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Abstract 
In this Master Thesis a method to perform resistance predictions on planing hulls with 
transverse steps has been developed. For hulls without steps there are several methods 
available to predict their performances. One of the methods is called Savitsky’s method 
and was published in 1964 and is one of the more famous. Where needed, this method 
has been modified and used together with other theories to become applicable for 
stepped hulls. 
 
The stepped hull is viewed as two regular hulls following each other closely in the 
water. The first hull follows the same theory as a normal planing hull since this one 
meets a calm level water surface. The second hull does however not, as it travels in the 
wake behind the first hull. Because of this, the shape of the wake has been studied for 
different conditions like speeds and hull shapes. 
 
There are no practical ways to give the shape of the wake as input to Savitsky’s method, 
but it is possible to interpret the afterbody hull shape relative to the wake surface 
instead of relative to the level water surface as is usually done, and by doing so view the 
water as level. 
 
Another issue is that it initially is unknown how the weight is distributed between the 
two hulls, since the two centre of pressures have different positions dependent on speed 
and positioning of the boat, while centre of gravity of course remains the same. As a 
solution the author decided to solve the weight distribution by iteration, where suitable 
start guess that 50-70% of the weight is carried by the forebody is made for most of the 
conventional hulls with transverse steps. 
 
As platform to solve the problem above, MATLAB has been used. A program has been 
written where the dimensions, weight and speed of the craft are used as input and the 
new method predicts drag, required power, trim and draft of the stepped hull. The 
program is tested on a boat with detailed dimensions available. The required power 
predicted with the program corresponds very well with the available propeller effect at 
that speed after the air resistance has been added. 
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Nomenclature 
e    – distance below the transom/keel where the propeller shaft pass, [m] 

ε    – inclination of thrust line relative to keel line, [deg (if nothing else said)] 

f   – distance between T and centre of gravity (CG) measured normal to T, [m] 

g    – acceleration due to gravity, = 9.81 2
m

s
 

ν    – kinematic viscosity of fluid, [
2

m

s
] 

m    – total mass of the boat, [kg] 

ρ    – density of water, [ 3

kg

m
]  

V    – horizontal velocity of planing surface, [m/s] 

T    – propeller thrust, [N] 

tot
M   – total pitching moment, [Nm] 

 
None stepped hulls only:  

w
A   – wet area, 2

m⎡ ⎤⎣ ⎦  

a    – distance between fD  and CG measured normal to fD , [m] 

b    – beam of planing surface, [m] 

β   – angle of deadrise of planing surface, [deg (if nothing else said)] 

V
C   – speed coefficient 

LC β   – lift coefficient, deadrise surface 

0L
C   – lift coefficient, zero deadrise 

fC   – frictional-drag coefficient 

p
C   – distance of centre of pressure measured along keel forward of transom 

c   – distance between N and CG, measured normal to N, [m] 

fD   – frictional drag component along the bottom surface, [N] 

D    – total horizontal hydrodynamic drag component, [N] 

d   – vertical depth of trailing edge of boat, at keel, below level water surface, [m] 

LCG  – longitudinal distance of CG from the transom measured along the keel, [m] 

1
L   – difference between wetted keel and wetted chine lengths, [m] 

2
L   – difference between keel and chine lengths wetted by level water surface, [m] 

C
L   – wetted chine length, [m] 

k
L   – wetted keel length, [m] 

p
l    – dist. from transom along keel to where normal force, N , acts, [m] 

λ   – mean wetted length-beam ratio  

N    – hydrodynamic force normal to the bottom, [m] 

Re   – Reynolds number 

τ    – trim angle of planing area, [deg (if nothing else said)] 

m
V    – mean velocity over bottom planing surface, [m/s] 

VCG   – distance of CG above the keel line, [m] 
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Hulls with one step only: 

1w
A   – wet area of forebody, 2

m⎡ ⎤⎣ ⎦  

2w
A   – wet area of afterbody, 2

m⎡ ⎤⎣ ⎦  

1
a  – distance between 

1fD  and CG measured normal to 
1fD , [m] 

2
a   – distance between 

2fD  and CG measured normal to 
2fD , [m] 

1
b   – beam of planing surface of forebody, [m] 

2
b   – beam of planing surface of afterbody, [m] 

2L
b  – local beam of planing surface of afterbody, [m] 

1
β  – angle of deadrise of planing surface of forebody, [deg (if nothing else is said)] 

2
β  – angle of deadrise of planing surface of afterbody, [deg (if nothing else is said)] 

2L
β  – local angle of deadrise of planing surface of afterbody, [deg (if nothing else is said)] 

1fC   – frictional-drag coefficient, forebody 

2fC   – frictional-drag coefficient, afterbody 

1pC   – distance of centre of pressure measured along keel from step on forebody 

2pC   – distance of centre of pressure measured along keel from transom on afterbody 

1
0L

C   – lift coefficient, zero deadrise, forebody 

2
0L

C   – lift coefficient, zero deadrise, afterbody 

1
L

C β   – lift coefficient, deadrise surface, forebody 

2
L

C β   – lift coefficient, deadrise surface, afterbody 

1V
C   – speed coefficient, forebody 

2V
C   – speed coefficient, afterbody 

1
c   – distance between 

1
N  and CG, measured normal to 

1
N , [m] 

2
c   – distance between 

2
N  and CG, measured normal to 

2
N , [m] 

1fD   – frictional drag component along the bottom surface, forebody, [N] 

2fD   – frictional drag component along the bottom surface, afterbody, [N] 

1
D    – total horizontal hydrodynamic drag component of forebody, [N] 

2
D   – total horizontal hydrodynamic drag component of afterbody, [N] 

1
d   – vertical depth of step edge, below level water surface, [m] 

2
d   – vertical depth of trailing edge of boat, at keel, below level water surface, [m] 

1L
F  – vertical component of 

1
N  [N] 

2L
F  – vertical component of 

2
N  [N] 

2
L

L
F  – component of 

2
N   normal to local water level line, [N] 

ϕ   – angle between the keel in front, and keel behind the step, [deg (if nothing else is said)] 

CL
H  – height of wake profile above extended keel, [m] 

1/4
H  – height of wake profile above extended ¼-beam buttock, [m] 

1
LCG   – longitudinal distance of CG from the step measured along the keel, [m] 

2
LCG   – longitudinal distance of CG from transom measured along the keel, [m] 

LS   – longitudinal distance of the step from transom measured along the keel, [m] 
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1C
L  – wetted chine length, forebody, [m] 

2C
L  – wetted chine length, afterbody, [m] 

1k
L   – wetted keel length, forebody, [m] 

2k
L  – wetted keel length, afterbody, [m] 

1
1
L   – difference between wetted keel and wetted chine lengths on the forebody, [m] 

2
1
L   – difference between wetted keel and wetted chine lengths on the afterbody, [m] 

1
2

L   – diff. between keel and chine lengths wetted by level water surface on the forebody, [m] 

2
2

L   – diff. between keel and chine lengths wetted by level water surface on the afterbody, [m] 

1p
l    – dist. from step along keel to where normal force 

1
N  acts on forebody, [m] 

2p
l    – dist. from transom along keel to where normal force 

2
N  acts on afterbody, [m] 

1
λ   – mean wetted length-beam ratio on the forebody 

2
λ   – mean wetted length-beam ratio on the afterbody 

2L
λ  – local mean wetted length-beam ratio on the afterbody 

1
N   – hydrodynamic force normal to the bottom of the forebody, [N] 

2
N   – hydrodynamic force normal to the bottom of the afterbody, [N] 

Ω  – part of weight carried by the forebody hull 

1
Re   – Reynolds number, forebody 

2
Re   – Reynolds number, afterbody 

1
τ    – trim angle of planing area, forebody, [deg (if nothing else is said)] 

2
τ   – trim angle of planing area, afterbody, [deg (if nothing else is said)] 

2L
τ   – local trim angle of planing area, afterbody, [deg (if nothing else is said)] 

1
VCG   – distance of CG above the forebody keel, [m] 

2
VCG   – distance of CG above the afterbody keel, [m] 

VS  – height of step, [m] 

1m
V   – mean velocity over bottom planing surface of the forebody, [m/s] 

2m
V   – mean velocity over bottom planing surface of the afterbody, [m/s] 

CL
x  – distance behind step where centre line wake profile intersects with aft hull keel, [m] 

1/4
x  – distance behind step where ¼-beam wake profile intersects with aft hull ¼-beam, [m] 
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1. Introduction 
The intention with the introduction is to lay a foundation for the continued reading of this 
thesis and give the reader some basic information needed to understand the thesis as a 
whole. It starts with some fundamentals on planing hulls and continues with a description of 
stepped hulls and a little bit why boat constructers sometimes chose to use this design. The 
introduction section is then rounded off with a clear description of the task and boundaries 
of the thesis. 
 

1.1. Planing Hulls 

There are basically three types of hulls. Displacing hulls, semi-planing hulls and planing 
hulls. All hulls can however be considered displacing when travelling at low speeds or not 
moving. In this study all hulls are observed at their designed cruising speeds, which means 
speeds for fully developed planing. Planing hulls, unlike the other two, generate virtually all 
lift from hydrodynamic pressure, rather than hydrostatic pressure. The gain by designing a 
hull like this is that it partially rises out of the water, greatly reducing its wet area and 
thereby its friction drag making higher speeds possible. 
 

 
 
 
 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Planing hull 
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The horizontal component of the normal force, N, is called induced drag. This drag depends 
on the weight and the trim angle of the boat since the normal force is applied normal to the 
keel and not parallel to the weight, mg, which is illustrated in figure 1.2. Out of this 
perspective an as small trim as possible is wanted since this reduces the induced drag. 
However that would result in a larger wet area to compensate for the decreased lifting force 
one gets with lower trim.  

Fig. 1.2 Planing hull 

 
Fig. 1.2 show a steady state condition and that means that forces and moment equilibrium is 
fulfilled giving:  

 
: cos sin( ) sin 0fN T mg Dτ τ ε τ↑ + + − − =  (1.1) 

 
: cos( ) sin cos 0fT N Dτ ε τ τ→ + − − =   (1.2) 

 

        : 0fN c D a T f⋅ + − ⋅ =    (1.3) 
 
As a rule of thumb boat constructers design these hulls so they trim about 4-5° at their 
cruising speeds and this is usually a good way to go. At this trim the Lift/Drag-ratio is as 
high as it gets for most conventional planing hull.  
 
There are several methods available to predict the performance on a hull design. One of the 
more famous is Savitsky’s method. With knowledge about the beam, deadrise angle, weight 
and centre of gravity, one can calculate the trim angle, draft and drag for a specific speed. 
This method will be explained in more detail later in the report. 
 
The V-shape, or the deadrise, makes the hull less sensitive to waves, much like a suspension 
on a car deals with bumps in the road. But it also increases drag since it needs more wet area 
to generate enough lift. A fast boat that weighs about 4000-5000kg and measures 10-
12meters does normally have a deadrise of 20-25°. 
 

CG
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A problem with this hull is when designing faster and faster boats this also means that the 
centre of gravity must be moved further and further aft to avoid porpoising, which is an 
oscillating pitching motion. This makes these types of fast boats sensitive to changes in 
weight distribution, like a person walking aboard, while at high speeds. This is where 
transverse steps can be useful, which is further discussed in the following section.  
 

1.2. Hulls with Transverse Steps 

Hulls with transverse steps have been around over a century now. It is fast boats that can have 
use for steps. An example on stepped hull is shown in figure 1.3 and 1.4 below. At high 
speeds the water will separate completely from the step, creating a dry section on the hull 
from the step to a point somewhere between the step and the transom. 
 
A normal misconception is that stepped hulls are faster or more efficient than regular hulls. It 
is not that simple. But one of the benefits of using steps is that the boat can be designed with 
the centre of gravity further from the transom and still keep most of its good performance at 
high speeds. But if the step was removed and the centre of gravity moved back towards the 
transom, it would actually need less power for same speeds. Important to know though, is that 
the step is well motivated in many cases. The step makes it possible to build boats where the 
designer wants to spread out the weight along the whole boat that still perform really well 
with reasonable engine requirements. Another benefit that comes with this system is the less 
obvious hump to overcome during the transitions speeds. 
 

 
Fig. 1.3 Delta 29 SW with a Transverse Step 

 
If the step is well ventilated the water will separate from it just like it does at the transom of 
a regular planing hull. “Well ventilated” means that air flows without restriction in behind 
the step. If it is not well ventilated the water will behave differently due to low pressure. In 
this thesis the step is assumed well ventilated. 
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Steps are very common on modern fast boats, but there are still no real calculating methods 
to predict its performance. Eugene Clement [1] stated this fact as late as 2005 that after 
nearly 100 years of building these boats “calculation methods are nonexistent.” 
 
This issue is where this thesis origin. One of the questions asked is if it is possible to use 
and modify Savitsky’s method [2] from 1964 to predict performance on boats with 
transverse steps. There are several reasons why one can not just use Savitsky’s method on 
the two hulls separately. The first hull has pushed the water down thus changing the water 
level and its shape and Savitsky’s method presupposes a calm water surface. A crucial 
question is the wake shape and its influence on the hull aft of the step. 
 

Fig. 1.4 Delta 29 SW with a Transverse Step 

 

1.3. Task 

The aim is a computational method to predict the performance of stepped hulls. Especially 
in a simple and reliable way like Savitsky’s method [2] that is used for regular hulls where 
the deadrise, beam and centre of gravity is used to find out the required power, draft and the 
trim at pitch equilibrium. With such a method it would be easier to determine what engine a 
specific stepped hull design would need to perform at desired speed, and also detect flaws in 
a design before it leaves the drawing board.  
 
As long as possible known methods are used, and where needed these are modified and 
combined with new theories to fit the designs with transverse step.  
 
This project was initiated by naval architects at Lightcraft Design Group, LDG in Öregrund, 
Sweden. This after coming to the conclusion that there are no public methods available to 
predict how a stepped hull will behave or how the performance is effected by the 
dimensioning and positioning of the step itself. 
 
The master thesis focuses on performance. Trim, resistance, draft and required power 
depends on the position of the step, height of the step, the shape of the hull and the centre of 
gravity. Other aspects that could be interesting, like porpoising and bow steering is not 
considered in this thesis. Since the work concentrates on how the step is making a difference 
and that only, it is assumed that the surrounding water is calm and the boat is always 
travelling at steady state. The method developed in this thesis does not take dry chines into 
consideration, and neither does Savitsky’s method, but it has become clear that dry chines 
are not uncommon when looking at stepped hulls, and it is important to note that the new 
method may not predict the performance as accurate for cases with dry chines. 
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2. The Mathematical Models 
In this section the mathematical models for the stepped hull are showed and explained. 

2.1. Equilibrium 

As mentioned before, the craft is observed in steady state. This means that the boat is 
travelling at a constant speed and does not accelerate in any direction. Equilibrium showed 
here can be compared to the equilibrium of a regular hull shown in equations (1.1)-(1.3). 
 

 2.1.1. Vertical and Horizontal Equilibrium 

The main forces in vertical equilibrium, as shown in figure 2.1, are the lifting forces and the 
weight of the boat, but since the boat has a trim it means that the friction drag actually adds 
to the weight, and the thrust adds to the lift.  

 
 

 
Fig. 2.1 Basic 2-D model of a planing Stepped Hull 

 
 

1 1 2 2 2 1 1 2 2
: cos cos sin( ) sin sin 0f fN N T mg D Dτ τ τ ε τ τ↑ + + + − − − =   (2.1) 

 
 

Main horizontal forces are the drags and the thrust but since the boat has a trim the normal 
forces contribute too, just like in the vertical case. 

 
 

2 1 1 2 2 1 1 2 2
: cos( ) sin sin cos cos 0f fT N N D Dτ ε τ τ τ τ→ + − − − − =     (2.2) 

 

1fD

2
τ

1
N

2
N

mg

2fD

T

1
τ
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 2.1.2. Pitching Moment Equilibrium 

Steady state is assumed and so moment equilibrium is required. There are about twice as 
many measures to consider compared to the regular hull (compare figure 2.2 and 1.2). 

Fig. 2.2 Complete 2-D model of a planing Stepped Hull 

 
 

 
1 1 2 2 1 1 2 2

: 0f fN c N c D a D a T f+ + + − ⋅ =   (2.3) 

 
where: 
 

1

1 1 1
tan

4

b
a VCG β= −     (2.4) 

2

2 2 2
tan

4

b
a VCG β= −     (2.5) 

 

( )2 2
cos sinf VCG e LCGε ε= + −   (2.6) 

 
Worth noticing is that

1
c  has a negative value and could add confusion to an already 

complicated system of forces and distances. Due to this the first value in eq. (2.4), 
1 1

N c  

becomes negative. This is due to 
1

LCG  being measured the same way as LCG of a normal 

hull and the step would be representing the transom. In this case it would be interpreted as if 
the centre of gravity is located behind the transom, which is far from unusual. Keeping it 
this way should make it easier on anyone that wants to take this further adding more steps to 
the model. 

CG
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2.2. Wake Theory 

To model the aft part of the system knowledge of how the water behaves behind the step is 
required. How the water flows from the step edge to the point where it comes in contact 
with the aft hull is investigated. The step is viewed as a transom stern and the water lines 
behind it as a wake shape.  
 
Some work was done in the 1950’s at NACA on this matter when designing V-bottom 
shaped seaplanes. Even though the reports are there for anyone to read, it is hard to make 
out anything useful from them due to very different areas of interest. The seaplanes’ bottom 
shapes and the steps just do not look very much like the boats with transverse steps that are 
of interest in this thesis. Other sources on the subject are rare. Most of the modern studies 
only apply on much lower speeds. Doctors and Robards [3] describe the flow line as a 
parabolic line behind a dry transom stern with the initial angle of the trim of the hull and 
intersects with the surface line. Faltinsen [4] describes the hollow line in a similar way.  

 
Unfortunately there lack any published test results to verify the equations. Thus, this is not 
of much help besides giving an idea of the wake shape.  
 
Luckily for this project there is a brand new report on this very subject written by Daniel 
Savitsky and his colleague Michael Morabito [5]. Savitsky and Morabito present detailed 
expressions of two wake lines profiles, one from the keel line (centre line) and the other one 
from ¼-beam line.  The expressions are shown in equations (2.32)-(2.36) and are based on 
extensive towing tank results. According to this the wake shape depends on the wet keel 
length, trim, deadrise and boat speed. It also becomes clear that the water behaves 
differently depending on where it leaves the transom. 
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Both curves are plotted as if they originated from the keel

 

 
Water Trajectory at Centre line
Water Trajectory at 1/4−Beam Buttock

 
Fig. 2.3 An example of how the water line trajectories can look from the step to the aft hull 

 

Figure 2.3 and the two curves show that the wake will flatten out rather quickly and that 
must be taken into consideration. Not only does this give two positions along the keel and 
¼-beam buttock where the water intersects with the aft hull, it also reveals at what angle the 
water hits the hull surface. This can be interpreted as a local trim angle and is used for 
calculating the lift it will give on the aft hull. 
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2.3. Aft Hull 

There is no handy way of giving the wake shape as input to Savitsky’s method but it is 
possible to interpret the aft hull properties relative to the wake instead of relative to the level 
water surface as is usually done. In this way the water is viewed as level but the hull shape 
is modified. This modification is made by introducing local hull parameters. 
 
With the wake theory in mind it is now possible to calculate the wetted area and forces 
acting on the aft hull, given that the properties of the first hull in front of the step is known. 
What wake theory really gives are two water curves and their angles relative to the keel at 
any given position behind the step. This, together with the corresponding line that represents 
the aft hull it is only a matter of solving the equations (2.32)-(2.35) to give the position 
where the water and hull intersect. A straight line can be drawn from the intersection point 
at the keel through the intersection point at ¼-beam to the chine, which is shown in figure 
2.4. This line represents the water line that on the first hull is horizontal, but not on the aft 
hull, where it is called “local level water line”. Besides this shape difference, it is assumed 
that the water behaves the same way meeting the aft hull as it does when hitting the first 
hull. 

 
 

 
 

Fig. 2.4 An example of how the water line trajectories can look between the step and the aft hull with the correct relation to each others 

initial positions, and shown from above 
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With this information a local deadrise can be determined. Basically it is just the difference 
between the hull deadrise and the angle the wake shape inclines towards the keel. This is 
illustrated in figures 2.5 and 2.6 below. Important to notice is that this local deadrise 
continuously increases the further behind the step one looks. The wake flattens. In the 
original Savitsky method only one value of the deadrise is used. So the wake shape that is 
found at the point behind the step where the ¼-beam water line intersects with the aft hull is 
used as a mean “local deadrise”,

2 L
β . The same theory is used for deciding the local trim, 

2 L
τ  that varies along the level water line and the one found at ¼-beam line is the one used 

in the following calculations.     
 

 
 

Fig. 2.5 Comparing the level water line and the local level water line at the aft hull 

 
 

 
Fig. 2.6 Illustration of the local beam with respect to the local deadrise 

 
 
 
In Savitsky’s method the beam is a horizontal projection of the hull on the level water, but 

due to the wake shape the local beam,
2L

b  is projected on this inclining local level water 

line. This local beam, shown in figure 2.8, that is longer than the real beam,
2

b , is used when 

calculating the spray-root. 
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 2.3.1. Local Deadrise 

The wake shape flattens the further behind the step the observation is made. That means 
that the local deadrise increases with the distance behind the step and a mean value of it 
is needed. It is decided that the ¼-beam will serve as a mean value. For any position x 
along the centre line and ¼-beam lines they will form a V-shaped wake, and the shape 
observed at x where the ¼-beam curve intersects with the hull will represent the 
approximated shape for the whole wake. This means that it is imagined that the centre 
line continues on its path as if the keel was not in its way. How the local deadrise,

2L
β , 

is finally calculated is shown in equation (2.37) and illustrated in figure 2.7 below. 
 

 

 
Fig.2.7 Illustration of factors in the wake profile giving the local deadrise, transverse section view 
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 2.3.2. Local Beam and Aspect Ratio 

The beam is used when calculating the aspect ratio that in turn is used to determine the 
aft lift coefficient

2L
C β

. To compensate for local conditions in order to fit Savitsky's 

method a local beam is introduced. The local beam is the aft beam with respect to the 
shape of the wake, thus with respect to the local deadrise. Just as the normal beam is the 
hull's projection on the flat water surface, this local beam is its projection on the 
inclining water surface. The geometric connection between deadrise, trim and beam is 
given by 

2
2

L (in analogy with 
2

L , see figure 1.1). 
2

2
L  originates from [2] where: 

 

2

tan

2 tan

b
L

β

τ
=      (2.7) 

 
 

2

2 2

2

2

tan

2 tan

L L

L

b
L

β

τ
=     (2.8) 

 
 

2

2 2

1

2

tan

tan

L L

L

b
L

β

π τ
=     (2.9) 

 
 
(2.8) can be rewritten to, 

 

2
2 2

2

2

2 tan

tan

L

L

L

L
b

τ

β
=     (2.10) 

 
 

with 
2

2
L  calculated using (2.38). The aspect ratio and the local aspect ratio of the 

aftbody is given by, 
 

2
12

2

2 2
2

k
LL

b b
λ = −     (2.11) 

 

2
12

2

2 2
2

k

L

L L

LL

b b
λ = −     (2.12) 

 
 
With all geometrical parameters expressed the lift and drag forces can be determined. 

 
Fig. 2.8 Illustration of the local beam with respect to the local deadrise 
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 2.3.3. Local Trim Angle 

Another local condition that is easy to oversee is that the lift force that is calculated is 
perpendicular to the angle which the water meets the aft hull, and not vertical. This is why 
one has to recalculate the lift so the vertical component is correct.  

 

( )2 2 2 2
cos

L
L L L

F F τ τ= ⋅ −   (2.13)  

 
For the first hull the trim angle is the angle between level water surface and the keel, 

1
τ . But 

at the aft hull there is a local trim angle which is the angle between the aft keel and the angle 
which the water meets it, illustrated with exaggeration in figure 2.9. As a matter of fact 
there are two of these angles registered. One at the keel and one at  
¼-beam buttock but only one angle is used in the calculations. As discussed earlier in this 
section the angle measured at ¼-beam is the one used as a mean local trim angle and it is 
extracted from known wake theory, equation (2.36). 

 

2 1/4L beam
τ τ

−

=  

 
Fig. 2.9 Illustration of local trim angle behind the step 
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2.4. Savitsky’s Method 

In this section the method that Savitsky published in 1964 [2] is studied. The method is used 
to predict the performance for prismatic shaped planing hulls. It is important to investigate 
how the method works in order to use it to predict the performance of a stepped hull. 
 
A specification of the craft is needed and also the speed one is interested in investigating the 
performance for. The required input are: 
 
m   – total mass of the boat, [kg] 
b   – beam, [m] 
LCG   – longitudinal distance of centre of gravity from transom, [m] 
VCG   – distance of centre of gravity above keel line, [m] 
β    – angle of deadrise of planing surface, [deg] 
V   – horizontal velocity, [m/s] 
ε    – inclination of thrust line relative to keel line, [deg] 

 

Fig. 2.10 Regular Planing Hull 
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With Savitsky’s method one basically investigates the pitching moment equilibrium for one 
trim angle at a time for the planing hull model seen in figure 2.10. The trim that gives 
moment equilibrium corresponds to the trim this boat would have for the given speed.  
 
To understand the steps taken in Savitsky’s method the different equations needs 
explanation. The original method consists of 30 steps for each investigated trim. These steps 
are shown in figure 2.11.  
 
Two coefficients that does not change with the trim angle are speed coefficient,

V
C  and the 

lift coefficient,
L

C
β

. 
V

C  is a nondimensional Froude number with respect to the beam: 

 

V

V
C

gb
=      (2.14) 

 
 

L
C

β
is the required lift coefficient to create enough lift to counter the weight of the boat. 

 

2 21

2

L

mg
C

V bβ
ρ

=     (2.15) 

 
Fig. 2.11 Calculation chart from Savitsky’s method published 1964 



 

23 

 
Fig. 2.12 Lift coefficient of a deadrise planing surface, recreated from Savitsky 1964 

 
With these two and the input data, the first steps can be done. Steps 1-10 calculates the 
frictional drag, fD , and can be summarized by following the equations (2.16)-(2.22) below 

that are also included in Savitsky’s method: 
 
 

0 0

0.60
0.0065

L L L
C C C

β
β= −    (2.16) 

 
 

L
C

β
 is given from (2.15) and gives the value of 

0
L

C , either by solving (2.16) or using the 

plotted expression in figure 2.12. Required aspect ratio, λ , is then extracted in a similar 
fashion from, 
 

5
2

1
2

0

1.1

2

0.0055
0.0120

L

V

C
C

λ
τ λ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
  (2.17) 

 
 

Equations (2.16) and (2.17) are semi empirical expressions extracted from extensive towing 
tank testresults [2]. To perform plate friction calculations a mean flow velocity is needed. 
The following expression giving the mean velocity,

m
V  is based on Bernoulli’s equation. 

 
 

( )
1 1
2 2

1
0.60 2

1.1 1.1
0.0120 0.0065 0.0120

1
cos

m
V V

λ τ β λ τ

λ τ

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.18) 
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And the plate friction coefficient is determined by (ITTC-57), 
 

( )
2

10

0.075

log ( ) 2
f

e

C

R

=

−

    (2.19) 

 
Where Reynolds number is given from mean flow velocity and mean wetted length: 
 

Re
n m

b
V λ

ν
=      (2.20) 

 
with, 

 
0.0004fCΔ = , ATTC Standard Roughness  (2.21) 

 
The frictional drag is expressed by, 

 

( )
2 2

1

2 cos

m
f f f

V b
D C C

ρ λ

β
= + Δ    (2.22) 

 
The wet area is included in equation (2.22). It can be extracted: 
 

2

cos
w

b
A

λ

β
=      (2.23) 

 
To fulfill vertical equilibrium the vertical component of the normal force, N, must equal the 
weight of the boat, mg. Figure 2.10 gives a good overview of this, even if it has an 
exaggerated trim. 
 

cosmg N τ=     ⇒    
cos

mg
N

τ

=   (2.24) 

 
Steps 11-13 in figure 2.11 provide values for tanτ  , sinτ  and cosτ , and step 14 describes 
the induced drag. The induced drag is the horizontal component of the normal force, N and 
step 15 gives the horizontal component of the frictional drag, fD . Finally these two are 

summed up in step 16 for the total drag, D. 
 

tan

cos

fD
D mg τ

τ

= +     (2.25) 

 
Next in the list of steps in Savitsky’s method is determining where the centre of pressure,

p
C  

acts along the wet keel by using the expression,  
 

2

2

1
0.75

5.21
2.39

p

V

C
C

λ

= −

+

   (2.26) 
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For fully developed planing, thus for high
V

C , centre of pressure will act at about 75% of the 

mean wet keel length from the transom, 0.75
p

C ≈ . Next is to determine the distance c, (step 

18-19) 
 
 

p p
c LCG l LCG C bλ= − = −    (2.27) 

 
 

Moving on through the method, steps 20 and 21, where the distance, a, between fD  and CG 

(measured normal to fD ) is calculated, 

 
 

tan
4

b
a VCG β= −     (2.28) 

 
 
The remaining steps, 22-30, are a part of the final pitching moment calculation and sums up, 
 
 

( ) ( )1 sin sin( ) sin
cos

tot f

c
M mg f D a fτ τ ε τ

τ

⎡ ⎤
= − + − ⋅ + −⎢ ⎥⎣ ⎦

    (2.29) 

 
 
and can be related to equilibrium equation (1.3). 
 
Equilibrium would mean that the moment equals zero, 0

tot
M =  and this can only be true for 

one trim angle. If a negative value on the moment is found this means the investigated trim 
is too low and a higher trim is assumed and the method is restarted from step 1. This is 
repeated until a positive value of the moment is found which tells that the correct trim is 
somewhere between the last two investigated trims. A more exact trim can easily be found 
by linear interpolation between these two. The drag and aspect ratio are interpolated the 
same way since those are found for each investigated trim in step 16 and 4. With the 
interpolated value of the trim,

e
τ   and aspect ratio,

e
λ  one can finally calculate the wet keel 

length,
K

L  and the draft, d . 

 
tan

2 tan
K e

e

b
L b

β
λ

π τ
= +     (2.30) 

 
sin

K e
d L τ=      (2.31) 
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2.5. Savitsky's Method used behind the Step 

Supposing the running attitude of the hull in front of the step is known all local conditions 
can be determined thanks to the wake theory. The wake theory is used to determine where 
the water meets the aft hull. The function of the centre line profile depending on the 
deadrise is given in eq. (2.32)-(2.34), and the ¼-beam buttock by (2.35). These are taken 
straight out of Savitsky and Morabito’s [5]. 

 

1
10β =

o

 

( )
1.5

1.51

1 1

1 1 1

tan 0.17 1.5 0.03 sin
3

k CL

CL CL CL

V

L x
VS x H x b

b C b

π
ϕ τ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ = = ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.32) 

 

1
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o

  

( )
1.5

1.51

1 1

1 1 1

tan 0.17 2.0 0.03 sin
3

k CL

CL CL CL

V

L x
VS x H x b

b C b

π
ϕ τ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ = = ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.33) 

 

1
30β =

o

 

( )
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1.51

1 1

1 1 1

tan 0.17 2.0 0.03 sin
3

k CL

CL CL CL

V

L x
VS x H x b

b C b

π
ϕ τ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ = = ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.34) 

 
The left hand side of (2.32)-(2.34), tanVS x ϕ+ ⋅ , describes the vertical position of the 

afterbody keel, where the x-axis follows the extension of the forebody keel aft of the step 
and origin at the step edge. ϕ  is the angle difference the two keels have. A nonzero valued 

ϕ  means the two keels are not parallel. The right hand side is the height of the wake profile 

relative the extended forebody keel line as a function of x (seen in the first part of fig. 2.7) 
and its function is shown, 
 

 ( )
1.5

1.51

1 1

1 1 1

0.17 1.5 0.03 sin
3

k

CL

V

L x
H x b

b C b

π

τ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

, for 
1

10β =

o . 

 

CL
x  is the point on the x-axis where both left and right side of the equations are equal, 

meaning that is where the wake line and keel intersects, which is also illustrated in figure 
2.4. The ¼-beam case follows the same pattern,  
 

1
10 30β≥ ≥

o o

 

( ) ( )
1.5

1.51 1/4

1 2 1 1/4 1/4 1/4 1 1

1 1 1

0.25 tan tan tan 0.17 0.75 0.03 sin
3

k

V

L x
VS b x H x b

b C b

π
β β ϕ τ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ ⋅ − + = = ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  

(2.35) 
 

, but since deadrises 
1

β  and 
2

β  does not have to be equal for the forebody and afterbody the 

aft hull equation looks a little different in (2.35), unless 
1

β =
2

β , then that factor disappears. 
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In (2.36) the local trim angle is calculated. It is the differentiation with respect to the 
distance aft of the step, x, of the right part of (2.35) with the determined value of wake-hull 
intersection,

1/4
x  as input. It is important to notice that to find the correct local trim, 

2L
τ , the 

difference in angle between the fore and aft keel lines must be subtracted from the derivate, 
as done in (2.36).  
 

0.5 1.5

1.51 1/4 1/4

2 1

1 1 1 1 1

1
0.17 0.75 0.03 cos

2 3 3

k

L

V V

L x x

b C b C b

π π
τ τ ϕ

⎛ ⎞⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.36) 

 
where, 
 
VS   - height of step, [m] 

CL
x   - dist. aft step where centre line wake profile intersects with aft hull keel, [m] 

1/4
x   - dist. aft step where ¼-beam wake profile intersects with aft hull ¼-beam, [m] 

CL
H   - height of wake profile above extended keel, [m] 

1/4
H   - height of wake profile above extended ¼-beam buttock, [m] 

ϕ   - angle difference between forebody and afterbody keels, [rad] 

1
τ   - forebody trim angle, [deg] 

2L
τ   - local aft trim angle, [rad] 

 

 

Angles must be given in units according to this nomenclature even if it may seem strange to 
have them both in the same equation. 
 
With

CL
H , 

1/4
H  and 

2L
τ  determined from (2.32-36) it is possible to determine the local 

deadrise, 
2L

β  the way it is explained in 2.3 Aft Hull: 
 

 

( ) ( )1/4 1/4 2 1 1/4

2 2

2

0.25 tan
arctan

0.25

CL

L

H x b H x

b

β
β β

+ ⋅ −⎛ ⎞
= − ⎜ ⎟

⋅⎝ ⎠
  (2.37) 

 
 
The length 

2
2

L  (see figure 1.1) on the aftbody: 

 

2

1/4

2
2

cos

CL
x x

L
ϕ

−

=     (2.38) 

 
The aftbody wet keel length is calculated: 
 

2

cos

CL

K

x
L LS

ϕ
= −     (2.39) 

 
 



28 

The velocity coefficient is given with respect to local conditions: 
 

 

2

2

V

L

V
C

g b
=

⋅

    (2.40) 

 
 

where 
2L
b  is given by equation (2.10). Lift coefficients are then calculated using following 

equations. 
2

0L
C is the lift coefficient corresponding to a hull with zero local deadrise. 

 

2

2.5

1.1 0.5 2

0 2 2 2

2

0.0055
0.012

L

L L L

V

C
C

λ
τ λ

⎛ ⎞
= ⋅ ⋅ +⎜ ⎟

⎝ ⎠
 (2.41) 

 
The lift coefficient with respect to the local deadrise is given by, 
 

2 2 2

0.6

0 2 0
0.0065

L L L L
C C Cβ β= − ⋅ ⋅   (2.42) 

 
When using this lift coefficient the resulting lift will be normal to the water surface. To 
obtain the vertical component,

2L
F  two projections are made in the following equations 

(2.43), with respect to local deadrise, and (2.44) with respect to local trim angle. 
 

( )
2

2 2

2 2 2 2

1
cos

2
L

L L L L
F C V bβ ρ β β= ⋅ −   (2.43) 

 
 

( )2 2 2 2
cos

L
L L L

F F τ τ= −    (2.44) 

 
Plate friction is calculated similar to Savitsky’s method but with local parameters: 
 

2 2
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(log Re 2)
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+

=    (2.46) 
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L L L L L

m

L

V V
λ τ β λ τ

λ τ

⎡ ⎤−
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⎢ ⎥
⎣ ⎦

 (2.47) 

 
Leading to the calculations of friction drag, 
 

( )
2 2

2 2 2

2 2

2

1

2 cos

m
f f f

V b
D C C

ρ λ

β
= + Δ   (2.48) 

 

which is added to the induced drag, 
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( ) 2

2 2

2

1 tan
cos

fD
D mg τ

τ

= −Ω ⋅ +   (2.49) 

 
where Ω  is the part of the weight that is not carried by the aft hull. 
 
Equations (2.26) and (2.27) turn to (2.50) and (2.51) when used on the afterbody: 
 

2 2

2

2

2

1
0.75

5.21
2.39

p

V

C
C

λ

= −

+

    (2.50) 

 

2 2 2 2 2 2 2p p
c LCG l LCG C bλ= − = −    (2.51) 

 
All the pieces to express the system of equations have now been shown, and in the next 
section the whole equilibrium system is solved. 



 

30 

3. Solving the Stepped Hull Equilibrium 
In this section the method to solve the equilibrium equations of stepped hulls is presented.  

Fig. 3.1 Complete 2-D model of a planing Stepped Hull 

 
The problem, as shown in figure 3.1, is interpreted as two hulls following each other very 
closely. The calculations for the first hull would then be exactly like in Savitsky’s original 
method. But for the second hull several factors need to be taken into account. The water 
surface is not level like for the first hull. As discussed in section 2.2 Wake Theory and 2.5 

Savitsky’s Method used behind the Step, the wake flattens the further behind the step it is 
observed. Due to this the calculations of the wet chine length for the second hull requires 
the local deadrise, as defined in 2.3.1 Local Deadrise and determined in equation (2.37). 
 
Draft and trim of the forebody must be known to perform calculations on the aft hull. These 
two are determined by using the original method on the hull in front of the step, but there is 
a problem. The lift of the forebody must be known first. On a regular hull without steps the 
required lift is already known as there is only one lift force to counter the weight of the boat. 
In the current case there are two lift forces, and how the weight is distributed between those 
is unknown.  
 
For each investigated trim the weight distribution can be solved through iteration until 
vertical equilibrium is fulfilled within acceptable tolerances. After this is done and both lift 
forces are known the total pitching moment of the whole system can be calculated.  
The iteration of the weight distribution has been kept simple. To initiate, a start guess is 
needed for the amount of the weight that is carried by the first hull.  
 
 

1L
F mg= Ω⋅ ,  where 0 1≤ Ω ≤    (3.1) 

 
In a normal case 70% of the weight could be carried by the front hull, 0.70Ω =  and this 
works well as a starting guess. The choice of start approximation is not so important and if 
one have no idea how a certain hull will behave, 0.60Ω =  works fine as a start guess, 
although might result in one or two more iteration cycles if it turns out that 0.80Ω = . 
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When the weight on the first hull is assumed by a start guess its wet keel,
1k

L , is calculated 

through Savitsky's original method with equations (2.14)-(2.17) and (2.30) for this specific 
assumption, where mg is replaced by mgΩ⋅ . When this is done all information is available 

to perform Savitsky's method behind the step with equations (2.32)-(2.44). Basically, if the 
forebody of the boat carries a certain amount of weight at given trim and speed, this says 
how much the afterbody will carry, 

2L
F . Here the main vertical forces are added to see if 

vertical equilibrium is fulfilled or not.  
 

1 2
:

L L
F F mg γ↑ + − =     (3.2) 

 
The absolute value of γ  must be less than a given tolerance to consider vertical equilibrium 

to be fulfilled. If tolγ >  a new value of the weight distribution,Ω  is determined from, 

  
 

( )2
1 2

1

1

2 2 2

L

n

L L

n

mg F

F Fmg

mg
+

−
+Ω

−
Ω = = +   (3.3) 

 
and is put into (3.1) to give a new

1L
F . 

 
When vertical equilibrium has been found for one trim it is time to calculate the total 
pitching moment of the system. For this all forces and their perpendicular positions must be 
calculated.  
 
Starting with the forebody, drag force 

1fD  is found through equations (2.18)-(2.22) and then 

used to solve the total forebody vertical drag;  
 
 

(2.25) ⇒  1

1 1

1

tan

cos

fD
D mg τ

τ

= Ω⋅ +    (3.4) 

 
The distance from the centre of gravity that 

1fD  acts,
1
a , is found with eq. (2.4), 

 

   1

1 1 1
tan

4

b
a VCG β= −     (3.5) 
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Eq. (2.24) gives the normal force,   
 

1

1

1 1
cos cos

L
Fmg

N
τ τ

= Ω =     (3.6) 

 
and its distance from CG, 

1
c , is calculated from (2.26) and (2.27). 

 
Moving on to the afterbody (2.45)-(2.49) gives 

2fD  and 
2

D . The distance 
2fD  act from 

CG, 
2
a  is given in equation (2.5).  

 
The second normal force: 
   

( ) 2

2

2 2

1
cos cos

L
Fmg

N
τ τ

= −Ω =    (3.7) 

 
and 

2
c  that says how far 

2
N  acts from the centre of gravity is obtained by solving equations 

(2.50) and (2.51).  
 
Finally the pitching moment for the whole system can be determined through equation (2.3). 
If the result is negative, it means that the trim angle is too low to fulfill equilibrium, and a 
higher trim needs to be investigated the same way. This continues until the total moment 
comes out positive.  
 
To speed it up, one can assume that the Ω  finally obtained from the investigation of for 
instance

1
3τ = °  is most likely about the same at 

1
4τ = ° . So it is a good idea to use that 

obtained weight distribution as a start guess for the next investigated trim. This means that 
after doing the weight distribution iteration for the first trim the work will precede much 
faster since every new trim already has a very good start guess and will converge in one or 
two loops. 
 
In the example in Appendix 1, the moment shows negative at 

1
4τ = °but positive at 

1
5τ = ° , 

thus moment equilibrium is located somewhere between those two trims. A more exact trim 
is found through interpolation using the pitching moment results. This is not very 
complicated and can be found in the prediction example in Appendix 1, equations (A1:1)-
(A1:6). Important to notice there is that the investigated trims are 1°  apart and makes the 
interpolation very simple, but if one were to use smaller trim steps than 1°  there  has to be 
some minor changes to above mentioned equations. 
 
In the example in Appendix 1, a made up boat and its dimensions are given and the whole 
procedure of solving a case like this is shown row by row continuously referring to the 
equations in this report. It is there to give a view of how the method works and in what 
order things are done. That example is a very simple one and it is not advised to solve real 
cases by hand like that, but instead put the algorithm into a program that can do the 
iterations, and also investigate trims at a much smaller sample, like 0.1°  at the time. This is 
exactly what has been done for the next section where real boats are used as input to predict 
their performance at known top speeds. Figure 3.2 is a simplified illustration of how the 
method works. 
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Fig. 3.2 Illustration of the prediction method 
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4. Benchmark Results 
Detailed information [8] on dimensions, weights, engines and top speeds on three boats 
constructed by Delta Power Boats have been used to predict their required power. Even 
though there are no test results available, their actual engines give an approximation of how 
much propeller effect one can expect at the known top speeds of the crafts. 
 
The three boats investigated are the Delta 29 SW, Delta 34 SW and Delta 40 WA, and 
below are the calculations for the Delta 29 SW presented. The results from all three boats 
are displayed in table 4.1. 
 
Delta 29 SW: 

Top speed, 
max

V = 22.12m/s   (43knots) 

Engine effect, 
E

E = 220.7kW   (300 hp) 

 
As a rule of thumb a good transmission system can deliver about 65% of the engine power 
to propeller effect. This would mean: 
 
Available propeller effect, 

P
E = 143.46kW  (195hp) 

 
As mentioned before in this report added wave resistance has been neglected and the boat is 
modeled in calm water. But one added resistance that can not be neglected is the air 
resistance that has a significant impact on the final result.  
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2
A D air T

R C V Aρ=     (4.1) 

 
Where: 
 

A
R  - air resistance, [N] 

air
ρ  - air density,  

T
A  - projected front area, 2

m⎡ ⎤⎣ ⎦  

D
C  - air drag coefficient 

 
Drag coefficient is of course dependent on how the hull and structure above deck is shaped, 
and can vary between 0.5<

D
C <1.2 [7]. For this particular boat the projected area is 

approximated as a rectangle with the beam and approximated height measuring its sides. 
 
   2

2.2 2.7 5.94
T
A m= ⋅ =  

 
1817

A D
R C= ⋅   [N]  for 0.5<

D
C <1.2  ⇒    908<

A
R <2180  [N] 

 

3

kg
m

⎡ ⎤
⎢ ⎥⎣ ⎦



35 

The added effect required to counter the air resistance can be solved: 
 

maxadd A
E R V= ⋅  ⇒  34.2 14.1

add
E kW= ±  

     
   or, 46.4 19.1

add
E hp= ±  

 
A program has been constructed in MATLAB [6] during the project with the method 
discussed. It is the same method used in the example in Appendix 1, but thanks to the 
computer this can be done much quicker and for smaller sample of trim. The dimensions of 
the Delta 29 SW were put in and here are the results: 
 

1

1

2

4.5

106.3

4806

0.219

0.352

req
P kW

D N

d m

d m

τ = °

=

=

=

=

    
1

2

1

2

0.682

2.82

1.09

0

0.059

k

k

C

C

L m

L m

L m

L m

Ω =

=

=

=

=

 

 
Trim,

1
τ  and required power,

req
P  are the most interesting results here. Worth noticing is that 

the values of wet chine lengths, 
1C

L and 
2C

L  says that the forebody chines are dry for this 

case which could result in some error to the rest of the results. The required power,
req
P  does 

not take air resistance into account, which must be added: 
 

TOT
req req addP P E= +   ⇒   

140 14.1

190 19

TOT

TOT

req

req

P kW

P hp

= ±

= ±
 

       
This should be compared with the approximated available propeller effect- 195

P
E hp= . This 

makes 
TOT

req
P  look like a very good prediction in this particular case, even though the 

imprecise calculation of air resistance makes the prediction a bit uncertain. This and the 
result from the other two boats are displayed in table 4.1. 
 
While the first two predictions are in very good agreement with the actual engines of those 
boats, the third prediction may seem a bit low. One reason to this difference in predicted 
required engine and the actual one may be because that particular boat has two engines and 
two rigs. This may cause the total transmission to deliver less than 65% of the engine power 
to propeller effect. Just to take this deviation into perspective, the predicted required 
propeller effect, on the Delta 40 WA with two engines, represents 60% of the totally 
available engine power, instead of 65%.  
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Boat model 

Top speed  
 

[knots] 

Predicted 
Required 

Propeller Effect 
[hp] 

Predicted 
Required 

Engine Effect 
[hp] 

Actual Engine 
Effect  
[hp] 

Delta 29 SW 43 190 19±  292 30±  300 

Delta 34 SW 38 254 16±  391 25±  370 

Delta 40 WA 46 442 43±  680 66±  2 x 370 = 740 
Table 4.1 Required Engine Predictions compared with engines already fitted 

 

5. Summary and Conclusions 
A method for performance prediction of stepped hulls has been developed based on the 
approach from “Savitsky’s method” for planing crafts. The mayor contribution of the report 
is on calculating the lift and drag for the hull aft of the step. Crucial for the method is the 
description of the water surface shape aft of the step. Here the work of Savitsky and Morabito 
[5] has been used to interpret the hull water intersection geometry. 
 
The comparison of calculations and full scale data show promising correlation and is an 
indication that this theory is on the right track. A limitation to the new method is that it does 
not take cases of dry chines into account.  
 
 

6. Future Work 
The next thing in line would be to make the method take dry chine cases into account. The 
problem would be to make the lift force continuous when going from a wet chine case to the 
dry chine case. 
 
To better predict the required power a study of the air resistance for the investigated boat is 
of interest. That becomes evident from the benchmark results where 20-35% of the required 
power was there to counter the air resistance alone. 
 
As always when making these kind of theoretical models real tests are pretty much the only 
way to finally verify them, and also a good way to discover factors one may have missed 
and find flaws in the model. Most interesting to measure at such tests would be drag and 
trim for different speeds. A way to calculate the real drag would be to measure the thrust 
that in turn can be given by the hydraulic pressure in the tilt circuit for instance. The trim is 
preferably measured onboard with an inclinometer. Observations that make it possible to 
determine wet chine lengths and wet keel lengths are also desired. Preferably these tests 
should be done on several different stepped hulls with different dimensions. 
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Appendix 1 
Example: 
 
It is desired to know how a specific boat will behave at a certain speed, and what kind of 
engine is needed to power the boat at wanted speed. In this example the dimensions of a 
made up boat are given: 
 

1

2

0.05

4000

11

10

0

0

VS m

m kg

β

β

ϕ

ε

=

=

= °

= °

= °

= °

  
2

1

1

2

0.15

2.5

2.6

0.5

2

2

e m

LS m

LCG m

VCG m

b m

b m

=

=

=

=

=

=

  35V knots=  

 
Trims 3°, 4° and 5° are investigated in this rather simple example and at the first trim the 
weight distribution will start with the initiation guess of 0.60Ω = . 
 

Eqns:  

 

1
3τ = °

 

 

1
3τ = °

 

 

1
3τ = °

 

 

1
4τ = °

 

 

1
4τ = °

 

 

1
5τ = °

 

 

1
5τ = °

 

 Ω   0.60 0.6276 0.6328 0.6328 0.6416 0.6416 0.6507 

(2.15) 1L
C β  0.03632 0.03799 0.03831 0.03831 0.03884 0.03884 0.03939 

Fig. 2.12 

and 

(2.16) 
01L

C  0.04787 0.04982 0.05018 0.05018 0.05080 0.05080 0.05145 

(2.14) 
1V

C  4.065 4.065 4.065 4.065 4.065 4.065 4.065 

(2.17) 
1
λ  1.296 1.386 1.403 0.7997 0.8182 0.5121 0.5248 

(2.30) 

and 

(2.31) 
1k

L [m] 3.772 3.952 3.986 2.484 2.521 1.731 1.757 

(2.35) 
1/4
x [m] 1.692 1.677 1.674 1.687 1.682 1.696 1.691 

(2.32) 
CL
x [m] 1.346 1.339 1.337 1.344 1.341 1.347 1.345 

(2.36) 
2L

τ [rad] 0.03616 0.03648 0.03655 0.03625 0.03636 0.03607 0.03617 

(2.35), 

(2.32) in 

(2.37) 
2L

β [rad] 0.02216 0.02140 0.02126 0.02193 0.02169 0.02236 0.02213 

(2.38) 
22

L [m] 0.6920 0.6759 0.6729 0.6872 0.6821 0.6962 0.6912 

(2.39) 
2k

L [m] 1.154 1.161 1.163 1.157 1.159 1.153 1.155 

(2.11) 
2L
b [m] 2.259 2.306 2.314 2.272 2.287 2.247 2.261 

(2.10) 
12
L [m] 0.4405 0.4303 0.4284 0.4375 0.4342 0.4432 0.4401 

(2.13) 
2L

λ  0.4136 0.4105 0.4099 0.4127 0.4117 0.4144 0.4135 
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1
3τ = °

 

 

1
3τ = °

 

1
3τ = °

 

 

1
4τ = °

 

 

1
4τ = °

 

 

1
5τ = °

 

 

1
5τ = °

 

(2.14) 

2L
b b=  2V

C  3.825 3.786 3.779 3.814 3.801 3.835 3.823 

(2.41) 
2

0
L

L
C  0.01729 0.01739 0.01741 0.01732 0.01735 0.01726 0.01729 

(2.42) 
2

L
C β

 0.01656 0.01669 0.01672 0.01660 0.01664 0.01653 0.01657 

(2.43) 
2L

L
F [N] 13534 14209 14340 13728 13942 13364 13564 

(2.44) 
2L

F [N] 13532 14207 14338 13721 13934 13347 13546 

(3.2) :↑ [N] -2164 -407.3 -72.56 -689.9 -131.8 -718.6 -160.4 

(3.3) 
new

Ω  0.6276 0.6328 - 0.6416 - 0.6507 - 

(2.18) 
1m

V [m/s]   17.77  17.58  17.32 

(2.47) 
2m

V [m/s]   17.64  17.64  17.64 

(2.20) 
1

Re    7
3.8 10⋅

  7
2.2 10⋅

  7
1.39 10⋅

 

(2.46) 
2

Re    
7

5.06 10⋅

 
 7

3.5 10⋅
  7

2.68 10⋅
 

(2.21) fCΔ    0.0004  0.0004  0.0004 

(2.19)+ 

(2.21) 1ftotC    0.002808  0.003028  0.003235 

(2.45)+ 

(2.21) 2ftotC    0.002705  0.002842  0.002946 

(2.22) 1fD [N]   2533  1559  1037 

(2.48) 
2fD [N]   810.1  845.4  870 

(3.4) 
1

D [N]   3839.8  3328.2  3282.2 

(2.49) 
2

D [N]   1564.5  1826.4  2065.4 

(3.4)+ 

(2.49) D [N]   5404  5155  5348 

(2.4) 
1
a [m]   0.4028  0.4028  0.4028 

(2.5) 
2
a [m]   0.3618  0.3618  0.3618 

(2.6) f [m]   0.6  0.6  0.6 

(2.26) 1p
C    0.7283  0.7424  0.7468 

(2.50) 
2p

C    0.747  0.7471  0.7472 

(2.27) 
1
c [m]   -1.943  -1.115  -0.6838 

(2.51) 
2
c [m]   1.891  1.897  1.902 

(2.2) T [N]   5403  5155  5354 

(2.3) M [Nm]   -23080  -3749  5949 
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This means that moment equilibrium (M) is fulfilled somewhere between 
1

4τ = °  and 

1
5τ = ° . A more exact value of the trim, drag and aspect ratio is interpolated with the values 

of the moment: 

 

1

3748.8
4 4.4

3748.8 5948.7
e

τ = °+ ≈ °
+

     (A1:1) 

 

( )
3748.8

5154.6 5347.7 5154.6 5229
3748.8 5948.7

e
D N= + − =

+

  (A1:2) 

 

( )1

3748.8
0.8182 0.5249 0.8182 0.7048

3748.8 5948.7
λ = + − =

+

  (A1:3) 

 

 

94.175
req e
P D V kW= ⋅ =  ⇒  128hp      (A1:4) 

 

 

1 1

1 1 1 1

1

tan
sin 0.17

2 tan
e e e

e

b
d b m

β
λ τ

π τ

⎛ ⎞
= + =⎜ ⎟
⎝ ⎠

    (A1:5) 

 

 

2 2 2
sin cos 0.31

e
d LS VS mτ τ= − =      (A1:6) 

 

where, 
2 1e

τ τ=  since,  0ϕ = °  

 
 

Solution for V=35knots: 

1

1

2

4.4

5229

128

0.17

0.31

e

e

req

e

e

D N

P hp

d m

d m

τ = °

=

=

=

=

 

 

 

 


