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ABSTRACT 24 

Widespread adoption of plug-in electric vehicles (PEVs) may substantially reduce emissions of 25 
greenhouse gases while improving regional air quality, increasing energy security, and taking 26 
advantage of inexpensive solar power.  However, outcomes depend heavily on the electricity 27 
generation process, power plant locations, and vehicle use decisions.  This paper provides a clear 28 
methodology for predicting PEV emissions impacts by anticipating battery-charging decisions 29 
and power plant energy sources across Texas.  Life-cycle impacts of vehicle production and use 30 
and Texans’ exposure to emissions are also computed and monetized. This study reveals to what 31 
extent PEVs are more environmentally friendly, for most pollutant species, than conventional 32 
passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision 33 
and other manufacturing processes. Results indicate that PEVs on today’s grid can reduce GHGs, 34 
NOx, PM10, and CO in urban areas, but generate significantly higher emissions of SO2 than 35 
existing light-duty vehicles. Use of coal for electricity production is a primary concern for PEV 36 
growth, but the energy security benefits of electrified vehicle-miles endure. 37 
 38 
As conventional vehicle emissions rates improve, it appears that the power grids must follow suit 39 
(by improving emissions technologies and/or shifting toward cleaner generation sources) to 40 
compete on an emissions-monetized basis with PEVs in many locations. Moreover, while PEV 41 
pollution impacts may shift to more remote (power-plant) locations, dense urban populations 42 
remain most strongly affected by local power plant emissions in many Texas locations.  43 
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BACKGROUND AND INTRODUCTION 44 

Plug-in electric vehicles (PEVs) are becoming more popular in the United States and around the 45 
world. As of early 2013, the U.S. held an estimated 70,000 PEVs, nearly 40% of the world’s 46 
total of over 180,000 (IEA 2013). Since PEVs were reintroduced more strongly into the 47 
passenger vehicle market in the early 21st century, researchers and policy makers have been 48 
considering the short- and long-term impacts of PEVs on energy, electricity and transportation 49 
infrastructure, and the environment. Much of the discussion includes uncertainty regarding 50 
consumer adoption and technological development of vehicles and energy infrastructure and 51 
whether or not PEVs can reduce the externalities of driving. Despite these uncertainties, many 52 
believe that PEV market shares will continue growing in the next few decades (Balducci 2008, 53 
Musti and Kockelman 2011, Becker and Sidhu 2009) and that this trend, in most cases, will 54 
reduce greenhouse gas (GHG) emissions (Anair and Mahmassani 2012, Stephan and Sullivan 55 
2008, Samaras and Meisterling 2008) and improve air quality (Sioshansi and Denholm 2009, 56 
Thompson et al. 2009).  57 
 58 
Even as many adopt an optimistic tone towards PEVs, others cite some concerns. Anair and 59 
Mahmassani (2012), for instance, note that PEVs can pollute more than some of the cleanest 60 
conventional vehicles (CVs) when fueled by “dirtier” electricity grids (powered mostly by coal). 61 
They suggest that in such locations (e.g., Colorado and the U.S.’s Midwest) driving an efficient 62 
(gasoline-powered) hybrid-electric vehicle will be less harmful (in terms of GHG emissions) 63 
than driving a PEV. However, they also note that places like the Pacific Northwest, which 64 
sources a large portion of electricity from non-emitting hydroelectric dams, enjoy very low per-65 
mile GHG emissions relative to CVs.  66 
 67 
Other concerns with PEVs include the energy demands and pollution involved in battery 68 
production and disposal and the greater energy required to produce lighter-weight materials 69 
(Hawkins et al. 2012).  There is also the potential for driving rebound due to reductions in costs 70 
and perceived environmental impacts, causing some owners to increase their energy 71 
consumption (Greening et al. 2000). 72 
 73 
Furthermore, such limitations are seen in the context of an increasingly clean CV landscape, 74 
diminishing PEVs’ perceived environmental advantages. Vehicles powered by fossil fuels are 75 
producing fewer emissions and becoming more fuel efficient, thanks to increasingly strict 76 
standards. Understanding and predicting these trends is crucial to anticipating the transportation 77 
sector’s energy demands, air quality impacts, and greenhouse gas emissions. While much has 78 
been written on this subject, uncertainty remains regarding how electric vehicles impact specific 79 
markets and regions.  80 
 81 
This work offers a modeling framework to translate electrified driving (and battery charging) to 82 
equivalent per-mile emissions of GHGs and pollutants, and their spatial distribution (from 83 
tailpipes to power plants). The model is applied to the Texas region, with its mostly isolated 84 
power grid (covering most of the state) and many populated (and still growing) urban areas, 85 
where air quality is a concern.    86 



Electricity Generation in Texas 87 

As pointed out by Anair and Mahmassani (2012), PEVs’ emissions impacts depend on the power 88 
grid used to charge the vehicle batteries. Texas’s electricity grid covers nearly 90% of the state’s 89 
population, and serves as an excellent study location, since regional demand can be directly 90 
linked to a single grid (as opposed to other, interconnected grids that distribute power across 91 
multiple independent system operators, or ISOs). The Electric Reliability Corporation of Texas 92 
(ERCOT) is one of the U.S.’s nine ISOs and manages the Texas grid by dispatching power and 93 
anticipating short- and long-term electricity demands. 195 of Texas’s 254 counties lie within the 94 
ERCOT grid, which includes Dallas-Fort Worth, Houston, San Antonio, and Austin, constituting 95 
the nation’s 4th, 5th, 25th, and 35th most populous metropolitan statistical areas (MSAs) (Census 96 
2010).  97 

Emissions and Air Quality 98 

One criticism of PEVs driving electrified miles is that they are not “zero emissions” vehicles: 99 
they produce significant emissions during manufacture, and shift operating emissions from the 100 
tailpipe to other locations. Some have argued that PEVs can be worse for the environment, by 101 
producing more life-cycle GHG emissions, though the impacts may be obscured by geographical 102 
distance and the fact that many impacts occur during upstream production phases (Hawkins et al. 103 
2012, National Research Council 2010, Alonso et al. 2012). Regardless of how overall PEV 104 
energy demands compare to those of CVs, it is true that PEVs shift many of their operating 105 
emissions (for all miles that are “electrified”) from the point of usage (a roadway) to a sometimes 106 
very distant point source. PEV users driving off battery power and others in their usage area 107 
benefit from zero tailpipe emissions, but populations surrounding the power generator for any 108 
electrified miles will generally be subject to more air pollution. The accounting framework is 109 
complicated by the inclusion of plug-in hybrid electric vehicles (PHEVs), since their drive-110 
cycles (and thus emissions) can (and regularly do) fluctuate between battery and gasoline sources 111 
of motive power. The emissions shifting situation, over space, also presents ethical dilemmas and 112 
may encourage more driving, by reducing users’ perceptions of their environmental impacts 113 
(Hertwich 2008). However, reducing exposure of highly populated urban areas (where many 114 
more human lungs are present) may be a real benefit of such emissions exporting.  115 
 116 
Many U.S. regions are interested in improving air quality to avoid violating the EPA’s National 117 
Ambient Air Quality Standards (NAAQS). With many Texas regions currently in non-attainment 118 
or near-non-attainment for ozone, while experiencing continuing population and VMT growth, 119 
PEVs present an opportunity for improved air quality and lower energy demands. This study 120 
aims to quantify some of these impacts, and provides a framework for informing local and 121 
regional air quality plans.  122 



METHODS 123 

This research translates anticipated PEV demands to emissions over time and space, from 124 
tailpipes and power plants across Texas’s electricity grid. The emissions impacts are evaluated 125 
relative to conventional (gasoline-powered) passenger vehicles (CVs). Several different model 126 
components are considered here, including charging behaviors, power production, and emissions 127 
from both vehicle manufacture and vehicle operations. The following sections consider how 128 
readily PEVs may be adopted, how they will be used and charged, and their power demands over 129 
time. 130 

EV Usage and Driving Behavior 131 

EV use assumptions used here come from extensive GPS-based data of Nissan Leaf vehicle use 132 
across the United States, from the EV Project (Ecotality 2013). The EV Project is a joint study 133 
between research groups at the U.S. Department of Energy and Idaho National Laboratory, and 134 
industry supporters at Nissan, Chevrolet, and Ecotality (an EV Supply Equipment provider), and 135 
other various agency and industry partners. The EV Project releases quarterly summary data for 136 
vehicle electricity demand and miles traveled, for several locations across the U.S., including 137 
two Texas cities: Dallas and Houston. However, sample sizes are rather small for these two 138 
cities, especially for the Nissan Leaf. Therefore, U.S. averages for driving distances between 139 
charges, and electricity use rates (Wh/mile) are used here, over all quarters of the years in which 140 
EV Project data were collected: these range from Quarter 1 (Q1) in 2012 through Quarter 2 (Q2) 141 
in 2013.1 Detailed summaries of these results are compiled by Nichols (2013).  142 

Electric Vehicle Emissions Model 143 

Average daily electricity demand (D) is assumed using the average distance traveled  (29.7 144 
mi/day) and battery efficiency rate (300 Wh/mi) for Nissan Leaf vehicles, from Ecotality (2013). 145 
This provides a baseline for estimating aggregate load on the ERCOT electricity system, but 146 
determining generating emissions requires more nuance. For instance, the time-of-day at which a 147 
PEV draws power influences the overall emissions profile for that marginal electricity 148 
consumption, since demand profiles for electricity change over time as residents, businesses, and 149 
industry use electricity for different purposes, and in response to diurnal weather conditions. 150 
Similarly, electricity demand is affected by season, as heating and cooling demands vary. 151 
Therefore, the time of-day at which EVs are charging is important for anticipating upstream 152 
generator emissions.  153 
 154 
The EV Project (2013) publishes quarter-hour charging profiles, which were matched to grid 155 
generation shares. Quarterly averages of total AC demand in kWh from the EV Project were 156 
normalized by the maximum demand during the quarter, to produce standard demand profiles 157 
that can applied to any level of electricity demand. For example, if the maximum electricity 158 
demanded from PEVs during a 15-minute interval is 0.0475 kWh at 7 PM, all other 15-minute 159 
interval demands were divided by this amount to create a maximum value of 1.0 at 7 PM.   160 
 161 

                                                 
1 Quarters are defined as follows: Q1 January to March, Q2 April to June, Q3 July to September, Q4 October to 
December.   



The EV Project data considers weekday and weekend charging behaviors, so those two empirical 162 
charging profiles were considered. Additionally, two theoretical charging behaviors were 163 
explored – a concentrated peak demand, and an off-peak demand. The concentrated peak 164 
demand is considered a “convenience” charge, in an approach borrowed from Thompson et al. 165 
(2011) that represents all EVs starting to charge right after returning home from work (or other 166 
activities), at 5pm, when electricity demand is generally peaking (due to households and business 167 
being “on” at the same time, and Texas homes cooling down during an especially hot time of day 168 
during the summer months). This approach condenses all EV electricity demand into a span of 7 169 
hours, from 5 pm to 12 am. Conversely, an off-peak (nighttime) profile was chosen in a way to 170 
reduce emissions, by taking advantage of higher renewable (wind) shares, and fewer peak plant 171 
emissions in the late night and early morning hours. These profiles are normalized as well, so 172 
that total electricity demand is constant across each 15-minute interval, during the charging 173 
period. 174 
  175 
The energy E consumed from an EV fleet charging on ERCOT’s grid for a 15-minute time 176 
interval t is calculated as follows: 177 

∑
 

 178 
where dt is the average electricity demand in time-interval t, using EV Project estimates. With 179 
this specification, total EV energy demands are spread out across 15-minute intervals concurrent 180 
with actual average profiles. EV Project data provide multiple quarterly demand profiles, 181 
including maximum and minimum values, as well as inner and outer quartiles. This study simply 182 
relies on the median demand value for a weekday. These demand profiles are specific for each 183 
quarter, based on the only year for which a complete set of EV Project charging data was 184 
available at the time of this research: 2012.   185 
 186 
After determining time-specific total electricity demand across different PEV adoption scenarios, 187 
electrified-mile emissions are estimated. Emissions estimation becomes more complex here, with 188 
unique electricity generating units (EGUs) entering as model components. Quarter-hour 189 
emissions rate tables were matched with interval electricity demands to determine daily and 190 
annual PEV emissions. Emissions rate tables for 6 pollutants (NOx, SO2, CH4, N2O, COeeq, 191 
PM10, CO, and VOC) were developed at 15-minute intervals for all 4 quarters of 2012 on the 192 
ERCOT grid using emissions data from the eGRID database (EPA 2012) and National Emissions 193 
Inventory (EPA 2001).2 These data provide emissions rates for each of the 550 power generators 194 
on the ERCOT grid. Weighted average emissions rates for pollutant p are calculated for each fuel 195 
type f (coal, natural gas, oil, and biomass) based on annual emissions (A) per power plant z, as 196 
follows:  197 

∑
 

 198 

                                                 
2 Emissions for NOx, SO2, CH4, N2O and CO2eq were taken from actual plant emissions, as found in the eGRID data 
set, while PM10, CO, and VOC are based only on grid-wide averages by fuel type, from the National Emissions 
Inventory Data set. These average rates were computed by dividing annual emissions from all plants of a given fuel 
type by the annual electricity generation. Therefore, these are unweighted estimates, compared to eGRID estimates, 
which are weighted by generation of each plant across a given fuel type.  



where xfpz is the emissions rate for pollutant p of plant z combusting fuel type f.  These emissions 199 
rates represent the marginal emissions of consuming one MWh of electricity by using a specific 200 
fuel type f. Total marginal grid emissions of each pollutant (e), therefore, are a function of fuel 201 
type shares (yf) , weighted-average emissions rates, and interval energy demand (Et) for PEV 202 
charging. While weighted emissions rates were assumed constant, fuel type shares change over 203 
time and by season. These changes are incorporated based on 15-minute ERCOT generation 204 
data, by fuel source, for every day in 2012. Simple averages of total production (per time interval 205 
[t]) were calculated for each quarter (k) to produce quarterly average fuel type shares (yfkt). 206 
Therefore, quarterly emissions rates can be calculated as follows: 207 
 208 

 

 209 
This approach takes into account the fact that generation fuel type shares change as demand 210 
changes over time and season, for any marginal electricity usage. By “marginal” usage, it is 211 
assumed that the total PEV demand (D) does not affect the generation fuel type shares. In some 212 
cases, where PEV demand is very high, additional EGUs may be required to meet demand. At 213 
present, Texas’s small PEV population has only a marginal effect on the grid, but if demand 214 
increases, perhaps even to 5% of total LDVs, this marginal demand assumption may no longer 215 
hold.  216 
 217 
The final result for this approach is a lookup table of quarter-hour emissions rates, by season for 218 
8 different pollutants. This is the table multiplied by daily demand to determine average 219 
emissions impacts of PEV charging. The result is in terms of aggregate emissions, but results 220 
could also be evaluated geographically by considering individual generator locations and 221 
proximity to urban areas.   222 

Life-Cycle Considerations 223 

For a more complete evaluation of PEV versus CV emissions implications, some attention 224 
should be paid to each vehicle’s life-cycle emissions, since PEVs generally require more energy 225 
(and thereby emissions) to construct, thanks mostly to battery assembly (Hawkins et al. 2012) 226 
and use of special materials to lower weights. This analysis uses embodied energy demands 227 
directly from Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and 228 
Energy Use in Transportation (GREET) model, which accounts for the upstream emissions and 229 
energy inputs required to produce all materials for typical, light-duty vehicles. These components 230 
include the various materials used, such as steel, plastic, iron, and rubber; various fluids used 231 
(e.g., engine oil, power steering fluid, brake fluid); and batteries (used in CVs and more 232 
extensively in PEVs). GREET requires many assumptions regarding vehicle weight, materials, 233 
and inputs for upstream energy and emissions from power plants and transportation sources. The 234 
analysis here simply assumes all default estimates from GREET 2.1, as originally described by 235 
Wang (2001) and revised by Argonne National Laboratory (2013). This estimate of embodied 236 
energy across CVs and PEVs provides an additional dimension for a more holistic comparison 237 
between the two vehicle types for different electricity fuel mix scenarios.  238 



RESULTS  239 

Average emission rates on the ERCOT grid were computed for 6 pollutant types, with results 240 
shown in Table 1. Table 1’s emission rates are based on eGRID and ERCOT data that vary by 241 
time-of-day and season. Other emissions rates, provided below (for PM, CO, and VOC), are 242 
Texas-wide averages, derived from the U.S.’s National Emissions Inventory (NEI) (EPA 2001) 243 
for year 2008. NEI data is not available for direct comparison for biomass and “other” electricity 244 
combustion sources as defined in eGRID data.    245 
 246 

Table 1: Average ERCOT Emissions Rates (lb/MWh) from eGRID 2012 (2009 rates) and 247 
NEI (2008 rates). 248 

 NOx SO2 CH4 N2O CO2eq PM2.5 CO VOC 
Coal 4.04 19.2 284.7 422.3 6,537.5 0.11 2.97 0.03

Natural Gas 0.28 0.006 52.6 5.4 671.8 0.04 0.12 0.02
Other 0.11 1.8 28.1 41.2 641.6 -- -- --

Biomass 2.06E-4 1.41E-5 0.276 0.037 0.004 -- -- --
Renewables, 

Nuclear 
0 0 0 0 0 0 

 0

Note: SO2 is a significant precursor of harmful PM2.5 downwind of the EGU.   249 
 250 
Comparing different charging profiles indicates little difference between charging scenarios, as 251 
shown in Table 2. This result is consistent with Thompson et al.’s (2011) findings of almost no 252 
difference between 4 different EV-charging profiles on the Texas grid.  253 

 254 
Table 2: Average Electrified-Mile Emissions Rates by Charging Scenario on ERCOT grid 255 

(grams/mi)  256 

Charging Scenario NOx SO2 CH4 N2O CO2eq 
Weekday 0.166 0.721 13.34 16.13 279.41 
Weekend 0.165 0.722 13.33 16.16 279.48 
Convenience 0.167 0.724 13.39 16.21 280.56 
Off-Peak 0.166 0.732 13.02 16.33 276.95 

 257 
Table 2’s differences are rather small, and nearly negligible, with the exception of perhaps 258 
CO2eq. The rate difference from all PEVs charging when convenient (i.e., right when they arrive 259 
home) versus off-peak (for power generation) is about 6,730 tons of CO2eq per year, or just a 260 
1.3% decrease in grams per electrified mile of CO2eq emissions. Zivin et al. (2012) also studied 261 
temporal variations in CO2 emissions and noted that the ERCOT grid is one of the most stable 262 
over times of day, as compared to the eastern and western (WECC) interconnections. Since little 263 
difference appears to exist by time of day in Texas, assuming average grid mixes (rather than a 264 
special, generator-specific dispatch model), the state’s weekday charging emissions profile was 265 
assumed, to provide the following results. 266 

Conventional Vehicle Emissions 267 

Average PEV emissions were compared to those of four different CV types, as shown in Table 3, 268 
in order to evaluate PEVs’ relative emissions profiles. For this evaluation, emissions rates for 269 



gasoline- and diesel-powered passenger cars and light-duty trucks (like SUVs, minivans, and 270 
pickups) were estimated using EPA’s MOVES model, as shown in Table 3 (and developed for 271 
use in Kockelman et al.’s [2012] Project Evaluation Toolkit, for Texas applications). Table 3’s 272 
CV rates correspond to an average of rates estimated for Dallas, Waco, and Houston conditions 273 
in the summer of 2010, for vehicles traveling at 30 miles per hour, which is close to the average 274 
commute speed of 27 mph reported by the National Household Travel Survey (NHTS 2009).  275 

 276 

Table 3: CV vs. PEV Operating Emissions Rates (grams/mile) 277 

   NOx SO2 PM10 CO VOC CH4 N2O CO2eq 

Gas Passenger Car  0.3739 0.00769 0.0310 3.3905 0.1518 0.00579 0.00316 393.92

Diesel Passenger Car 1.0104 0.00341 0.0689 0.5373 0.0682 0.00166 0.00057 436.76

Gas Light Passenger Truck 0.8869 0.01055 0.0443 7.0989 0.3387 0.01121 0.00889 540.69

Diesel Light Passenger Truck 3.8152 0.00574 0.2746 4.1980 0.6237 0.01010 0.00221 728.29

  

PEV 2012 Avg. ERCOT Mix 0.17 0.72 0.014 0.15 0.002 13.34 16.13 280 

PEV 2012: 100% Coal 0.47 2.23 0.036 0.43 0.005 33.14 49.15 761 

PEV 2012: 100% NG 0.03 0.00 0.005 0.02 0.002 6.12 0.63 78 

PEV: 25% Increase in Renewables  0.12 0.54 0.011 0.11 0.002 10 12.1 210 
Note: Bold indicates PEV emissions rates that are lower than all CV averages. 278 
 279 
Note that these results do not include CVs’ cold start emissions, which are higher (per mile 280 
traveled) than standard operating emissions, since emissions-control equipment (like the catalytic 281 
converters) have not reached optimal activation temperatures (Frey et al. 2002). However, 282 
preliminary analysis suggested that broadly considering cold starts did not appreciably change 283 
the overall research findings. Finer-scale models that consider detailed trip behavior should 284 
consider cold starts for a more comprehensive analysis.  285 
 286 
Both CVs and PEVs are projected to experience significant improvements in emissions in 287 
coming years.  The Environmental Protection Agency’s Tier 3 Vehicle Emission and Fuel 288 
Standards Program will harmonize national regulations with existing California Air Resources 289 
Board (CARB) Low Emission Vehicle (LEV III) standards, resulting in an estimated 56% 290 
reduction in SO2 by 2018 (EPA 2014b).  SO2 emissions from coal-fired power plants, already at 291 
record lows, are projected to drop by another two-thirds from 2011 to 2016 (EIA 2013).  292 
Electricity generation with fuels other than coal will result in even lower pollutant emissions.  293 
 294 
These results highlight some major emissions profile differences between electrified miles and 295 
CV driving. The most striking difference is the considerably higher SO2 emissions from PEVs 296 
using the average ERCOT feedstock mix, which is over 70 times higher than that of the average 297 
CV. Emissions of two particular greenhouse gases - methane (CH4) and nitrous oxide (N2O) - are 298 
also much higher for PEV miles in all feedstock mix scenarios, yet overall CO2 emissions are 299 
lower in most cases for PEVs (except when powered solely by coal). A key concern here is that 300 
electrified miles relying exclusively on power from Texas’s average coal-fired power plants 301 
produce more than twice the CO2 of a typical gasoline-powered passenger car, 125% more 302 
GHGs than a diesel passenger car, and many more times methane and nitrous oxide than CVs, 303 



per mile traveled. The GHG difference between a gasoline-powered SUV (or LDT) and coal-304 
powered PEV passenger car is less pronounced, suggesting about a 20% increase for the PEV 305 
car, but still underscores the inherent inefficiency of using a PEV with a dirty fuel source. 306 
Fortunately, Texas’ average electric-power presently produces about 25% less CO2 per mile 307 
traveled on pure battery power than a typical gasoline-powered car.  308 
 309 
PEVs are expected to produce less NOx, PM10, VOC, and CO emissions than the average CV 310 
under most Texas-power scenarios - except for the case of 100% coal combustion. This shift in 311 
emissions offers valuable solutions to various urban air quality concerns. For example, many 312 
U.S. regions are in non-attainment or near non-attainment with the national ozone standard (EPA 313 
2013), and so will benefit from lower overall NOx and VOC levels (Farooqui, et al 2013).  314 
 315 
The margin between today’s grid emissions and existing CV emissions is only large for CO and 316 
VOC, and quite thin for NOx and PM10. For instance, an average PEV’s PM10 emissions on the 317 
existing grid nearly equal those of the average gasoline car, and PEV’s NOx emissions are about 318 
half those of such a car. Though this latter difference is significant, both CV and power plant 319 
emissions rates are likely to change. The conventional vehicle fleet is expected to become 320 
cleaner, thanks to older, more polluting vehicles being removed from roadways, and better 321 
emissions control systems on newer models. The EPA has long been pushing for reduced power 322 
plant emissions, especially from coal plants, but the extent of those gains is currently unclear. 323 
Changes in the auto industry are expected thanks to the recently-passed Tier 3 emissions 324 
standards (EPA 2014b) and CAFE (fuel economy) standards up through 2025. These emissions 325 
improvements are expected to be rather significant, as shown below for passenger cars, based on 326 
PET’s MOVES-based emissions estimates through 2025.  327 
 328 

Table 4: CV Emissions Changes to 2025 (grams/mile) 329 
 330 

 331 
If CVs do achieve such emissions reductions, PEVs using today’s average ERCOT electricity 332 
may no longer provide such clear air quality benefits. For instance, average ERCOT-based NOx 333 
emissions for electrified miles are currently about half those of a 2010 passenger car, but may 334 
become twice those of such CVs if LDV emissions rates improve and grid emissions stay 335 
constant. Though power-grid emissions improvements are expected (EPA 2014a), the turnover 336 
rate of older and less efficient power plants is likely lower than that of vehicles. Of course, 337 

   NOx SO2 PM10 CO VOC CH4 N2O CO2eq 

2010 Gas Passenger Car 0.3739 0.008 0.0310 3.3905 0.1518 0.00579 0.00316 393.92 

2015 Gas Passenger Car  0.1760 0.007 0.0303 2.4759 0.0723 0.00386 0.00174 381.17 

2020 Gas Passenger Car  0.0928 0.007 0.0300 2.0677 0.0466 0.00346 0.00144 347.40 

2025 Gas Passenger Car  0.0678 0.006 0.0300 1.9627 0.0407 0.00332 0.00136 324.18 

  

PEV 2012 Avg. ERCOT 
Mix 

0.17 0.72 0.014 0.15 0.002 13.34 16.13 280 

PEV 2012: 100% Coal 0.47 2.23 0.036 0.43 0.005 33.14 49.15 761 

PEV 2012: 100% NG 0.03 0.00 0.005 0.02 0.002 6.12 0.63 78 

PEV: 25% Increase in 
Renewables  

0.12 0.54 0.011 0.11 0.002 10 12.1 210 



domestic power provision also offers greater energy security, and EVs can be powered using a 338 
variety of “emissions-free” renewable feedstocks, including distributed (household-level) solar 339 
panels. 340 

Life-Cycle Analysis Comparison 341 

Though the previous analysis provides some insight into the relative emissions profiles of 342 
vehicle use, consideration should be given to differences in emissions from vehicle production 343 
phases. This is done by including GREET’s embodied emissions results alongside operating 344 
emissions, as shown in Figure 1. Another source of such estimates is Michalek et al. (2011), who 345 
have estimated high embodied energy implications for EVs. 346 
 347 

 348 
Figure 1: Life-Cycle CO2eq Emissions of CVs vs. PEV Scenarios 349 

This analysis suggests that most life-cycle energy for conventional vehicles, and PEVs fueled by 350 
coal, is from daily driving rather than from production phases. Although PEV production might 351 
produce around 30% more CO2eq than conventional vehicles, this phase is rather insignificant 352 
when compared to operations emissions. In fact, embodied energy comprised only about 11 and 353 
7% of GHG emissions of gasoline and diesel vehicles respectively. A critical point to consider 354 
here is the life-cycle GHG emissions of conventional vehicles and PEVs using the current mix. 355 
These results suggest that PEVs produce around 18% less GHG per mile than CVs, and that this 356 
reduction could reach 35% with an increased share of renewables or nearly two-thirds with a 357 
100% natural gas source.  358 
 359 
There is one emissions-species case studied here where PEVs, under any fuel mix scenario other 360 
than 100% renewables, perform worse than CVs; this is the case of SO2 emissions. Figure 2 361 
shows that the average gasoline and diesel sedan produces very little on-road SO2, as compared 362 
to SO2 from electricity generation. SO2 causes both respiratory ailments (Chen et al. 2012, Frank 363 
et al. 1962) and contributes to acid rain (Park 1987).  364 
 365 
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 366 
Figure 2: Life-Cycle SO2 Emissions of CVs vs. PEV Scenarios 367 

It should be noted that this life-cycle analysis does not necessarily consider the embodied energy 368 
associated with fuel production or power generation in the operations phase. That is, for 369 
gasoline, diesel, coal, natural gas, nuclear power, and other fuels, the only input is the amount of 370 
fuel consumed in the operations phase. Since the embodied phase of energy or fuel production is 371 
neglected, the magnitude of the operations phase is thereby underestimated for all vehicles. This 372 
may influence the magnitude of operations emissions differently across CVs and PEVs, but is 373 
unlikely to make a noticeable difference, since embodied-energy implications typically average 374 
10 percent of the total energy use and will be overshadowed by the relative differences in 375 
operations. Exploring the embodied phase of operational energy leads to a recursive and 376 
increasingly complicated analysis focused on relatively negligible marginal emissions, so they 377 
are ignored in this case.  378 

PEV Emissions Exposure 379 

Though previous results suggest that PEV emissions rates for air quality pollutants are in most 380 
cases lower than those for CVs (with the exception of SO2), it is important to consider how 381 
emissions may shift over space and exposed populations, when shifting from CV use to PEV use. 382 
Thompson et al. (2009, 2011) performed rather detailed spatial emissions analysis of PEV 383 
emissions at point source locations, and that level of sophistication and expertise in air quality 384 
modeling is not replicated here. Rather, a general “exposure rate” is calculated for each ERCOT 385 
county, as the product of annual power plant emissions (in tons per year) and evenly-distributed 386 
county population. A 25-mile buffer is considered for each power plant to calculate exposure 387 
rates, and overlapping emissions exposures are summed to produce a sense of annual exposure. 388 
Though emissions can affect populations hundreds of miles away, the small buffer size used here 389 
provides more insight to geographic emissions concentrations. This measure provides a sense of 390 
where the largest overall impacts from PEV usage are likely occurring, over the long term (since 391 
at any given time any number of the modeled plants may be operating). This measure is therefore 392 
a sense of the aggregate air quality risks posed by rising PEV use.  393 
 394 
Figure 3’s results illustrate how Texas’ urbanized areas experience some of the greatest total 395 
exposures to power plant emissions, which is unsurprising, given these regions’ high population 396 
concentrations. However, there are some less densely-populated counties well away from 397 
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Texas’s major metropolitan areas (Dallas-Fort Worth, Houston, San Antonio, and Austin) that 398 
show very high exposure rates for all power plant pollutants as shown in Figure 3.  399 
 400 

         401 
 402 

     403 
Figure 3: Total Emissions Exposure, by County for NOx, (top left) SO2, (top right), and by 404 
Power Plant for NOx (bottom left) and SO2 (bottom right), in millions of person-tons per 405 

year 406 

For NOx and SO2 emissions levels via Texas’ power plants, some of the highest exposure 407 
counties host Texas’ most populous cities. These include Harris (for City of Houston), Travis 408 
(Austin), Bexar (San Antonio), and Dallas counties. In addition to these urban areas, many rural 409 
counties also emerge with high emissions levels; these include central-Texas counties such as 410 
Anderson and Brazos, as well as most of northeast Texas. These counties have much lower 411 



population densities than the metro areas, but show a disproportionate exposure rate than some 412 
nearby counties that do not contain a polluting power plant.  413 
 414 
Milam, Fayette, Limestone, Freestone, Grimes, and Rusk counties are all home to major coal 415 
plants. While it is not surprising to see such high NOx and SO2 exposure rates in these locations, 416 
it is interesting to get a sense of the disproportionately higher rates there, versus those in Texas’ 417 
much more densely populated areas. In other words, smaller populations living near the coal 418 
plants are subject to greater power-generation emissions exposure. Even with much higher 419 
population numbers in the cities, which have nearby EGUs, aggregate exposure rates are less 420 
than those surrounding highly-polluting power plants in Texas’ rural areas. Of course, the details 421 
of these exposures are much more nuanced, reflecting more than basic proximity. Nevertheless, 422 
at this coarse scale of county-level resolution, it seems clear that EV’s electricity use (mostly in 423 
the major cities) will be outsourcing emissions to more rural populations. This is most apparent 424 
with SO2, while results for other pollutants suggest that urban populations are about as 425 
negatively affected as rural populations (in terms of the product of population and emissions 426 
tons: the actual epidemiology is much more complex, and holds more hazards for those exposed 427 
to higher levels of most pollutants).  428 
 429 
This result supports the idea that some rural areas may be subjected to higher emissions from EV 430 
adoption, use, and charging in urban areas, but the regions with more vehicles are more likely to 431 
carry the burden of exposure. In other words, enough power plants operate in Texas’s most 432 
populated regions that EVs are not shifting all or even most of their associated emissions impacts 433 
to outlying areas, though there are certainly cases where the shifts may be disproportionate. 434 
Figure 3 highlights how EV charging emissions may often affect less populated areas of Texas. 435 
Of course, CV users impose emissions externalities on occupants of the cars that follow them, 436 
and the pedestrians, cyclists, and school children that travel and play nearby. Without 100-437 
percent clean transport technologies, one cannot avoid the issue of externalities and inequities in 438 
emissions impacts.  439 

CONCLUSIONS 440 

This analysis confirms an already well-known fact: electricity produced from coal-burning 441 
power plants (both newer generation and older generation) is generally much more polluting than 442 
that produced by power plants relying on natural gas and renewables. While EVs powered 443 
exclusively by the average coal-fired power plant in Texas’s ERCOT grid (in year 2012) may 444 
produce around 3,200 times more SO2 (per mile-traveled) than electrified miles powered 445 
exclusively by Texas’ natural gas plants,  their emissions rates of NOx, CO, and VOCs are still 446 
significantly less than those of CVs. Also somewhat surprising are the air quality and GHG 447 
savings associated with natural gas plants (with emissions rates based on current ERCOT 448 
averages for natural gas plants), and the relatively constant emissions rates (and feedstock mix) 449 
of Texas’s power plants across different levels of demand on most any day of the year. . 450 
Specifically, charging a PEV on the ERCOT grid with only coal plants in the mix results in over 451 
14 times as much NOx emissions, 3,200 times as much SO2, nearly 10 times as much CO2 and 452 
CO2eq, 2.5 times as much PM10, and VOCs, and nearly 80 times the N2O – as compared to a grid 453 
powered only by natural gas plants. Of course, including a small share of biomass and 454 
renewables (including wind, hydroelectric, and solar power) is even more favorable than the 455 



natural gas scenario. This result indicates that coal plants are drastically more polluting than 456 
other EV fuel sources, as shown in Table 3. 457 
 458 
Overall, higher PEV shares in urban areas may help improve local air quality and help regions 459 
meet NAAQS for CO, N2O, ozone, and PM (2.5 and 10), specifically. If, however, a region has 460 
any nearby coal plants impacting regional air quality, PEVs can create much more of an SO2 461 
(and thereby PM2.53) problem for the region than CVs would. Since SO2 emissions from coal 462 
plants (compared on a per-mile basis to CVs) are so relatively high, one should be cautious when 463 
using them to power any PEVs, especially in a place where coal emissions could be affecting 464 
large populations. All Texas counties are within NAAQS for SO2, but several Midwest and East 465 
Coast counties are in nonattainment (EPA 2013), presumably from higher concentrations of coal 466 
plants, higher sulfur contents of their coal, and heavy industry in these areas. Though SO2 467 
emissions are not necessarily a present concern in Texas, greater PEV demands being met with 468 
more coal plants (in populated areas) could be problematic. Essentially, adding an electrified 469 
mile to a system that depends on coal power would be equivalent to adding 3,200 CV miles, in 470 
terms of SO2 emissions. This is an interesting result, because even at their relatively small shares, 471 
PEVs using coal-based electricity will have very disproportionate SO2 emissions impacts.  472 
 473 
Pollution carries negative-externality costs, and these have been estimated in recent years. Given 474 
the significant difference in associated SO2 emissions, and the high (estimated) cost of this 475 
pollution species, Table 5 calculations suggest that a PEV’s emissions benefits may be lost 476 
(relative to the 2010 fleetwide average passenger car), if partly powered by coal (ERCOT’s 477 
feedstock share is 25 percent, very typical of U.S. power production). Table 5’s dollar totals 478 
assume that each vehicle drives 12,000 miles per year, and damage values (in dollars per ton of 479 
species) come from the U.S. NHTSA (2010) for criteria pollutants; social cost of carbon is based 480 
on Interagency Working Group estimates (2013). Table 5’s costs per ton are somewhat higher 481 
than those found elsewhere (see, e.g., Fann et al. 2012), but provide a conservative accounting of 482 
the health and environmental impacts attributable to CVs and PEVs.  483 
 484 

Table 5: Comparing the External Emissions Costs  485 

  Emissions Externalities over 12,000 Annual 
Miles 

 Pollution Costs 
($/metric Ton) 

2010 Avg. Passenger 
Car (Gasoline) 

PEV using 2012 
ERCOT Grid 

VOC $1,280 $4.32 $0.03
NOx $5,217 $25.75 $10.64
PM10 (directly emitted) $285,469 $116.29 $47.96
SO2 $30,516 $2.82 $263.66
CO2 $20 $94.49 $67.20
 

Subtotal Non-SO2 -- $240.85 $125.83
Total (per 12,000 mi.) -- $243.67 $389.49

                                                 
3 SO2 condenses to form sulfate particles, an important component of PM2.5, and responsible for tens of thousands 
of premature deaths each year, just in the U.S. (Fann et al. 2013). 



Note: Pollution costs per ton come from NHTSA (2010) and Interagency Working Group on Social Cost 486 
of Carbon (2013). Passenger car emissions rates assume 30 mi/h running speed, and come from MOVES 487 
rates, as provided in the Project Evaluation Toolkit (Kockelman et al. 2012). 488 
 489 
It seems clear that an EV’s impacts on SO2 emissions should not be ignored, even if some 490 
regions use little coal (notably the U.S. West Coast), actual damage costs are debatable, and 491 
shares of renewable feedstocks are rising (roughly a percentage point each year) in many 492 
regions. While the non-SO2 portions of battery-powered EV emissions are less than three-493 
quarters that of a modern gasoline passenger car, including SO2 increases electrified travel’s 494 
emissions costs to roughly 1.6 times those of a conventional passenger car. Thus, a grid’s power 495 
sources, specifically coal-fired plants, are extremely important for EV emissions and benefits (or 496 
costs).  497 
 498 
Overall, this study illustrates how a higher share of efficient natural gas and renewables 499 
(including nuclear) can reduce electrified-mile emissions, relative to CV use and PEVs powered 500 
by coal plants or inefficient natural gas plants. However, a focus on air emissions ignores some 501 
other environmental consequences of power production. Simply turning away from coal sources 502 
is not without issues. For instance, nuclear power production and waste disposal carries safety 503 
and environmental contamination risks, and is a massive freshwater consumer (Gleick 1994). 504 
Natural gas may also be responsible for environmental issues, since hydraulic fracturing 505 
techniques require much water and may be degrading underground water stores (see, e.g., 506 
Osborn et al. [2011] and Entrekin et al. [2011]), while releasing large amounts of global-507 
warming methane (Howarth et al. 2011). Even wind turbines, solar panels, and hydroelectric 508 
power are not immune from environmental damages: generators threaten certain migratory bird 509 
populations, solar panels require extensive land area that may disrupt animal habitats, and 510 
hydroelectric dams interrupt aquatic ecosystems. Effectively, there is no motorized-transport 511 
energy solution that enjoys truly negligible costs, has zero environmental impact, and can move 512 
our world’s growing population billions of miles per day. However, solutions like electrified 513 
transport, with cleaner power sources, vehicles and batteries manufactured with less embodied 514 
emissions, greater use of non-motorized travel models, reliance on closer destinations as activity 515 
sites (to reduce travel distances), and more efficient power sources and vehicles can help reduce 516 
the local, regional, and global costs of our mobility desires, while improving the energy security 517 
situation of most nations.  518 
 519 
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