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Abstract

This paper summarizes several classes of software cost estimation models and techniques:

parametric models, expertise-based techniques, learning-oriented techniques, dynamics-based

models, regression-based models, and composite-Bayesian techniques for integrating expertise-

based and regression-based models.

Experience to date indicates that neural-net and dynamics-based techniques are less mature than

the other classes of techniques, but that all classes of techniques are challenged by the rapid pace

of change in software technology.

The primary conclusion is that no single technique is best for all situations, and that a careful

comparison of the results of several approaches is most likely to produce realistic estimates.
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1. Introduction

Software engineering cost (and schedule) models and estimation techniques are used for a number of purposes.

These include:

§ Budgeting: the primary but not the only important use. Accuracy of the overall estimate is the most desired

capability.

§ Tradeoff and risk analysis: an important additional capability is to illuminate the cost and schedule

sensitivities of software project decisions (scoping, staffing, tools, reuse, etc.).

§ Project planning and control: an important additional capability is to provide cost and schedule breakdowns

by component, stage and activity.

§ Software improvement investment analysis: an important additional capability is to estimate the costs as

well as the benefits of such strategies as tools, reuse, and process maturity.

In this paper, we summarize the leading techniques and indicate their relative strengths for these four purposes.

Significant research on software cost modeling began with the extensive 1965 SDC study of the 104 attributes of 169

software projects [Nelson 1966]. This led to some useful partial models in the late 1960s and early 1970s.

The late 1970s produced a flowering of more robust models such as SLIM [Putnam and Myers 1992], Checkpoint

[Jones 1997], PRICE-S [Park 1988], SEER [Jensen 1983], and COCOMO [Boehm 1981]. Although most of these

researchers started working on developing models of cost estimation at about the same time, they all faced the same

dilemma: as software grew in size and importance it also grew in complexity, making it very difficult to accurately

predict the cost of software development. This dynamic field of software estimation sustained the interests of these

researchers who succeeded in setting the stepping-stones of software engineering cost models.

Just like in any other field, the field of software engineering cost models has had its own pitfalls. The fast changing

nature of software development has made it very difficult to develop parametric models that yield high accuracy for

software development in all domains. Software development costs continue to increase and practitioners continually
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express their concerns over their inability to accurately predict the costs involved. One of the most important

objectives of the software engineering community has been the development of useful models that constructively

explain the development life-cycle and accurately predict the cost of developing a software product. To that end,

many software estimation models have evolved in the last two decades based on the pioneering efforts of the above

mentioned researchers. The most commonly used techniques for these models include classical multiple regression

approaches. However, these classical model-building techniques are not necessarily the best when used on software

engineering data as illustrated in this paper.

Beyond regression, several papers [Briand et al. 1992; Khoshgoftaar et al. 1995] discuss the pros and cons of one

software cost estimation technique versus another and present analysis results. In contrast, this paper focuses on the

classification of existing techniques into six major categories as shown in figure 1, providing an overview with

examples of each category. In section 2 it examines in more depth the first category, comparing some of the more

popular cost models that fall under Model-based cost estimation techniques.

2. Model-Based Techniques

As discussed above, quite a few software estimation models have been developed in the last couple of decades.

Many of them are proprietary models and hence cannot be compared and contrasted in terms of the model structure.

Theory or experimentation determines the functional form of these models. This section discusses seven of the

popular models and table 2 (presented at the end of this section) compares and contrasts these cost models based on

the life-cycle activities covered and their input and output parameters.

Figure 1. Software Estimation Techniques.
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2.1 Putnam’s Software Life-cycle Model (SLIM)

Larry Putnam of Quantitative Software Measurement developed the Software Life-cycle Model (SLIM) in the late

1970s [Putnam and Myers 1992]. SLIM is based on Putnam’s analysis of the life-cycle in terms of a so-called

Rayleigh distribution of project personnel level versus time. It supports most of the popular size estimating methods

including ballpark techniques, source instructions, function points, etc. It makes use of a so-called Rayleigh curve to

estimate project effort, schedule and defect rate. A Manpower Buildup Index (MBI) and a Technology Constant or

Productivity factor (PF) are used to influence the shape of the curve. SLIM can record and analyze data from

previously completed projects which are then used to calibrate the model; or if data are not available then a set of

questions can be answered to get values of MBI and PF from the existing database.

In SLIM, Productivity is used to link the basic Rayleigh manpower distribution model to the software development

characteristics of size and technology factors. Productivity, P, is the ratio of software product size, S, and

development effort, E. That is,

Figure 2. The Rayleigh Model.
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=   Eq. 2.1

The Rayleigh curve used to define the distribution of effort is modeled by the differential equation

dy
dt

Kate at= −2
2

                Eq. 2.2

An example is given in figure 2, where K  = 1.0, a = 0.02, td = 0.18 where Putnam assumes that the peak staffing

level in the Rayleigh curve corresponds to development time (td). Different values of K, a and td will give different

sizes and shapes of the Rayleigh curve. Some of the Rayleigh curve assumptions do not always hold in practice (e.g.

flat staffing curves for incremental development; less than t4 effort savings for long schedule stretchouts). To

alleviate this problem, Putnam has developed several model adjustments for these situations.

Recently, Quantitative Software Management has developed a set of three tools based on Putnam’s SLIM. These

include SLIM-Estimate, SLIM-Control and SLIM-Metrics. SLIM-Estimate is a project planning tool, SLIM-Control

project tracking and oversight tool, SLIM-Metrics is a software metrics repository and benchmarking tool. More

information on these SLIM tools can be found at http://www.qsm.com.

2.2 Checkpoint

Checkpoint is a knowledge-based software project estimating tool from Software Productivity Research (SPR)

developed from Capers Jones’ studies [Jones 1997]. It has a proprietary database of about 8000 software projects

and it focuses on four areas that need to be managed to improve software quality and productivity. It uses Function

Points (or Feature Points) [Albrecht 1979; Symons 1991] as its primary input of size. SPR’s Summary of

Opportunities for software development is shown in figure 3. QA stands for Quality Assurance; JAD for Joint

Application Development; SDM for Software Development Metrics.

It focuses on three main capabilities for supporting the entire software development life-cycle as discussed briefly at

SPR's website, http://www.spr.com/html/checkpoint.htm, and outlined here:
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Estimation:  Checkpoint predicts effort at four levels of granularity: project, phase, activity, and task.  Estimates also

include resources, deliverables, defects, costs, and schedules.

Measurement:  Checkpoint enables users to capture project metrics to perform benchmark analysis, identify best

practices, and develop internal estimation knowledge bases (known as Templates).

Assessment:  Checkpoint facilitates the comparison of actual and estimated performance to various industry

standards included in the knowledge base. Checkpoint also evaluates the strengths and weaknesses of the software

environment.  Process improvement recommendations can be modeled to assess the costs and benefits of

implementation.

Other relevant tools that SPR has been marketing for a few years include Knowledge Plan and FP Workbench.

Knowledge Plan is a tool that enables an initial software project estimate with limited effort and guides the user

through the refinement of ‘What if?” processes. Function Point Workbench is a tool that expedites function point

analysis by providing facilities to store, update, and analyze individual counts.

Figure 3. SPR’s Summary of Opportunities.
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2.2.1 Other Functionality-Based Estimation Models

As described above, Checkpoint uses function points as its main input parameter. There is a lot of other activity

going on in the area of functionality-based estimation that deserves to be mentioned in this paper.

One of the more recent projects is the COSMIC (Common Software Measurement International Consortium) project.

Since the launch of the COSMIC initiative in November 1999, an international team of software metrics experts has

been working to establish the principles of the new method, which is expected to draw on the best features of

existing IFPUG, MkII, NESMA and FFP V.1 For more information on the COSMIC project, please go to

http://www.cosmicon.com.

Since function points is believed to be more useful in the MIS domain and problematic in the real-time software

domain, another recent effort, in functionality-based estimation, is the Full Function Points (FFP) which is a measure

specifically adapted to real-time and embedded software . The latest COSMIC-FFP version 2.0 uses a generic

software model adapted for the purpose of functional size measurement, a two-phase approach to functional size

measurement (mapping and measurement), a simplified set of base functional components (BFC) and a scalable

aggregation function. More details on the COSMIC-FFP can be found at http://www.lrgl.uqam.ca/ffp.html.

2.3 PRICE-S

The PRICE-S model was originally developed at RCA for use internally on software projects such as some that were

part of the Apollo moon program. It was then released in 1977 as a proprietary model and used for estimating several

US DoD, NASA and other government software projects. The model equations were not released in the public

domain, although a few of the model’s central algorithms were published in [Park 1988]. The tool continued to

become popular and is now marketed by PRICE Systems, which is a privately held company formerly affiliated with

Lockheed Martin. As published on PRICE Systems website (http://www.pricesystems.com), the PRICE-S Model

consists of three submodels that enable estimating costs and schedules for the development and support of computer

systems. These three submodels and their functionalities are outlined below:

The Acquisition Submodel: This submodel forecasts software costs and schedules. The model covers all types of

software development, including business systems, communications, command and control, avionics, and space
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systems. PRICE-S addresses current software issues such as reengineering, code generation, spiral development,

rapid development, rapid prototyping, object-oriented development, and software productivity measurement.

The Sizing Submodel: This submodel facilitates estimating the size of the software to be developed.  Sizing can be in

SLOC, Function Points and/or Predictive Object Points (POPs). POPs is a new way of sizing object oriented

development projects and was introduced in [Minkiewicz 1998] based on previous work one in Object Oriented

(OO) metrics done by Chidamber et al. and others [Chidamber and Kemerer 1994; Henderson-Sellers 1996 ].

The Life-cycle Cost Submodel: This submodel is used for rapid and early costing of the maintenance and support

phase for the software. It is used in conjunction with the Acquisition Submodel, which provides the development

costs and design parameters.

PRICE Systems continues to update their model to meet new challenges. Recently, they have added Foresight 2.0,

the newest version of their software solution for forecasting time, effort and costs for commercial and non-military

government software projects.

2.4 ESTIMACS

Originally developed by Howard Rubin in the late 1970s as Quest (Quick Estimation System), it was subsequently

integrated into the Management and Computer Services (MACS) line of products as ESTIMACS [Rubin 1983]. It

focuses on the development phase of the system life-cycle, maintenance being deferred to later extensions of the tool.

ESTIMACS stresses approaching the estimating task in business terms. It also stresses the need to be able to do

sensitivity and trade-off analyses early on, not only for the project at hand, but also for how the current project will

fold into the long term mix or “portfolio” of projects on the developer’s plate for up to the next ten years, in terms of

staffing/cost estimates and associated risks.
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Rubin has identified six important dimensions of estimation and a map showing their relationships, all the way from

what he calls the gross business specifications through to their impact on the developer’s long term projected

portfolio mix.

The critical estimation dimensions:

• Effort hours

• Staff size and deployment

• Cost

• Hardware resource requirements

• Risk

• Portfolio impact

Figure 4. Rubin’s Map of Relationships of Estimation Dimensions.
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The basic premise of ESTIMACS is that the gross business specifications, or “project factors,” drive the estimate

dimensions. Rubin defines project factors as “aspects of the business functionality of the of the target system that are

well-defined early on, in a business sense, and are strongly linked to the estimate dimension.” Shown in table 1 are

the important project factors that inform each estimation dimension.

Table 1. Estimation Dimensions and Corresponding Project Factors.

Estimation Dimension Project Factors

Effort Hours Customer Complexity
Customer Geography
Developer Familiarity
Business Function Size
Target System Sophistication
Target System Complexity

Staff/Cost Effort Hours
Staff Productivity
Skill Level Development
Rate at Each Skill Level

Hardware System Category
Generic System Type
Operating Window
Transaction Volume

Risk System Size
Project Structure
Target Technology

Portfolio Resource Needs of Concurrent Projects
Relative Project Risks

The items in table 1 form the basis of the five submodels that comprise ESTIMACS. The submodels are designed to

be used sequentially, with outputs from one often serving as inputs to the next. Overall, the models support an

iterative approach to final estimate development, illustrated by the following list:

1. Data input/estimate evolution

2. Estimate summarization

3. Sensitivity analysis

4. Revision of step 1 inputs based upon results of step 3
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The five ESTIMACS submodels in order of intended use:

System Development Effort Estimation: this model estimates development effort as total effort hours. It uses as

inputs the answers to twenty-five questions, eight related to the project organization and seventeen related to the

system structure itself. The broad project factors covered by these questions include developer knowledge of

application area, complexity of customer organization, the size, sophistication and complexity of the new system

being developed. Applying the answers to the twenty-five input questions to a customizable database of life-cycle

phases and work distribution, the model provides outputs of project effort in hours distributed by phase, and an

estimation bandwidth as a function of project complexity. It also outputs project size in function points to be used as

a basis for comparing relative sizes of systems.

Staffing and Cost Estimation: this model takes as input  the effort hours distributed by phase derived in the previous

model. Other inputs include employee productivity and salaries by grade. It applies these inputs to an again

customizable work distribution life-cycle database. Outputs of the model include team size, staff distribution, and

cost all distributed by phase, peak load values and costs, and cumulative cost.

Hardware Configuration Estimates: this model sizes operational resource requirements of the hardware in the system

being developed. Inputs include application type, operating windows, and expected transaction volumes. Outputs are

estimates of required processor power by hour plus peak channel and storage requirements, based on a customizable

database of standard processors and device characteristics.

Risk Estimator: based mainly on a case study done by the Harvard Business School  [Cash 1979], this model

estimates the risk of successfully completing the planned project. Inputs to this model include the answers to some

sixty questions, half of which are derived from use of the three previous submodels. These questions cover  the

project factors of project size, structure and associated technology. Outputs include elements of project risk with

associated sensitivity analysis identifying the major contributors to those risks.

Portfolio Analyzer: a long range “big picture” planning tool, this last submodel estimates the simultaneous effects of

up to twenty projects over a ten year planning horizon. Inputs come from the Staffing & Cost Estimator and Risk
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Estimator submodels. Scheduling projects via a Gantt chart, outputs include total staffing by skill level, cumulative

costs, monthly cash flows and relative risk. Comparisons between alternative portfolio or project mixes are possible.

The appeal of ESTIMACS lies in its ability to do estimates and sensitivity analyses of hardware as well as software,

and from its business-oriented planning approach.

2.5 SEER-SEM

SEER-SEM is a product offered by Galorath, Inc. of El Segundo, California (http://www.gaseer.com). This model is

based on the original Jensen model [Jensen 1983], and has been on the market some 15 years. During that time it has

evolved into a sophisticated tool supporting top-down and bottom-up estimation methodologies. Its modeling

equations are proprietary, but they take a parametric approach to estimation. The scope of the model is wide. It

covers all phases of the project life-cycle, from early specification through design, development, delivery and

maintenance. It handles a variety of environmental and application configurations, such as client-server, stand-alone,

distributed, graphics, etc. It models the most widely used development methods and languages. Development modes

covered include object oriented, reuse, COTS, spiral, waterfall, prototype and incremental development. Languages

covered are 3rd and 4th generation languages (C++, FORTRAN, COBOL, Ada, etc.), as well as application

generators. It allows staff capability, required design and process standards, and levels of acceptable development

risk  to be input as constraints.

Figure 5 is adapted from a Galorath illustration and shows gross categories of model inputs and outputs, but each of

these represents dozens of specific input and output possibilities and parameters. The reports available from the

model covering all aspects of input and output summaries and analyses numbers in the hundreds.
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Features of the model include the following:

• Allows probability level of estimates, staffing and schedule constraints to be input as independent variables.

• Facilitates extensive sensitivity and trade-off analyses on model input parameters.

• Organizes project elements into work breakdown structures for convenient planning and control.

• Displays project cost drivers.

• Allows the interactive scheduling of project elements on Gantt charts.

• Builds estimates upon a sizable knowledge base of existing projects.

Model specifications include these:

Parameters: size, personnel, complexity, environment and constraints - each with many individual parameters;

knowledge base categories for platform & application, development & acquisition method, applicable standards, plus

a user customizable knowledge base.

Predictions:  effort, schedule, staffing, defects and cost estimates; estimates can be schedule or effort driven;

constraints can be specified on schedule and staffing.

Figure 5. SEER-SEM Inputs and Outputs.
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Risk Analysis: sensitivity analysis available on all least/likely/most values of output parameters; probability settings

for individual WBS elements adjustable, allowing for sorting of estimates by degree of WBS element criticality.

Sizing Methods: function points, both IFPUG sanctioned plus an augmented set; lines of code, both new and

existing.

Outputs and Interfaces: many capability metrics, plus hundreds of reports and charts; trade-off analyses with side-by-

side comparison of alternatives; integration with other Windows applications plus user customizable interfaces.

Aside from SEER-SEM, Galorath, Inc. offers a suite of many tools addressing hardware as well as software

concerns. One of particular interest to software estimators might be SEER-SEM, a tool designed to perform sizing of

software projects.

2.6 SELECT Estimator

SELECT Estimator by SELECT Software Tools is part of a suite of integrated products designed for components-

based development modeling. The company was founded in 1988 in the UK and has branch offices in California and

on the European continent. SELECT Estimator was released in 1998. It is designed for large scale distributed

systems development. It is object oriented, basing its estimates on business objects and components. It assumes an

incremental development life-cycle (but can be customized for other modes of development). The nature of its inputs

allows the model to be used at any stage of the software development life-cycle, most significantly even at the

feasibility stage when little detailed project information is known. In later stages, as more information is available, its

estimates become correspondingly more reliable.

The actual estimation technique is based upon ObjectMetrix developed by The Object Factory

(http://www.theobjectfactory.com). ObjectMetrix works by measuring the size of a project by counting and

classifying the software elements within a project. The project is defined in terms of business applications built out
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of classes and supporting a set of use cases, plus infrastructure consisting of reusable components that provide a set

of services.

The ObjectMetrix techniques begin with a base metric of effort in person-days typically required to develop a given

project element. This effort assumes all the activities in a normal software development life-cycle are performed, but

assumes nothing about project characteristics or the technology involved that might qualify that effort estimate.

Pre-defined activity profiles covering planning, analysis, design, programming, testing, integration and review are

applied according to type of project element, which splits that base metric effort into effort by activity. (These

activity profiles are based upon project metric data collected and maintained by The Object Factory.)

The base effort is then adjusted by using “qualifiers” to add or subtract a percentage amount from each activity

estimate.

A “technology” factor addressing the impact of the given programming environment is then applied,  this time

adding or subtracting a percentage amount from the “qualified” estimate.

Applying the qualifier and technology adjustments to the base metric effort for each project element produces an

overall estimate of effort in person-days, by activity. This total estimate represents the effort required by one person

of average skill level to complete the project.

Using the total one man effort estimate, schedule is then determined as a function of the number of developers—

input as an independent variable—then individual skill levels, the number of productive work days (excluding days

lost to meetings, illness, etc.) per month, plus a percentage contingency.

SELECT Estimator adapts the ObjectMetrix estimation technique by refining the Qualifier and Technology factors.

The tool itself consists of two modules, Project Architect and Estimator [SELECT 1998]. Figure 6 illustrates the

relationship between these modules.
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Project Architect: this module scopes and qualifies the major software elements of a project. This information is then

fed into the Estimator module to estimate development schedule duration and cost. Scoping (or sizing) is done in

terms of the following elements:

• Applications – software subsystems supporting a business area.

• Classes – representing business concepts.

• User cases – business requirements defined from the user’s point of view.

• Packages – supporting frameworks with clear responsibility for an aspect of the infrastructure.

• Components – abstractions of lower lever business services.

• Services – common system features available across applications and components.

Qualifiers to software elements, rated on a scale from low to high, include the following:

• Complexity – covering computations and the number of relationships.

• Reuse – covers both COTS and other existing software.

Figure 6. SELECT Estimator.
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• Genericity – whether the software needs to be built to be reusable.

• Technology – the choice of programming language.

Activity profiles are applied to the base metric effort adjusted by the scoping and qualifying factors to arrive at the

total effort estimate. Again, this is the effort required of one individual of average skill.

Estimator:  this module uses the effort from the Project Architect to determine schedule duration and cost. Other

inputs include team size and skill levels (rated as novice, competent and expert); the number of productive workdays

per month and a contingency percentage; and the costs by skill level of the developers. The final outputs are total

effort in person-days, schedule duration in months, and total development cost.

2.7 COCOMO II

The COCOMO (COnstructive COst MOdel) cost and schedule estimation model was originally published in [Boehm

1981]. It became one of most popular parametric cost estimation models of the 1980s. But COCOMO '81 along with

its 1987 Ada update experienced difficulties in estimating the costs of software developed to new life-cycle

processes and capabilities. The COCOMO II research effort was started in 1994 at USC to address the issues on non-

sequential and rapid development process models, reengineering, reuse driven approaches, object oriented

approaches etc.

COCOMO II was initially published in the Annals of Software Engineering in 1995 [Boehm et al. 1995]. The model

has three submodels, Applications Composition, Early Design and Post-Architecture, which can be combined in

various ways to deal with the current and likely future software practices marketplace.

The Application Composition model is used to estimate effort and schedule on projects that use Integrated Computer

Aided Software Engineering tools for rapid application development. These projects are too diversified but

sufficiently simple to be rapidly composed from interoperable components. Typical components are GUI builders,

database or objects managers, middleware for distributed processing or transaction processing, etc. and domain-

specific components such as financial, medical or industrial process control packages. The Applications Composition
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model is based on Object Points [Banker et al. 1994; Kauffman and Kumar 1993]. Object Points are a count of the

screens, reports and 3 GL language modules developed in the application. Each count is weighted by a three-level;

simple, medium, difficult; complexity factor. This estimating approach is commensurate with the level of information

available during the planning stages of Application Composition projects.

The Early Design model involves the exploration of alternative system architectures and concepts of operation.

Typically, not enough is known to make a detailed fine-grain estimate. This model is based on function points  (or

lines of code when available) and a set of five scale factors and 7 effort multipliers.

The Post-Architecture model is used when top level design is complete and detailed information about the project is

available and as the name suggests, the software architecture is well defined and established. It

estimates for the entire development life-cycle and is a detailed extension of the Early-Design model. This model is

the closest in structure and formulation to the Intermediate COCOMO '81 and Ada COCOMO models. It uses

Source Lines of Code and/or Function Points for the sizing parameter, adjusted for reuse and breakage; a set of 17

effort multipliers and a set of 5 scale factors, that determine the economies/diseconomies of scale of the software

under development. The 5 scale factors replace the development modes in the COCOMO '81 model and refine the

exponent in the Ada COCOMO model.

The Post-Architecture Model has been calibrated to a database of 161 projects collected from Commercial,

Aerospace, Government and non-profit organizations using the Bayesian approach [Chulani et al. 1998b] discussed

further in section 7, “Composite Techniques”. The Early Design Model calibration is obtained by aggregating the

calibrated Effort Multipliers of the Post-Architecture Model as described in [USC-CSE 1997]. The Scale Factor

calibration is the same in both the models. Unfortunately, due to lack of data, the Application Composition model

has not yet been calibrated beyond an initial calibration to the [Kauffman and Kumar 1993] data.

A primary attraction of the COCOMO models is their fully-available internal equations and parameter values. Over a

dozen commercial COCOMO '81 implementations are available; one (Costar) also supports COCOMO II: for

details, see the COCOMO II website http://sunset.usc.edu/COCOMOII/suite.html.
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2.8 Summary of Model Based Techniques

Table 2 summarizes the parameters used and activities covered by the models discussed. Overall, model based

techniques are good for budgeting, tradeoff analysis, planning and control, and investment analysis. As they are

calibrated to past experience, their primary difficulty is with unprecedented situations.
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Table 2. Activities Covered/Factors Explicitly Considered by Various Cost Models.2

Group Factor SLIM Checkpoint PRICE-S ESTIMACS SEER-SEM SELECT
Estimator

COCOMO II

Source Instructions YES YES YES NO YES NO YES
Function Points YES YES YES YES YES NO YES

Size
Attributes

OO-related metrics YES YES YES ? YES YES YES
Type/Domain YES YES YES YES YES YES NO
Complexity YES YES YES YES YES YES YES
Language YES YES YES ? YES YES YES
Reuse YES YES YES ? YES YES YES

Program
Attributes

Required Reliability ? ? YES YES YES NO YES
Resource Constraints YES ? YES YES YES NO YESComputer

Attributes Platform Volatility ? ? ? ? YES NO YES
Personnel Capability YES YES YES YES YES YES YES
Personnel Continuity ? ? ? ? ? NO YES

Personnel
Attributes

Personnel Experience YES YES YES YES YES NO YES
Tools and Techniques YES YES YES YES YES YES YES
Breakage YES YES YES ? YES YES YES
Schedule Constraints YES YES YES YES YES YES YES
Process Maturity YES YES ? ? YES NO YES
Team Cohesion ? YES YES ? YES YES YES
Security Issues ? ? ? ? YES NO NO

Project
Attributes

Multisite Development ? YES YES YES YES NO YES
Inception YES YES YES YES YES YES YES
Elaboration YES YES YES YES YES YES YES
Construction YES YES YES YES YES YES YES

Activities
Covered

Transition and Maintenance YES YES YES NO YES NO YES

                                                          
2 A question mark indicates that the authors were unable to determine from available literature whether or not a corresponding factor is considered in a given
model.



20

3. Expertise-Based Techniques

Expertise-based techniques are useful in the absence of quantified, empirical data. They capture the

knowledge and experience of practitioners seasoned within a domain of interest, providing estimates based

upon a synthesis of the known outcomes of all the past projects to which the expert is privy or in which he

or she participated.  The obvious drawback to this method is that an estimate is only as good as the expert’s

opinion, and there is no way usually to test that opinion until it is too late to correct the damage if that

opinion proves wrong.  Years of experience do not necessarily translate into high levels of competency.

Moreover, even the most highly competent of individuals will sometimes simply guess wrong. Two

techniques have been developed which capture expert judgement but that also take steps to mitigate the

possibility that the judgment of any one expert will be off.  These are the Delphi technique and the Work

Breakdown Structure.

3.1 Delphi Technique

The Delphi technique [Helmer 1966] was developed at The Rand Corporation in the late 1940s originally as

a way of making predictions about future events - thus its name, recalling the divinations of the Greek oracle

of antiquity, located on the southern flank of Mt. Parnassos at Delphi. More recently, the technique has been

used as a means of guiding a group of informed individuals to a consensus of opinion on some issue.

Participants are asked to make some assessment regarding an issue, individually in a preliminary round,

without consulting the other participants in the exercise.  The first round results are then collected, tabulated,

and then returned to each participant for a second round, during which the participants are again asked to

make an assessment regarding the same issue, but this time with knowledge of what the other participants

did in the first round.  The second round usually results in a narrowing of the range in assessments by the

group, pointing to some reasonable middle ground regarding the issue of concern. The original Delphi

technique avoided group discussion; the Wideband Delphi technique [Boehm 1981] accommodated group

discussion between assessment rounds.
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This is a useful technique for coming to some conclusion regarding an issue when the only information

available is based more on “expert opinion” than hard empirical data.

The authors have recently used the technique to estimate reasonable initial values for factors which appear in

two new software estimation models they are currently developing. Soliciting the opinions of a group of

experienced software development professionals, Abts and Boehm used the technique to estimate initial

parameter values for Effort Adjustment Factors (similar to factors shown in table 1) appearing in the glue

code effort estimation component of the COCOTS (COnstructive COTS) integration cost model [Abts 1997;

Abts et al. 1998].

Chulani and Boehm used the technique to estimate software defect introduction and removal rates during

various phases of the software development life-cycle. These factors appear in COQUALMO

(COnstructuve QUALity MOdel), which predicts the residual defect density in terms of number of

defects/unit of size[Chulani 1997]. Chulani and Boehm also used the Delphi approach to specify the prior

information required for the Bayesian calibration of COCOMO II [Chulani et 1998b].

3.2 Work Breakdown Structure (WBS)

Long a standard of engineering practice in the development of both hardware and software, the WBS is a

way of organizing project elements into a hierarchy that simplifies the tasks of budget estimation and

control. It helps determine just exactly what costs are being estimated. Moreover, if probabilities are

assigned to the costs associated with each individual element of the hierarchy, an overall expected value can

be determined from the bottom up for total project development cost [Baird 1989].  Expertise comes into

play with this method in the determination of the most useful specification of the components within the

structure and of those probabilities associated with each component.
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Expertise-based methods are good for unprecedented projects and for participatory estimation, but

encounter the expertise-calibration problems discussed above and scalability problems for extensive

sensitivity analyses. WBS-based techniques are good for planning and control.

A software WBS actually consists of two hierarchies, one representing the software product itself, and the

other representing the activities needed to build that product [Boehm 1981]. The product hierarchy (figure

7) describes the fundamental structure of the software, showing how the various software components fit

into

the overall system. The activity hierarchy (figure 8) indicates the activities that may be associated with a

given software component.

Aside from helping with estimation, the other major use of the WBS is cost accounting and reporting. Each

element of the WBS can be assigned its own budget and cost control number, allowing staff to report the

amount of time they have spent working on any given project task or component, information that can then

be summarized for management budget control purposes.

Finally, if an organization consistently uses a standard WBS for all of its projects, over time it will accrue a

very valuable database reflecting its software cost distributions. This data can be used to develop a software

cost estimation model tailored to the organization’s own experience and practices.
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4. Learning-Oriented Techniques

Learning-oriented techniques include both some of the oldest as well as newest techniques applied to

estimation activities.  The former are represented by case studies, among the most traditional of “manual”

techniques; the latter are represented by neural networks, which attempt to automate improvements in the

estimation process by building models that “learn” from previous experience.

Figure 7. A Product Work Breakdown Structure.
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4.1 Case Studies

Case studies represent an inductive process, whereby estimators and planners try to learn useful general

lessons and estimation heuristics by extrapolation from specific examples. They examine in detail elaborate

studies describing the environmental conditions and constraints that obtained during the development of

previous software projects, the technical and managerial decisions that were made, and the final successes

or failures that resulted. They try to root out from these cases the underlying links between cause and effect

that can be applied in other contexts. Ideally they look for cases describing projects similar to the project

for which they will be attempting to develop estimates, applying the rule of analogy that says similar

projects are likely to be subject to similar costs and schedules. The source of case studies can be either

internal or external to the estimator’s own organization. “Homegrown” cases are likely to be more useful for

the purposes of estimation because they will reflect the specific engineering and business practices likely to

be applied to an organization’s projects in the future, but well-documented cases studies from other

organizations doing similar kinds of work can also prove very useful.

Shepperd and Schofield did a study comparing the use of analogy with prediction models based upon

stepwise regression analysis for nine datasets (a total of 275 projects), yielding higher accuracies for

estimation by analogy. They developed a five-step process for estimation by analogy:

§ identify the data or features to collect

§ agree data definitions and collections mechanisms

§ populate the case base

§ tune the estimation method

§ estimate the effort for a new project

For further details the reader is urged to read [Shepperd and Schofield 1997].
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 4.2 Neural Networks

According to Gray and McDonell [Gray and MacDonell 1996], neural networks is the most common

software estimation model-building technique used as an alternative to mean least squares regression. These

are estimation models that can be “trained” using historical data to produce ever better results by

automatically adjusting their algorithmic parameter values to reduce the delta between known actuals and

model predictions.  Gray, et al., go on to describe the most common form of a neural network used in the

context of software estimation, a “backpropagation trained feed-forward” network (see figure 9).

The development of such a neural model is begun by first developing an appropriate layout of neurons, or

connections between network nodes. This includes defining the number of layers of neurons, the number of

neurons within each layer, and the manner in which they are all linked.  The weighted estimating functions

between the nodes and the specific training algorithm to be used must also be determined. Once the network

has been built, the model must be trained by providing it with a set of historical project data inputs and the

corresponding known actual values for project schedule and/or cost. The model then iterates on its training

algorithm, automatically adjusting the parameters of its estimation functions until the model estimate and

the actual values are within some pre-specified delta.  The specification of a delta value is important.

Without it, a model could theoretically become overtrained to the known historical data, adjusting its

estimation algorithms until it is very good at predicting results for the training data set, but weakening the

applicability of those estimation algorithms to a broader set of more general data.

Wittig [Wittig 1995] has reported accuracies of within 10% for a model of this type when used to estimate

software development effort, but caution must be exercised when using these models as they are often

subject to the same kinds of statistical problems with the training data as are the standard regression

techniques used to calibrate more traditional models.  In particular, extremely large data sets are needed to

accurately train neural networks with intermediate structures of any complexity. Also, for negotiation and

sensitivity analysis, the neural networks provide little intuitive support for understanding the sensitivity
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relationships between cost driver parameters and model results. They encounter similar difficulties for use

in planning and control.

5. Dynamics-Based Techniques

Dynamics-based techniques explicitly acknowledge that software project effort or cost factors change over

the duration of the system development; that is, they are dynamic rather than static over time. This is a

significant departure from the other techniques highlighted in this paper, which tend to rely on static models

and predictions based upon snapshots of a development situation at a particular moment in time. However,

factors like deadlines, staffing levels, design requirements, training needs, budget, etc., all fluctuate over the

course of development and cause corresponding fluctuations in the productivity of project personnel. This

in turn has consequences for the likelihood of a project coming in on schedule and within budget – usually

Figure 9. A Neural Network Estimation Model.
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negative.  The most prominent dynamic techniques are based upon the system dynamics approach to

modeling originated by Jay Forrester nearly forty years ago [Forrester 1961].

5.1 Dynamics-based Techniques

Dynamics-based techniques explicitly acknowledge that software project effort or cost factors change over

the duration of the system development; that is, they are dynamic rather than static over time. This is a

significant departure from the other techniques highlighted in this paper, which tend to rely on static models

and predictions based upon snapshots of a development situation at a particular moment in time. However,

factors like deadlines, staffing levels, design requirements, training needs, budget, etc., all fluctuate over the

course of development and cause corresponding fluctuations in the productivity of project personnel. This

in turn has consequences for the likelihood of a project coming in on schedule and within budget – usually

negative.  The most prominent dynamic techniques are based upon the system dynamics approach to

modeling originated by Jay Forrester nearly forty years ago [Forrester 1961].

5.1 System Dynamics Approach

System dynamics is a continuous simulation modeling methodology whereby model results and behavior are

displayed as graphs of information that change over time. Models are represented as networks modified

with positive and negative feedback loops. Elements within the models are expressed as dynamically

changing levels or accumulations (the nodes), rates or flows between the levels (the lines connecting the

nodes), and information relative to the system that changes over time and dynamically affects the flow rates

between the levels (the feedback loops).

Figure 10 [Madachy 1999] shows an example of a system dynamics model demonstrating the famous

Brooks’ Law, which states that “adding manpower to a late software project makes it later” [Brooks 1975].

Brooks’ rationale is that not only does effort have to be reallocated to train the new people, but the

corresponding increase in communication and coordination overhead grows exponentially as people are

added.
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Madachy’s dynamic model as shown in the figure illustrates Brooks’ concept based on the following

assumptions:

1) New people need to be trained by experienced people to improve their productivity.

2) Increasing staff on a project increases the coordination and communication overhead.

3) People who have been working on a project for a while are more productive than newly added people.

As can be seen in figure 10, the model shows two flow chains representing software development and

personnel. The software chain (seen at the top of the figure) begins with a level of requirements that need to

be converted into an accumulation of developed software. The rate at which this happens depends on the

number of trained personnel working on the project. The number of trained personnel in turn is a function

of  the personnel flow chain (seen at the bottom of the figure). New people are assigned to the project

according to the personnel allocation rate, and then converted to experienced personnel according to the

assimilation rate. The other items shown in the figure (nominal productivity, communication overhead,

experienced personnel needed for training, and training overhead) are examples of auxiliary variables that

also affect the software development rate.
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Figure 10. Madachy’s System Dynamics Model of Brooks’ Law.
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Mathematically, system dynamics simulation models are represented by a set of first-order differential

equations [Madachy 1994]:

 

),()( pxftx' = Eq. 5.1

where

x = a vector describing the levels (states) in the model

p = a set of model parameters

f = a nonlinear vector function

t = time

Within the last ten years this technique has been applied successfully in the context of software engineering

estimation models.  Abdel-Hamid has built models that will predict changes in project cost, staffing needs

and schedules over time, as long as the initial proper values of project development are available to the

estimator [Abdel-Hamid 1989a, 1989b, 1993; Abdel-Hamid and Madnick 1991].  He has also applied the

technique in the context of software reuse, demonstrating an interesting result. He found that there is an

initial beneficial relationship between the reuse of software components and project personnel productivity,

since less effort is being spent developing new code. However, over time this benefit diminishes if older

reuse components are retired and no replacement components have been written, thus forcing the

abandonment of the reuse strategy until enough new reusable components have been created, or unless they

can be acquired from an outside source [Abdel-Hamid and Madnick 1993].
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More recently, Madachy used system dynamics to model an inspection-based software lifecycle process

[Madachy 1994].  He was able to show that performing software inspections during development slightly

increases programming effort, but decreases later effort and schedule during testing and integration.

Whether there is an overall savings in project effort resulting from that trade-off is a function of

development phase error injection rates, the level of effort required to fix errors found during testing, and

the efficiency of the inspection process. For typical industrial values of these parameters, the savings due to

inspections considerably outweigh the costs. Dynamics-based techniques are particularly good for planning

and control, but particularly difficult to calibrate.

6. Regression-Based Techniques

Regression-based techniques are the most popular ways of building models. These techniques are used in

conjunction with model-based techniques and include “Standard” regression, “Robust” regression, etc.

6.1 “Standard” Regression – Ordinary Least Squares (OLS) method

“Standard” regression refers to the classical statistical approach of general linear regression modeling using

least squares. It is based on the Ordinary Least Squares (OLS) method discussed in many books such as

[Judge et al. 1993; Weisberg 1985]. The reasons for its popularity include ease of use and simplicity. It is

available as an option in several commercial statistical packages such as Minitab, SPlus, SPSS, etc.

A model using the OLS method can be written as

y x B x et t k tk t= + + + +β β1 2 2 ... Eq. 6.1
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where xt2 … xtk are predictor (or regressor) variables for the tth observation,  β2 ... βκ are response

coefficients, β1 is an intercept parameter and yt is the response variable for the tth observation. The error

term, et is a random variable with a probability distribution (typically normal). The OLS method operates by

estimating the response coefficients and the intercept parameter by minimizing the least squares error term

ri
2 where ri

 is the difference between the observed response and the model predicted response for the ith

observation. Thus all observations have an equivalent influence on the model equation. Hence, if there is an

outlier in the observations then it will have an undesirable impact on the model.

The OLS method is well-suited when

(i)  a lot of data are available. This indicates that there are many degrees of freedom available and the

number of observations is many more than the number of variables to be predicted. Collecting data has

been one of the biggest challenges in this field due to lack of funding by higher management, co-

existence of several development processes, lack of proper interpretation of the process, etc.

(ii)  no data items are missing. Data with missing information could be reported when there is limited time

and budget for the data collection activity; or due to lack of understanding of the data being reported.

(iii)  there are no outliers. Extreme cases are very often reported in software engineering data due to

misunderstandings or lack of precision in the data collection process, or due to different “development”

processes.

(iv)  the predictor variables are not correlated. Most of the existing software estimation models have

parameters that are correlated to each other. This violates the assumption of the OLS approach.

(v)  the predictor variables have an easy interpretation when used in the model. This is very difficult to

achieve because it is not easy to make valid assumptions about the form of the functional relationships

between predictors and their distributions.

(vi)  the regressors are either all continuous (e.g. Database size) or all discrete variables (ISO 9000

certification or not). Several statistical techniques exist to address each of these kind of variables but

not both in the same model.
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Each of the above is a challenge in modeling software engineering data sets to develop a robust, easy-to-

understand, constructive cost estimation model.

A variation of the above method was used to calibrate the 1997 version of COCOMO II. Multiple

regression was used to estimate the b coefficients associated with the 5 scale factors and 17 effort

multipliers. Some of the estimates produced by this approach gave counter intuitive results. For example,

the data analysis indicated that developing software to be reused in multiple situations was cheaper than

developing it to be used in a single situation: hardly a credible predictor for a practical cost estimation

model. For the 1997 version of COCOMO II, a pragmatic 10% weighted average approach was used.

COCOMO II.1997 ended up with a 0.9 weight for the expert data and a 0.1 weight for the regression data.

This gave moderately good results for an interim COCOMO II model, with no cost drivers operating in non-

credible ways.

6.2 “Robust” Regression

Robust Regression is an improvement over the standard OLS approach. It alleviates the common problem

of outliers in observed software engineering data. Software project data usually have a lot of outliers due to

disagreement on the definitions of software metrics, coexistence of several software development processes

and the availability of qualitative versus quantitative data.

There are several statistical techniques that fall in the category of ‘Robust” Regression. One of the

techniques is based on Least Median Squares method and is very similar to the OLS method described

above. The only difference is that this technique reduces the median of all the ri
2 .

Another approach that can be classified as “Robust” regression is a technique that uses the datapoints lying

within two (or three) standard deviations of the mean response variable. This method automatically gets rid
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of outliers and can be used only when there is a sufficient number of observations, so as not to have a

significant impact on the degrees of freedom of the model. Although this technique has the flaw of

eliminating outliers without direct reasoning, it is still very useful for developing software estimation

models with few regressor variables due to lack of complete project data.

Most existing parametric cost models (COCOMO II, SLIM, Checkpoint etc.) use some form of regression-

based techniques due to their simplicity and wide acceptance.

7. Composite Techniques

As discussed above there are many pros and cons of using each of the existing techniques for cost

estimation. Composite techniques incorporate a combination of two or more techniques to formulate the

most appropriate functional form for estimation.

7.1 Bayesian Approach

An attractive estimating approach that has been used for the development of the COCOMO II model is

Bayesian analysis [Chulani et al. 1998].

Bayesian analysis is a mode of inductive reasoning that has been used in many scientific disciplines. A

distinctive feature of the Bayesian approach is that it permits the investigator to use both sample (data) and

prior (expert-judgement) information in a logically consistent manner in making inferences. This is done by

using Bayes’ theorem to produce a ‘post-data’ or posterior distribution for the model parameters. Using

Bayes’ theorem, prior (or initial) values are transformed to post-data views. This transformation can be

viewed as a learning process. The posterior distribution is determined by the variances of the prior and

sample information. If the variance of the prior information is smaller than the variance of the sampling

information, then a higher weight is assigned to the prior information. On the other hand, if the variance of



35

the sample information is smaller than the variance of the prior information, then a higher weight is

assigned to the sample information causing the posterior estimate to be closer to the sample information.

The Bayesian approach provides a formal process by which a-priori expert-judgement can be combined

with sampling information (data) to produce a robust a-posteriori model. Using Bayes’ theorem, we can

combine our two information sources as follows:

f Y
f Y f

f Y
( | )

( | ) ( )
( )

β
β β

=                              Eq. 7.1

where ß is the vector of parameters in which we are interested and Y is the vector of sample observations

from the joint density function f Y( | )β . In equation 7.1, f Y( | )β is the posterior density

function for ß summarizing all the information about ß, f Y( | )β is the sample information and is

algebraically equivalent to the likelihood function for ß, and f ( )β  is the prior information summarizing

the expert-judgement information about ß.  Equation 7.1 can be rewritten as

f Y l Y f( | ) ( | ) ( )β β β∝       Eq. 7.2

In words, equation 7.2 means

Posterior ∝  Sample * Prior

In the Bayesian analysis context, the “prior” probabilities are the simple “unconditional” probabilities

associated with the sample information, while the “posterior” probabilities are the “conditional”

probabilities given knowledge of sample and prior information.
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The Bayesian approach makes use of prior information that is not part of the sample data by providing an

optimal combination of the two sources of information. As described in many books on Bayesian analysis

[Leamer 1978; Box 1973], the posterior mean, b**, and variance, Var(b**), are defined as

b
s

X X H
s

X Xb H b** * * *[ ' ] '= + × +






−1 1
2
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2    Eq. 7.3

and

 Var b
s

X X H( ) '** *= +
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2

1

                                                                                           Eq. 7.4

where X is the matrix of predictor variables, s is the variance of the residual for the sample data; and H*

and b* are the precision (inverse of variance) and mean of the prior information respectively.

The Bayesian approach described above has been used in the most recent calibration of COCOMO II over a

database currently consisting of 161 project data points. The a-posteriori COCOMO II.2000 calibration

gives predictions that are within 30% of the actuals 75% of the time, which is a significant improvement

over the COCOMO II.1997 calibration which gave predictions within 30% of the actuals 52% of the time as

shown in table 3. (The 1997 calibration was not performed using Bayesian analysis; rather, a 10% weighted

linear combination of expert prior vs. sample information was applied [Clark et al. 1998].) If the model’s

multiplicative coefficient is calibrated to each of the major sources of project data, i.e., “stratified” by data

source, the resulting model produces estimates within 30% of the actuals 80% of the time. It is therefore

recommended that organizations using the model calibrate it using their own data to increase model

accuracy and produce a local optimum estimate for similar type projects. From table 3 it is clear that the

predictive accuracy of the COCOMO II.2000 Bayesian model is better than the predictive accuracy of the

COCOMO II.1997 weighted linear model illustrating the advantages of using Composite techniques.

Table 3. Prediction Accuracy of COCOMO II.1997 vs. COCOMO II.2000.
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COCOMO II Prediction Accuracy Before Stratification After Stratification

PRED(.20) 46% 49%

1997 PRED(.25) 49% 55%

PRED(.30) 52% 64%

PRED(.20) 636% 70%

2000 PRED(.25) 68% 76%

PRED(.30) 75% 80%

Bayesian analysis has all the advantages of “Standard” regression and it includes prior knowledge of

experts. It attempts to reduce the risks associated with imperfect data gathering. Software engineering data

are usually scarce and incomplete and estimators are faced with the challenge of making good decisions

using this data. Classical statistical techniques described earlier derive conclusions based on the available

data. But, to make the best decision it is imperative that in addition to the available sample data we should

incorporate nonsample or prior information that is relevant. Usually a lot of good expert judgment based

information on software processes and the impact of several parameters on effort, cost, schedule, quality

etc. is available. This information doesn’t necessarily get derived from statistical investigation and hence

classical statistical techniques such as OLS do not incorporate it into the decision making process. Bayesian

techniques make best use of relevant prior information along with collected sample data in the decision

making process to develop a stronger model.

8. Conclusions

This paper has presented an overview of a variety of software estimation techniques, providing an overview

of several popular estimation models currently available. Experience to date indicates that neural-net and

dynamics-based techniques are less mature than the other classes of techniques, but that all classes of
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techniques are challenged by the rapid pace of change in software technology. The important lesson to take

from this paper is that no one method or model should be preferred over all others. The key to arriving at

sound estimates is to use a variety of methods and tools and then investigating the reasons why the estimates

provided by one might differ significantly from those provided by another. If the practitioner can explain

such differences to a reasonable level of satisfaction, then it is likely that he or she has a good grasp of the

factors which are driving the costs of the project at hand; and thus will be better equipped to support the

necessary project planning and control functions performed by management.
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