-
vide external views of simultaneous update, it is desirable to perform internal res-
tructuring asynchronously, provided that the consistency constraints of the applica-
 tion permit such restructuring.

We have introduced in this chapter the notion of simultaneous update through a -

model of abstract data types. The approach outlined in this chapter, namely charac-
terizing the abstract behaviour of an object at an external level and then designing
its implementation specifications at an internal level, can be applied repeatedly in a
hierarchical fashion. For ekample, each component of an object may be thought of
as an object and can have a decomposition. For practical reasons we have stopped
at one level. We emphasize that we do not present a methodology to go from serial
specification in the abstract to the concrete object implementation. Specifying the
object implementation states is a problem left to the user, and it is a part of the
~"art” of good programming to be able to design appropriate decompositions and
~ component value functions for a given object to be mapped onto a given architec-
- ture. '

A correct computation is one that satisfies consistency constraints specified. We
focus on a class of compﬁtations that only require consistency constraints on indi-
vidual 'objccts. To guarantee preservation of correctness we have introduced a
strong requirement called the atomicity assumption. Since operations are treated in
~a very general and unintefpre_ted manner, such a strong assumption is necessary. A
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possible application of simultaneously updatable ‘objects is in-the TDFL Doall
node, which can potentially use the index server object or the software combining
tree objects introduced in this chapter.

By incorporating semantics of operations through the use of linguis'ﬁc constructs
called path expressions it is possible to allow simultaneous update even at the com-
ponent level. In the followmg chapter we introduce work container ochcts a gen-
" eralization of the index server object, and characterize the class of computations
 that are gencrated by the use of these ob_]ccts We also discuss an 1rnplcmentat10n

of a particular form of path cxprcssmns
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Chapter 4 - Language tools to support simultaneous update

1. Introduction

In chapter 3 objects have been characterized by their serial specifications and their
external and internal histories. An internal history involves sets of components of
an object implerhentation state (also called object components or partitions). By
assuming that updates to sets of components will be atomic, we have quite straight-
forwardly characterized the correctness of internal histories with respect to external
‘histories.

In this chapter we sketch an implementation scheme for creation of simultaneously
updatable objects and their use on current multiprocessor machines. We focus on
an object known as a work container object, abbreviated wco. The serial
specification of this object is very similar to that of a multi-set or a bag, except for
the fact that operations have been introduced for programming convenience. We
provide a structuring concept, the work manager, similar to monitors [Hoare *74] |
for creating work container objects and setting up computations centered around
these objects. We also relax the assumption that updates to object components must
be atomic, by allowing in work managers, the use of extended path expressions
(abbreviated epess).

Path expressions are languages for specification of synchronization properties of
objects. A path expression specifies the permissible sequences of operations at an
object {or a partition). We have extended path expressions in two ways: a) con-
sistency properties at an object partition may be specified, and, b) activity bindings
to object partitions may be specified. The former makes it possible to implement
correct internal histories and the latter permits the specification of patterns of
activity bindings that may be tailored to various multiple processor architectures.
Thus epes are a concise notational tool for expressing mapping and consistency
properties of components of an object in addition to specifying synchronization
~ behaviour.
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Epe s allow simultaneous update at the component level. Thus histories of opera-
tions at the internal level are now partially ordered instead of being totally ordered.
We characterize how our earlier notion of correct internal histories must be altered
to accommodate this change.

The use of work container objects is illustrated through a few examples. We also
present in this chapter, algorithms for synthesizing code for the implementation of
extended path expressions. Various implementations of work container objects. are
possible including several proposed in the literature, e.g., the semi-queue [Weihl
’84], the weakly FIFO queue [Schwarz ’83), the tuplé—spacé [Gelernter '86], and
distributed open lists [Quinn 84, Rao ’87a]. These objects differ significantly in
their usage and performance, illustrating the potential diversity of work container
computations. The balanced cube [Dally ’86] and concurrent search structures
[Shasha ’87] are similar to weo s in that they contain sets of items; however, they
are different in that they also support query operations, such as member, and allow
insertion and removal by key.

In the following chapter we introduce pribrity structﬁres, simultaneously updatable
objects whose serial specification is that of a weak priority queue in the sense the
item returned is not the largest value but one of the largest values. As expected
the performance of these objects is much better than that of strict priority queues.
With further weakening at an internal level it is possuble to obtain implementations
with further i improvements in terms of simultaneous update. Performance tradeoffs
for these ochcts are analysed in chapter 6

2. Work container objects

A work container object (abbreviated wco ) has the abstract semantics of a multi-
set or bag with the operations put, get, init, clear and sense. The form of these
operations is unrestricted (as long as they preserve the properties of a bag). Work
container objects are used to store workpieces, or abstract units of data used by
activities to do computation. A workpiece is an entity that keeps activities busy.
The most important operations are pur and get. The pur operation inserts a work-
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plece, and a get operation removes a workpiece.

2.1 Serial specification of work container objects

Let D be a set of v_élues denoting the domain of a‘mult_i-'set'.
S, : The set of all multi-sets of items from-domain D..

I [_ 1, the émpty ﬁmlti—s::t._ |

{ < put,v,A,x > <ok, NULL,A,x >,
<< get, NULL,A,x >, <0k, v,A,x >,
<« get, NULL, A, x >, <'sorry, NULL, A, x >>,
<« init, NULL, A, x >; <ok, NULL, A, x >,
<< clear, NULL,A,x >, <ok, NULL, A, x >,
<< sense, NULL,A,x >, <ok, NULL, A, x >,
<« sense, NULL,A,x >, < sorry, NULL A x >,
.wherev v ED andA EAC}

Tx(s < put,v,A,x >, <ok NULL, A, x: >>)-
s\ U 1v}if( v e D) where b denotes bag union- -

T(S,<<getNULLAx><OLvAx>>)— ‘
s = {(v)if(v'es A o ="ok") where —, denotcs bag d1fference '
sif(s={}A o ="sorry" A v’ NULL) '
undefined otherwise

Ty (5, < init, NULL, A, x >, < ok, NULL, A x >>)—
{}if (x does notcxlst) ‘ ‘

T, (5, << clear, NULL, 4, x >, <ok, NULL, A, x )=
{}if (x exists )

T, (s, << sense, NULL, A, x >, < o, NULL, A, x ») = :
s if (x exists A (e ="0k" Vo ="' sorry")) .



Intuitively sense returns "sorry” when the bound partition of the object is empty.
This is further explained below.

2.2 Sense and sense-lessness

As explained in chapter 3 an activity may be bound to one or more components of
the decomposition of the abstract state of an object. The sense operator is a means
of determining if the currently bound partitions are empty. All we can assert after a
sense operation returns with a success (failure) indicated by "ok" ("sorry™) is that a
set of bound partitions is non-empty (empty).

The sense operator is important from an implemen'tatidn standpbint. ‘However the
abstract properties of this operator are not very interesting. A sensé returning suc-
cess indicates that the local partition, in other words, the object component to
which an actmty is bound, was non- empty at the tune of the invocation. A sense
rcturnmg fallure only indicates that the local part1t10n is (or was) empty Absence
of work at a pamtlon does not say anything about absence {or presence ) of work
_globally. An activity may attempt fo acquire a new binding and retry work acqulsl-
tion.

Thus a computation in which sense appears, does not inherently have stronger pro-
- perties than a sense -less computation. It can easily be shown that for every compu-
tation consisting of a set of objects and a set of activities in which sense operations
appear, there exists a sense -less computafion that is equivalent, in that it returns
exactly the same values to every operation invocation and it puts the set of objects
in the same final state. The proof consists of taking a projection of a history includ-
ing sense operations, such that all sense operations are removed. The resulting
computation is a valid sense -less computation, Since sense does not alter the state
of the object, the two computations, namely the original and the projection of it,
must be equivalent. Thus the sense operator is useful only from a performance
standpoint. A computation using index server objects with dynamic bindings is an
example of a work container computation that uses sense. Another example is the
semi-queue bbject implementation discussed below.
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2.3 Implementation of the semi-queue

An interesting implementation is proposed by Weihl [Weihl 84], for an object
called the semi—queue that has the same serial specification as the work container
object. In this scheme recovery is an important issue, thus an item is not deemed to
be enqueued until its corresponding activity has committed. Weih1’s implementa-
tion is roughly as follows. The main object is an array of cells (Fig 2.1), each with
a boolean flag indicating whether the cell is full or empty. There are in addition, a
head and a tail pointer for facilitating dequeueing and enqueueing respectively. A
non-empty cell contains an enqueued value. An insertion consists of atomically
incrementing the tail pointer of the queue, inserting (i.e. updating the cell), and
then setting the flag to full. A deletion consists of two stages, first a search through
the airay from the head towards the tail until a non-empty cell is found or the tail is
reachéd, whichever is earlier. The second phase consists of atomically removing
the available item. (There is a possibility of failure at this stage due to a race condi-
iiori). Resetting the head pointer is done by restructuring processes (garbage collec-
tors) that push back the head pointer past garbage (empty) cells. |

Head Ta'l
- full full - empty

nc ne c
. data data null

¢ - committed

nc - not committed

Fig 2.1. Implementation of the Semi-queue
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Each cell is obviously a partition. All activities have access to all partitions, and a
partition contains at most a single element. Each activity does a sense upon a parti-
tion before issuing a ger. Thus an item acquisition may be regarded as a sequence
'_of sense operations followed by a single ger. If we ignore recovery, this ochct is
~empty only when head and tail pointers coincide.

2.4 Work Container Computations

Work Container Computations are computations that involve activities centered
around work container objects. The major distingnishing feature of such computa-
tions is that they should satisfy consistency constraints as outlined in section 3.4 of
chapter 3. In other words, there are no interactions across work container objects
and no integrity constraints to be preserved across work container objects. All that
is required is that items should not languish [Schwarz ’83] inside work container
objects for ever; in other woi‘ds, an item inserted must eventually be deleted, given
that new insertions are suspended.

2.5 The need for canned type definitions

1t is generally agreed that if an abstract data type (e.g. stack) and its operations (e.g.
pop and push) are supported on two machines (with possibl)} different architec-
© tures), programs using the data t’ype can be easily ported between the machines.
Also, if an abstract data type is available in a library it can be used by mulnple pro-
gTams that are written for the same machme )

- Work container objects should be_ supported on multiple types of parallel machines.
If this is done, parallel programs using canned definitions of such objects can
_.exploit the same two benefits, namely portability and reusability, as sequential pro-
‘grams have exploited by using conventional abstract data types on sequential
- machines. To facilitate the setting up of work container computations we introduce
- canned definitions of work container objects. Such definitions, called work
managers, allow instantiation of these objects at various times depending upon
“when the binding of key parameters of the object takes place. In order to support
work container objects certain auxiliary operations that are transparent to user pro-
grams are nécessary. Foremost among these is the create procedure that pennits
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instantiation and binding of a named wco . Binding of activities to partitions of an
object may be performed at creation time, and may be made to apply to subsets of
activities by the use of extended path expressions (discussed below). As shown in
the schematic in Fig 2.2, user programs contain declarations of work container
objects, which are instantiations of work managers, which in turn contain epes.

User Programs
Work Managers

epes

Fig2.2.
3. Extended path expressions

The notion of a path expression was first proposed by Campbell and Habermann
[Campbcll "74, Habermann *75] who used a simple language of regular expressions
to express. comm_only occurring synchronization patterns. In time path expressions

evolved into a family of languages that were more powerful but required context
free grammars. Some of these proposals are predicate path expressions [Andler
791, open path expressions [Campbell "17], resource expressions [Jayaraman *81],
and open predlcate path express:ons [Headmgton ’85, Oldehoeft *84].

In our work, we have felt the need for a concise notation to express possible inter-
leavings of operations at object partitions or components. Path expressions are an
obvious choice. We associate a path expression with each component of an object
implementation state. In addition to the information specified in the path expres-
sion, we also provide notations for expressing: a) consistency constraints that must
be preserved as invariants by each operation accessing the component, and b)
ranges or sets of activity identifiers such that only invocations made by these
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activities will be allowed access to the component. The overall expression is called
an extended path expression and is explained in more detail below.

3.1 Syntax of extended path expressfons

An extended path expression (abbreviated epe) is an expression in a very high
level language that specifies sequencing, synchronization and consistency con-
straints that must be preserved by operations accessing a component of an object. A
target language is a high level langnage into which an epe is translated. An epe
consists of three portions : a synchronization portion, an activity binding portion,
and a consistency constraints portion. The first of these is a recursively defined list
of sequences, where each element of a sequence called an item, consists of a syn-
chronization part (mandatory) and an optional predicate part. Predicates involve
certain predefined event counters to implement synchronization constraints. These
are invok, or the count of invocations of an operation, perm, the count of permis-
sions granted for a particular operation, ack, the count of acknowledgements
received against the permissions granted, and rep the count of replies sent to callers
or invokers. The activity binding portion of an epe consists of invoker
identifications, or names of activities that are allowed to invoke operations on an
object partition. The consistency constraints allow specification of consistency pro-
perties that must hold at an object component. The syntax Tof epesis gi\fen-bclow.

<epe > = path <synchronization_portion> <invoker_portion>
<consistency_portion> end
<synchronization_portion> ::= <list>
<list> 1= <sequence> | <sequence> , <list>
<sequence> ;= <item > | <item> ; <sequence>
<item> ::= <unsigned-integer>: (<list>)
I{ <list>}
| <itern> [ <predicate> ]
| ( <list>)

t Our notation for expressing the synchronization portion is Headington’s notation
[Headington *85] with the addition of an event counter for replies to invocations. ™
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| <operation-id>
<invoker-portion> ::= <invoker_term> |
<invoker_term> <invoker_portion>
<invoker-term> ::= invoker in <range> ! <set>
<consistency-portion> ::= ccbegin <targ-lang-bool-exp> ccend

(The remaining details of the epe syntax are in Appendix 1).

Some terms in the above syntax need to be explained. Operation identifiers
("operation-id") are the atoms from which synchronization portion of an epe are
created. The "predicate” as mentioned previously, is built up of four event counters
associated with each operation and may involve several operations. It is defined in
the usual way as a linear relational expression,

We assume that each activity (invoker) is given a unique number similar to a sub-
script from an integer valued "range‘;, or that it bears a unique name from a "set" of
predefined names (such as "Bob" and "Mary" in the joint accounts example). Parti-
tioning of a range or a set can be specified by the use of a suitably defined arith-

metic expression or set valued expressions. The phrase "invoker in <range> |

<set>" specifies that if the identification of an accessing activity is in the range
"range” or the set "set", then it may issue operation invocations upon the object
partition. Different object partitions have different ranges and thus different

activity bindings. By separating activities into groups in this manner, accesses to

the object are distributed, and runtime contention is reduced.

The phrase "ccbegin <targ-lang-bool-exp> ccend” specifies that an operation may
access an object component only if it satisfies the consistency constraint specified
by the target language boolean expression. A consistency constraint is an arbitrary
boolean expression on the state of the component preserved by the underlying sys-
tem as an invariant through state changes. These expressions are written in the syn-
tax of the target language, and naturally involve data types and operators in the tar-
get language. The invoker and consistency portions may havc null bodlcs indi-
cated by an astensk and "nil" respectively,
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3.2 Semantics of the synchronization portion

The semantics of the synchronization portion are standard [Hcadington' '85]. The
comma is a separator between elements of a list, Unless ‘otherwise’ constramed
there may be an unrestricted number of concurrent executmns of each expression
that is the element of a list. The restriction operator which is an unsigned 1n_teger k
followed by colon and a list within parcntheses, allows at most k executions of ele-
ments within the parentheses. Thus 20 : (A, B) allows the total number of con-
current executions of A and B to be at most 20. The derestriction operator (chain
braces) allows an unlimited number of concurrent executions of the expressions
within the braces, with the restriction that the number of initiations counted by
_ pérm (the number of permissions of the expression) must be strictly greater than
the number of terminations counted by-ack (the number of terminations of the
expression). As soon as these two counts become equal, no further initiations are
allowed in the current instance of the subpath. For example the expression 1:({R],
W) denotes that at any time either a subpath consisting of a single W operation or
a "burst” of R operatipn's- can be in prbgress. The burst is deemed to have ter-
minated as soon as the event éoﬁ_hté perm and ack are equal. Intefpreting R to
mean readers and W to mean writers, this expression specifies multiple reader, sin-
gle writer mutual exclusion with possible writer starvation. The sequencing opera-
tor, denoted by a semicolon, makes sure that operations (or éxpressions) ‘execute in
sequential order. Thus at any given time it ensures that the number of initiations of
B is at most as much as the number of terminations of A, if A;' B is the ex'pres‘s'ion
being implemented..

3.3 Semantics and correctness of internal histories

An epe history k is a sequence of events at a component that are allowed by the
epe associated with the component. Since epe s allow simultaneous update there
" may be overlapping pairs of internal operations in /. Thus the set of operations in
h is a partially ordered set. Let (Op (h), <) denote the parual order associated with
the set of operations Op (h) mh.

- The semantics of an epe are provided as in [Andler *79] by translating it into an
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equivalent program in the programming language of Dijkstra’s guarded commands,
augmented with cobegin and coend constructs for collateral execution (the ","

operator). Given an inte:rhal history £, and a partiaI order on its operations (Op (),
| <), h is said to obey the extended path expressmn e, if and only if there is a his-
tory of execution of 0perat10ns in C(e), the translation of ¢ into guarded com-

mands, such that the partial order of operations in C(e)is (Op(h), <Hand < c <.

An internal history is correct if each operation in the history individually preserves
the consistency constraints or invariant at each component that appears in the his-
tory. Note that since we have relaxed the atomicity assumption through the intro-
duction of path expressions we no longer have to bind an operation to the set of
components that it accesses. A history must be correct at each component in the
sense that it must satisfy the consistency properties and it must be acceptable by
the epe associated with each component accessed in the history. '

Equivalence of internal and external histories: To obtain an equivalent external

history from an internal history of operations we impdse a total order consistent
with the partial order (topologiéal sort) of operations in the internal history. Since
'we do not know which total order represents the actual scquence of operatlon com-
plenons all possible total orders must produce eqmvalent histories (reordemngs of)
 the externally observed hlstory

4. Work managers and their use

Work managers are data abstraction mechanisms (type definitions) for work con-
tainer objects. A work manager consists of a type definition, instantiations of which
are work container objects. It also supports the creaze operation with the syntax:
< name >.create where name is the identifier associated with the created object.
A created work container object has the operations put, get, init, clear, and sense.
One or more of these operations could have null bodies, i.e., the operations may be
left undefined since they do not have any significance in an application.

In this section, we demonstrate the use of work managers. We first briefly discuss
the style in which our user programs (i.e., programs that use predefined work
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managers) are written. This style of programming ensures that the same instruction
in the same instruction stream of two activities will be directed at different object
partitions. - Next, we present a user program and work manager for a canonical
example. Following this, another example is provided, demonstrating how a task
bag can be set up using a work container object. In our examples, we restrict our-
selves to Pascal as a generic example of Algol like languages, with block structur-
ing and dynamic allocation of memory. In section 5 we discuss implementation
issues in mapping and executing such user programs on parallel machines. We
have not actually implemented work managers and path expressions, thus the
implementation ideas presented here are to be viewed as a feasibility demonstra-
fion, T

4.1 The single program multiple data (SPMD) programming style

A particular style of parallel programming has become quite popular [Darema *85],
[Karp ’87]. The assumption'is that programs written in this style will be run as a

number of parallel threads of execution of the same program. Our current imple-

- ‘mentation of TDFL is also written in this fashion. The program is written in one of
several source languages, such as Fortran, Pascal and C; augmented with some con-
structs that are directives to a preprocessor for generating appropriate code.
Branching based upon values of local or shared variables, enables each thread to
execute a different part of the program asynchronously. We shall adopt this pro-
gramnnng style for the followmg reasons: |

i) It allows us to construct activities as unit executions of the same program

~ These unit executions may be viewed as histories. Each unit execution of an
SPMD program is an activity. Any program variable that is accessible by
more than one activity is an object.

ii) SPMD programs are suited for shared memory'as well as messagc based
architectures (as shown in [Karp 87D.

ili) Objects such as barriers, that have already been dcveloped by others for
SPMD programming, may be used as long as they do not violate the con-
sistency properties of our computations.
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For the remainder of this thesis, we shall use "user program" to stand for a pro-
gram that has been written in the SPMD style and references work managers. The
specific SPMD constructs we have in mind are serial sections and barriers. Bar-
riers have been explained in section 5 of chapter 3. A serial section is a portion of a
program that must be executed by a single activity and must be completed before
any. of the remaining activities may proceed beyond the serial section. Its main use
is in initialization but it is also used for synchronization. In addition user programs
may have wco declarations and operation invocations. Activities may be given
program relative identifications (such as arrays of activity identifiers), and the
actual mapping of these identifications to physical processors is kept transparent
from user programs.

4.2 A canonical example - the Prime Number Solver

- Let us assume we want to find all prime numbers between 1 and maxrnum. One

solution - would be as follows. We introduce a single integer variable called

NextValue , protected by a lock called Lock, that is used to store the value of the

next integer in the range 1, - - -, maxnum. NextValue is accessed and incremented
in mutually exclusive mode by invoking the ‘lock’ operation upon Lock for the
duration of access.

Assﬁming k << r__naxnurri (where k is the number of activities), each activity exe-
cutes the code to determiné if a number is prime. Each activity then follows the
algorithm sketched in Program 4.1, which consists of a simpic non-recursive pro-
cedure, Print_If Prime, to determine by repeated division if a given number is
prime. The program is written in the syntax of Pascal augmented with commands
such as @/ock and @unlock for converting it into an SPMD program.

var NextValue : shared_integer; Lock : shared_lock; (* globals *)
procedure prime; | ' | .
var done : beolean; index ; integer; (* locals *) |
begin '
@serial _
NextValue :=0;
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@end_serial
done := false;

while (not done) do begin

@lock ( Lock );
if ( NextValue > maxnum } then
done := true
else begin
NextValue := NextValue + 1;
index := NextValue; - R
end; '

@unlock { Lock );

if (not done)

then Print_If Prime (index);

end;
end; '
Program 4.1
My M, | - My
subrange y subrange 5 f— ——isubrange 1

Fig 4.1, A linked list of memory cells
for holding different ranges of values.

4.2.1 Solution using an index server bbjéét

It is obvious that program 4.1 does not allow simultaneous update of NextValue .
~Using an index server object, it is possible to simultaneously ‘update NextValue .
We set up a work container objcc't for a set of values from 1 to maxnum . The pri-
mary purpose of this object is to act as a server of indices.from a set (hence the
name index server object). The associated work manager is of predefined type
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index-manager.

We concurrently start a number of activities (nacts), each of which executes the
code to determine if a number is prime. The object implementation state consists of
a circularly linked list of npartitions nodes, each of which contains a value from a
subrange of {1, -+ - , maxnum }. Fig 4.1 demonstraies the circular list for nparti-
tions = 10. Different sets of activities may be bound to different memory cells stat-
ically or dynamically. This has been discussed in section 5 of chapter 3.

Say nacts is larger than and a multiple of mpartitions. Then chunk = ( nacts /
npartitions ) activities could be bound to each component. This is specified by the
subexpression "invoker in ((j - 1) * chunk + 1, j * chunk)", which holds for the j#
partition or component. Consistency constraints are expressed in the syntax of the
target language, which in this case is C. -

The name of the instance of the index server object is iso . As before, each proces-
sor uses a simple non-recursive algorithm to determine if a number is prime. The
computation terminates as soon as a get operation upon iso. returns a null condi-
tion, signified by a flag. Although in this example, the linked list structure has not
been used, it is easy to see how processors can be made to traverse this structure, so
that the binding is not static but dynamic. " |

procedure prime (npartitions, maxnum );
var npartitions, maxnum : integer; (* number of partitions *)
over : boolean; index : integer;
@declare_wco
wco_name  : example_wco, -
work_manager : index_manager;
parameters : npartitions = 10;
.maxnum = 1000;:
@end_wco
@declare_wco
wco_name  : iso;

. work_manager : index_manager;
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@end_wco
begin
@serial
1so.creatc (npartitions, maxnamy;

@end_serial

over := false;
while {not over) do begin
iso.get (index);
over ;= (index = -1);
if (not over) then Print_If Prime (index);
end;

end;
Program 4.2. User Program for finding primes between 1 and maxnum

The object instantiation "example wco " declared in the declaration section of Pro-
gram 4.2 demonstrates how the creation of a wco, and hence activity binding, can
be specified to be performed at load time. Program 4.3 shows the work manager for
iso, called index manager. Note that certain variable bindings are available from
the load time environment. These are myid and nacts. Other variable bindings are
available from the create-time environment. npartitions, maxnum, €tc. are exam-
ples. Creation can be forced at load time, by binding the formal parameters of the
work manager definitions in the definitions themselves. The load time parameter
myid essentially provides the activity with a knowledge of its own identification.
For certain applications, it may be appropriate to provide the activity with other
load time bindings, such as the identifications of neighbouring processors (activi-
ties).

@wm_begin

@name : index_manager;

@formal_parameters : npartitions,
maxnum

@epe : path 1: (get, init, clear ) invoker in (( j - 1) * chunk + 1, j * chunk)
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cchegin lo < hi ccend end

@operations :
procedure put;
begin
end;
" procedure init;
begin
hi :=ichunk * j;
lo := (j-1} * ichunk;

end;

procedure get (var index : integer);

begin
if (lo < hi) then
begin
Io=lo+1;
index :=lo;
end -
else
index := -1;
end;

procedure clear;
begin
lo:= hi;'
end;
procedure sense;
begin
end;
@where
begin

chunk := nacts / npartitions;

ichunk := maxnum / npartitions;

j:=1 .. npartitions;

bl
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end

@wm_end
Program 4.3. Work Manager for iso .

The syntax for work manager definitions is given in Appendix 2. The key points to
note here are:

i)  The flexibility of creating objects at load / runtime.
ii)  The specification of "create-time" parameters in a separate where clause.
iii) Provision of consistency constraints in epes.

iv) Use of the shorthand "j := 1 - - npartitions” to generate patterns of activity
bindings. Linear lists, matrices, arrays e.t.c. can be easily constructed.

4.2.2 The Maze Problem

This example illustrates the use of a mixed binding strategy, using two objects: 2
task bag that is a work container object, and a two dimensional grid, in solving a
problem that is inherently asynchronous. A maze _(shown“ in Fig 4.2) can be
- represented by a two dimensional array of square elements, where ca'ch.ele'ment
has a vector OBS of four booleans indicating whether or not _therc is an obstruction
to the noi*th, south, east and west respectively. The task bag, Pdthpool , 1s imple-
mented in 'su_ch_ a way that the grld elements are bound dynamically at runtime. The
problem is to design an‘algorithm that finds a path from a start elemei_it (x5, ys),toa
finish element (xs, y¢); where the tuple (x;, y;) denotes the element that is x; units
along the horizontal axis and y; units along the vertical axis. In addition to the
boolean vector, we shall assume that each element has a boolean VISITED, signi-
fying whether or not it has been visited, and a lock LOCK, for exclusive access.
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Fig4.2. A maze

OBS is a three dimensional array of booleans, the third being the direction as
described above. On a shared memory machine, the arrays OBS, VISITED and
LOCK are simultaneously updatable objects, if they are simultaneously accessible
by activities running on different processors. ' |

In the course of our algorithm, wbrkpieces that are candidate path segments start-
ing at (xg, ys) are added to and removed from a task bag, Pathpool. Each activity
‘gets a path segment from Pathpool, traverses an element in each direction where
there is no obstruction, and puts the new paths thus generated into Pathpool. Path-
pool is implemented in a similar way as iso in the canonical example presented
earlier, the difference being that Path'p'ool supports both insertions and deletions.
The algorithm for the 'program is shown below (only the essential portions have
been shown). ' o ' '

begin

Pathpool.get (path);
while (not done) do begin

let x, y represent coordinates of last element of path.
if x, y = xr, yr then begin

print path

Pathpool.clear
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. (* this sets done to true *)
exit
end;

b :=false;
lock (LOCK [x,yD);
if not VISITED [x,y] then begin
VISITED [x,y] := true;
b := true;
end;
unlock (LOCK [x,v]);

if b then begin
for each direction d
if not OBS [X, v, d] then

append to path coordinates of ﬁeighbouring element
in direction d, and put new path in Pathpool

end;

end;

end;

Some parts of the problem description, such as the array OBS, are shared by all
activities in read mode; however, elements in the VISITED array are accessed in
exclusive mode. The section of the program that updates VISITED is a critical
section. By assuming a lock for each element we have pushed the problern of lock
contention to a lower level of granulanty than that of an entlrc array
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S. Implementation of work managers and extended path expressions
5.1 The overall schematic

Fig 5.1 shows a schematic of the various phases in the transformation, translation
and execution of a user program. The preprocessor, which like the canned work
managers is language and architecture specific, scans the user program and injects
source code at appropriate places, for work container object creation, operations,
synchronization, consistency constraints, and SPMD constructs.

User
Program
(UP)
rTT T T a re-TT ot o1 |
' Preprocessing! In‘grrmediate ; CO&‘DIE)I].EIEIOH ' IExecution !
! u ogram 1 and Loading 1__1 |
' Loy D e :
Lo J L"_T"_J bomme o 5
Work
Managers Resource
Availability
(RA)

Fig 5.1. Schematic of various phases in the execution of a user program

The intermediate program (IP) is in the source language, and is generated by the
preprocessor following algorithms that are given later in this section. This program
is then compilcd and loaded onto the parallel machine. The parameters nacts and
myid get bound at this point. There are nacts invocations of IP, bearing
identifications from 1 through nacts, and a proportional number of invisible res-
tructuring activities (if needed). The resource availability is a table of free proces-
sors available, possibly accompanied by some indication of how to map activities
onto processors. The most significant task performed during execution, from our
perspective, is creation of partitioned objects. At this time the object is bound to
subsets of activities, according to the specification in the epe portion of each work
manager used by the user program. The algorithm for the Preprocessing phase is



given in Algorithm 5.1. This algorithm calls a procedure to emit code for synchron- .

ization from the epes. This algorithm is presented in Algorithm 5.2.
5.2 The preprocessor

(The'following algorithm is aimed at a target language that supports dynamic
memory allocation. ) ' ' '

Algorithm 5.1,
Scan the user program (UP) from left to nght For each Work container object

| (weo) that has been declared in the var section in UP perform steps [1] through

[9].

[11 If weo is followed by actual .parameters in the deciaratioﬁ itself (see
example_wco in Algorithm 4.2) then '

generate a create call with the name and actuals from the declaration

portion. This call is embedded at the start of the generated IP.
else

~enter wee in list of objects to be (possibly) created at'runt_ir_ne.
[2] Say wco is of type wman . Locate wman in WM. -

[3] Generate a create procedure for objects of type wman as follows T

‘For each create-time-assignment in the create- time- bindings scction of .

wman, if the rh S. is an integer expressmn then gencrate code for the
a881gnment

Otherwise, generate code to evaluate the limits of the range, i.e., the start
and limit. Generate a "for" loop using a new subscript variable. Since nest-
ing of for loops is from left to right, no lookahead is required at this stage.

1 Note: The code generated by this portion of the Preprocessor algorithm will be execut-
ed by only one processor, by means of a serial section. The variable bindings thus gen-
erated at create time will be effective for all activities, throughout the lifetime of the ob- -

" ject. In this algorithm, we have assumed shared memory for storing these variables. In a
message based implementation these bindings mpst be broadcast to ali activides through
send / receive statements, before further execution,
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Generate code to allocate a node for each component of the object imple-
mentation state (defined in section 3.5 of chapter 3) at each execution of the
innermost "for" loop. The nodes are linked sequentially in the order of their
generation ' . '
[4] Generate code for activity bindings as follows:

(* Each activity executes the code generated by this section *)

Generate code to create a list of node pointers called nlist. For each
"invoker in" definition in the epe , generate a nested "for" loo_p structure, as
in [3]. In the innermost loop, generate code to do the following:

Advance in the list of nodes, updating the nodeptr.

Evaluate limits of the range specified in the "invoker in" phrase, using
values of loop parameters from the current iterations. If myid is within the
range, then add nodeptr to nlist.

Note: The code generated by the above section has the capability to per-
form a create time blndmg between an activity and several nodes, based
upon the specifications in the epe .

[5] Generate synchronization code - call Algorithm 5.2

[6] Generate code to check cbnsistency constraints. _

For each node generated, allocate a lock for mutual exclusion. Generate
code to lock the node and evaluate the consistency constraint under mutual
exclusion. Each operation must pass through this check before being
-allowed access to the node. If a constraint spans across more than one node,
then lock each node in the order of their generation. Evaluate the constraint
and release the locks. If the constraint is true then allow the operation. If it
is false, deny the operation by sending back a failure reply. '

[7] Generatc remainin.g work manager pfoCedures as they are in WM. The

11 If other component relations are desired, Lhese must be programmed explicitly by the
programmer (i.e. the work-manager-writer),



procedures are sense, get, put, init and clear.

[8] Generate code for the remaining SPMD constructs (such as locks, barriers etc.)
if such constructs have been used.

[9] Generate code for restructuring operations.
5.3 Synthesis of synchronization code

In this section we present an algorithm for automnatically generating code for an
open predicate path expression, i.e. the synchronization portion of an epe. This
algorithm has been adapted from [Oldehoeft *84] and [Headington ’85] to suit
work managers and user programs written in the SPMD programming style. We
discuss some aspects of the synchronization sub-expressions and their parse trees
below, but for a more detailed account of this topic, the reader is referred to the
above papers.

The synchronization portion of an epe is called an open predicate path expression,
abbreviated oppe. Given an oppe, we can generate a parse tree by any parsing
technique, following the rules of the grammar restricted to oppes. Fig 5.2 shows an
example of such a parse tree for the expression 1 : ( { R } [ invok (W) - perm {W)
=01, W ). This expression denotes multiple reader, single writer synchronization
with writers’ priority. The basic idea behind our parsing and code synthesis algo-
rithm is to generate controllers, or procedures, that implement the synchronization
necessary for each of the four sequencing constructs in path expressions (derestric-
tion or bursts, sequencing, predicates, and restriction). Once the controllers are
generated, they are interconnected by properly placing calls in procedures that
- implement the basic operations. Except for the sequence controller, all other con-
trollers are demonstrated by the example in Fig 5.2. Since we do not provide a full
fledged object specification language, the consistency constraints are written as
boolean expressions in the target language of the path 'expressions. We assume that
an operation will not appear twice within the same path expression. We feel that
this is a reasonable assumption for most synchronization problems (and one made
by most other implementations that we know of). |
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Fig 5.2, Parse tree for 1;:({R]}[invok(W)-perm(W) = 0],
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The predicate specifies writer priority. The left and-right sets of the controller
nodes have been shown as pre and post subscripts. The labels of the controllers are
shown in boxes alongside. The predicate-event-count-set (pecs) operator-set (0s)
{definitions of these are given in Appendix 3) of the predicate controller node are
as follows: pecs(n) = { invok(W) , perm(W) } and os(n) = { R }, where n is the
predicate controller labelled (6,1).

A!goritllm 5.2. Genération of Synchronization Code

Input: The synchromzatlon portion of an epe, called oppe . '
Output Synchromzatmn code to be embedded in the mtermedxate progTarn (IP)
for nnplementanon of access control and synchromzauon at each node

[1] Create the parse tree of the input by any parsing technique. Call this parse tree
T. ‘ s

[2] Let S denote the set of terminal symbols { "{",";",":","]" }. For each internal
node n in T,if n” € S, and »" is the child of n, then » is called a controller node. A
controller node is called a burst, restriction, predicate or a sequence controller
depending on whether it has a "{", ":", "[", ora ";" ;" child, respectively. Label each
“controller node by a pair (d,p), where d is the depth and p is its position from the
left. The labels of the controller nodes ‘in the tree in Fig 5.2 aré shown in boxes
alongside the nodes. For example, the restriction controller is labelled (3,1).

[3] Fmd the left-set and nght—set of each controller node Intu1t1vely, the left-set
~and right-set are the operations that a controller may allow as the very first and
'very Tast operatlons respectlvely, in its current control sequence. For each con-
troller node # in T Is(n) and rs (n) denote the left and right sets of the node Tespec-
uvely Deﬁmuons for the left-set and right-set of parse tree nodes are given in the
‘ Append1x 3. The left and right sets of the controller nodes are shown in Fig 5.2, as
pre and post subscripts of the node concerned. For example, the left-set of the con-
troller labelled (3,1) is { sb, W }. This means that the operations that may execute
first-in the subpath enforced by this controller are the write or a start-burst pseudo-
operation signifying the beginning of a burst of reads.
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- [4] Let n be a predicate controller node. The predicate-event-count-set ‘of a predi-
cate controller node is the set of signals or event counts that are specified- in the
- predicate. The operator-set of a predicate controller node is the the set of operators
in the leaves of the subtree of the parse tree rooted at the node. We shall use
‘pecs(n) and os(n) to denote respectively the predicate-event-count-set and
operator-set of n. pecs(n) can easily be constructed at compile time by scanning
the predicate represented by node n. os (n) can be generated at compile time by
fraversing the parse tree. . - '

{51 For each controller node in T, generate code for the controller accordmg to the
general forms of controllers shown in sectlon 5 4 of this chapter For each con-
troller node in T, we thus have a label and a plece of code which will be embedded
in IP. It remains to be seen how we must connect up these controllers, so that taken
together, they implement the synchronization abstractly specified by the oppe .

[6] This is the Sandwich algorithm for connecting up the controllers. For each leaf
node in T that is an operator, generate a procedure as follows.

1) | Generate code for the access of the data. _

i) Traverse up the parent links of T from the operator towards the root until
either a burst controller or the root node is encountered. Discontinue traversal
at this point and go to the next leaf operator. During the traversal, generate
calls to each controller encountered on the way (these controllers have been

' identified in step [5D. The calls are placed either before, or after, ‘or both
" _ before and after the code accessmg the data, thereby enveloping the accessmg
code in a sandw:ch The calls are generated according to the following rules:
a) Ifa sequence controller is encountered and the operator is in the left-
“set of the controller then generate a call af ter the data access with
parameter ack .

-b) - If a sequence controller is encountered and the operator is in the right-
set of the controller then generate a call bef ore the data access with
parameter invok .
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c)

d)

ii1) For each burst controller identified in step [5], execute step [6],'creating a’

If a restriction controller is encountered and the operator is in the left-
set of the controller, then generate a call before the data access with
parameter invok .

If a restriction controller is encountered and the operator is in the
right-set of the controller, then generate a call afzer the data access
with parameter ack.

If a predicate controller is encountered (then the operator must be in
the operator-set of the controller by the definition of operator-set), then
generate a call before the data access with parameter invok .

If a burst controller is encountered, then generate a call before the data

access with parameter invok, and a call after the data access with
parameter ack. Also, discontinue the traversal at this pdint, since a
burst controller has been reached. ‘ '

sandwich which is embedded in the burst procedure already generated in step

[3].

iv) For each predicate controller, if a signal appears in the predicate-event-
count-set (pecs) of the controller, then deal with it-as follows: '

#

if the signal is invok(X), then generate a call to the predicate controller
from procedure X immediately upon entry.

if the signal is perm(X), then generate a call just before data access. '

if the signal is ack(X), then generate a call just after data access.

if the signal is rep(X), then generate a call just before exit.

5.4 Code templates for controllers

The code templates presented here are for use in conjunction with Algorithm 5.2,

procedure restrict_contid (signal)

begin

if signal.type = ack then
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begin -
nacks_contid := nacks_contid + 1;
if ninvoks_contid - nacks_contid >= k then
begin '
dequeue (contid, id);
awaken (id)
end;
end;
if signal.type = invok then’
begin - '
ninvoks_contid ;= ninveks_contid + 1;

if ninvoks_contid - nacks_contid > k then

begin
enqueune (contid, myid);
sleep (myid)
end; -
end;
end;

The template above is a generic template for a controller that implements a restric-
tion operator, The subpath implemented is "k : ( <list> )", where <list> is an arbi-
trary subpath. The contid field in various identifiers is filled at compile time with
the label of the controller from the parse tree of the oppe. This subpath is depicted
by the node n shown in the Fig 5.3.

<item>

R

k :  (<list>

Fig 5.3. A restriction controller

The event counter invok_contid keeps count of the number of invocations opera-



tions so far. Similarly ack_contid keeps count of the number of acknowledgements
so far. If an access request (operation invocation) is in Is(n) then it is channelized to
the controller for n before access is permitted. Similarly, an acknowledgement of
an operation in rs(n) is channelized to the controller for n gfter access is over. This
channelizing 1s done by the sandwich algorithm,

procedure sequence_contid (signal)
begin
if signal.type = ack then
-begin
nacks_contid := nacks_contid + 1;
if ninvoks_contid >= nacks_contid then .
Begin '
dequeue (contid, id);
awaken (id)
end;
end;
if signal.type = invok then
begin
ninvoks_contid := ninvoks_contid + 1;
if nacks_contid < ninvoks_contid > k then
begin
engueue (contid, myid);
sleep (myid)
end;
end;

end;

This template implements a sequence operator. The subpath irnplcmentéd is
‘<item> ; <seq>", where <item> and <seq> are arbitrary subpaths. The subpath is
shown in the Fig 5.4. U

69



<seq>
15(7 ‘ i(n)
<item> ; <seq>

Fig 5.4. A sequence controller

If an access request (operation invocation) is in 1s(n), which is also the s ( <item>
), then it is channelized to the controller for n before access is permitted. Similarly,
an acknowledgement of an operation in rs(n), which is also Is { <seq> ), where
<seq> is the sibling of <item>, is channelized to the controller for n afier access is
over. As before, the channelization is achieved by the sandwich algorithm.

procedure predicate_contid (signal)
begin
if signal ¢ predicate-event-count-set (contid) then
begin '
increment appropriate event count
evaluate predicate
if predicate is true then
repeat
dequeue (contid, id};
if id <> nil then
awaken (id)
until {id = nil)
end;
if signal £ operator-set {contid) then
begin
evaluate predicate
if predicate fs false then
begin

enqueune (contid, myid);
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sleep (myid)
end;
end;

end;

This template implements a predicate controller. The subpath implemented is
"<pred>". Certain portions of this template have been specified in prose form. The
reason for this is that the code depends upon the exact contents of pecs(n) and
os(n), the predicate-event-count-set and the operator-set, are unknown until com-
pile time. Depending upon the precise nature of these sets, appropriate code is gen-
erated. A hand-executed example shown in Appéndix 4. |

procedure burst_contid (signal)
begin
if signal.type = invok then
begin
* if burst_count_contid = 0 then (*start of new burst” *)

begin’

embedded invocations upon ancestor controllers
following the sandwich algorithm. Note that all the

queueing is internal to the ancestral controllers.

burst_count_contid 1= 1;
end
else (* continuation of old burst *)
burst_count_contid := burst_count_contid + 1;
s 3 . _ -
if signal.type = ack then
begin '

if burst_count_contid = 1then  (*endofaburst  *)
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begin

embedded acknowledgements upon ancestor controllers

following the sandwich algorithm.

burst_count_contid ;= 0;
end _
else (* continuation of a burst *}
burst_count_contid := burst_count_contid - 1;
end;

end;

We deal with a burst controller exactly as an operator with special pseudo events
called start-burst and end-burst, which are used to synchronize events with ances-
tfal controllers. As with the predic_:ate controller, certain portions of the burst con-
troller have been specified in prose form. Invocations upon and acknowledgements
to ancestral controllers are embedded in these portions at compile time. These code
segments cannot be determined earlier, since they depend upon the exact contents
of the subpath expression enclosed in the braces, signifying a burst. The key point
to note in the burst controller is the absence of queueing., Queueing, if necessary,
will take place within ancestral controllers. A "hand-executed” output of algorithm
5.2 for the oppe in Fig 5.2 is shown in Appendix 4.

6. Conclusions

To summarize this chapter, we have defined a class of simultaneously updatable
objects and provided a structuring concept called the work manager, which is use-
ful in setting up a class of computations with relaxed consistency requirements. We
have introduced the notations of extended path expressions to gain additional con-
currency at the level of components of an object. Work managers are suitable for
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inclusion in global libraries on parallel machines, and their synchronization code
can be automatically generated by means of simple algorithms that utilize parse
trees of extended path expressions.
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Chapter 5 - Weak Priority Queues

1. Weakened specifications

Besides partitioning, simultaneous update can also be introduced if we can accom-
modate the use of objects with weakened specifications (at external or internal lev-
els). For example instead of using a strictly FIFO queue, some applications can do
with objects that have weakened serial specifications such as the semi-gueue object
discussed in chapter 4 section 2.3.

The strict priority queue represented by a heap is an inherently serial object in that
there is no scope for simultaneous update in its object implementation states. The
objects of interest to us in this chapter and the next are weak priority queues. These
are simultaneously updatable objects whose serial specification is that of a weak
priority queue in the sense the item returned is not the largest value but one of the
largest values. We address the problem of designing a parallel algorithm in which a
system of concurrent activities simultaneously update such shared priority struc-
tures.

As expected the performance of these objects is much better than that of strict
priority queues. With further weakening at an internal level it is possible to obtain
implementations with more scope for simultaneous update. Depending upon what
degree of weakening is acceptable by an application, different internal representa-
tions and algorithms with different degrees of simultaneity, may be developed.

We present two parallel algorithms for priority structures and prove their correct-
ness. The first structure developed is the concurrent heap (CHEAP), and it is
obtained by weakening the requirements of a regular heap. The weakened condi-
tions are guaranteed by the implementation by means of a coloring scheme that is
intrinsic to the working and proofs of our algoﬁthms. A straightforward derivative
of the concurrent heap is the software banyan (SBAN), which may be thought of as
a forest of overlapping heaps. The internal specification of software banyans is
weaker than that of concurrent heaps. Software baﬁyans follow the same strategy
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for concurrent mutation of the structure as the concurrent heap but the specific -

algorithms for the SBAN are quite different from those of the CHEAP. By specify-
ing a variable percentile level, our speciﬁcations may be made stronger or weaker,
These structures are proposed as possible basic building blocks for implementation
of resource allocation in operating systems.

In the remainder of this section we present the serial specification of the weak
priority queue. In secnon 2 we present sequential heap algorithms and consistency
properties based upon a colormg scheme that is useful in formulatmg the parallel
solution. In sections 3 and 4 the concurrent heap and software banyan algorithms
are developed. We also derive some structural propemes of the software banyan
and characterize its mapping. In section 5 we study and predict the performance of
priority structures using queueing theoretic models. We end with some notes on
related work and potential applications in section 6. '

- 1.1 Serial specification of the weak priority queue -

‘The weakenin g of a priority queue is captured in the notlon of percenule values
Associated with each delete operation is an input argument called the percenrzle
that specifies the relative magnitude of the deleted item required. The smaller the
percentile value the stronger is the specification. Let D be a set of values in the
~domain of a multi-set. Let p denote an integer which represents the percentile level
of a "delete"” request. If a delete is invoked With_a:percenti_le p =1, then the item
returned in response to the invocation must belong in the top one percentile of the
priority queue. _ | o | | |

Sy : The set of all multi-sets of items from domain D .
+{ }, the empty multi-set.

{<<1nsert V,A,x >, <ok NULL A X >,
__<_<d_elete,p,A_,x >,<ok,v,A,x >>, _
<« delete, p,A.,x_;, < sery,.NULL,A_.,x_»
‘wherev,v'eD,1<p <100 and A g AC }

T, (s, < insert,v,A,x >, < ok, NULL,A,x )=
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S iup (vIif( v e D )where \_s denotes bag union

Tx(s',<<delete,p.,A,x >, <o, v,A,x >»)=
s = (V)if(vies Aa="ok"Al{ y:yes
Ay>v' Yl <p*lsi)
sif (o ="sorry" As ={}) '
‘where —; denotes bag difference

A weak priority queue is similar to a bag in that the exact order of arrival is not
maintained. It is different from a bag in that a guarantee is made about the relative
magmtude of a deleted item.

1.2 Slmphfymg assumptlon

For the remaining sections of this chapter we assume (for hlstoncal reasons) that
delete requests arrive with a wzldcard specification which leaves the percentile
level unspecified (null). This is for convenience in implementation. We outline (in
section 3.5. 1) a trivial alteraUOn of our algorithms that makes it possible to accom-
modate non- nulI percenules

2 . The heap as a strict priority structure

A priority queue is a "largest-in-first-out” data structure. The most widely used
implementation of priority queues is with a heap data structure [AHU °74], i.e. a
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complete k—ary tree of depth d, with the property that the data at any node is riot |

less than, in priority order, the data in each of its children. This property.is known
as the heap property.

If we use the array representation of a k—ary tree, the root occupies array element
1, and the children of the node at array element i, (for convenience called node i ),
occupying array elements k* ({—1) +2, ..., &% + 1. The most studied special case
of this is the binary heap, with £#=2. In this case the children of node i are nodes 2i
and 2i+1, and the parent of node i is node i div 2. Let the nodes of the heap PQ
be in array elements 1,...,N, where N is the last element in the bottom of the
heap i.e. all elements to its right and below it are empty (Fig 2.1). Each node



contains three fields: a data field, a color field and a lock field. The data field con-
tains a value from a linearly ordered set. Two nodes may have the same value in
the data field. The color field may be "red", "blue" or "yellow". The lock field of a
node is used for obtaining writer exclusion to a node. Only.one activity may lock a
node at a time. Once an activity locks a node, then and only then, it may modify
the data and color fields of the node. '

Fig 2.1. A Heap and its representation _
The contents of the data, color and lock fields of a node in the i array element,
are denoted by PQ[i]l.data, PQ[i}.color and PQli]l.lock respectively. We shall
assume that there is a value called a null value (denoted by null), that is smaller
than any of the possible values in the data field. We shall sometimes use PQfi] to
refer to the data field of the i element of PQ, when it is obvious by the context
that we are discussing the data field.

2.1 The sequential heap algorithms

. We present the sequential heap insertion and deletion algorithms formulated in a
_recursive fashion.

(* Delete checks that there is at least one item *)
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procedure Delete (item) C procedure Insert (v)
begin . - ¢ : " begin '
if (N =0) then item := null ‘ N:i=N+1;

*else begin ' T PQ [N].data:=v; -

item := PQ [1].data; PushUp (N);

PQ [1].data := PQ [N].data; end;

N=N-1; _

PushDown (1}; procedure PushUp (n)
end: ' Eegin _
end; if (n > 1) begin

o ' p:=ndiv2;
if (PQ [p].data < PQ [n].data) begin
procedure PushDown (n) Swap (p,n); '
begin PushUp (p);
if(n*2<N)begin end;
Let Max be larger child of n end;
if PQ [n].data < PQ [Max].data) begin end:
' Swap (n, Max);
PushDown (Max);
"~ end;
-énd;

end;

- 2.2 Requirements for Correctness

The serial algorithms are correct if they always preserve consistency of the heap
structure, and if every delete operation returns the largest item in the heap. We
shall call these two properties the heap consistency (HC) and delete consistency
(DC) properties, respectively. As said earlier, the heap property is preserved by a
node if it is greater than or equal to its children. We cannot expect the heap pro-
perty to hold at all nodes during an insert or a delete. We therefore stipulate the fol-
lowing correctness properties. ' o
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HC: The heap property is always satisfied at each node except for those holding
items that are being inserted or deleted. For any such exception, the heap property
holds between its parent and its children. - -

DC: A deletion operation always returns the highest value in PQ.
2.3 Introduction of colors

To be able to state HC and DC more precisely, we im:rodﬁce a co‘Ioring' scheme as
follows. Initially, all elements in the array PQ are colored blue (to indicate that
they satisfy the heap pr0perty) and are assigned the null value. The insertion algo-
rithm colors the new item red and inserts it in the first available empty node, i.e. a
node that contains a null value. It then pushes up the red value recursively. The
deletion algorithm plcks up the first non-null blue value (pointed to by N), colors
~ this value yellow , puts it inthe root node and pushes it down the tree recursively. A
yellow value stops when it is-larger than both its children, or it is in the bottom
level. A red value stops when its parent is larger than itself, or it is in the root node.
When a value stops, it turns blue. Note that the coloring scheme does not materi-
ally alter the flow of control of the programs, it merely makes assertions easier to
specify. The serial HC and DC properties are given below:

First we must define a few predicates.
blue (x) E'PQ [x'].colo_r' = blue

gib(xy)=PQIylcolor =blue - PQ{x12PQ[y] -

This is the greater if blue predicate. It states that if the color of a child of x is blue,
then the value at x is lafger than the '\_r“al'ue at the child. Note, that the color of x is
unspecified. | o |

hx)=[2x €N - gib(x,2x)]1 A

[2x+1 €N — gib(x2x+1)]-
Th1s is the heap property. It states that the value at x is larger than the valucs in its
blue children. : '

gh(xyz)=1<x <N A[1<y <N —>7_:PQ [x]2PQ [y]]
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AllL£z<N - PO [x]12PQ [2]].
This is the generalized heap property. It is similar to the heap property except that
X,y and z need not be related as parent and children.

allblue =%k : 1<k <N ;: PQ [k].color =blue

abx(x)=Yk 1<k <N Ak = x :PQ lkl.color =blue
This is the all blue except property It states that all nodes in the heap except for X
are blue

SHC: (Serial Heap Consistency)

(N20A¥k : 1<k<N :blue k) - h (k) |
Ak -2<k‘<N ﬂbfue (k) — gh (k div 2,2k, 2k+1)}

If a node in the heap is blue, then it satisfies the heap property. If it is not blue, then
- its parent, (if it exists), satisfies the generalized heap property with respect to its
children.

SDC: (Serial Delete Consistency)
Wk 1<k <N :blue (k) — item 2 PQ [k] at the termination of a delete.

The termination of a delete is the point when control returns to the calling program
that had invoked the delete operation upon the priority queune. The Serial Delete
Consistency property claims that at the time of termination, the value returned in
the variable item, is the largest value in the heap.

For convenience in proving correctness, the PushDown and PushUp routines may
be made iterative and incorporated inside the body of the Delete and Insert routines
respectively. The revised algorithms are given below. Note that the Swap'routine is
assumed to swap both color and value fields. The proofs these serial algorithms
(i.e. proofs of SHC and SDC) are straightforward, and omitted from this thesis.

procedure Delete (item) procedure Insert (item)
begin begin
fN=0item=mll- =~ N=N+1
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else begin

item := PQ[1].data;

"PQ[11.color := "yellow";
PQ[1].data := PQ[N).data;
N:=N-1; .

Cxi=1 _
while A (x ) do begin
if gh (2x,x, 2x+1) begin

Ic:= 2x;
SC 1= 2x+1 ;.
end; .
lsc begin
lc :=2x+1;
- sc=2x;
end; .
swap (PQ[x], PQ[lc]);
x:=lc;
end;
| end;

PQIx].color := "blue”; .

end;
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PQ[N].color := "red";
PQ[N].data := item;

“pr=xdiv 2;

while (PQ[p].data < PQ[x].data) do begin
swap (PQIp], PQIx]);
X:=p;
p:=pdiv2

end; .

PQ[x].color := "blue";

end;

3. D_efelopment of the concurrent heap algdrithm

The only component in the decomposition of the heap is the entire PQ array, since

this array cannot be simultaneously lipdated. Any attempt to remove this require-
ment will result in a structure that is not a strict priority structure in the sense that
' the item returned by a delete may not be the largest values in the heap. Let us

assume that we have an application that can tolerate the use of a weakened priority

structure in that it does not matter if the value returned by a delete is not the highest

value as long as some guarantee can be made about its relative magnitude. With

this relaxed specification we decompose the heap array into its individual com-



ponents (array elements) and design a parallel algorithm to maintain this structure
(called a concurrent heap or CHEAP) concurrently. The development is outlined
below. First we state a fundamental lemma about deadlock avoidance. Sometimes

(when it is clear from the context) we shall use node or component to mean the
| component value function (Cval ) associated with a given cornponént.

LetO={01,02 ...,0, } be a set of n shared components, each of which can be
locked in writer exclusive mode, and A={a,,a4,...,a; } be a set of k activities
that have access to the components in O. We say that the activities are deadlocked

if there are & < n components, which we shall call 0jsOjgy - - -, 0j, Such that ¥

i :15i 5k, activity a; has locked component ¢;, and is waiting to lock o s and
activity a; has locked component o, and is waiting to lock component o .

Lemma 4.1.: Let O be an ordered set of components, {01,02,...,0,}, each of
which can be locked with a writer exclusive lock. Then, given a set of activities,
each of which locks and unlocks subsets of O in the order that they appear in A,
with no lock following an unlock in a given activity, these activities are free from
deadlock.

Proof : Let us assume that there are m deadlocked activities a1, as, . ..,an such
that activity @; has currently locked the set of component §; and is waiting for a
component from set S mod m +1) + 1 £i <m. Without loss of generality, assume
that set S, has the smallest component among all these sets. Since activity g is
deadlocked, all the elements in S; must be ordered less than some element in §'5.
Let Co be that element. Sirriilarly, since po is 'deadlockéd, all the elements in S,
must be ordered less than some element, say C'3, in S 3. Carrying on this argument,
- all the elements in S,, must be ordered less than some element, Cy in S;. This
gives us a cycle of elements C; : 1 £ <m such that each element is ordered less
than its successor in the cycle, and C,, is ordered less than C;. This is impossible
from the manner in which set O was constructed. ‘Thus, by contradiction, there
cannot be a deadlocked set of activities.

3.1 The parallel algorithm
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. 3.1.1 The Work Queue

. An auxiliary data structure called a Work Queue (WQ) is need by the algorithm.
_ This work queue consists of an array of work nodes' 1. Each work node contains
~ two fields; an index field and a color field. The index field contains a natural
| number, répresenting an index (a pointer) into the Priority Queue; the color field
may be "red” or "yellow". For the rest of this thesis we shall assume that activities
can invoke the operations enqueue and dequeue upon the Work Queue. In other
- words we shall not specify the exact behaviour of these operations as they are fairly
standard.

' 3.1.2 Concurrent manipulation of the heap

Three types of operations simultaneously mutate the data structures. These are the
Insertion, Deletion and Restructuring operations. Insertion is the operation of
adding a data value to the heap. Deletion is the operation of removing the highest
priority value from the heap. Restructuring is the operation of interchanging the
values of a group of heap nodes when these values are observed to be violating the
heap property. -

The interpretation of the sequential heap algorithms using colored values, provides

the intuition for the invariant for the concurrent priority structure. Red and yellow

values may violate the heap property, but a blue value must satisfy this property
with respect to all other blue values that appear in the subtree Tooted at the node in
which it appears. Our algorithms are guided by this. invariant. In particular, the
algorithms make atomic changes to groups of nodes, all of which are locked, to
guarantee freedom from interference. Each atomic change moves the priority struc-
ture closer to a heap structure with all values colored blue. To avoid deadlock, we
make sure that the variables and the nodes in the tree are always locked in a
specific linear order, and thereby exploit the above lemma.  Specifically N is
ordered (and locked) before the elements of the PQ array, and the ordering among
the array elements is given by the natural ordering of their indices.

11 The term work is used in the same sense as in the work container objects of chapter 4
section 2.
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3.1.3 A naive approach

Our first attempt at making the sequential algorithms parallel is one in which the
- activity performing the insertion and deletion are also the ones that restructure the
heap. An inserting (deleting) activity will have to prevent access to the inserted
~ (substituted) red (yellow) value until this value has become blue. By locking a
group of nodes consisting of a parent node and its children, updating the contents
~ of these nodes in an appropriate manner, and then releasing the locks, we can
guarantee that the heap property is preserved with each update of heap nodes.
Also, since modifications can only occur when the appropriate nodes are locked, an
activity cannot "see" the incomplete results of another activity. However, since
decisions may be taken only with respect to blue values, this apprdach may lead to
livelock. We take livelock to mean a situation when a set of activities are able to
lock protected data, but are unable to do any useful computation, (i.e. make pro-
gress), once they do so, because of semantic constraints on the data. Consider the
case of the data in Fig 3.1. The steps in an execution sequence may appear as
below. Note that PQ[k] = V, means that the k* element of PQ is assigned the
value V and the color ¢. Some intermediate steps have been omitted for clarity.

Step. - a, : ar
1. Insert (99)

2. - - PQI6]=99;

3. . PushUp (6, "red")

4, Swap (99, 465)

5 . PushUp (3, "red")

6. : : delete (item)
7. item = 54

8. PQ [1] =46y
9.

PushDown (1, "yellow™) -
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EVant

Before step 6 . : After step 9

Flg 3.1. States showmg developmcnt of llvelock

By our naive algonthm a1 (charged with mscrtmg and pushing up 99z ) must wait
until the parent of the node containing 99R turns blue, repeatedly locking and
| unlocking the two nodes mvolved Slmllarly, as (chargcd with deleting an item
and pushing down 46y), must wait until both the children of the node containing
46y become blue. Both @ and a, continuously encounter a value that is not blue
. (see Fig 3.1). Thus neither can make progress.

In general, say A, a parent node contains a yellow value being pushed down by
activity a,, and B, a child node of A, contains a red value being pushed up by
activity a . Naturally, both a; and a cannot wait indefinitely for the appropriate
child / parent node to become blue, since this will amount to livelock. We will
hav,e'to devise a protocol, whereby in such a situation, a given activity "wins",
Without loss of generality, let us assume that a; has precedence over a,. Let us
also assume that for this particular example, the red value is greater than the yellow
value, and both are greater than the sibling (or the siblings in case k >2) of the red
value. Thus the red and yellow values should be swapped. If this swap were carried
out, a ; returning later, would discover that B no longer contained a red value, or to
" be precise, B no longer containéd the red value that it (a2) was charged with
"pushing up". Furthermore, there would be no way for a5 to know where its red
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value was, without some mode of communication between a; and a ;. This is unac-
ceptable to us, since we do not wish to add to the complexity of the system, by
adding communications channels between all pairs of potentially inserting and
deleting activities.

3.1.4 A better algorithm

Inserting and deleting should be delinked from restructuring. Restructuring should
be performed by several "maintenance activities” that concurrently manipulate
(update) the hc'ap.' We regard the propagation of a red / yellow value by a single
level, as a single unit of work. Units of work are contained in another object called
the Work Queue, defined earlier. Items of WQ are tuples of the form (a,b) where a
is an index into'PQ and & is a color. The work represented by a tuple is as follows.
i b is "red", then try to push up the red value at the ¢ node of PQ up by one
level, if it can be; if b is "yellow then fry to push down the yellow value at a by
one level. Pushmg a node up by a level means that the contents (value and color

fields) of it and its parent nodes are swapped Similarly pushmg down by a level .

entalls a swap of a parent node with one of its chlldren
3.2 In_formal discussion of the concurrent activities

The concurrent heap system has one or more activities that may perform deletion
~and insertion and one or more activities that do only restructuring,

An insert proceeds as follows. ‘Under mutual exclusion, N is incremented thus
yielding a new array élé:ment, which is filled with the new item and colored "red".
Then a restructuring Workpiccé,”i.e. a pair of the form (i, "red"), where i is the
array index, is enqueued in the work queue, WQ. The insérting activity exits the
system at this point. The window of an insertion, i.e. the resources that an activity
- must possess in ordcr to preserve cons1stency during an insert consists of N and PQ
[N+1] '

A delete proceeds as follows. Under mutual exclusion, the topmost element of the
heap is examined to check if its color is non-yellow. If it is yeliow, the delete
~activity releases its lock, thereby allowing some other activity to mutate the node.
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In case the topmost element is non-yellow; delete removes this element, and puts in
its place, the N* element in the heap, regardless of the color of this element. It
colors this element yellow, and enqueues a restructuring workpiece of the form (1,
"yellow") in WQ. The deleting activity exits at this point. The window of a deletion
consists of N, PQ [1] and PQ [N]. Upon deletion, the N is decremented after setting
the deleted element to null.

A restructuring activity continuously removes workpieces from WQ and attempts
to carry out the restructuring indicated by these workpieces. The window of res-

tructuring depends on whether it is an insert restructuring operation (Fig 3.2a) or..

delete restructuring operation (Fig 3.2b). Essentially, restructuring consists of
attempting to establish ‘the heap property. Fig 3.3 illustrates an exhaustive
enumeration of the possible restructuring scenarios.

Ttem being pushed up

Fig 3.2a. Window of an insert restructuring operation. Restructuring workpiece is (i,red).
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Item being pushed down

Vi 2 V2 ' v < v,
Cases 1 through 6 are for Insert restructuring operations. v, and vy denote the

values of the parent and child nodes respectively. v 3 denotes the value of the other
child (that is not examined by the inserting activity).
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vi2vy ' V1< vy
Cases 7 throuoh 16 are for delete restructunng operatlons Of these cases 7

through 12 are for those cases in which the smaller child is not yellow Note le
| and sc denote larger chzld and smaller chzld respectlvely

S vrzvy vi<vs vy 2, ) v1<v2

Cases 13 and 14 are for the case where the larger ch11d is not yeIlow and the
smaller child is yellow. v3 denotes the value of the smaller'child. Cases 15 and 16

" - are for the cases where both chlldren are yellow.

_' F1g 33 Exhausnve list of _cases w1th1n the Restructurin_gjactivity. .
- 3.2.1 Cases 1 through 6-of restructurmg

The program statements correspondmg to the cases in Fxg 33 appear in procedures
PushUp and PushDown, called by procedure Restructure (see algorithm below).
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PushUp consists of the first six cases. These apply to an upward bound red value.
The value in a red child may be ordered greater than or less than the value in its
parent, which itself may be red, blue or yellow. There are three scenarios where
progress may be temporarily stalled. When a red child being pushed up is smaller
than a red parent, no progress is possible. Similarly when a yollow parent being
pushed down is larger than a yellow (larger) child, no progress is possible. Finally,
if a red child is larger than a yellow parent, the child and parent may be swapped
only if the sibling of the child is not yellow. In case the sibling is yellow, it is pos-
sible that a larger blue value is lurking underneath this sibling, and thus the swap
should not be carried out. Additional sub-cases are possible, (for example if the
sibling is larger or smaller etc.), but rather than provide for these sub-cases in the
PushUp routines, we prefer to deal with them in the PushDown routines. Thus, in
the interest of simplicity, we do nothing if, during insert, a red child is observed to
be greater than a yellow parent. In other words, in case of the above kind of
COIlﬁlC'[ PushDown has precedcnce over PushUp. The decision may seem a little
arbitrary, but after rcpeated attempts th1s seems the most "natural* chmce We
claim that this will lead to neither deadlock nor starvation (see proofs in appendlx)

3.1.2 Cases 7 through 16 of restructuring

The first six cases (7 through. 12), in PushDown, have to do with relationships
between a yellow parent and its larger child, given that the other (i.e. smaller) child
is non-yellow. The remaining four cases (13 through 16), have to do with the case
that the smaller child is yellow. There are four possible cases, depending on
whether the 1arger chﬂd is yellow or non-yellow.

We reiterate that the cntlcal point in the restructuring algorithm is that we can say
nothing at all, about the descendants of a yellow value. The invariant PHC (stated
later), mentions only ancestors of yellow values. Thus in our algorithms we must
be very careful not to swap a non-yellow child with a yellow paieﬁ't when siblings
of the non-yellow child are yellow. If k, the arity of the tree is.larger than 2, such a
swap is permissible only when none of the 31b11ngs of the ch11d node are yellow
The parallel al gorxthms are gwen beIow : ‘
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3.3 Additional notations

We use = to denote multiple assignment and A to denote boolean conjunction. We
also assume that LAST denotes the lock for the memory location that contains the
index of the last element of PQ. Unless otherwise specified p denotes the index
of a parent node and ¢ denotes the index of a child node. red(p) stands for the
predicate (PQ[p].color = "red"). Similarly with blue(p) and yellow(p). Swap(c,p)

is shorthand for PQ[c].data, PQ[c].color, PQ{p].data, PQ[p].color, = PQ[p].data,

PQ[pl.color, PQfc].data, PQlc].color; (p>c) is shorthand for the predicate -

(PQ[pl.data > PQ[c].data), similarly (p<c) is shorthand for the predicate
(PQ[pl.data < PQ[c].data). For simplicity we assume that there are no duplicate
values. predicate — begin statements end; is shorthand for: if "predicate” is true
then perform "statements”. We assume that the procedure will be exited immedi-
ately after the performance of "statements”. @Lock (arg list) and @UnLock
(arg_list) are shorthand for the corresponding lock and unlock commands for each
element of the argument list, in the order that they appear in the argumcm list.

Please note that the Work Queue must be locked and updated atomically for each
Enqueue and Dequeue operation. The corresponding lock and unlock instructions
are assumed to be inside the routines Enqueue and Dequeue. We omit definitions
and declarations where obvious. - '
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procedure Delete (ilem)
begin
filter (item); (* filter out the trivial cases *)
if (item <> nuil) begin (* at least one ilem *)
if (item = undefined) begin (* at least two ilems *)
item ;= PQ [1].data;
PQ [1].color, PQ [1].data, PQ [N].data, PQ [Nl.color, N
= "yellow", PQ [N].data, null, "blue", N-1;
@UnLock (LAST, PQ [1].lock, PQ [N+1].lock);
EnQueune (WQ, (1, "yellow"));
-end; '
print {"the item dequeued from the heap is", item);
end;
~ ¢lse begin
print ("there are no items in the heap"); -
end; '

end;

procedure Insert (ilem)
.begin '
(* put item in first available null node and color it red *)
@Lock (LAST, PQ [N+1].lock);
begin
N, PQ [N + 1].data, PQ [N + 1].color
=EN+ 1, item, "red";
end;
@UnLock (ILAST, PQ [N].lock);
EnQuene (WQ, (N, "red™));
print ( item, "has been enguened in the heap™);

end;
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procedure filter (item) (* check the trivial cases *)
begin
done := false;
item ;= undefined;
repeat begin
@Lock (LAST); (* check if there are no items *)
if (N < 1) begin
item := null;
@UnLock (LAST);
done := true;
end;
elseif (N = 1) begin (* check if exactly one item *)
@ZLock (PQ [1].lock);
item :=PQ [1].data;
N:=0;
@UnLock (LAST, PQ [1].1ock);
done := true; '
end;
else  begin (* two or more ilems *)
@Lock (PQ [1]Jock, PQ [N].lock);
if (PQ [1].color < "yellow")
begin done := true; end; . |
else begin (* try once more *) _
@UnLock (LAST, PQ [1].lock, PQ [N]Jock);
end;
end;
end;
until (done);

end;
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procedure Restructure
begin
repeat forever
begin DeQuene (WQ, (a, b));
if (b = "rcd") begin
p := parent (a);
@Lock (p, a);
PushUp (a);
@UnLock (p, a);
end;
else begin (* b is "yellow" *)
@Lock (a, Ichild(a), rchild(a));
PushDown (a);
@UnLock (a, Ichild(a), rchild(a));
end;
end;

end;

procedure PushUp (c);
begin
p := parent(c);
if (p = 0) PQ [c].color := blue; exit; (* must be the root *)
not (red(c)) — begin (* exit this procedure *) end;
blue(p) A (p=2¢) ~> begin PQ[c].color := blue; end:
blue) A (p<c) — begin Swap (p.c);

EnQueue (WQ, (p, "red")); end;
red(p) A (p=c¢) — begin EnQueue (WQ, (c, "red™); end;
red(p) A (p<c) — begin Swap (p,c);

EnQueue (WQ, (c, "red™); end;
yellow(p) A (p = ¢) —> begin PQ[c].color := blue; end; : ) o -
yellow(p) A (p <¢) — begin EnQueue (WQ, (c, "red™); end;

end;



procedure PushDown (p});
begin ' '
Let Larger and Smaller be the indices
of the larger and smaller children of p
- yellow(p) — begin exit this procedure end;
- yellow (Smaller) A red(Larger) A (p 2= Larger) — begm PQ[Larger] color := blue,
PQ(p].color := blue; end; ‘ '
— yellow (Smaller) A red(Larger) A (p < Larger) — begin Swap (p,Larger);
EnQueue (WQ, (Larger, "yeliow"));
EnQueue (WQ, (p, "red™)); end;
— yellow (Smaller) A yellow(Larger) A (p = Larger) — ‘begin
' EnQueue (WQ, (p, "yellow™); end;
— yellow (Smaller) A yellow(Larger) A (p < Larger) — begin Swap (p, Larger);
EnQueue (WQ, (p, "yellow™)); end;
— yellow (Smaller) A blue(Larger) A (p = Larger) — begin PQ[p].color := blue
PQ [Smaller].color := "blue"; end: '
— yellow (Smaller) A blue(Larger) A (p < Larger) ‘— begin Swap (p,Larger);
EnQueue (WQ, (Larger, '-'yellow':‘));_
PQ [Smaller].color := "blue"; end;
yellow (Smaller) A — yellow(Larger) A (p = Larger) — begin
EnQueue (WQ, (p, "yellow™)); end;
yellow (Smaller) A — ye]low(Larger) A (p <Larger) = begin Swap (p, Smaller)
" EnQueue (WQ, (p, "yellow™); end;
yellow (Smaller) A yellow(Larger) A (p 2 Larger) = begin -
EnQueue (WQ, (p, "yellow")'); end;
yellow (Smaller) A yellow(Larger) A (p < Larger) = begin Swap (p,Smaller);
| . . EnQueue (WQ, (p, "yellow™); end;

~ end;

To take care of the trivial cases, Delete calls a filter procedure. When control
returns to Delete, if item is still undefined, i.e. not null and not a legitimate value,
then there must have been at least two items in the heap. In this case, both the 1
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and N* elements of the heap are locked and returned if and only if the 15 node is
non-yellow. (If the 1 element is "red"” then it can be considered "blue").

3.4 Definitions for correctness

A concurrent priority system consists of a priority queue, a work queune, and a finite
number of activities that have access to both, and simultaneously carry out Inser-
tion, Deletion and Restructuring.

A concurrent priority system is correct if it satisfies the following properties:

PHC (Parallel Heap Consistency): The heap property is preserved at all times at all
nodes except those at which an insert / delete restructuring operation is currently in
progress. For any such exception x, the heap property holds between all ancestors
and all descendants of x that are not exceptions.

PDC (Parallel Delete Consistency): A deletion operation always returns the highest
value in the priority queue, from among those nodes where an insert / delete res-
* tructuring operation is not currently in progress.

To these two we add the following two requirements, that only apply to parallel
systems. '

DA (Deadlock Avoidance): The system is free from deadlock. This directly fol-
lows from Lemma 4.1, and the fact that there is an implicit ordering (i.e. the vari-
able N followed by the elements of the array PQ ordered from 1 to N), among the
set of globally shared variables (objects). Subsets of these variables called “win-
dows’ are accessed strictly in this order. '

SA (Starvation Avoidance): The system is free from starvation, if we assume a fair
scheduling policy. '

If a deleting activity is never able to return an item from the heap in spite of the
heap being non-empty, then we say that the deleting activity starves. Qur delete
algorithm is not strictly starvation free. For instance, one can imagine a system in
which a given deleter is always beaten to the root node by another deleter, and thus
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persistently gets to see a yellow value at the root node. The fair Scheduling policy
assumption states that a deleting activity will eventually be able to access a blue
node at the root given that structure remains non-empty.

EP (Eventual Progress): The system never enters a state in which values in those
‘nodes of the heap where an insert / delete restructuring: operation is currently in
progress; are permanently unable to make such progress. Every state the system

enters, is one from which progress is possible.
We make the following assumptions.

Al: PHC and PDC are initially true. This axiom is easily established by suitably
initializing the data structure and associated variables.

A2: The work queue (WQ) access and update algorithms are correct.

We define correctness as the préservation of the above five properties. Only two of
these properties need to be proved. PDC is a direct consequence of PHC. DA
directly follows from Lemma 4.1 and the ordering of resources (program variables)
followed by all our parallel algorithms. SA is obvious by its construction and could
have been stated as an axiom. In what follows, we rigorously state PHC. The
detailed proof of PHC and EP are given in Appendix 5.

PHC =+%i,j : 1<i<j<N:
ancestor (i,j) A blue(i) A blue(j) — PQ [i12PQ [j]

where ancestor(i,j) =dn: 1<n S_loggN s jdiv2r=j

is preserved by the set of activities on the heap We shall do thlS by first provmg a
strongcr assertion

_ PHC i, j: 1 <i < j <N :ancestor(i,j).
A =yellow(i)
A —red(j) = PQ [i]12PQ [j1

is preserved by the set of activities. In other words, all red and blue nodes are
ordered above their yellow and blue descendants, where "above" and "below" mean
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2 and < respectively. The detailed proofs are in Appendix 5.
3.5 Object implementation state for the concurrent heap

Given a state 5 of the CI-IE‘.'AP, we outline vaﬁous functions that describe the ¢is of
5. Let D denote the domain of possible values in a heap node (for example D could
be the set of pairs consisting of a priority value and a capability to a system object).

" Dec (s)= {'cl,lcz, CN )

Cval (<c1,€2, " L, CN>)=<F1, T "IN >
suchthatr; eD:1<i<N.

- Decl(< Cval (cy), Cval (c9), -, Cval (c&)>)=<r1,"r'2, e Iy > =S

Crel ={ Parent(i)=i1/2:2<i <N,
Left_child@) =2*i:1<i<N/2,
- Right_child@) =2*i+1:1<i<N/2}

- Window (A, Insert) = { cy )
. Window (A, Delete)={cq,cy }
Window (R, PushUp, i} = { ¢;, Cparent (i) }
Window (R, PushDown, i) = { ¢;, CLeft child (i) CRight_child () }
where R, A € AC (R is arestructuring activity and A is a user activity.)

3.5.1 Incorporating non-null percentiles

The algorithms presented above for the concurrent heap assume that the percentile
parameter is null. These algorithms may be easily modified for non-null percentiles

as follows. A count of red values is maintained. This count is atomically incre-
mented with every insert and decremented every time a red value changes color.
Thus at any given time the total number of red values inside the structure is known.
This gives us a means for obtaining the maximum possible percentile level a delet-
able value in the root node, such that even if all the red nodes were larger than this
value, it would still be in the top p percentile.
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4. The Banyan as a simultaneously updatable data structure.

The heap algorithms can be extended to ‘more géncral directed aéyclic graphs
(DAGs). A software banyan (SBAN) is a regular multilayered DAG structure
[Goke 73], excellently aidaptabie t0 a concurrent priorify'structufé; More_ihterest-
ingly, such a structure affords removal (deletion) at a spectrum of percentile levels
at an associated spectrum of costs. Figs 43.1-433showa number.of reghlar-SW
banyans (see Appéndix 6 for definitions). Henceforth we shall use the term banyan
to refer to software banyans.
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‘Figs 4.3.1 - 4.3.3 Scaling between different sizes of a banyan with spread (s) = 2,
fanout (f ) =3 '



4.1. Algorithms for the Software Banyan (SBAN) and their correctness proofs

Insertion into a banyan is achieved identically to insertion in the concurrent heap.
Deletion too is done i in an identical fashion, except for the fact that more than one

apex nodes may need to be examined before the final dequeue operation takes _

placcT._ The restructuring algorithm for the SBAN is different from the correspond-
ing algorithm for the CHEAP, because of the presence of several parent nodes for
each child. The al gorithm makes use of the notion of a restructuring window.

Given a restructuring workpiece (7,¢) with color ¢ at index i, if it is an insert
(delete) restructuring workpiece, then the restructuring window for the workpiece
is defined to be the set of nodes consisting of the siblings of i along with all parents
(children) of i.

A restructuring window may be regarded as two sets of array elements or nodes,
S1and S (see Fig 4.1), whose structural properties are such that every node in § 1
covers every node in §. Also, IS ] = s, the spread of the banyan, and IS5l = f, the
Janout of the banyan. As with the CHEARP, the critical idea behind restructuring is
the maintenance of the invariant PHC' presented earlier. Once a restructuring win-
dow has been locked for prevention of interference, the state of the window may be
in one of three poss1blc classes

2) S has a yellow node and S ; has a yellow node (Fig 4.2).
b) §1 has no yellow node (Fig 4.2b).
¢) S has a yellow node and § ; has no yellow node (Fig 4.2¢).

If the state of the window is a), the only sw.aps possible are between yellow values
in §y and S'». Any other swap must be‘prohibited becausc of lack of information
| about values covercd by yellow nodes in S;. Once in state a) the
iterative _minimax algonthrn is invoked to order the yellow values. A simple
minded sort algorithm is incorrect, since yellow nodes must preserve consistency

T In an earlier version [Biswas *87b] of this algorithm, we had reported the use of null
values for the concurrent insertion and deletion of values from the software banyan. In
the current version we have eliminated null values, and present a more elegant algorithm.
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with respect to non-yellow ancestors. We now present the algorithm itself and its
proof of correctness.

[1] repeat forever _

dequeue a restructuring workpiece (i,c)
if color of 1 has changed, goto [1]
if ¢ is RED then begin

S 1 := parents (i)

S = siblings (i)

else _

51 1= spouses (1)

S5 := children (i)
lock all nodes of S11_y S5

call Mutate Window (i, S, S2)

unlock all nodes of S5 S,
goto 1] -

Algorithm 4.1

As it fnust be obvious, restructurers do a lot of work for each other. It would be
pointless to attempt to do a restructuring which has already been done. Therefore,
as a runtime optimization, we first check to see if the color of a node has changed
-from what it was supposed to be according to the restructuring workpiece retrieved
from the work queue. If the color has changed, we simply ighore the workpiece and
.. go back for another workpiece. This examination can be done in read-only mode,
-~ le. without locking any of the nodes and thus does not interfere with concurrent

locking or writing. This dptimization has been incorporated into the SBAN restruc-
| ti_nin_g_ algorithm shown in Algorithm 4.1,
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Fig4.2a : - Figd42b - - Figd.2c
4.1.1. Algorithm Mutate Window : .
This algorithm is invoked with i, the index of a restructuring workpieci:, and S,
and S5, the sets of parent and child nodes respectively, that together constitute the
restructuring window for i. It maintains a list called TouchList, of nodes that have

been touched during reorganization, so that these nodes may later be put on the
Work Queue. '

[1] Add i to TouchList. Initialize booleans & and b5 to false.
[2] Set b1 to true if §'; has a yellow node.
Set b to true if §; has a yellow node.
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if (b, and — b:z ) then go to [3] (* w1ndow is in state ¢ *)
else if (&1 and b 2) then go to [5] (* wmdow isin state a *)
else go.to [4] (* wmdow is in state b )

{3] Algorithm PushDown
Let u be the smallest yellow node in § ;.
Let v be the largest (obviously non-yellow) node in § 5.
1f(u<v) - |
change all yellow nodes inS;to blue .
change all red nod_es in §; to blue
else . _ . ‘ | ,
swap u with v and ad_'d'both # and v to TouchList
go to [6] o o

{4] Algorithm Pushup
Foreachred noder in S5, , .
Attempt to push up r by swapplng it w1th its rmmrnum (obv1ously non-

yellow) parent.
If swap was successful add swapped nodes to TouchLlst
If there are no red nodes in S ; then change all red nodes inSsto blue.

go to [6].

[5] Algorithm'I'terative_Mini_max
Let u be smallest yellow node in S
Let v be largest yellow node' inS,
if (u <v ) then |
swap i and v _
add swapped nodes to TouchList
go to [5]

[6] For each node u in TouchList, 1f u is not blue, then enqueue 1t along with its
color in the Woerueue '

| 4.1.2. Proof of correctness



Here we merely give a brief illustration of how the proof of correctness of the
SBAN algorithms would prbceéd. The same proof techniques that have been
developed and applicd to the CHEAP algorithms in Appendix 5 could be adapted
to banyans in the following way. We ‘assume tﬁat the state of the SBAN is con-
sistent before invocation of the Mutate Window algorithm. Let us consider in turn,
the three cases a, b and ¢ shown in Figs 4.2

Case a: Algorithm Irerative_min'imdx swaps yellow nodes in S 1 with yellow nodes
in §5. Thus we need not be concerned with descendants of S 1 and / or S,, since
PHC' is trivially satisfied with respect to these nodes. Let 1 be a node in $ that
has undergone a swap with v, a node in § 2. Ancestor nodes of u are by definition,
ancestor nodes of v. Thus, for any non-yellow ancestor ¢ of u, the swap is between
two values, each of which is smaller than ¢. Ancestors of v see a smaller yellow
value after the swap. Thus the swap leaves the invariant true at all ancestors of both
nodes involved.

Case b: Algorithm Pushup attempts to push up a red value, say v, from S 2 by
" swapping them with a non-yellow value, say u, from S,. u can be either red or
blue, (by our choice of cases a, b and c). In each case, it is easily seen how PHC " is
preserved through the swap at ancestor nodes of u and descendant nodes of v.
Thus the swap preserves the invariant.

Case ¢: Algorithm Pushdown attempts to swap yellow nodes from S 1and S5 We
need only be concerned about ancestor nodes since nothing can be asserted about
descendant nodes of a yellow node. Say u from S5 is to be swapped with v from
S2. All non-yellow ancestors of v see a smaller value at v after the swap, and all
non-yellow ancestors of u see a value at # that was already known to ordered
lower than themselves. Thus the swap preserves PHC . |

4.2, Percentile levels

When a banyan gets full, it must grow, and conversely when there are too few ele-
ments in it, it must shrink. For the period of time a banyan is being scaled no
access to it must be permitted. We now investigate the structural properties of a
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banyan that make it attractive for priority applications.

A full banyan is a banyan that has a non-null value in each node, and in addition
satisfies the heap prbperty at each node. The key advantage of a software banyan
over a heap is that simultaneous deletes are possible, at different percentile levels.
- Given a full banyan, if a request for delete investigates a fraction of the apex
nodes, it is guaranteed a corresponding percentile level of the item returned. If it
investigates all of the apexes, it is guaranteed to be returned the highest. priority
value, (100 percentile). at the cost of hav.ing to place a lock on all apexes.

An item A removed' (deleted) from a banyan is at percentile p if at least p % of the
items in the structure are ordered less than or equal to A at the time of the removal,
ignoring insertions in progress. (In other words, treating items in progress as if they
have not yet entered the structure). Definitions for spread (s) fanout (f ) and depth
(L) _are given in Appendix 6. -

Lemma 4.1.; Given a full banyan, if p apex nodes are 1nvest1gated by a deletlng
operanon returning the value' A, that is the maximum among these nodes, then, the
expected percentile, of A , written ep (4 ), is given by:

ep(A)=17 (,s,f.L) /i‘()_sL—i fipvio "
. 1= .
where ¥ (p,s5,f,L)=

f‘ :p=1

57+ (s‘~s"1)[be"+(p—s‘? I)Ef"

cp=s91+1,--- ,59: 1<qg<L:p=#1

<

Proof:

If node B is reachable from node A, by traversing down parent - child links in a
banyan, we say A covers B. The total number of nodes in a (5, f,L)-SW banyan
is the sum of the number of nodes at each level. This is the denominator of eqn (1).
This can be rewritten as eqn (2), where sizeof (s, f,L) denotes the number of
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nodes in an (s, f, L) banyan.

siseof 6.7 L= § 7t g [(si-sf—lj :Z_;fk] @

The first term, the number of nodes in an f —ary tree of depth L corresponds to the
number of items covered when we examine (after locking) the first apex node. Of
the remaining nodes, exactly s1—51-1, ie. s—1 apex nodes may be found that
cover independent f ~ary trees of depth L—1, none of which is covered by the first
apex; similarly , for 2<i <L, s' —si~! such trees may be found, each of depth
L—i. The only way to cover all the nodes is to investigate all the apex nodes.
Y w,s,f,L) is a restatement of equation (2), varying the parameter p between
successive values in the range s ! through s?,1<q<L. [

Table 4.1 shows percentile values versus p, the number of nodes locked for (2,3,5)
and (3,4,5) banyans. From this table we see that by locking only a small fraction of
the apex nodes, an item with a high percentile level can be retrieved from the prior-
ity structure. The percentilc values naturally depend on the salient pararheters of

the banyan.
(2,3,2) banyan (3,4,5) banyan
(665 nodes) (3367 nodes)
P percentile P percentile
1 54.7 1 40.5
2 72.9 3 60.8
4 85.0 9 75.9
& 92.8 27 - 872
16 97.6 81 95.2
32 100.0 243 100.0

Table 4.1. Percentiles for various values of p (the number of apexes examined).

4.2.1 Weakened specifications for the software banyan "



For the strict priority queue if a delete returns value p then p is the highest value in
the structure. For the concurrent heap the weakened specification is that if a delete
returns p then p is the highest blue value in the structure. The softwar_e banyan has
still weaker specifications than a concurrent heap, but at an internal level. That s to
say, these specifications must be explicitly stated in terms of the object implemen-
tation states of the two implementations. The weakened specification is as follows:
“if a delete returns p then p is the largest blue value in the set of trees rooted at the
set of apex nodes examined by the delete operation”. More formally, assuming that
identical delete operations are carried out (with identical windows) on the CHEAP
and SBAN structures, and assuming that the percentile specification is the wildcard
(null) in both cases, then the guaranteed percentile level for the CHEAP will be
higher than the guaranteed percentile Ievel for the SBAN.

4.2.2 Coverag_e

In order to cover the maximum number of nodes with the fewest possible locks, a
_ lockmg schedule must be cnforccd To get maximum coverage from apex nodes, a
~deleting operation must lock items in a pamcular sequence known as a locking
- schedule . For a given (s, f , L) banyan, the locking schedules are fixed. For exam-
| ple, in the (2,3,3) banyan of Fig 4.3.3, a locking schedule starting at apex A is any
' member'of the class of schedules generated by_ the schema A-E-{CG}-{BDFH},
where parenthesis are used to indicate that the nodes inside may be aécessed in any
sequence, but must be all accessed before moving ahead in the sequence. Starting
| ~ at other nodes it is possible to arrive at similar schedule schemas. Different enter-
ing operations may follow different locking schedules, (modulo deadlock). Note
“that the éomplete_ locking schedule need not be enforced if smaller percentiles (than
100) are desired. |

4.3. Mapping
4.3.1, Mapping onto linear address spaces

When mapping the banyan we use linear memory address for successive nodes at
the same level. This is not necessarily optimal, but it obviates the necessity for
storing pointers explicitly and makes for an easier implementation. Every vertex in
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an (s, f, L) regular SW banyan, (s <), may be labelled by an L digit number in
base f, sﬁch that vertices in the same level have distinct labels, and there is an arc
from a vertex' in level i, (0 <i <L}, to a vertex in level i+1 if their labels differ at
most in thc i digit [Premkurnar "81]. In Fig 4.3.3 we show a possible labelling of

the nodes of our (2,3,3) banyan

Memory can be allocated in such a way that given a level and a label, we may

arrive at a unique address for any node in an (s, f, L) banyan. This raises two

points:

e

- Wasted memory. If the entire memory for the banyan is allocated as a single’

block, for an arbitrary (s, f,L) banyan the memory wasted could be arbi-
trarily large. If pointers are used roughly 50% of the memory is "wasted".
However, for small s and f (between 2 and 4) both schemes, i.e. with and
without pointers have approximately the same amount of wasted memory.

Parent / Children addresses. In calculating the address of a parent glvcn that
of a child and vice versa, the fundamental operation needed is conversion
between binary and base f numbers. Given a binary number, to convert it to
its base f representation and vice versa takes O (k) multiplicanon.s and addi-

" tions, where k is the length of the label in the original representauon This .

price must be paid once for each restructuring operation. The operations
needed are the computation of the addresses of all children given that of a
parent, and conversely the addresses of all parents, given that of a child. In

both cases, if the address of the leftmost parent (child) is calculated, by zero-
‘ing the most significant digit, the addresses of the remaining parents (chil-

dren) can be calculated by repeatedly adding a fixed offset (which is different
for each level). The alternative is to store the labels explicitly in each node,
which is similar to building the entire structure as a linked structure ‘with
pointers.

For a banyan to be useful as a priority structure it must be conical in shape..

Rectangular banyans are ruled out since they have too many apex nodes. For
small fanouts banyans using linear memory implementation are not too space
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inefficient. However as the fanout increases the relative amount of unused
memory also increases dramatically. Therefore for fanouts greater than 3, we
recommend the use of a linked list mappmg The linked mapping proceeds
roughly as follows. Each node contains three pointers, a pointer to its first
parent, a pointer to its next sibling and a pointer to its first child. These
pointers can be set up at the time of scaling or initialization. Following these
pointers it is fairly straightforward to construct the sets of parents, spouses
~and children discussed in the Banyan algorithms.

4.3.2. Hypercube mappings

Premkumar [Premkumar 81] has demonstrated how to-map a rectangular (d, L)

SW- banyan (definitions are in Appendix 6) onto a (d,L) hypercube by
T

_ sequences of labelled nodes to construct partitions of the cube, which correspond to

homomorphically' reducing the banyan to the hypercube. He used alternating

.- data trees in the original banyan, -

The partitioning problem-as defined by Premkumar is of ‘se'condary concern to us.
Our first problem is to find an efficient mapping of a regular (s, f, L) SW banyan
onto a binary hypercube. Our next problem is to find an efficient algorithm to real-
ize this mapping. Binary hypercubes are selected because of their popularity and
current abundance ' '

4.3. 2 1. The mapping and 1ts optnmallty

We shall refer to a rectangular (4, L) SW banyan simply as a (d, L) banyan, and a
‘regular (5, f, L) SW banyan simply as a (s, f , L) banyan. Our end goal is to map
- an arbitrary (s, f, L) banyan onto a binary hypercube. In the special case of a
(d,L) banyan where d is a power of 2, we demonstrate that an alternating
sequence labelling yields an optimal mapping. In the more general case where

d =max(s.f ) is a power of 2, we use the optimal mapping asa basis for mapping

1 A homomorphism is a one to one mappmg An 1somorph:sm is a one to one as we]l as
onto mapping.
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of the (s, f, L) banyan. The mapping is done in the following steps:

[1] Let d = max (s, f) such that dis a power of 2. Homomorphically reduce a
" (d,L)banyan to a (d, L) hypercube.

[2] Let & = 2*. Find an optimal mapping from a (d, L) hypercube to a (2, kL), i.e.
binary, hypercube. The optimality criterion is the minimum cumulative edge dila-
tion criterion (see definition below),

[3] Remove the unwanted nodes and edges in the (d,L) banyan to obtain the
desired (s, f, L) banyan.

Step 1 maps an edge (i.e. two adjacent nodes) of a (d, L) banyan onto an edge (i.e.
two adjacent nodes) of a (d, L) hypercube. Step 1 therefore satisfies the optimality
criterion. For rectangular banyans, Step 3 does not add to the cumulative edge dila-
tion, Thus if Step 2 is optimal, the entire procedure is optimal. For nonrectangular
banyans howeéver, we are not guaranteed optimality. In other words, depending on
the values of 5 and f, it may be possible to find a banyan that has a smaller cumu-
lative edge dilation than that obta_incd by going through steps 1 - 3.

IfG =(V,E)isa graph and e = (v, v,) € E, then v is called the source of ¢ and
v 5 is called the destination of e.

Definition: Let G, = (V1,Ep) and Gy=(Vy, Eq) be two graphs such that
Vil =1V,l and [E | 2 IE,l. Let T:V; = V) be a one to one and onto map-
ping. We say T is edge preserving from G to G o, if for every edge e =(v,vp)in
- Eq, mere is a sequence of edges S = {e1, €3, - -, &} in G2, such that the source
. ofeqis 1:(» 1) and the destination of e, is T(v) and the source of ¢; corresponds
with the destination of e;_; for 2<i<k. S is called a path from 7(v1) to T(v4) and k
. 1s the length of the path §.

If § is the shortest path from 1(v) to 1(v,) then the edge ‘dilation of e is k-2.
Thus the edge dilation is simply the number of edges by which an edge has been
stretched after havmg gone through the mapping t. If © maps an cdgc in G1 onto an
edge in G, then the edge dilation of e under Tis 0.
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Theorem 4.1.: Given a (d, L) hypercube G, where d =2%, k 2 1, with a (d, L)

alternating sequence labelling S'; of its nodes, and a (2, kL) hypercube G5, with a

(2, kL) alternating sequence labelling S , of its nodes, the mapping 7 that maps the

node from G | corresponding to the it# label in S| to the node inG, correspondmg
" to the i label in § 2, is an optimal mapping. - ' ‘

- Proof : To prove this theorem we shall prove the following lemmas.
“Lemma 4.2.:Thereare d&-1)* [ d-cliquesina (d, L) hypercube:

Ad ;clique isa Compléte graph ond hodes. We shall refer to a d-clique simply as
a clique. This lemma is proved by induction on L.1tis obviously true for L=1.
Assume it is true for arbitrary L. When the hypercube is grown in size by one,
. .from L to L+1, we have d€-1 * [ cliques from each of d components of the
smaller size. In addition, each node in a smaller cube belongs to exactly one addi-
tional clique in the larger (composite) cube. There are dZ nodes in a smaller cube
(see Fig 4.4). Thus the total number of cliques in the composite cube is
dE-D*L +d* = gL * (L+1), which establishes the claim.

To prove that the cliques must be edge-disjoint, we simply observe that the total

number of edges in a (d, L) hypercube is (dL * L * (d—1)) /2, i.e. half the sum of-

- the degrees of the nodes, which is precisely the same as the edges indd-D* [
cliques in a (d, L) hypercube. [ '

AN A K AN

Fig 4.4 Cubes and cliques
~ Lemma 4.3.: A (d, 1) hypercube (i.e. a d-clique) with nodes labelled 0, - - -, d-1
‘maps optimally onto a (2, k) hypercube if the i node in the (d, 1) hypercube is
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rnapped onto the node wn:h the t”* label in the binary alternatlng sequence ]abel—
lmg of the (2, k) hypercube.

Proof: The proof is trivial, Since all possible edges must be realized by the (2, k)
hypercube, all labellings must be optimal. In particular, the labelling 0, - - -, d—1
must also be optimal. This is in a sense the base case of the above theorem.  [J

Lemma 4.4.: Every d-clique in G ; maps onto a binary subcube of size £ in G 2

Proof: Since d is a power of 2, a d—ary label in S 1 can be converted into a
corresponding (under the mapping 1) binary label in S, by simply converting the
former label digit by daglt into their bmary labels, and concatcnatmg the binary
labels thus obtained.

Consider a set of 4 nodes that form a clique in G . Obviously they must all differ
in the same digit position. Let this be the n'k digit position, 1 £ n < L. Thus these
nodes vary in only £ consecutive binary bit positions in § 5. Thus they form a sub-
cube of size k in G ,. O

We have shown that t'maps every d-clique in G ; optimally onto a Corresponding
k subcube in G . Thus, every edge is optimally ’stretched’, in the sense that there
is no other mapping that can produce a smaller cumulative edge dilation for the
entire structure. Thus T maps the entire structure optimally. This completes the
proof of the theorem. O

5. Performance estimates

In this section we derive formulae for the maximum throughput and an upper
bound on mean propagation delay in concurrent heaps and software banyans.

5.1 Maximum Throughput

By maximum throughput we mean the maximum degree of simultaneity or the
maximum number of simultaneous updates that a data structure affords. We shall
draw an analogy from a simpler example, namely that of an array of N elements
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each of which can be locked.- Assuming that this array is.in shared memory and that
each operation that mutates it reqilircé only a single element, the array can sustain a
‘méaximum of N simultaneous updates. If instead, each operation carries out an
atomic change on rwo array elements, the number of 31mu1taneous updates that the
array affords is now halved to N/2. '

Assume now, that there are two types of operations, type A requiring 2 elements
and type B requiring 3 elements for an atomic update." Let ‘the fraction of opera-

" tions of type A be f4 and that of type B be f3, such that f4 + fp = 1. Then the

N
maximum number of simultaneous updates afforded by the array is M
To apply the above analogy to our priority structures, we ob,servc that insert res-
tructuring is a type A operation and delete restructuring is a type B operation. Thus
for a complete heap of depth L (i.e. with 2L - 1 nodes) the maximum restructuring
operation throughput, Tinax res _op» that can be sustamed by a heap of depth L is
given by:

max“rest__op 2f ir + 3 f dr

where f;, and f, denote fracﬁons of insert and delete restructuring operations
respectively. (Note f;, + f4 = 1).

Now we shall cxtend this formula from restructuring operations to regular opera-
tions of the concurrent heap, ie. inserts and deletes. Let r; and r; denote respec-
tively the rates of insertion, and deletion operations upon the heap. Let n; and ny
denote respectively the average number of levels propagated by a red (inserted)
and yellow (deleted) value respectively. Then: '

fi=

fraction of delete operations.

r .
is the fraction of insert operanons Slrmlarly, fa = —2%— is the

rl+r i+ rg

The maximum operation throughput, Tpnay op, afforded by a concurrent heap of
depth L is:
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T _ 2L —1
max_op -7 (f,n,+fdnd) (Zf:'*“3fd)

The ﬁrst term in the denommator is the mean number of levels propagated by a

value, 10 complete an operation and all the restructuring operations generated by it.
The second term is the mean number of nodes locked for an operation.

Please note: | _ o B
i) The above formula makes use of the assumption that f; = f;, and fy = fg. In

other words, we assume that the fractions of insert and delete operations is equal to -

the fractlons of i insert and delete restructunng operatlons they generate.

il ) For stability reasons, we also assume that L is large, so that there are no random
ﬁuctuatlons caused by changes in the- depth of the heap

52 Upper bound on mean propagat:on delay

The mean propagation delay is the mean time for a' red (yellow) value to turn blue
in the insert (delete) algorithms,

Let A =r; +r4. Let R; (Ry) denote respectively the probability that a restructuring
nr-l

is required because of an inserted (deleted) item. Then, R; = and Ry =

R

nd—l
ng '

Thus the probabillit‘y that a serviced request will be reinserted in the work queue, is:

ri R; ra Rq .
p=fiRi + faRa= ‘;J + 4L

In the worst case, n; = ng = L, i.e. all inserts and deletes propagate L levels. In
 this case, the worst case probability of reinsertion (p max) is given by:

ritr -
P o =(—'rd——)-Rd =Rd=LT1—

“Therefore, Amay = maximum rate of restructuring re&juest's is given by:

- A
Ponan = T =LA
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Assuming that the work queue is served by an M/M/c queueing system, which is

valid as long as we assume collision freedom. Let W, denote the upper bound on
the mean propagation delay through the work queue. This is the mean time that a
- red / yellow restructuring request spends in the work queue, assuming maximum
rate of restructuring requests.

(LR
: B 1
_ 1 ' ' cl” U
_Wub—‘a‘r'*' ( R (L ?h)n * c(l-p)

___1:1_+(1_p)c' _._}.l_,__..“

where
i is the individual service rate of each restructuring activity,

¢ is the number of restructuring activities,

LA

0 is the server utilization, i.e. TR

The first term & above stands for the expected service time for a single server. The

second term-is the mean gueueing time, and makes use of Erlang’s ¢ formula, the
probability that all ¢ servers are busy, so that an arriving request has to wait, The
M/M/c formula gives the basis for the calculatmg Tup, the upper bound of the mean
time for a red or a yellow valuc to turn blue, i.e. an upper bound on the mean pro-
pagatlon delay ' ' ' S

Tyw=L Wy,

In the next chapter we investigate the accuracy of these models and predictions.

6. Related work and potential applications.

The granularization approach taken by us was inspired by related research in con-
current management of index structures for databases [Lanin 86, Kung ’80, Ellis
"85, '80a, "80b, Ma_nbef ’83].. The deadlock avoidance and consistency mainte-
nance schemes are based on extensions of two phase locking protocols [Easwaran
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"76], namely the tree and dag protocols [Silberschatz *80]. These protocols have
been directly applied in both our structures. Lock coupling based schemes as pro-
posed in-[Bayer *77] are not directly applicable to concurrent heap and software
“banyan algorithms because of the potential of deadlock as demonstrated in section
- 3.1.3 of this chapter. However, variants of our algorithms might be able to utilize
lock coupling schemes as discussed in iii) below.

One might ask are there any other concurrent structures that may be used as prior-
ity structures, and if so what are the benefits of using the priority structures pro-
posed in this chapter? One structure that immediately comes to mind is the binary
search tree. Binary search trees use a linked implementation to represent a total
order. The main drawbacks of binary search trees are:

a) They have a single serialization point namely the root of the structure, The
simple manner in which we extended the concurrent heap into the software
banyan structure is not applicable to a binary search tree.

b)  They require rebalancing. The amount of effort spent in rebalancing a binary

~ search tree is not needed for a partially ordered structure such as a heap. Thus

~ concurrent maintenance (balancing) of binary search is an expensive opera-

tion with many more operations within a critical section, as compared to con-
current maintenance of concurrent priority structures.

 We know of no exzstmg parallel algonthms (that do not use special purpose
hardwarc, such as systolic arrays) for mampulatmg heaps and structures based on
the heap, such as the software banyan. In chapter 6 we contrast our approach to
that of introducing special purpose hardware such as systolic arrays. A potential
use for the CHEAP is in parallel resource management. The resource management
component of an operating system performs the mapping of requests for resources
upon the configuration of resources available to the execution environment, in con-
formance with the allocation policies of the installation. The traditional approach
has been to reflect policy in terms of priority-for access to resources, and to imple-
ment the mapping of requests via priority queues of requests for resources. A work-
load executing on a high performance multiprocessor éxecution environment can
be expected to generate requests for resources at a very high rate.
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The CHEAP and SBAN are generic priority structures. Priority for access to any

resource or combination of resources can be implemented. It is possible, for exam-

ple, to use a CHEAP for allocation of resources in scheduling coordinated blocks

[Ousterhout *82]. In related work Suhler [Suhler 87b] analyses scheduling of loop _

iterates in the context of TDFL. Weak priority structures and index server objects

are both usable in this context. Thus our algorithms are proposed as a basic build-

- ing blocks for operating systems for multiprocessor architectures.

Some furthcr.c.lctails_ are worthy of n_btc.

1ii)

Lockirig modes. A related issue is the mode of locking. We feel the main rea-
son for accessing a prioritized structure is to add and delete items. For this
reason, we see no use for a more permissive locking strategy than the one
presented in this thesis, for example, read locks. Writer exclusive locks them-
selves can be used for unimpeded searching (read only) of the data structure,
which may return stale information. In some cases such stale information may
be acceptable. However, our algorithms do not utilize the read only option.

Parallelizing the work queune. There are various ways of parallelizing the
work queue. One way is as we have suggested above, i.e. to have multiple
servers serve a common work queue. On some current multiprocessors, this
form of queue is very efficiently supported, by making use of some primitive
instructions [Gottlieb *83], that enable combining Enqueueing or Dequeueing
requests as these requests travel in the machine. '

A very simple algorithm for the concurrent heap that is promising, is to have
both inserts and deletes propagate downwards after entering at the root of the
structure. We abandoned this scheme because of the presence of null values
that caused "holes" to appear in the heap, thereby distorting its structure.
Although the presence of holes is theoretically inelegant, in practice perfor-
mance of hole based schemes may be attractive. This scheme is currently
being analysed by our colleagues [Rao *87b] for its performance on Al search
algorithms being implemented on parallel machines.
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7. Conclusions:

+ In this chapter we have presented algorithms for maintaining concurrent heap and
software banyan structures. Although our formulation assumes a shared memory -
multiprocessor, with writer exclusive locking capability at each memory word the
structures themselves may be mapped onto distributed memory machines. One
such mapping has been analysed and conditions for optimal mapping have been
derived. The algorithms remove the serialization bottleneck by reducing the size of
critical sections. A drawback of these algorithms is that global mutual exclusion is
still required albeit for a very small duration. To evaluate the performance of these
priority structures we have performed detailed implementations and simulations,
results of which are presented in the next chapter..




Chapter 6 - Performance measurements

1. Introduction

In this chapter we discuss performance of concurrent priority structures. The per-
formance measurements are included in two phases. The parallel execution
environments available to us had only a small degree of parallelism and so the
implementation of the CHEAP was done (on a 10 processor Sequent Balance 8000)
primarily to gain a detailed understanding of the execution behaviour of the
CHEAP and to obt'ain'pérameterization and validation for the simulation model.
The simulation model applies to execution environments with large numbers of
processors - ' ' -

As mxght be expected the behavmur of CHEAP and RHEAP (the regular hcap
algorithm) on the implementation on a small number of Processors was compar-
able. The performance of the CHEAP and the SBAN on larger systems was as
_expected much more favourable to CHEAP and SBAN. Section 4 deals with
direct 1mplcmentat10n of priority structures in hardware We demonstrate how sys-
tolic structures may be constructed for the priority structures proposcd.

2. Implementation of the concurrent heap

In this section we discuss the implementation and performance of the CHEAP. In
section 3 we discuss simulation results of the CHEAP and SBAN.

‘2.1. The activities

Two types of activities, Inserters, and Deleters perform repetitive cycles consisting
of user computation (the time spent in doing this is called compute time ), followed
respectively by inserting into and deleting from a shared concurrent heap (see Fig
2.1). The concurrent heap is maintained by means of a set of activities called Res-
tructuring activities, that mutate the structure while preserving its consistency. An
auxiliary data structure, the Work Queue is also used. An activity corresponds to a
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process in our implementation.

Compute time ———smeTime inside ——— o
the structure

Fig 2.1. Time spent by each activity
2.2. Hardware description

The implementation. was carried out on a quiescent Sequent multiprocessor
machine with 10 processors. The machine has 64 Kbytes of atomic lock memory
(ALM) on its Multibus adapter board. A lock is synthesized from a 32 bit word,
the least significant bit of which indicates the status of the lock. This gives a total
of 16k locks. The lock is implemented with a simple test and set mechanism in an
indivisible membry' cycle. There is also a shadow locking scheme to offload the
system bus. To give the abstraction of an unlimited number of locks, Sequent has
- multiplexed the use of each hardware lock through software, thereby deteriorating
the performance of programs that use locks fréquently (such as our program). A
pair of instructions consisting of a lock followed by an unlock takes approximately
52 microseconds as a result of shadowing and multiplexing. For measurements we
had access to a microsecond timer board with a free running register. The overhead
of accessing (reading) this was 25.5 microseconds.

2.3. Workload

The workload was synthetically generated, and consisted of a variable number of
increments of a counter. This is a little simplifying, since in real application pro-
grams, demands on memory made during the computation stage will surely conflict
with demands on memory made by the concurrent data structure. The effects of
‘these conflicts have not been studied.



' 2.4. CHEAP vs RHEAP

For companson with the best known cx1stmg algorithm for pnonty queues, we
_1mplemented a parallel heap aloorlthm (RHEAP for regular heap). The rcgular
heap is a conventional heap in which inserters and deleters update the structure in a
single global critical section. Additional overhead due to procedure calls and other
sundry instructions caused the minimum achievable workload granularity to be res-
tricted to 1400 m1croseconds__.

In order to get an idea of the relative magnitudes of the critical sections for the two
structures, we provide a number of time charts. The time components in Fig 2.1.
may be further subdivided as shown in Fig 2.2. The individual patterns of instruc-
tions that appear in the C - language source programs for the the CHEAP and
RHEAP inserters and deleters are shown in Fig 2.3. "I" denotes an instruction (con-
ditional branch, assignment, arithmetic operation etc). Instructions can take
between 10 and 50 psecs. jsr ‘and rn denote, as their names suggest, a procedure
call and a return from a procedure call respectively. The call and return take on the
average 70.3 usecs together. Branches if statements) have been. depicted as forks
in the timing diagrams. A repetition {while statement) is depicted by a feedback
loop. Branching probabilities are key parameters of the program. Data collected on
these probabilities serve as input to a more extensive simulation study. In gather-
ing this data we have taken care to avoid counting instructions that concern time
measurement or instructions that deal with gathering statistics. Such instructions
are present in both algorithms and thus can be ignored.

In summary, time is spent within the strictures in two ways, namely in waiting for
locks and in computing. The former depends upon the degree of contention in the
system. Contention may be altered by changing compute granularities and the

number of activities. The effects of contention may therefore be studied by varying.

these two parameters. The latter depends upon the time to do arithmetic and
memory access operations. The use of virtual memory brings about unpredictable

delays in memory access time, giving rise to unexpected behaviour of the CHEAP

and RHEAP algorithms (see plot in Appendix 7). A page fault may be minor (the
page resides in main memory and is waiting to be flushed out), or major (the page
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is not in main memory and must be copied from the disk). Both types of page faults
dominate the performance for large structures.

Finally, there are algorithm—intrinsic delays, such as the time spent by a CHEAP
deleter in waiting for the topmost element of the structure to become non yellow.

This is represented by the feedback loop in Fig 2.3.1, showing what happens when-

" the color of the root node is yellow, Our rneasuremcnts were taken with the
minimum RSS (reszdent set 51zc) set at 16, or 16 pages of size 1 Kbyte each; and
the maximum RSS set at 750. Increasing these may reduce the anomalies
observed.

1400 secs . lock, arith, mem access, unlock, ...
Prepare Compute Time inside

to compute the structure

Fig 2.2 DeLaﬂed breakup of F1g 21

lock 41 lock 81  jsr  lock  6I  rm

Fig2.3.1 CHEAP insert -

1I

41 rm — success

Y21 jsr 21 lock3l lock/ Yellow 31 |191 jsr lock 61 rm

< \N= Yellow success
21 lock 1I rtn - -

Fig 2.3.2 CHEAP delete
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21

7

 lock 91 | 4I one 2T

done

31

Fig 2.3.3 RHEAP insert

61
71
. lock 181 -4 —ydone 2]
' ' done

31

Fig 2.3.4 RHEAP delete’

2.5. Quiescence

The purpose of our experlments among other things, is to test the valrdlty of for-
mulae for thruput and delay derived in chapter 5 section 5. Since these equauons
had been derived for quiescent conditions we had to ﬁrst establish qulescence in
our structure before taking measurements. To achieve qurescence we tried a
‘ number of schemes and then settled on the followrng

A serral algonthm is used to insert a number of 1terns 1n1t1a11y into the structure,
coloring each item blue once it satisfies the .heap property. Next a number of
inserts, deletes and restructures are carried out upon. the structure, so as to intro-
duce colored values in the CHEAP as well as in the work queue. At this point a
reference clock is started and computatron and restmctunng activities are started by
forking a process for each activity. A’ fixed amount of computation is now per-
formed, with a fixed number of inserts and deletes upon the prlonty structure All
measurements are taken w1th respect to the reference clock '

2.6. Measurements
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The overall time to completion, the time spent inside the CHEAP and the time .

' spent outside it were measured for each run. In addition, counts of the number of
-Testructurings, the number of attempted work acquisitions were also gathered. We
also measured the times spent outside and inside the CHEAP and the average time
for red/yellow values to turn blue. Data collected during a run was fed through a
filter which extracted statistics. The results confirmed our derived formulae (see
Appendix 8). |

2.7. Implementation results

Appendix 7 shows the performance of CHEAP and RHEAP varying the parameter
size (depth) of the structure (Fig 1.1). The key points that emerged from this
implementation are as follows:

1. CHEAP vs RHEAP: Overall, RHEAP performed better than CHEAP although
CHEAP did better in a number of cases.

2. Ratio of restructuring rates: If r; and r; denote rates of insertion and deletion
respectively, and r;, and ry denote rates of insert and delete restructuring
respectively, then we had assumed in chapter 5 section 5 (and Appendix 8)

~ that the ratio (r; / 7,) is equal to the ratio (r;, / r,,). This assumption was
proved wrong. For lai'ge structures (> 10 levels deep), a yellow item that is
randomly picked has to travel almost the entire depth of the structure (recall
that a binary tree has half its nodes at the bz_ise level). This conclusion was
apparent from our observation that a yellow item makes approximately k trips
through the work queue, where & is the depth of the structure. In contrast, a
red item only makes between 1 and 4 trips on the average, through the work
queue (smaller as the depth 1ncreases)

Thus an msertcd (red) item doesn t have very far to go to rcach its final posi-
tion and turn blue. Howevcr a delcted item gives rise to a yellow item that
-must travel most of the levels before finding its proper place in the structure.
Other reasons for red values changing color faster than yellow values are, a)'
yellow items are requeued more often in the restructuring activity, and b) a
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number of red items turn yellow almost 1mmed1ate1y upon insertion because
' of a concurrent deletion.

3. Deadlocks The s1mple deadlock avoidance scheme of ordering the resources,
s adequate for the CHEAP.

4. = Number of work queues: The number of work queues did not significantly
affect the measured performance of the CHEAP, Insufficient work in the work
queue may be a reason for this, although it does not fully explain it.

5. Yellow chains: The formation of yellow chains is indicated by the fact that a
yellow node makes many tnps through the work queue before turnmg blue.
On occasion ‘the number of such trips were found to be greater than the depth
of the structure. This indicates the formation of chains of yellow ‘nodes,
which is a maJor source of 1nefﬁc1ency in the deletion operatlon

6. Granularity: As granularity of computation (compute time) increases, so does
the propensity for there to be insufficient work in the work queue. We meas-
'ured the number of futrle work (restructunng) acqu1s1t10n attempts from the
work queune (WQ). For compute granulannes above 100 mllhsecs thlS was
s1gn1ﬁcant Further observatlons are made in Appendlx 8. '

7.  Locking-granularity: It may be possible that CHEAP algorithms that use lock-
-ing at an intermediate locking granularity, i.e. somewhere between the entire
structure and each individual node; will prove useful even on a small proces-
sor configuration. Algorithms using medium locking granularities will be
significantly different from our current fine. gramed lock algonthm Their
proofs will also need to be 31gn1ﬁcantly different. For these reasons we aban-
doned . experimenting . with schemes that dealt with intermediate locking
granularities.

2.8. Overall conclusions from the implementation

The most positive result of this batch of experiments was that CHEAP compares |



favorably with the most popular algorithm (RHEAP) for mampulatlng priority
structures concumently In fact CHEAP did better in some cases, even though there
was very little scope for parallelism (considering’ the small number of processors
available) and higher overhead in the CHEAP. In general, with the small number
of processdrs on the Sequent it is not pbséible to obtain intéresting '1c‘vels of paral-
lelism for which structures such as the CHEAP will be useful. Such levels of paral-
lelism may. be introduced by increasing the number of processors or reducing the
work granularity.- The former is severely restricted. because of the machine. We
expect that the multiple work queue option will prove useful on larger machines.
On our implementation it did not prove beneficial; in fact there was a deterioration
“in performance with multiple work queues. '

- A disadvantage with the Sequent machine that the tuning parameters make it

_ almost impossible to totally avoid paging, context switching, daemons in the back-
ground, remote file transfers and so on. While taking highly sensitive measure-
ments in the order of tens of microseconds, these random factors influence the
rca‘din‘gs to a great extent.

If we were to repeat this exercise we would have the same act1v1ty domg both
mscrt operations and delete operatlons, rather than separatmg 1nsert1ng activities
from dcletmg activities. We feel this will lead to better ut111zat10n of the processors
and distribution of values, We would also ry to minimize on overhead for measur-
ing time, and introduce.in-line expansion of work queue accessing function calls, to

.reduce overhead. We would also prefer to use a machi_ne in -‘which each memory
cell is lockable.

3. A hybrid simulator for the CHEAP and SBAN

- This section is concerned with the design of a hybrid simulator for the CHEAP and
SBAN structures.

3.1. Objective of the simulation

There are two reasons why this simulation was performed. The major reason was
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to generate sufficient Worklo'ad for testiog the priority structure algorithms, With
our experlments ona 10 processor machine, it was not possible to get heavy work-
loads with redsonable compute granulantres Another reason was that we wished
" to eliminate artificial delays caused by virtual Inemory and other limitations on our
test machine and have a uniform basis to simulate our algorithms over larger
machines and different mixes of instruction times.

3.2. A hybrid simulator

A hybrid simu'liator is a simulator in which the actual control structure of the system
under study is retained while the timing measurements are taken with respect to a

simulated clock. Thus the logical properties of the system and the interactions

between system components are farthfully reproduced while the timing propertles
are made 1ndependent of real executlon time (which may be affected by extraneous
factors such as slow’ v1rtua1 memory, restnctions on the number of processors
' Onlme locks and SO on) ' o

We started with the rmplementauon of the CHEAP algonthm as discussed in sec-
tion 1. To convert this implementation to a hybrid simulation, we superimposed
upon this algorithm, an event-driven simulator, and provided markov chains for
each type of activity. Each actmty was 1n1ttahzed to be in a pamcular node in its
‘markov chain. The memory nodes of the system were 1n1t1ahzed at a quiescent
state and thus steady state was possible from the start of the simulation. The same
| principles were used t0 srmulate parallel execution of the RHEAP (the regular heap
algorithm, which is the most popuIar aItemauve) ‘and the SBAN

3.2.1. Simulation assumptions and results

Appendix 9 shows the markov chains for the different activities that were simu-
lated for the CHEAP, RHEAP and SBAN algorithms. For the first two, the markov
chains were synthesized from the timing diagrams shown in Figs-2.3.1 - 2.3.4. For
instance, the markov chain in Fig 1.1 in Appendix 9 is interpreted as follows: an
-inserting actiyity spends a certain amount of time known as the Compute Time in
the node 1. It then moves to the state "attempting to lock PQ™in node 2. The mean
time spent in this node per visit is naturally a very small fraction of the time spent
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- in node 1. Similarly node 3 i 1s a compute node, with a few normalized instructions.
Node 4 is a lock node, 81gn1fy1ng the lockmg of the last element of the CHEAP
before insertion, and node 5 represents the ﬁnal few instructions that must be com-

pleted before the activity can return to’ its compute node. We have assumed

exponenually distributed service time distributions at each state.

We have collapsed the sequence of lock nodes in the markov chain for restructur-
ing in a CHEAP algorithm, into a single node in corresponding markov chain of
the SBAN algorithm. This is because a banyan may have a variable number of
such nodes depending upon its spread and fanout. The chains for SBAN are shown
in Figs 1.6 - 1.8'in Appendlx 0.

The timings for the various nodes are parameters that depend upon the memory
access time, I,Qck acquisition time and similar parameters of the target architecture.
We have assumed times shown in the chart on Fig 2 (Appendix 9). These timings

are obtained by taking instruction counts from our implementation and some gross

estimates of instruction execution time. These timings are applicable to a large
scale- mu]tlprocessor such as the RP3 which has a umform capability to lock each
memory cell ' o

For the main data structures being studied, each attempt at obtaining a lock is
modelled by a suitable state transition in the correspdndin g markov chain. However
~ this was not done for the auxiliary "data structure, namely the work queue, since the

aux111ary data structure was not the main focus of our attention. Thus we could res-
' trict ourselves to the 51mplc markov chains shown in the Appendix 9.

Results of the simulation are presented in Appendix 10.
3.3. Conclusions drawn from the simulation

We got a substantially better performance for the CHEAP and SBAN than for the
RHEAP, with-less than 2.5% of the number of inserting and deleting processors
“devoted to restructuring. Fig 3 in Appendix 9 shows the breakeven point beyond
which -adding more restructuring processors does not help, because there is not
- enough work to go around. An analytical way to arrive at this breakeven point is to
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calculate the maximum throughput of restructurings i'equired_ and to ensure that
there are at least as many restructuring processors to deliver that throughput. We
assumed compute granularity of 1 sec, with an equal number of inserters and
deleters. We feel that an investment of 2.5% of the processor resources is not
unreasonable, especially when the benefits are so visible (see Appendix 10 Fig 1.1).

As expeeted the CHEAP and SBAN algorithms show almost constant times over a
large range of 51zes of the structure (Appendlx 10 Fig 1.2). The falling trend in the
cost of insertion and deletion is accounted for by reduced contention as we go to
larger sizes of the CHEAP and the SBAN. The RHEAP algorithm pays a heavy
penalty in the delete phase, that grows lmearly with the size of the structure. This
penalty is also paid in the case of RI—IEAP inserts, where the distribution of inputs
is skewed, with insertions of very large values into an already constructed heap

Compute granulanues must be moderately large to warrant effectlve use of any
concurrent data structure, mcludmg the CHEAP, SBAN and RHEAP. Computa-
tions with average compute granularities smaller than 1 sec pay a steep price in
terms of contention. This price decreases dramatlcally as we increase the compute
granularity (Appendix 10 Fig 1.3.) The outstanding performance beneﬁt of a SBAN
over 8 CHEAP is that it performs better at smaller compute granulantles. This is a
significant improvement, since it becomes more and more promising as we increase
~ the number of processors.

- Finally, the crucial time in the restructuring algorithm is the cost of doing a com-
pare. It may conceivably be required to organize a priority structure on a com-
parison between complex structures with several fields. In this case the RHEAP
algorithm falls woefully short, because of the large critical section. The CHEAP

algorithm is clearly better as we go to higher and higher compare costs (Appendlx
10 Fi g1.4). ‘ : Co

3.4 Domain 0f Characteriiétion

Our experiments and simulations involved five parameters:
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i)  Size of structure (the number of values inside the structure).
i) Number of Processors (dein g insertions and deletions).

iii) Compute Granularity (in millisecs).

iv) Number of Restructurers.

v)  Comparison Time.

The domain of characterization of these parameters is discussed in this section.
The first three péirarfleters are the mest significant. The fourth parameter i.e.
number of restructurers is linked to the rate of inserts and deletes by formulae
derived in chapter 5 and these formula have been validated (Appendlx 8). We
assume the presence of adequate restructuring resources (either in hardware or
- software) and hence thlS parameter is not discussed any further,

As regards the last parameter i.e. compare time, our charts and diagrams have been
- plotted con31der1ng the smallest possible compare time. If compare time is
increased all algorithms degrade in performance, however the degradation in per-
formance of thé concurrent heap is far smaller than that of the regular heap. Thus
the concurrent heap (and software banyan) are 1ncreasmgly favorable over the reg-
ular heap w1th increase in compare t1me

3.5 Estimation of surface coordinates,

Based upon the results presented in the appendix we arrive at the three surfaces
shown in Figs 3.1 - 3.3. These surfaces have been constructed by estimation based
on the shape of known curves and the assumption that the projections of each sur-
face normal to both its parameter axes are parallel to the known curves. For exam-
- ple in Fig 3.1 we assume that a plane normal to the size axis will intersect the
RHEAP and CHEAP surfaces in lines that are parallel to the known curves of
Appendix 10, Fig 1.3, Similarly planes normal to the granularity axis will intersect
the two surfaces in lines parallel to the plots of Appendix 10, Fig 1.1.
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Fig 3.3 Estim_ate_d surf'agles sdeing dependence of delete fime upon number of pro-
cessors and size, keeping gfanularity constant at 1 sec.

4. Specialized Hardware for priority structures

4.1 Related work -

Existing algorithms for systolic priority queues are all based on one of three
designs: a) array based designs [Leiserson '79, Guibas ’82], where values pro-
pagate down an array and stop when they have found their proper position, and b)
tree based designs called dictionary machines [Ottmann 82, Atallah ’85, Somani
"83], where the data is organized in a sorted / unsorted manner and mapped upon a
tree of processors; the edges of the tree being used for commumcauon between the
processors, and ¢) Varman’s fault tolerant design [Varman ’83] that embeds a
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depth first search tree on a two dimensional mesh working around faulty proces-
sors. All of these designs provide only a single I/O (input / output) port for data
transfer from / to a host machine, and use one processor per data item (or a small
number of data items).

A serial bottleneck such as the 1/O port of existing designs for systolic priority
queues, may fail to utilize the performance of these specialized machines. We
believe that the need for high performance priority queues will be increasingly felt
in conjunction with multiple processor systems, where there may be tens or hun-
dreds of "hosts” that may need access to the same priority queue. In such usage
configurations it is not hard to imagine the need for multiple input/output ports.

Given current and forecasted technology it will be very expensive (see Appendix
11) to construct linear arrays or trees of processors. for large priority queues
(upwards of 10° data items). When cycle time is not the most critical parameter it
is beneficial to try alternate designs that use a small number (O(log N)) of general
purpose processors each with a fair amount of local memory, rather than large net-
works of simple processors. Fisher ([Fisher ’84]) has proposed a dictionary
machine that is not “processor profligate”, in that it uses as many processors as the
size of the longest key and a systolic trie structure to support search operations on
“an ordered set. Carey et al [Carey "84] have proposed a dictionary machine with a
small number of O(log N)‘ proccssors‘ that uses a variation of the 2-3 tree known as
the 2-3-4 tree 1o maintain a systolic index into a large search table. However both
these designs lack the ability to exploit mulfiple I/O ports.

In this paper we present systolic priority queues of both designs: i.e. the PPN or
"processor per node" design which is an idealized design with O(log N) input ports,

and the PPLM or "processor per level with multiple input ports" design. PPLM

- machines use O(log N) processors with M input ports, where N >> M > 1. A sys-
tolic banyan architecture is proposed as a-third alternative. This architecture is
interesting in that it has multiple output ports as well as input ports. |

‘The only internal ordering maintained inside these structures is one that is con-
sistent with the heap property, i.e. the value at a parent node should be greater than
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or equal to the value at each of its children. The algorithms preserited are variants
of similar algorithms that we have developed in the context of general purpose
multiprocessor [Biswas ’87b). The ideas are also related to similar work on con-
current data structures [Kung *80b, Ellis *80a, Quinn ’84] and work on distributed
implementations of balanced search structures on hypercube architectures [Dally
:"86]. We assume familiarity with the literature. -

4.2 Systolic priority qlll'e_'ues based on binary trees |

The most popular sequential algorithm for a priority queue uses a heap T data struc-
ture [AHU "74]. In this section we present & systolic algorithm for a-priority queue
using an unbalanced heap, in other words a binary tree in which leaves may appear
at any level as long as the the heap property is satisﬁed at every node. Our algo-

rithm assumes a machine in which a processor is assigned to each internal node of
a fixed size complete binary tree. Unbalanced heaps are dynamlcally formed in this
machine by values occupylng the processors. In the latter half of this section we
present a simple mapping scheme that reduces the number of processors to a small
number, each with a fair amount of memory. The requirement that deletes go
through a single output port is relaxed in section 3 through the introduction of a
banyan structure. The banyan is more complex than a complete binary tree, but a
simple mapping onto a few ?roeessors is again possible,

4.2.1 PPN machines

In a PPN machine N processors are arranged as a complete binary tree of size N
(we assume for cenvenience that N = 27 - 1, for some ihteger n). The root has an
output port and each leaf has an input port. Each processor contains a register
called its data register which is initialized with a null value that is smaller than all
possible data values. Each processor has the capacity to store exactly one value, or
node of a complete binary tree and hence the name processor per node.

t A heap is a binary tree in which leaves appear only in the two lowest levels, and the |
“leaves in the lowest level appear in the lefi-most places (i.e. they are left-justified). In ad-
dition Lhe va]ues in Lhe nodes of a heap must sausfy the heap property.
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4.2.2 Rewrite rule _

A processor operates in cycles, each cycle being broken up into two phases, the
parent phase and the child phase. All processors in the same level must be in the
same phase and adjacent levels are always in different phases. With the exception
of the root, when a processor is in the child phase it is passive and allows its data
register to be examined (and possibly mutated) by its parent processor. Similarly
except for leaf processors, all other processors are active in their parent phase and
may mutate their own data registers”énd those of their children. Since phases alter-
nate, a processor that is in the parent phase in a given half-cycle must be in the
child phase in the subsequent half-cycle.

The rewrite rule for this machine is simple. Let p, Ic, and r¢ denote values in the
" data registers of a parent processor (i.e. a processor in the parent phase) its left
' chlld and its right child prior to an application of the rule. S1m11ar1y letp’, Ic’, and
" r¢’ denote values in these registers af rer apphcatlon of the rule. The rewnte rule is
stated as follows (we use the mult1p1e ass1gnment staternent)

if{le >p Al >rc)then pLlc’ re’ =lc,p,rc -
elseif (rc >p A rc 2lc)then p'lc',rc":==rc,lc,p

An application of this rewrite rule is demonstrated in Fig 4.1.

Fig 4.1. Example application of the rewrite rule

Intuitively the rewrite rule corresponds to the "pushup" phase of the well known
sequential heap algorithm. Obviously this rule does not apply to the parent phase
of a leaf or the child phase of the root. Each leaf processor allows an insert (input)
operation in its parent phase. Similarly the root processor allows a delete operation
in its child phase. A delete operation removes a value from the root and puts a null
value in its place. A delete fails if the root contains a null value at the time of
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deleti.on_,_An iﬁsert fails if the leaf _involvéd contains a valid data Valu_c (not a null
value) at the time of insertion. Failure is appropriately signalled to the host generat-
ing the request. |

An inserted value is sald 1o be propagating if it makes progress to a new level at
~every cycle following the insertion. A value v inserted at clock cyc]e r stops pro-
~ pagating within log . N+1 cycles of 7. This is obwous, since there are only log N
levels in the tree. If v is grcater than any other value in the tree then it must rise to
the root in log N cycles. Seven iterations of this algonthm are illustrated in Fig 4.2.

N
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Fig 4.2. A sequence of deletes upon an unbalanced heap

4.2.3 Failure performance of deletes and inserts

a) Delete failures.

Given that the structure has k values for a quiescent period (no I/O) of log N cycles
“we claim that there will not be a delete failure until at least k deletes have taken
place (for example in Fig 4.2, k = 7). This is stated more formally as the following
lemma.



Lemma 1: If a PPN machine has k processors occupied by values for a quiescent
period of log N cycles, then the next delete failure can occur only after & dcletcs
have faken place. '

At the end of the quiescent penod the & values in the PPN machine must be organ-
ized in the form of an unbalanced heap rooted at the root processor. This is obvious
since cvery value has had log N cycles within which it must have reached either the
root or been stopped by a value that is larger. F1g 42 depicts an unbalanced heap
' with 7 values at thc end of the quiescent period.

To prove Lcmma 1 we first introduce some terminology. We shall use heap to
mean unbalanced heap. A processor is said to be inside the heap if either its
value is non- -null or it has a descendant whose ‘value is non-null. This property of a
processor is known as its inside —ness . Levels of the machine are labelled from 0
up with the label 0 bemg a551gncd to the root. Even levels start at O and odd levels
at 1. An odd cycle is a half-cycle (sec earlier description of cycle) at which only
processors at odd levels are in their 'parent phase (i.e. the rewrite rule may be
applied). Similarly for even cycles. Thus the first half-cycle after quiescence is an
odd cycle and deletes can occur only in odd cycles. A null value is also called a
hole .

Lemma 2: At the end of the i even cycle, i <k, the only processors inside the
heap that have holes in them are at odd levels.

Note that Lemma 1 directly follows from Lemma 2.

Proof of Lemma 2. _
For £ =1 the lemma is trivially true. Assuming k > 1, we use induction on the
number of completed even cycles.

Base case: -

At the end of the 1% even cycle, by inspection the only hole inside the heap may
- be (it need not be, for example if the root has only one descendant along a particu-
lar branch) at level 1.

Inductive hypothesis:
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After the i% even cycle (i < k) the only holes inside the he_:ai) are at odd levels.

We must show that after the i +1% even cycle the only holes inside the heap will
be at odd levels. Let g, a4, -+, a ; be the holes inside the heap at the end of the
i** even cycle. Let us consider one of these holes, say a,,. Let ay,, and a,,, be the

children of a,,. Then either a,,, or a,, is inside the heap since it must lie on the

path from a,, 16 a descendant-of a,, that is non-null (by definition of inside —ness ).
Thus cither a,,; or a,,, must be nion-null by the inductive hypothesis.

. We have demonstrated that _ebery hole inside the heap at the end of the i** even
cycle has at least one non-null child. At the end of the i+1* 0dd cycle (the half-

cycle immediately following the i even cycle) there will therefore be a value to
fill each hole inside the heap and each hole will propagate down by one level into
an even level (and in some cases exit the heap). Thus at the end of the i+1 odd
_ cycle the only holes inside the heap are at _cvén levels. _

We now use precisely the same argument as above once more, to show that at the
end of the next half-cycle, whichis the i +1%* even ¢ycle the only holes inside the
heap are at odd Ievels 0 ' '

b) Insert failures. .
In the best case values will be dlstnbuted during insertion in such a manner that the

tree is filled uniformly and it is completely full at the time of the first insert failure.

In the worst case, assuming that a sequence of inserts are carried out at the input
port of the same leaf processor there will be an insert failure within log N + 1
cycles, even though the rest of the tree may be sparse. Thus the worst case perfor-
mance of the PPN machine for insert failures is unfavorable. The average case pcr-
formance of this structure is yet to be investigated. ' '

The large number of input ports (one per processor) of the idealized PPN machine
is infeasible due to practical restrictions. To alleviate this problem, input channels
may be shared between a number of input ports. Sets of leaf level processors may
be mapped onto the same chip in such a way that a single input channel is sharable
by all processors on the chip. Similarly all chips on a board may be made to sharc
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the same input channel (bus) with all chips on another board. We shall not address
this issue ariy further since it has to do with specific details of an implementation.
We now:address the issue of :cost reduction (by means of reducing the number of
ProCEssors). '

4.2.4 Mapping onto a few processoré

We use an approach similar to that adopted by Carey et al ([Carey ’84]) in reduc-
ing the number of processors from N to O(log N). The key idea is to associate a
single level of the PPN machine with one processor (or a constant number of pro-
cessors in case of multiple inp{Jt ports). First we consider precisely log (N + 1) pro-
cessors organized in a pipeline (see Fig 4.3a). The root processor has an output
port and one word of memory (where a word is as many bits as required to store a
~priority field and an uninterpréted pointer field). Sirnilafly‘ the second processor
has two words of memory and the i * processor has 2i~! words of memory. Unlike
the PPN machine a processor is responsible for the data values in all the nodes in
the corresponding level of the complete binary. tree. At every cycle at most one
data value may pass through any level of the structure, thus the processors need not
interchange vectors of values. It is enough for a processor in the child phase to
indicate to its parent the address (array index) and value of the mutated node.

This machine is still systolic in the sense that it has a linear array of processors
which pump values from one end to the other, however each processor is more
complex than the processor of the PPN machine especially in that it must be able to
handle random access memory and communicate addresses. Instead of N/2 input

ports there is only one such port (associated with the last processor in the array)

and as before only one output port (associated with the first processor). -
4.2.5 PPLM machines

. We can provide room for M (for some small integer M) input ports for simultane-
ous insertion, by splitting the bottom row of the complete binary tree into M parti-
tions and as_\signihg them to M processors, each with a single input port. We assume
_for convenience that M is a power of 2. Thus at the lowest level each processor has
(N+1)/(2*M) nodes. This gives rise to log (N+1) + 2*M - 1 - (log M + 1) = log
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(N+1) +2*M - log M - 2 processors. Thus this machine has O(log N) processors
since M is a small constant unrelated to N. The resulting machine is shaped like a
much smaller binary tree (depth log M) (Fig 4.3b) surmounted with a linear array
of processors. Such a machine is called a PPLM machine, meaning "processor per
_ level with multiple input ports".

A bum_ut : Sy

] Input
a)

Input

)
Fig 4.3. PPLM machines vsing O(log N) processors
withN=3landa)M=1b)M=4

4.2.6 Synchronization

Unlike some existing designs our processors are all locally synchronized. This
means that there are no global control signals. The processors compute at their own
speed within the constraint that their parent and children phases alternate and a
parent and its two children exchange local handshaking messages to synchronize
their data transfers and their phases.

4.3 The systolic banyan

The chief problem with tree implementations of systolic priority queues is that it
has only one output port. We can alleviate this problem by means of additional
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hardware as we have done for the inserts. The idea is very similar to the that of
building a software banyan [Biswas '87], except that in this case the banyan struc-
ture is partly in hardware and partly in software.

Fig 4.4 demonstrates a systolic banyan. The basic algorithm of cycles consisting of
parent and child phases remains in this case. The only difference is that in this case
a ser of parent nodes are associated with a set of children nodes. The rewrite rule
reorders the values in such a way that all parent nodes are ordered above all chil-
dren nodes. |
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Fig.4.4. A banyan and its mapping onto a systolic structure consisting of a few pro-
cessors: a) shows the logical relationships and b) shows the physical connections
between the processors.

An item deleted from a systolic banyan need not be the highest value in the
machine. We have derived bounds in chapter 5 to show percentile figures for the
relative magnitude of a value that is at the root node of a banyan. The mapping
result in chapter 5 section 4.3.2, that demonstrates a straightforward optimal map-
ping of k—ary hypercubes onto binary hypercubes where k is.a power of 2, is also
relevant in this context. Unlike purely software based algorithms in banyan algo-
rithms we cannot "place a lock upon an apex node and examine a sequence of apex
nodes looking for the maximum value". This scheme runs contrary to the basic
nature of systolic computing. Instead we introduce the notion of threshold based
deletes. We assume that a delete request arrives with a threshold specification
approximately as follows: "return a value if and only if it is larger than X". Now we
pipeline the request from apex node to apex node in the banyan until it is satisfied
or it has investigated all the apex.nodes. At this point the request leaves the
machine indicating failure. One problem remains: how do we resolve between two
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deletes contending for the same apex node? One can devise prioritization rules
regarding this as one chooses. A similar approach can be used to perform load
balancing at the base level nodes of the systolic tree and banyan. In an approach
that is quite similar to ours, Schwartz et al [Schwartz *87] have analyzed the suita-
bility of cube class networks for dictionary machines.

4.4 Conclusions

We have presented systolic designs for priority queue machines that have multiple

ports for I/O. Versions of these machines that use a few general purpose processors

(rather than many specialized processors) are discussed, and it is argued that these
machines have favorable cost/performance ratios. A host (or set of hosts) sharing
a systolic priority queue through single 1/O port may be unable to sustain the rate
of rcquésts necessary to run the machine at full speed. Thus if there are bandwidth

restrictions on the I/O the cheaper PPLM machines may perform just as well as the

more expensive dictionary machines proposed in the literature. In this regard the
idea of increasing the number of I/O ports is attractive, because it provides us with
a way to increase input and output rates. I

Average case failure of the PPLM machine has yet to be characterized. Besides

this, two more issues have to be addressed, namely stability and load balahcing. If

systolic trees are to be useful there must be a balance between the rates of insertion

and-deletion, If the structure is full the rate of inserts will come down to the rate of
- deletes. If, on the other hand, the rate of deletes is much higher than that of inserts

the structure might lie unused for most of the time. The problem of unbalanced

delete and ‘insert rates is partially solved in the systolic banyan structure where
* deletions are done on a percentage basis.

The second issue is that of load balancing. If insert patterns are skewed parts of the
machine may become congested and may even overflow while other parts are
lightly loaded. Some systematic way of dealing with load balancing is needed.

Finally, since our machines use fairly general purpose processors it would be
worthwhile to look for alternate applications / algorithms for such machines. For
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example there have been proposals for building dictionary machines with a few
processors [Carey '84, Fisher 84]. Our machines could be augmented with addi-
tional instruction sets and could be made to work in two modes viz. dictionary
machine mode or priority queue mode. |

5. Hardware / Software tradeoffs

] The following table summarizes the results of the experimental, simulated and
analytical perfonnance estlmates of hardware and software schemes for concurrent
_ _heap structures.

* Machine or Cycle  Comments

Algorithm Time , _ (basis)

PPN - 250nsecs’ -~ board to board signal delay

PPLM 1000 nsecs 2 memory cycles
. CHEAP- - 828 pusecs: ~ Simulation & Implementation (600 Pc) "
‘RHEAP - 1328 usecs -~ same as above - '

~SBAN = 798 usecs : same as above

Appendix 11 provides details of predicted costs of the PPN and PPLM designs: It is
easy to see that the cost performance ratio of the PPLM design is better than that of
the PPN design. The purely software alternauves are attractwe since they can be/
reahzed on general purpose MIMD machmes |
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Chapter 7 - Contributions and future directions

1. Contributions’

The goal of this dissertation research was the development of concepts and algo-
rithms for resource management on highly parallel computer systems. The concep-
tual foundations we have explored are extensions of abstract data type models
including preparation of external and internal specification and the notion of select-
ing external specifications which allow valid parallel internal specifications. The
specific algorithms developed include an index server object and a class of priority
queues which support simultaneous update. Development of the algorithms also
engendered extension of mechanisms used to express parallelism, including an
extended version of open predicate path expressions. |

The index server object is an instance of the set abstract data type and may be used
by computations that differ only in indexing parameters. The implementation of
this object depends upon guidelines for decomposing externally visible states of
objects into simultaneously updatable components. Linguistic support is provided
for these objects in the form of a mechanism (a type definition facility for abstract
data types). The mechanism includes an extension to path expressions that makes
it convenient to express patterns of activity bindings and consistency properties to
be satisfied at partitions of objects.

Our second major contribution is a class of data structures .a_nd algorithms for
weakened priority queues. The weakened propérties of these objects are expressed
at an external level in terms of percentiles and the implementation guarantees that
deleted items will satisfy the percentile value requested. The priority structures
proposed in this thesis, a concurrent heap and a software banyan, have been found
to be efficient and effective. The software banyan was derived from the concurrent
heap but differs greatly in implementation, It is a weaker structure and thus has a
higher degree of concurrency. The major drawback of a software banyan is that it
must undergo periodic copying when it is grown or shrunk in size. In contrast, the
concurrent heap (because of its direct mapping onto linear memory) grows and
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shrinks in size arbitrarily without any overhead. Variants of both algorithms can be
easily implemented in specialized hardware, gaining additional performance.

Both contributions are unified under the umbrella of a model for simultaneous
update. This model describes an object’s execution behaviour in terms of histories
of events, or interactions between objects and activities. Abstract or external
specifications and implementation states of objects are characterized within this
model. It is also stated under what conditions a correct internal history is an imple-
mentation of a correct external history.

~ 2. Significance

How significant are these results? The class of work container computatlons (com-
putations covered by index server objects) is quite frequently encountered in
resource management of highly parallel machines. Thus we feel that the index
server object has good potential for application on current parallel machines. Prior-
ity queues are intrinsic to resource management. Their general utility has been elo-
quently expressed in {Leiserson *79). The two weakened: priority queues presented
in this thesis may be used as building blocks in a large variety of resource manage-
ment applications where getting the absolutely highest value is not as important as
getting one of the highest values. One application is in the management of nodes to
‘be expanded in the course of exploration of a search tree in an Al search algorithm.
It may be the case that the node yielding the final solution is not the largest (most
promising) current node but one of the largest Thus any one of the Iargest nodes is
good enough for 1mmed1atc cxpansmn

3. Future work and possible directions for extending this work

This work may be extended in several directions. A study of the performance of
index server objects over various archltectures would be useful. The algonthms for
implementation of work ma.nagers and synthesis of code from oxtcnded path
expressions remain to be implemented. The implementation is straightforward and
uses well understood software engineering techniques and compiler technology

More generally, we believe that there may be weakened forms of other structures
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that are yet to be to be discovered. The challenge is not so much in discovering
them as 1n dlscoverlng their use. To illustrate this point, an area within resource
management that has been recognized but defied solution for sometime now is
coordinated scheduling . Coordinated schedulmg has to do with the simultaneous
scheduling of related tasks for execution at the same time to save on redundant
context switching and other reasons. The pioneering work on this was done by
QOusterhout [Ousterhout ’82] but he made the assumption that task blocks were
identified by the user. A more general mechanism for identification of ready groups
of tasks at runtime is needed. This is still an open problem.

Other implementations of weakened priority queues may be proposed. As outlined
in chapter 6, the idea that insertions and deletions should both propagate down-
wards seems to be promising from a performance standpoint although the structure
now contains holes and is not as elegant. |

An area within weakened priority queues that needs further investigation is the use
- of interimediate grain locking. Algorithms that we have presented here all lock
either the entire structure or only the- smallest lockable window. This approach
have led to simple algorithms that were easy to reason about and implement. We
feel that algorithms based upon intermediate grain locking (i.e. algorithms that use
larger window sizes) will perform better. These algorithms will be quite different
from those presented in this thesis although their design approach should be simi-
lar. - ' '

‘We have pro'bed'di'suibuted implementations of our weakened priority queues in
our mapping results in chapter 5. By building distributed structures such as these in
the kemnel of certain time-stamp based protocols one might be able to improve the
performance of distributed algorithms that use strict priority queues, but could be
made to tolerate wcakcned ones. For what classes of distributed algonthms this
approach is sultcd is somethmg that is yet to bc charactenzed '
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Glossary of Abbreviations

Abbreviation Expansion- - Pagc no
abx all blue ek_ccpt 80
adt abstract data type 7
CHEAP concurrent heap 74
DC delete consistency 79
epe extended pa.th expression 47
gh generalized heap 79
gib ~ greater if blue 79
iso index server object 29
HC heap consistency 79
oppe open predicate path expression 63
ols object'i'mplemcntation state 18
PDC ‘parallel delete consistency 97
PHC parallel heap consistency - 97
PQ priority queue _ 76
PPLM processor per level with multiple input ports 140
PPN ~ processor per node 135
RHEAP r'egularrh‘eap 119
SBAN software banyan 99
SDC serial delete consistency 80
SHC serial heap consistency 80
SPMD single program multiple data 51
TDFL task-level data flow language 36
weo work container object 41
wman work mahager - 50
wQ work queue 83
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Appendices

Appendix 1. BNF grammar of Extended Path Expressions (continued)

<predicate> :i= <bool-term> | <bool-term> <boolean-op> <bool-term>
<bool-term> ::= <event-count-term> | — <event-count-term>
<event-count-terms> = <term> | <term> <arith-op> <event-count-term>
<term> ::= <unsigned-integer> | <type-of-count> ( <operation-id> )
<type-of-count> ::= invok | perm | ack | rep
<range> = * | ( <int-expr>, <int-expr>)
<set> 1= { <set-of-identifiers> }
<int-cxpr> ::= <int-term> | <int-ternr> <arith-op> <int-term>
<int-term> ::= <unsigned-integer> | <int-var>
<int-var> ::= <target-lang-id>
<set-of-identifiers> ::= <target-lang-id> | <target-lang-id> , <set-of-identifiers>
<targ-lang-bool-exp> ::= nil | <targ-lang-bool> | <targ-lang-bool> <boolean¥op>
‘<targ-lang-bool> '
<targ-1ahg-bool> ;1= <relational-exp> | — <relational-exp>
<relational-exp> ::= <integer-expr> <rel-op> <integer-expr>
dnteger—expf> = <intcger¥térn1> | <integer-term> <arith-op> <integer—tcrrn$
<integer-term> ::= <unsigned-integer> | <int-var> | <subscripted-identifier>
<subscripted-identifier> ::= <target-lang-id> [ <int-expr> ]
<arith-op> =+ | - | ¥ | /| % '
- <boolean-op> :=A IV
<rel-op> n=<lsl=lezl>=les

The above BNF is a continuation of the syntax of epe s presented in section 3.1 of
chapter 4. Certain obvious definitions, such as <unsigncd—integer> have been omit-
ted. This BNF provides for a bare minimum, and could be extended for program-
mer convenience by adding the ability to parenthesize sub-expressions, and by
adding a wide variety of data types.
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Appendix 2. Syntax of Work Managers.-

Assumption about parameters. In our development, we have used only one type of
parameters, namely integers. On a real implementation, a richer variety of types
would no doubt be an attractive feature, but having additional types would not con-
tribute materially to the concepts being discussed here. Hence we use only integer
parameters in our work managers,

<work_manager> ::= @wm_begin <body> @wm_énd "

- <body> . u= <header> = <formal parms> . <pexp>  <operations>
<create_time_bindings>.

<header> ::= @name <identifier> -

<formal_parms> ::= @formals | @formals <formal_list>

<formal_list> ::= <identifier> | <identifier> , <formal list>

<pexp> = @epe <epe | > - o

<operations> ::= @operations <user_operations> <other_operations> _
<create_time_bindings> ::= @where begin <create_time_assignment> end
<create_time_assignment> ::= <unit> | <unit>; <create_time_assignment>
<unit> ;= <ident> := <int_expr> | <identifier> := <fa.nge> '
<range> ::= <int-gxpr> . . <int-expr>

T The BNF for <¢pe > has been defined in the text.



Appendix 3. Grammar for the generation of left-set and right-set of internal
nodes of a parse tree.

Intuitively, the left-set and the right-set of a node in a parse tree of an oppe are sets
of operations that are allowed to execute first and last respectively, by the subpath
represented by the section of the tree rooted at the node.

More formally, given a parse tree T, the left-set and right-set of a node are recur-
sively defined by the following grammar:

Let list, seq and item denote a node that is a respectively a list, sequence and item
node. Furthermore, let a subscript of O, L and R denote an only internal child, a
left internal child and a right internal child node respectively. (Note that the epe
grammar does not allow any node with more that two non-terminal children.)

left-set ( <list>) 1= left-set ( <seqp>) | left-set ( <seq;>) U left-set ( <listg>)

right-set ( <list> ) 1= right-set ( <segp> ) | right-set ( <seg;> ) \_J right-set (
<listg>) S ' :

left-set { <seg>) .= lef_f-set ( <itemp > )  I right-set ( <itemy >)

right-set ( <seq >) u=right-set ( <itemp>) | left-set ( <segp>)

left-set ( <term> ) ::= left-set ( <listp>) | left-set ( <opo>) | { sb )
right-set ( <term >) :=right-set ( <listo>) | right-set (<opp>) | { eb }

The special symbols sb and eb need some explanation. A burst is recognizable by
the system and is converted into two special signals, start-burst, abbreviated sb -
and end-burst, abbreviated eb. If a term expands into a burst, then the correspond-
ing controller must recognize the start-burst and end-burst signals,
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Appendix 4 - Hand executed output of Algorithm 5.2

The generated source code shown below is an execution of the algorithm 4.2, that
translates open predicate path expressions. The expression in this case is as fol-
lows: 1: ({ R} [ invok (W) - perm(W) =01, W ).

procedure R

begin
predicate_6_1 (invok);
burst_9_1 (invok);

(* access (i.e. read) the data *)

burst_9_1 (ack);

end;

procedure W

begin
predicate_6_1 (invok(W));
restrict_3_1 (invok);
predicate_6_1 (perm(W));

(* access (i.e. write ) the data *)

ack++
restrict_3_1 (ack);

end;

procedure burst_9_1 (signal)
begin
if signal.type = invok then
begin
if burst_count_9_1 =90 then {* start of new burst *}
begin
restrict_3_1 (invok);

burst_count 9_1:=1;
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~end
clse (* continuation of old burst ="‘)
burst_count_9 1 :=burst count 9 1+ 1;
end;
if signal.type = ack then
begin
if burst_count_9_1=1 then (* end of a burst *)
begin
restrict_3_1 (ack);
burst_count_9_1:=0;
end
clse (* conlinuation of a burst *)
burst_count_9_1 := burst_count_9 1-1;
end; '

end;

procedure predicate_6_1 (signal)
begin _
if (signeﬂ = invok(W)) or (signal = perm(W)) then N
begin f
if signal = invok(W) then invok(W) := invok(W) + 1; -
if signal = perm(W) then perm(W) := perm{(W) + 1;
if ( invok(W) - perm(W) = () then
repeat -
dequeue_6_1 (id);
if id <> nil then
awaken (id)
until (id = nil)
end;
if signal = R then
begin '
if not { invok(W) - perm(W) =0 ) then -



begin
enqueune_6_1 (myid);
sleep (myid)
end -
end; '

end;

procedure restrict _3_1 (signal)
begin
if signal.type = ack then
begin
nacks_3_1:=nacks_ 3 1+1;
if ninvoks_3_1 - nacks_3_I >=1 then
begin
dequeune_3_1 (id);
awaken (id)
end;
end;
if signal.type = invok then
begin.
ninvoks_3_1 :=ninvoks_3_1+ 1;

if ninvoks_3_1 - nacks_3_1> 1 then

begin
enquene_3_1 (myid);
sleep (myid)
end;
end;
end;

Each read invocation first goes to the predicate controller, and proceeds to the burst
controller only after being cleared. Once the predicate becomes true, all the opera-
tions (reads) waiting at the controller are released. Thus predicate controllers are
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typically used to specify some kind of priority between operations. An important
point to note about a predicate controller, is that it enforces 'predicates involving
non-local operations, i.e. the signals enabling the predicates are not generatéd from
within the subtree, but are from the external environment. This is an unpleasant
feature, and causes problems in implementation. Since it is not known what will
happen if the predicate is violated, every operation in the subpath must go through
this controller, and potentially be blocked in the predicate controller until the predi-

cate 1s true.
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Appendix 5
Proof of PHC'

We shall examine each state transition upon the heap: Since locks guarantee non-
interference, every state transition may be thought of as taking place at the instant
an activity releases its last lock. Thus we have to show that every state transition
preserves PHC . The proof is by exhaustive enumeration of the state transitions.

State transitions. The shared data structure is mutated by the following kinds of
state transitions:

1. The color of a node is changed. ,

2. The contents of a parent and child nodes including their colors, are swapped.
3. An item is added. |

4. An item is deleted.

Swapping can be looked at as two color changes, accompanied by a transpo'sition
of values. Insertion is the birth of a new node at the lowest level. Since PHC is
only concerned with descendants of a red node, insertion trivially preserves PHC'
(see picture below). - - | o

N=n’ - N=n"+1

A

Before

After

Deletion is the removal of a node from the lowest level in the heap, accompanied

by a color change of the root node to yellow. Since the root node has no ancestors
and PHC' is only concerned with ancestors of a yellow node, deletion trivially
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preserves PHC (see picture below).

N=n-1

Before ' After

We shall therefore concentrate only on state transitions caused by restructuring
operations.

State transitions caused by restructuring operations.

As shown in Fig 43 there are 16 case.s, numbered 1 through 16, The first six are
due to restructuring workpieces of the form (i, "red"). The remaining ten are for
delete operations, i.e. restructuring workpieces of the form (i, "yellow"). We use
the following notation (see picture below). v, denotes the value of a non yellow
ancestor. vy, vz, and vs are the values in the parent (index i), left child (2i) and
right child (2i+1) of a restructuring window, prior to a state transition. v;, v, and
v3 denote the values in the same nodes immediately after the transition. v4 and v
denote values at non-red nodes in the subtree rooted at the left and right children of
the parent node, respectively.
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3| /o

V4 Vs

Before transition After transition

If v, v4 or vs do not exist, PHC  is trivially true at the nodes where we make the

assertion.
Let NoChange = vi=vi A vo=v, A v3=v,
LetSwap = vi=vy A va=v; A vi=v,

Case 1:

There is one color change, namely that at node 2i. We must examine the ancestors
and descendants of this node, to see if PHC has been invalidated.

Ancestors of 2i

vo2vi A vi2vy A NoChange .. vo2vy
also, vi=vy A NoChange .. vi 2v,
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Thus PHC is preserved at all ancestors of the new blue node (21).

Descendants of 2i
va2vy A NoChange .. vy 2 vy '
Thus PHC is preserved at all descendants of the new blue node.

The remaining cases (cases 2 - 16) are similar and the proofs are left to the reader.
0



Proof of EP (Eventual Pro'gress'):

Progress is said to be rnade whenever either a node changes color to blue, or a
parent and child nodes are swapped. In most cases, progress is made by ared / yel-
low value with each restructurmg operation and inserts and deletes. Cases 3, 6, 9,
13 and 15 (see Fig 4.3) are the on]y cases where such progress is not possﬂ)le. We
argue that such lack of progress cannot continue indefinitely, and eventually the
structure will enter one of the states from which progress is possible.

The five cases identified may be summarized into three categories: a) when a red
- parent and child are properly erdered, b) when a yellow parent and child are prop-
erly ordered and ¢) when a red child is greater than a yellow parent, but has a yel-
low sibling.

Consider a yellow value that is unable to make prdgrcss.' By b), it must have a yel-
low child that is in the samé situation.” Since the tree is not infinite, there must
therefore exist a cycle of ordered yellow values. This is impossible in a tree struc-
ture. Thus a yellow value will eventually be able to make progress.

Now consider a red value that is unable to make progress. By a) and c), this means
that it must have either i) a red parent that is greater, and is similarly stagnant;"or i)
a yellow stagnant parent that is smaller, and a yellow sibling. i) implies the
existence of a cycle of ordered red values, which by our previous argument, is
1mpossrble In a tree structure. ii) is not possible, since we have just shown that yel-
low values are not stagnant. Thus the red value w111 eventually be abIe to make
' progress ' S (i '
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Appendix 6 - Banyan definitions and formulae

A banyan is a Hasse diagram of a partial ordering (i.e. a partial ordering under tran-
sitive reductmn), in which there is only one path from any apex to any base. An
apex (base) is any vertex with no arcs incident into (out of) it. A vertex that is nei-
ther an apex nor a base vertex is called an mtennedtate Vertex.

An L level banyan is a banyan in which every path from any apex to any base is of
length L. An L level banyan is an (L +1) partite graph in which the pal'titidns may
be Iinearly ordered from 0 through L such that the arcs exist only from the i par-
tition to the (z+1)”‘ partition (0< <L) The set of vertices in the i partition are
called the vertices in level ;.

An regular (s, f, L) banyan is an L level banyan in which the in degree of évery
vertex except the apex vertices is s, and the out degree of every vertex except the
base vertices is f.s iscalled the spread and f is called the fanour of the banyan.

An(s,f, L) banyan has s~ £ vertices at level i, 0<i<L. Thus an L level banyan

has st apexes and f’ bases. The definitions and properties above ‘are due to

[Premkumar *81] except for the fact that we have interchanged the terms base and
_apex. ' '

If there is an edge between two vertices, u in level i and v in level r.+1 we shall
say u isa parent of v, and visachildofu.

A regu[ar (s,f, L) SW banyan is a regular (s, f,L) banyan with the additional pro-
perties that a) two vertices at an intermediate level i, have either no or all common
parents at level i~1, and b) two vertices at intermediate level i have either no or all
common children at level i +1.

A rectangular (s, f, L) SW banyan is a regular (s, f, L) SW banyan withs =f =d.

A (d, L) hypercube (d>1,L20), is an undirected graph with dL nodes and an L digit
label in base d assigned to each node, such that an edge exists between two nodes
if and only if their labels differ at exactly one digit position. Since there are d—1
ways of modifying each digit prosition, and there are L digit positions, each node
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in a (d, L) hupercube must have exactly (d—1) * L neighbours.

A (d.L) alternating sequence S, on. L-digit numbers in base 4 is recursively
defined as follows: a (d,1) 'alternating sequence is 0,1, ---,d-1 and
S=051, ..,d=1.541, where S is a (d,L-1) alternating sequence such that
Siv1=38;- and S;- is the reflection of St-.. The period denotes concatenation of the
digit to its left with each element of the sequence to its right.
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Appendix 7 - Performance of CHEAP vs RHEAP

Fig 1.1. Varying size of the st:ructhx_‘c (the number of nodes in the heap) .

CHEAP RHEAP |
Avg ome per Avg time per Avg time per Avg time per i
chLh (3] 2n Insent {[lsecs ) Delete (isecs ) Insert (Usecs ) Delete {Lisecs } |
17 131072 2308 4595 882 4899
16 65536 1654 4180¢ 1271 4622
15 32768 1987 3540 1748 3429
14 16384 2045 3548 454 3473
13 8102 2555 3608 1101 3040
12 4086 2310 3718 2159 3ne
11 2048 1647 3420 1875 2985
10 1024 1905 2929 2062 3008
T+
6+
54
msecs RHEAP delete
41 CHEAP delete
3L
24 C insert
14
RHEAP insert

10 11 12 13 14 15 16 17
Depth -->




Appendix 8. Validation of thruput and delay derivations
i} Thruputs.

In chapter 5 section 5.1 the maximum thruput or simultaneity of restructuring operations
in a CHEAP was derived to be:
2L -1

Tmax_resr_ap = .+ 4

where f;, and f4 denote fractions of insert and delete restructuring activities respec-

tvely, and L is the depth of the structure. Also, the maximum thrupui of operations was

derived o0 be:

max_ep Fim+Jg "d) (2f1+3fd)

where f; and f; denote fractions of insert and delete operations respectively, and L is as

before, the depth of the structure.

The above derivation assumed an unlimited number of processors, so that a processing
element could be devoted to each node of the CHEAP. However, in our shared memory
impiementation of the CHEAP, the maximum number of proccssor's-'is 10, and some of
these 10 processors must be devoted to doing inserts and deletes. We therefore have o

adjust the formula for our application.

For a particular size of the structure, i.e. with depth 16, the time spent in doing a resmuc-
ture is on the average (measured at) 385 psecs (weightcd average of 216.7 psecs for red
values and 344 4 psecs for yellow values, with an additional procedure call overhead of
70 usecs). Assu'ming there are NR restructuring activities. The revised expected. max-

imum operation thruput! is:

"Ihuud:ﬁmlfmmT mchq:l.urs tmopnuummmupummdmwuhnlmnednmbuof
processor, vhe:usTMq,um o ap among operats given an unlimited
ambwdpmzlm .
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&
o = [NR . .;gg}

In our experiments NR was 4. This gives fma_op = 10388 resoucturings per sec. On an
average, red values made 3.3 mips and yellow values made 15.2 mips through the work
queue. The total number of restructurings available in 50 secs (the time taken to finish the
experiment), was 10388 * 50 = 519400. The total number actually performed was 8000
* 3.3 + 4000 * 15.2 = 87200. This shows that there are far more restructurings available -
than are actually used, making the restructurers idle for most of the time. This was gen-

erally true of large smuctures with moderate compute time (Qramﬂarity 10 millisecs).
Upper bound on mean propagation delay. .

T.». the upper bound of the mean time for a red or a yellow value 10 tﬁm'blue, i.e. an

upper bound on the mean propagation delay is given by:
Tiw=L _H,ub

where W, is as given in chapter 5 section 52
We now plug in the measured values for various terms in these equations:
A = (8000 + 4000) / 50 =240
L= 1-6.“24.0='384‘0 |
c=NR=4
e =43 = 10388
Thus p= ({5—:}) =0.37
and 3= 1.48
W = () + (e 553 =324

Ta=L Wy =16%324=5184

As is apparent from the results, the deletes came close to this figure (4312) but the inserts

took much less time than this on the average (1304).
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Appendix 9 - Markov chains for CHEAP, RHEAP and SBAN algorithms.

Try w lock PQ

Instt block 1
Compute .

Try to lock -
element

Instt block 2

Fig 1.1 Markov chain for inserting activities

_ Try o lock PQ

Compute

Check if yellow

not yellow

Instt block

'I‘fy 10 lock element

Fig 1.2 Markov chain for delete actvitics

J—

o
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unsuccessful
wOTK acquisiton

d:}ele restr

YELLOW

lock

Fig 1.3 Markov Chain for Restructuring activites

compute

start insert

iterate

on insert

Fig 1.4 RHEAP insert



compute

start delete

iterate
on delete

Fig 1.5 RHEAP delcte

Instt Block

Instt Block Try to lock element

Fig 1.6 Markov chain for Banyan insert
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atternpt

Scaling

k

Compute

Instt Block Try 10 lock element

Fig 1.7 Markov chain for Banyan delete

Mulriple Jocks

Instt Block

Instt Block

l Multiple locks

Fig 1.8 Markov chain for banyan restructure



avg lime avg Lme
Node (Usees) Node (isecs}
1 500000 14 300
2 100 20 200
3 50 2 50
4 50 2 50
5 250 23 200
16 500000 24 50
11 100 25 S0
12 50 26 50
13 50 27 200

Fig 2. Typical average times for the markov chain nodes of Fig 1.
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Fig 3. Sensitivity to the number of restructuring processors. The number of inserters and

deleters are fixed a1 20 each.

Msecs

1800

1600k

1400

1200+

1000t

80O

400

2003

SBAN
No. of restruc- Avp time per Avg time per

| turing procs Insert Delete
i 524 1565
2 457 617
3 566 4717
4 463 459
5 464 521
6 488 478
7 556 512
B 463 540
9 405 477
i0 520 598

B - CHEAP delete

Number of Resmucturing Processors

10

130
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Appendix 10 - Simulated performance of CHEAP vs RHEAP

Fig 1.1. Varying the number of processors, keeping gtanuiarity fixed at 1 sec and the
depth fixed at 12 (4096 nodes).

CHEAP RHEAF \
No. of Avg lime per Avg time per Avg time per Avg time per Avp time per Avgumeper
procs Insert Deleie Insen Delete Insen (Jarpe) Delete (large ingh |
20 445 470 409 1017 1307 1233
40 424 513 418 1043 1376 1229
80 484 537 438 1049 1426 ~1287
100 416 507 447 1056 1439 1319 i
200 493 91 470 1086 1593 1619
400 543 639 585 1234 2085 2183
600 602 828 695 1315 3802 3611
800 769 1130 871 15G5 23644 23229
1000 1030 1378 1011 1817 13175 12052
F

Msecs

F- RHEAP delete (large ins)

i i a - 3 I K 1 Fl 1
T ¥ ]

100 200 300 400 500 600 700 800 900 1000
. Number of Processors ——




Hsecs

1800
1600}
1400t

1200r

400,

2001

SBAN |
No. of Avg time per Avg time per
procs Insen Delele
20 504 564
40. 544 405
80 475 457
100 434 599
200 491 543
400 514 413
600 559 798
800 664 1003
1000 1262 935

N

1

B - SBAN delete

100

200. -

300

400

Number of Processors

500 600

700 800

i

900

1000



Fig 1.2. Varying size of the structure (the number of nodes in the heap) keeping the

number of processors fixed at 500 and 40 (for large insens).

CHEAP " RHEAP
Avg time per Avg ume per
| Depth (1) Insent Delete Insert Delete Large insert

17 539 682 635 1794 1426
16 550 639 589 1666 1352
14 530 681 549 1423 1118
12 601 687 633 1255 1028
i0 571 678 779 1086 795
8 573 753 791 941 675
6 609 794 536 566 -

A - CHEAP insen
1750 B - CHEAP delete

C - RHEAP inscn

D - RHEAP delete
1500 E - RHEAP (farge inserts)
1250+

Msecs

1000
750+ /
5001
250}

-

12 14 16 17

[N N
'y
o
a0
o



1750
1500
1250
Msecs I
1000
750+
500+

250+

SBAN (spread=2, fanoui=3)
Avg time per Avg time per
Depth (n) Insert Delele
8 452 602
7 548 509
6 568 682
5 625 666
4 568 693

A - SBAN insen
B - SBAN delete
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Fig 1.3. Varying the Granularity {compute time), with the depth of the stucture being

fixed at 17 (131072 nodes). In the case of the 2,3,8 'banyan, the number of nodes in the

structure is roughly the size of a 2,3,8 banyan, i.e. 19171 nodes.

CHEAP : RHEAP
Compute time Avg nme per Avg time per Avp time per Avg time per
{msecs) - Insert {Lisecs ) Delete (lisecs ) Insert (Usecs) |* Delete (jisecs)

500 852 1193 ’ 2015 2798
1000 601 687 635 1794
1500 485 625 465 1645
2000 515 615 355 1541
2500 514 520 335 1529
3000 434 535 320 1502
4000 496 533 279 1457
5000 431 515 265 1449

2750

2503

225 .

2000

1756

1503

RHEAP delete:
1259
Msecs I

1000

756+

500+

2504

L 1 L — 4 L

500 1000

T T

1500 2000 2500 3000

Compute Granularity (msecs) --»

3500

4000 4500 5000



2756,

2500

2258

2003

1753

1506

125G

750+

500+

2504

SBAN
Compute time Avg time per Avg time per

(msecs) Insert (jisecs ) Delete (Hsecs)
300 ‘1580 1387
500 701 760

1000 454 580
1500 444 500
2000 535 63
2500 409 512
3000 411 407
4000 489 484
5000 532 404

1 ! 1

1 Il

SBAN delets ~

4

500 1000 1500 2000

- Compute Granularity (msecs) >

2500 3000 3500

4000

4500

1

13¢



Fig 1.4. Varying the granularity of work done by the restructuring processor, (compare

fime).

CHEAP " RHEAP ..

Compare time Avg Ume per Avg time per Avg ume per Avg time per
==w_(_;1=secs) Insent (Usecs) Deleie (Jisecs ) Insert (Msecs) Delete (LLsecs)
100 561 678 335 1808

200 452 989 742 3684

500 2887 3848 3358 10874

700 13348 10061 0176 18514
1000 8476 15605 26172 40896

137



Appendix 11

Using figures of forecasted technological parameters from [Fisher '84] it is ¢asy 1o con-
vince oneself that 8 PPLM (processor per level with M input ports) machine should be
cheaper to construct than a PPN (processor per node) machine, even if we ignore the
problem of /O and assume that the tree algorithm is executed from the root processor for
both inseris and deletes (i.e. as in dictionary machines, a singte port for all VO is

assumed). The calculations and assumptions are summarized below.

Assumptions common to PPN and PPLM machines:

Maximum size of tree = N = 106,

Size of each data item = 4 bytes of priority information + 4 uninterpreted bytes of pointer

information = & bytes.
PPN machines:

Number of processors per chip = 32.
Number of chips per board = 100.
Therefore number of boards = 108 / (100 * 32) = 300 (approximately).

It has been argued [Schmeck '85] that grid implementations of binary wees are able 1o
achieve bener packing densities with more uniform delay characteristics, however there
is no general consensus on this issue. Note that linear pipelines (eg. the Leiserson priority
queue design) are easier to pack on grids but we do not consider this option since it does

not allow multiple ports.
Cycle time of PPN = 250 nsecs. (Most of this is board to board signal propagation delay).

Thus PPN machines are made up of about 300 boards and have a cycle time of 250 nsecs

(i.e. every 250 nsecs a new operation can begin).
PPLM machines:

Memory cycle time = 500 nsecs.
Number of input ports = M = 8 (for exampie).

1
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Number of processor boards =log (N+ I} + M- 1 =27.
Average memory required per board = 106 * 23/ 20 = .5 Megabyte (approximately).

Number of memory boards = 10. (We have assumed that smaller memory configurations

than those at the bottom half of the tree may be accommodated on the same board as the

__processor on that level).
Therefore, the total number of boards = 37.

Operaton cycle tme of PPLM machines = ﬁmc for 2 memory cycles = 1 psec.

The cycle time of one microsecond is arrived at on the basis of its very simple rewrite:

rule. With each cycle a processor has to read and write a memory location. This takes

‘two memory cycles and dominates the operation cycle time. Note that the systolic
banyan (see text) is a more complicated structure than the sysio]ic tree and will have a
larger cycle time because of additonal synchronization and exchange of data values

berween processors at adjacent levels,

Thus for the particular choice of parameters we have considered, the PPN machine is 4
times faster in terms of cycle time than the PPLM machine, but about 8 times as cxpt-;n-
sive in terms of the number of boards, for 2 tee of size one million. Furthermore, the
benefit of PPLM machines is more visible as we go to larger sized wees, since the
number of processors required grows logarithmically in contrast with linear growth in
PPN machines. The cycle time is constant with-increase in size und! the capacity of the
Iocal memory is exceeded. For trees of size.in the range 10% to 108 it appears that PPLM
machines will be very favorable with respect to their cost performance ratio. Beyond this
range secondary memory is required to support large storage requirements at each pro-
cessor. This slows down the cycle time. Trees with more than 108 values are outside the

scope of our analysis.
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