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ABSTRACT
We present a system for the visualization of an important
signal processing technique- a Gabor Filter bank’s response
to an image. To do this, one must overcome the problem
that no multi-dimensional space can be shown in a a single,
static graph. We use an interactive widget to change the
visible range of the projected dimensions, and additional
graphics which summarize the responses in the projected
dimensions. Thus, though we view this four-dimensional
space through 2-dimensional projections, we allow the user
to understand all dimensions, not just the plane of projec-
tion. We found that the implemented system helped in get-
ting a better understanding of Gabor filter responses. We
think that use of a domain dependent interaction tool and
additional summarization graphics may be useful in a more
general Information Visualization setting.

General Terms
Gabor Filters, Information Visualization, High Dimensional
Data

Keywords
Gabor Filters, Information Visualization, High Dimensional
Data

1. INTRODUCTION
Spatial frequencies and their orientations are important char-
acteristics of textures in images. Figure 2 shows examples
of spatial textures with characteristic frequency and orien-
tations. The frequency characteristics of images can be an-
alyzed using spectral decomposition methods like Fourier
analysis. We will illustrate spectral analysis for the simpler
case of 1D signals. Consider the sinusoid shown in Fig-
ure 1(a). The magnitude of its Fourier spectrum is shown
in Figure 1(b) - the peak corresponds to the frequency of

∗The authors wish to thank Ben Shneiderman and Mustafa
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the sinusoid. Figure 1(c) shows another sinusoid whose fre-
quency is double that of the previous one; Figure 1(d) shows
the magnitude of its spectrum. Suppose we add these two si-
nusoids then we will obtain a signal as shown in Figure 1(e).
Doing a spectral analysis on this would show the composi-
tion of the signal - the two peaks in Figure 1(f) correspond to
the component sinusoids. Fourier analysis has proven to be
one of the most powerful tools in signal processing. However,
a key problem with Fourier analysis is that spectral features
from different parts of the image are mixed together. Many
image analysis applications, e.g. object recognition, track-
ing, etc., require spatially localized features. Gabor filters
are a popular tool for this task of extracting spatially local-
ized spectral features [1, 2].
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Figure 1: (a) & (b) A sinusoid and its spectrum. (c)
A sinusoid with twice the frequency, (d) its spec-
trum. (e) Combination of the two sinusoids and (f)
its spectrum.

A Gabor filter bank’s response to an image consists of 4
dimensions - two of which directly correspond to the image
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Figure 2: Example of spatial frequencies in images:
(a) Vertical stripes - the frequencies would have hor-
izontal orientation, and (b) Curved stripes

plane. Visualizing a 4D space on a screen is difficult. The
focus of our paper is to provide a good interactive interface
for this. To give a better description of the problem, we first
introduce Gabor Filters in more depth. Then we will discuss
our interface and its relation to current work in Information
Visualization.

1.1 Introduction to Gabor Filters
A Gabor filter is obtained by modulating a sinusoid with a
Gaussian. For the case of one dimensional (1D) signals, a
1D sinusoid is modulated with a Gaussian. This filter will
therefore respond to some frequency, but only in a localized
part of the signal. This is illustrated in Figure 3. For 2D
signals such as images, consider the sinusoid shown in Fig-
ure 4(a). By combining this with a Gaussian (Figure 4(b)),
we obtain a Gabor filter - Figure 4(c). Let g(x, y, θ, φ) be
the function defining a Gabor filter centered at the origin
with θ as the spatial frequency and φ as the orientation. We
can view Gabor filters as:

g(x, y, θ, φ) = exp(−
x2 + y2

σ2
) exp(2πθi(x cos φ + y sin φ)))

(1)

It has been shown that σ, the standard deviation of the
Gaussian kernel depends upon the spatial frequency to mea-
sured, i.e. θ. In our case, σ = 0.65θ. Figure 5 shows 3D
plots of some Gabor filters and the intensity plots of their
amplitudes in the image plane. See [3] for an interactive tool
to explore 2D Gabor filters.

The response of a Gabor filter to an image is obtained by
a 2D convolution operation. Let I(x, y) denote the image
and G(x, y, θ, φ) denote the response of a Gabor filter with
frequency θ and orientation φ to an image at point (x, y) on
the image plane. G(.) is obtained as

G(x, y, θ, φ) =

� �
I(p, q)g(x − p, y − q, θ, φ) dp dq (2)

Consider the image of a zebra shown in Figure 6(a). If we ap-
ply a Gabor filter oriented horizontally on this image then it
will give high responses wherever there are horizontal stripes
present on the zebra. Figure 6(b) shows the amplitude of
the response of such a horizontally oriented Gabor filter for
the image.

1.2 Previous Work
The GRID principles [4] provide a general strategy for deal-
ing with multi-dimensional data. We have used these prin-
ciples here to guide our interface design. These principles
would dictate that we begin to visualize our 4-dimensional
space by looking at the 2-dimensional projections, and this
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Figure 3: Gabor filter composition for 1D signals:
(a) sinusoid, (b) a Gaussian kernel, (c) the corre-
sponding Gabor filter.

has proven useful to us. The next dictate is to rank which
projections are worth considering. Here, we do not need to
do this dynamically, since we are always projecting the same
4 dimensions. We can therefore predict in advance which 2-
dimensional projections are informative. As we will discuss
in detail later, these projections are the (x, y) plane, and the
(θ, φ) plane. We found that if the user is given these projec-
tions, the other possible projections add little. Gross et.al.
present an approach for generating static visualization of
Gabor filter responses using projections [5]. However, sim-
ply showing these 2-dimensional projections statically does
not give a satisfactory impression of the 4-dimensional data,
since many 4-dimensional spaces correspond to the same
projections. We therefore included two techniques in our
visualization to give a richer impression of the data. First,
we designed a simple interface which allows the user to in-
teract with the projections: the user can restrict what parts

of the projected dimensions are visible. Second, we include
additional visualizations to give information about where in
the projected dimensions the data came from.

2. OUR APPROACH
2.1 One Dimensional Visualization
We have devised a simple way to view the responses of Ga-
bor filters in one dimension. These filter responses can be
nicely summarized in a static one-dimensional graph. This
is interesting in its own right, and also provides an introduc-
tion to our approach for two dimensional filters.

Take the response of a one-dimensional Gabor filter bank
to to be G(x, θ), where x is ’position’ and θ is frequency.
By creating an array indexed by x and θ and encoding the
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Figure 4: Gabor filter composition: (a) 2D sinusoid
oriented at 30◦ with the x-axis, (b) a Gaussian ker-
nel, (c) the corresponding Gabor filter. Notice how
the sinusoid becomes spatially localized.

strength of the response as color, we can visualize the entire
filter bank response in a single figure. For examples on syn-
thetic signals, see Figures 7 and 8. For an example from a
real signal, see see Figure 9. Observe that for real signals, it
is very difficult to predict how a filter bank will respond to
a given signal. This is the major motivation for this work.

2.2 Other Possibilities
A straight forward extension of the 1D visualization ap-
proach would be to simply show a matrix of intensity plots
on the screen. Each intensity plot would show the amplitude
of Gabor filters for a particular orientation and frequency.
The frequency could vary along the row in the matrix and
orientation could vary along the columns. The problem with
this approach is the lack of ability of the user to interact with
the filter bank parameters. Typically users like to be able to
choose ranges of orientations and frequencies of the Gabor
filter bank and to observe the responses over the whole im-
age. Natural images rarely respond to specific frequencies or
orientation but rather exhibit a spread over these parame-
ters. Ability to dynamically choose the range of parameters
helps in better understanding of the response characteris-
tics. Another issue is the pragmatics of screen real estate.
Typical images of interest in computer vision research are
of size 300 × 200. Assuming that the video screen resolu-
tion is 1024× 768 and we can occupy the whole screen with
the intensity plots, we can show only 3 orientations and 3
scales. Even downsizing the image by half will only increase
these to 7 and 7 respectively. Downsizing further might pose

Figure 5: Example of Gabor filters with different
frequencies and orientations. First column shows
their 3D plots and the second one, the intensity plots
of their amplitude along the image plane.

problems in visualization.

Medical imaging also involves visualizing images with mul-
tiple modalities simultaneously [6, 7, 8]. However, here the
emphasis is on capturing the 3D human body structure. The
usual approach is to stack the different image planes on top
of one other and allowing the user to slice the across these
planes. Notice that in our case we are dealing with 4 di-
mensions where only two have any explicit spatial meaning.
The other dimension would be created artificially by stack-
ing the image planes. Choosing a range of parameters would
involve rotating the stack of image planes around and choos-
ing a volume. It has been cited in visualization literature
that 3D rotations during visualizations are often disorient-
ing as it is difficult to keep track of a frame of reference over
the course of interaction. In our work, we have tried to get
the best possible interaction while confining ourselves to 2D
visualization.

Another option would be to reuse our approach of visual-
izing Gabor filter responses to 1D signals. The user could
be given an interface to enable him/her to slice an image
into a strip. Then we could apply Gabor filters of different
frequencies along this strip and stack them as shown in Fig-
ure 7. However, it would be difficult to simultaneously view
responses for multiple orientations. Moreover, images have
an inherently 2D structure - applying filters along 1D strips
will ignore this.

Parallel coordinates are a popular approach for visualizing
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Figure 6: (a) An image, (b) The response for Ga-
bor filter oriented horizontally - white indicates
high amplitude of response, black indicates low re-
sponse. Notice how regions of vertical stripes are
highlighted.

multi-dimensional data [9, 10]. Each dimension is plotted
along an axis and all axes are placed parallel to one another.
Each data point in the high dimensional space is represented
by correspondingly joining the axes with line segments. In
our case, two of the dimensions are coordinates on the im-
age plane and hence plotting them on parallel coordinates
might not be a good idea. (Figure 10) Star Coordinates
is another popular visualization tool for multi-dimensional
data [11]. However, it might not useful in our case as two of
the dimensions have explicit spatial meaning.

2.3 Our Approach
Now, for a two dimensional Gabor filter bank, the situation
is much more difficult. Take the response for such a bank
to be G(x, y, θ, φ), where (x, y) is the position of the filter
relative to the input signal, θ is the frequency of the filter,
and φ is the orientation of the filter. It is clear that no static
presentation will allow us to view the response of the entire
filter bank. Here we adopt the philosophy that, in order
to give a users an understanding of the response of this 4
dimensional filter bank, interaction is necessary.

We feel that 2 dimensional projections are again the best

Figure 7: 1 dimensional Filter response for a syn-
thetic signal

Figure 8: 1 dimensional Filter response for a syn-
thetic signal

way to view this data. Thus, our approach is essentially in
line with the GRID principles, but applied in an unusual
way. The obvious thing here, would be to observe that with
4 dimensions, there are 6 possible projections- why not sim-
ply show them and be done with it? There are two reasons.

The first and minor reason is that most of these 6 projec-
tions are not meaningful. For example, a projection onto
the (y, φ) plane is difficult to intepret. There are really only
two projections with natural interpretations: onto the (x, y)
plane, and onto the (θ, φ) plane.

The second and more important reason, is that we have too

much data for full projections. If we simply project the data
downwards onto the (x, y) plane, we will be able to see the
maximum filter response for each image point, but we will
have no idea what part of the filter gave this response. We
combat this problem in two ways. First, we allow users to
project onto this plane, but we also allow them to restrict



Figure 9: 1 dimensional Filter response for a real
signal

what portions of the other dimensions are projected. Sec-
ondly, we use additional plots to show where in the extra
dimensions the maximum value came from.

Our interface has five plots:

1. Original image.

2. G plot: the (x, y) projection of the Gabor filter re-
sponses.

3. θ plot: this shows frequency of maximal Gabor filter
response for different points on the image plane.

4. φ plot: this shows the orientation of maximal Gabor
filter response for different points on the image plane.

5. (θ, φ) projection of the Gabor filter responses.

In addition, we have two interaction widgets:

1. (θ, π) interaction widget: this is shown on the (θ, φ)
projection plane and is used to restrict the range of
parameters of the Gabor filter bank. The user se-
lects a range in the frequency and orientation dimen-
sions of the filter bank: (θmin, φmin) → (θmax, φmax).
The program then finds, for every pair (x, y), the θ

and φ such that G(x, y, θ, φ) is maximum, subject to
θmin ≤ θ ≤ θmax, φmin ≤ φ ≤ φmax. The three fig-
ures, namely (x, y) projection, θ plot and φ plot show
G, θ and φ for each point on the image.

2. (x, y) interaction widget: this is shown on the original
image’s (x, y) plane. It is used to select a rectangular
area on the image plane: (xmin, ymin) → (xmax, ymax)
Then, for each pair (θ, φ), the program finds the max-
imum G(x, y, θ, φ) such that xmin ≤ x ≤ xmax, and
ymin ≤ y ≤ ymax. The (θ, φ) projection summarizes
the G(x, y, θ, φ) for each pair (θ, φ).

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: Parallel coordinate plot for a small
10x10 image. The dimensions, from left to right
are: x, y, θ, φ, G(x, y, θ, φ (Since we need to show not
just the 4 dimensions, but the strength of each
point therein, in some sense we are visualizing a
5-dimensional space.) Notice that even for this tiny
image, Parallel Coordinates are very difficult to un-
derstand.

Though the technique was created specifically for the prob-
lem of Gabor Filter visualization, we feel that our fundamen-
tal idea may be of interest to the general Information Visu-
alization community, if stated more generally. When doing
a projection of high dimensional data to a two-dimensional
space, is it necessary to give up all information about the
projected dimensions? We argue that it is not necessary and
provide two techniques. First, the user can interactively re-
strict what portions of the larger high-dimensional space are
projected. Secondly, additional plots can be used to show
the values of each projected dimensions. These techniques
might prove useful if applied to more general information
visualization tools, such as HCE.

3. INTERFACE
3.1 Original Image
This is simply a plot of the image that the Gabor filter bank
is responding to. This is important to show, because users
need to compare positions on this image to positions on the
other plots. The zebra image is shown in Figure 6(a).

3.2 (x, y) Interaction Widget
The user moves a box on the image to select (xmin, ymin) →
(xmax, ymax). This is shown in Figure 11. Notice that in this
example, the user has selected a portion of the Zebra with
stripes slightly off the horizontal. The program then finds
the Gabor filter parameters responding to the image signal
within this area. These are shown in the (θ, φ) projection.

3.3 (θ, φ) Projection
The (θ, φ) projection is special because the orientation, φ,
is cyclic in the range [0, π]. In order to show this clearly,
we plot the projection in the form of a disc. Here, the fre-
quency, i.e. θ, varies along the radius, while φ varies along
the angular direction. The plot widget is shown in Figure 12.



Figure 11: (x, y) Interface Widget

The disc is discretized along the radius and angular direc-
tion - in our case there were 7 quanta along θ and 10 quanta
along the φ direction. Once the user has selected a range
(xmin, ymin) → (xmax, ymax), the program finds, for each
pair (θ, φ), the maximum response, G(x, y, θ, φ), such that
xmin ≤ x ≤ xmax, and ymin ≤ y ≤ ymax. The maximum
response is then plotted onto the (θ, φ) Projection - higher
the response, brighter the intensity of the plot. Observe
that the strongest filter responses, in this case, are medium-
frequency, and slightly off the horizontal- this corresponds
naturally to the zebra. We found that in this projection,
any windows attempting to summarize the range of x and
y which yielded the maximum response were not helpful, as
user is generally examining a small range.

Figure 12: (θ, φ) Projection

3.4 (θ, φ) Interface Widget
This interface is based upon a simple widget which allows
the users to select the range (θmin, φmin) → (θmax, φmax).
The widget is plotted on the (θ, φ) projection. It is in shape
of wedge in the (θ, φ) projection disc. By varying its radial
width, the user can choose different ranges of θ. Varying the
angular width changes the range of φ in the Gabor filter.
This scheme was chosen because it has a natural interpreta-
tion: the angles spanned by the selected region, correspond
to the orientation of the Gabor filters selected, while the
radius corresponds to the frequency. This is shown in Fig-
ure 13. There, the user has selected orientations close to
vertical, and medium frequencies.

3.5 G plot
The plot of the G(x, y, θ, φ) itself is shown in Figure 14.
Strictly speaking this is the projection of the 4-dimensional
space down into the (x, y) plane, subject to the restrictions

Figure 13: Interface Widget

set by (θmin, φmin) → (θmax, φmax). Notice that here we
can see what parts of the image have a strong response
in the range set above, but this figure alone tells us little
about which orientations and frequencies gave these strong
responses.

Figure 14: G plot

3.6 φ plot
The plot of the φ found for each (x, y) such that G(x, y, θ, φ)
is maximum is shown in Figure Figure 15. This is not a
projection per-se, but rather tells us about what parts of
the projected dimension φ yielded the strongest response.
Rather than coding orientation as an intensity or color, we
have chosen to plot small lines with the same orientation as
φ. This is much easier to interpret, but we can only display
φ for every few (x, y). (Otherwise the lines cover the entire
image, and one cannot see anything at all.)

3.7 θ plot
The plot of the θ found for each (x, y) such that G(x, y, θ, φ)
is maximum is shown in Figure 16. Again, this is not exactly
a projection, but gives us information about how the projec-
tion was formed. Here, frequency is encoded as an intensity-
darker colors correspond to higher frequencies. This encod-
ing is not completely natural, but we were unable to find a
more intuitive way to display this.

4. USING THE INTERFACE
The interface widgets can be used for exploring the filter
responses. By tightly coupling the projections and auxil-
lary plots the user’s understanding of the multi-dimensional



Figure 15: φ plot

Figure 16: θ plot

space is enhanced. The user can use the (x, y) interface wid-
get to find out the filter responses in regions of interest in
the image. He or she can then use the (θ, φ) interface wid-
get to find other regions in the image which produce similar
responses from the Gabor filter bank.

5. CONCLUSION
We have presented a system for the visualization of a difficult
multi-dimensional space- the space of a Gabor Filter bank’s
response to an image. The chief difficulty in doing this is
that no single, static picture can show all information about
a multi-dimensional space such as this. We applied two tech-
niques to give additional information about the projections-
an interactive widget to change the visible range of the pro-
jected dimensions, and additional graphics which summarize
the responses in the projected dimensions. Thus, though
we view this four-dimensional space through 2-dimensional
projections, we allow the user to understand all dimensions,
not just the plane of projection. These techniques may be
useful in a more general Information Visualization setting-
when projecting to a lower-dimensional space, it is possible
to retain information about all dimensions.
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Figure 17: Layout of the interface: top left corner - original image, bottom left corner - (x, y) projection of G

plot, top right corner - θ plot, bottom right corner - φ plot, and center - (θ, φ) projection of G plot. The (x, y)
and (θ, φ) interface widgets are shown in red on the top left and center plots respectively.

Figure 18: The user has selected the entire (x, y) range, and Gabor filters with nearly vertical orientations φ,
with medium or high frequency θ. Notice that in the bottom left plot, parts of the zerba with vertical edges
have a high response.



Figure 19: A different image. The user has selected the cadaver’s face area. The horizontal lines in the area
result in higher responses for Gabor filters with horizontal orientation, as show in the (θ, φ) plot in the center.
Because the user has selected high frequencies with any orientation, the edges in the image are highlighted.

Figure 20: The user has again selected all orientations φ, but now with medium to high frequencies θ


