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Abstract
This work presents a control and learning architec-

ture for humanoid robots designed for acquiring movement
skills in the context of imitation learning. Multiple levels of
movement abstraction occur across the hierarchical struc-
ture of the architecture, finally leading to the representa-
tion of movement sequences within a probabilistic frame-
work. As its substrate, the framework uses the notion of
visuo-motor primitives, modules capable of recognizing as
well as executing similar movements. This notion is heav-
ily motivated by the neuroscience evidence for motor prim-
itives and mirror neurons. Experimental results from an
implementation of the architecture are presented involving
learning and representation of demonstrated movement se-
quences from synthetic as well as real human movement
data.

1 Introduction
Imitation learning has recently gained great interest

in several reserach communities, including neuroscience,
ethology, psychology, and robotics. Attention has been
brought to it due to growing evidence that forms of
mimicry and imitation play significant roles in the develop-
mental stages of animals and humans, respectively. Miko-
lasi [11] provides an extensive ethological perpective on
priming, response facilitation, and finally imitation. Hu-
mans are the only species that are believed to be capable
of true imitation, the ability to acquire and develop novel
motor skills not already within their repertoire. From a
robotics perpective, imitation is of great interest because
it provides a potential means of automatically program-
ming complex systems such as dexterous anthropomorphic
robots, without extensive trials [17]. It also provides a
means for more natural human-robot interaction [13].

In this paper, we propose a control and learning archi-
tecture that provides a framework for abstracting move-
ments at different levels and represent movement se-
quences toward learning new motor skills. The framework
operates in the context of imitation; and is based on the
notion that all observed movement is mapped to a set of

primitives, which is then used to learn as well as recognize
entirely novel skills. The components in the architecture
provide generality of representation, thereby resulting in
the ability to classify and identify similar movements in
the presence of noise and subtle variations.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief account of the motivation behind
the choice of mechanisms used in this work. Section 3
describes the framework and the control and learning ar-
chitecture. Section 4 discusses the experimental test-bed
used for validation and the implementation of the system.
Section 5 gives the results of the experiments. Section 6
presents related work. Finally, Section 7 discusses the ap-
proach and our continuing work.

2 Motivation
Two lines of neuroscience evidence provides the moti-

vation and grounding for much of the organization of our
proposed architecture: so-called motor primitives and mir-
ror neurons.

No longer novel is the evidence of spinal force fields
in frogs [8] and more recently in rats as well. These are
a small set of motor programs that are suitably combined,
through supraspinal inputs, for synthesizing various com-
plete movements, and thereby account for the frog’s motor
repertoire. Similarly, Mussa-Ivaldi et al [12] have shown
that vertebrates make use of motor programs, called mo-
tor primitives, for generating movements. The presence of
Central Pattern Generators (CPGs) in cats, monkeys, and
humans [6] provides additional support for the use of com-
binations of innate parametric motor programs to create
more complex movements.

The evidence for mirror neurons is more recent and has
instigated much new reserach into the neuroscience of im-
itation. Rizzolatti et al [16] have shown the presence of
neurons in primates that are active both during observation
and execution of similar movements or tasks. Iacoboni et
al [9] have reported studies in human subjects. These mir-
ror neurons appear to be an important link that may explain
the learning of facial expressions, mannerisms, skills, etc.,



in infants and adults.
Based on these lines of evidence, the substrate of our ar-

chitecture consists of visuo-motor primitives [10], a notion
combining ideas and functionality from both motor prim-
itives and mirror neurons. They are motor programs that
form the building blocks for more complex movements,
while being able to ascertain the parameters of similar
movements from observation. Higher layers make use of
this property and combine lower ones in order to represent
and learn more abstract and complex movement sequences.3 The Framework and Architecture

Our framework operates in the context of a demonstra-
tor and an imitator. The demonstrator is a teacher, either
human or robot, that can perform desired movements and
tasks, while the imitator is the humanoid robot that is ex-
pected to learn, represent, and execute the observed move-
ments. We assume that both the demonstrator and the imi-
tator have the same kinematic limb structure, and have sim-
ilar degrees of freedom (DOF) in the corresponding joints.

Figure 1: Architecture

The framework uses a hierarchical structure in which
higher layers make use of the information from lower lay-
ers in the process of learning. The architecture is com-
posed of three computational layers, as shown in Figure 1.
The base primitivesform the lowest computational layer.
These are visuo-motor primitives that encode motor pro-
grams for executing simple movements, and are also ca-
pable of recognizing similar movements when observed in
a demonstration. During a demonstration, the base primi-
tives extract the parameters of the observed movement and
pass them tomovement specializers, at the next layer. Dur-
ing development, movement specializers become associ-
ated with specific movements, based on statistics of their
occurrence. Finally,sequence learnersreside at the top of
the hierarchy. They operate using the activity of the spe-
cializers below them, i.e., utilizing those specializers as a
vocabulary in order to learn probabilistic models of move-
ment sequences from multiple demonstrations.

The details of the mechanisms involved in each of the
three layers are provided in the following subsections.

3.1 Base primitives

The base primitives are modules at the bottom level of
the control and learning hierarchy. Each base primitive is a
visuo-motor primitive that encodes motor programs for ex-
ecution of a class of movements [10]. The representation
of the motor programs is in a parametric form such that
different movements in the same class can be generated
as a result of changing the parameters. The visuo-motor
property of the primitives means that they also perform the
function of recognizing movements similar to those they
encode, when they are observed (e.g., in a demonstration).
Recognition of movements consists of ascertaining the val-
ues of the parameters that would result in the execution of
the most similar movement, i.e., the closest approximation
of what was observed to what is known.

In our architecture, base primitives are assumed to be
innate. Thus, they do not evolve over time but are hard-
wired. Each base primitive is in control of a predefined
set of joint degrees of freedom (DOFs). It controls those
joint DOFs to produce movements belonging to the class
of encoded movements. In addition, it recognizes observed
movements from the same class, which involve the same
set of joint DOFs. Conceptually, base primitives are dy-
namical systems. They encode a forward model capable of
synthesizing movements, and also an inverse model that
ascertains the parameters of observed movements. In a
robotics implementation, such as ours, the choice of base
primitives and what movement classes they encode is a re-
sponsibility of the designer. The set of primitives chosen
should span a set of desirable movement classes desired
for the robot to perform as well as recognize. Although
the innate and fixed nature of the base primitive layer im-
poses a set of constraints on the learnable movements of
the system, a well-designed (or evolved) set can provide
an effective substrate for humanoid movement.

In our current implementation, we restrict ourselves to
the encoding of kinematic variables in the base primitives.
Therefore, an underlying controller is required that maps
the kinematic variables to the dynamics of the movement.
Our base primitives use a linear model for the velocities
of joint DOF synergies. This choice of implementation
does not greatly reduce the capability of the base primi-
tives. Nonlinear movements are represented with a comi-
natin of multiple locally linear models.

The linear model mechanism in base primitives is im-
plemented in the following fashion. During a demonstra-
tion, when relevant joint DOFs are involved, a base prim-
itive first records theinitial configuration of the DOFs. It
then tracks the velocity of those DOFs as they are execut-
ing the observed movement. A hyperplane is fit to the ini-
tial estimated values. For subsequently gathered velocity
values, the distances to the hyperplane are computed. As



long as the cumulative distance is within an (impirically
determined) error bound, the movement is considered to fit
within the perticular linear model. Once the error bound
is exceeded, the configuration of the DOFs during the last
valid set of velocities is recorded as thefinal configuration.
Subsequent movement is treated as a new movement, and a
new model is fit to it. The set of parameters,Φ, for a given
movement are the initial and final configurations, and the
slope coefficients of the hyperplane.

3.2 Movement specializers
Movement specializers form the next level in the hier-

archy and are named for their function of specializing for
particular frequently observed movements. Unlike the base
primitives, which are hard-wired, movement specializers
are flexible and learn to represent movements based on ex-
perience. Each base primitive encode a generic class of
movements, while each movement specializer learns a spe-
cific movement. For example, a base primitive may encode
reaching movements by the right hand while an associated
movement specializer could learn specific reaches, such as
reaching the nose with the same hand.

Thus, each movement specializer is associated with a
single base primitive and specializes for a particular move-
ment that belongs to the class of movements encoded by
that primitive. During a demonstration, observed move-
ments result in the activation of the associated primitives.
These primitives compute the parameters of the observed
movement. This parameter space is the operational space
for the specializers. Each specializer eventually represents
a point in this space. Multiple specializers are linked to
a single primitive. Each of them specialize for a different
movement, but all movements belong to the same class –
the one encoded by the primitive. Competition among the
specializers that are linked to a single primitive result in
their specializing for different movements.

In our system implementation, each specializer is a vec-
tor, Φ, that corresponds to the parameters of the underly-
ing primitive. Associated with each primitive is a set of
specializers that initially do not represent any movement.
The first parameter vector generated by a primitive on ac-
count of a demonstration is randomly assigned to a spe-
cializer. This then is a representation for the movement.
A specializer that represents a movement is termed anas-
signedspecializer. Subsequently for every presentation of
a parameter vector,Φt, by the primitive, the minimum dis-
tance,dt

min
, from an assigned specializer,st

i
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is declared to be active. The active specializer is updated
based on the following learning rule.

st+1
a = st

a + α(Φt − st
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The active specializer is thus moved closer toΦt with
a learning factor,α. In the event thatdt

min
is greater than

dthresh, an unassigned specializer is randomly picked and
is assigned the parameter vector,Φt. This mechanism is
conceptually similar to the biologically inspired ART net-
works [5]. The advantage of this type of mechanism is that
it allows the development of a higher layer while still per-
mitting learning of new movements at a given layer.
3.3 Sequence learners

The third layer, sequence learning, forms the high-
est level of the hierarchy. Sequence learners are capable
of representing complex, composite movement sequences.
They do so by encoding a probabilistic ordering over sim-
pler movements. The ordering is done over the set of
movements that the movement specializers represent, thus
forming the growing vocabulary for complex movements.

Each sequence learner monitors the activity of all the
movement specializers during a demonstration. Depending
on the content of the demonstration, different sequences of
specializers become active at different times. At all times,
all sequence learners are computing the degree of match
between the sequence they represent and the one being
observed. The sequence learner that best represents the
current sequence in the end becomes further reinforced for
representing that sequence. Over multiple demonstrations,
the sequence learners begin to represent the statistics be-
hind the use of different movement sequences.

In our system, sequence learning is implemented using
Hidden Markov Models (HMMs). An HMM is a collection
of states, state transitions, and a fixed set of symbols. As-
sociated with an HMM are three probability distributions:
1) symbol occurrence within any state, 2) state transition,
and 3) any state being an initial state. Three problems are
associated with an HMM: 1) finding the probability of an
observation, 2) finding a likely set of state transitions foran
observation, and 3) learning the probability distributions.
Rabiner et al [15] provide a detailed account of HMMs,
and the algorithms for solving the three problems.

In our implementation, each sequence learner is en-
coded as an HMM. Every movement specializer, in turn, is
treated as a symbol in the set of symbols for the HMM. To
a sequence learner, the observation sequence is the time-
series of active movement specializers during the course
of a demonstration. All the sequence learners take the ob-
servation sequence as input, and each computes the prob-
ability for that observation. The HMM with the highest
value for the probability is declared the winner. The prob-
ability distributions of the winning HMM are then updated



for the observation sequence. Thus, with experience, se-
quence learners begin to stabilize and specialize for partic-
ular movement sequences.

4 Experimental Validation
To experimentally validate the described architecture

and implementation, we developed a physics-based hu-
manoid simulation test-bed and performed a series of
learning trials using synthetic and human motion capture
data as demonstrations.
4.1 The physics-based simulator test-bed

Since we are interested in control and learning in hu-
manoid robots, we developed a synthetic humanoid test-
bed for validation. The test-bed is a physics-based simula-
tor using the Vortex real-time advanced physics libraries1.
The simulation provides gravity as well as collision detec-
tion for all the objects in the environment. Graphical ren-
dering is achieved by using the SGI OpenInventor libraries.
Snapshots from the simulator environment are shown in
Figure 2. Currently, the humanoid has actuated joints from
the waist up, totalling 20 active DOFs. The lower body
is not actuated, and the character is firmly attached to the
ground at the feet. For all the actuated joints in the sim-
ulation, we made use of the RPRO joint in the Vortex li-
brary, which behaves like a Proportional-Derivative (PD)
controller loop, and allows specification of desired joint
orientations.

Figure 2: Snapshots of aerobic-style movement sequence
in the simulator

4.2 Task Description
To validate the architecture, we presented our imple-

mentation, in the above-described physical simulation en-
vironment, with demonstrations based on synthetic and hu-
man motion capture data.

Motion capture data were obtained using the Vicon
Metrics2 marker based capture system3. Marker data for

1Critical Mass Labs, http://www.cm-labs.com
2Vicon Motion Systems, http://www.vicon.com
3Motion capture data were generously provided by J. Hodgins,CMU.

Figure 3: Sequence from motion capture for reaching with
both hands

the various joints were processed using BodyBuilder soft-
ware and BodyLanguage scripting language of Vicon Met-
rics.

The motion capture data included movements involv-
ing the shoulders, elbows, and hips. The Movements con-
sisted of reaching to various target positions, vertical and
horizontal painting-like movements, and trajectory track-
ing including figure-8s, circles, flowers, etc. Each of the
movements lasted 3-6 seconds. A total of about 200 sec-
onds of capture data were available for the experiments.
For our experiments we only used the data from the shoul-
der DOFs, and only those from the reaching movements.
A sequence of snapshots of a reaching movement is shown
in Figure 3.

Synthetic motion data were generated for simple
aerobic-style movements involving all the DOFs of both
shoulders. The movements involved stretching the arm
sideways, taking it to a vertically upright position, etc.
Each synthetic movement lasted about half a second. A set
of snapshots from one such movement sequence is shown
in Figure 2.

4.3 Experimental Design
For the experiments involving synthetic data, a total of

8 aerobic-style sequences were taken and zero mean Gaus-
sian noise was added to the participating DOFs. The move-
ments in the sequences involved transition between differ-
ent poses of either arm. For the learning system implemen-
tation, two base primitives were used; each was assigned to
the 3 shoulder joint DOFs, one primitive per shoulder. The
movement specializer layer had a total of 30 specializers.
These were divided equally between the two base primi-
tives. A total of 10 sequence learners were implemented
as HMMs with the scaled implementation for forward and
backward variables, and log probability for the observation
probability. These were implemented using the methods
from Rabiner [14].

Each experiment involved the presentatin of the
aerobic-style sequences, with a clear start and end markers
for each sequence. Learning in the movement specializ-



ers occured on-line as the demonstration was in progress.
The sequence learners were presented with the sequence
of active movement specializers at the end of each demon-
stration, and updated so as to learn that sequence.

The human motion capture data consisted of pre-
segmented short movements, such as reaching, not of se-
quences (such as the aerogic movements of the synthetic
data). Thus, while synthetic data were used to evaluate
the sequence learning ability of the architecture (the sec-
ond and third layers of the system), the motion capture
data were used for the validation of the first, base primitive
layer of the system. Specifically, the human motion cap-
ture data were used to test how corectly and accurately the
base primitives (using their combinations of linear mod-
els) were able to recognize and reconstruct the observed,
entirely novel movements.

5 Results
Using the synthetic aerobic-style input data, the system

was run for over 100 presentations of each of the syntheti-
cally generated movement sequences. The recognition per-
formance of the system for these 100 trials is summarized
in Table 1. During each trial, the winning sequence learner
for each movement sequence was recorded. After the en-
tire set of 100 trials was performed, we identified the se-
quence learner, for every movement sequence, which oc-
curred the most times for that sequence presentation. This
was taken to be the sequence learner representing the cor-
responding movement demonstration. All other instances
of sequence learners associated with the particular presen-
tation were considered to be incorrectly recognized. Thus,
the table summarizes the percentage of correct sequence
recognitions as per the criteria above.

This evaluation is reasonable because sequence special-
ization and recognition is an unsupervised process in our
system. Hence, there is no definite “correct” label associ-
ated with each sequence learner. Consequently, the label-
ing of the sequence learners and their evaluation is based
on their association with particular presentation sequences.

Sequence Recognition (%)
1 94
2 93
3 98
4 99
5 100
6 98
7 88
8 92

Table 1: Synthetic data performance

Using the human motion capture data, Figure 4 shows

movement reconstruction plots obtained from the linear
models at the base primitive layer. The graphs show
the original data for the three DOFs of the left shoulder,
their corresponding reconstructions, and the respective er-
ror plots. We note that this does not provide a substantial
evaluation of the reconstruction. The absence of an execu-
tion stage in the implementation limits us from providing
a better evaluation. The execution module is now under
development.

Figure 4: Plots of the shoulder joint angles for target reach-
ing, from motion capture(left column), the reconstruction
from the base primitive linear models(center column), and
the error(right column). The x-axis denotes time, and the
y-axis the angle.

6 Related work
As mentioned before, imitation has gained increasing

popularity in several fields, and thus the body of interdis-
ciplinary related work is much too large to properly sum-
marize in the scope of this paper. We provide only a brief
summary of the work most similar to ours in terms of bio-
logical motivation and/or resulting methodology.

Schaal et al [18] have demonstrated the use of oscilla-
tory and discrete pattern generators, in combination, for
various tasks like ball bouncing, drumming, “3-D” draw-
ing patterns, etc. They used separate oscillators for each
joint and a reference oscillator for coordination. Discrete
movements were superimposed for positioning. Ijspeert et
al [1] proposed the idea of using mixtures of nonlinear dif-
ferential equations to represent kinematics of movements,
thereby effecting trajectory generation. Bentivegna et al[2]
used the idea of primitives for motor learning. They apply
the idea for learning to play air hockey and marble maze in
simulation and on a real robot. Billard et al [3, 4] used
connectionist-based approaches to represent movements.



They make use of a recurrent connectionist network that
is able to learn oscillatory movements, and also discrete
movements as a special cases of oscillatory ones. Fod et
al [7] automatically derived primitives through an off-line
process of segmentation and the application of principal
component analysis.

The approaches above have typically dealt with the
problem of finding appropriate representations for primi-
tives, and possible means to learn them. In this work our
approach has been to assume the presence of a set of base
level primitives, and then design a learning system that can
make use of those for learning more complex, sequential
skills.

7 Conclusion
We presented an architecture capable of using an under-

lying substrate of primitives to learn and represent move-
ment sequences. This is part of our ongoing work in using
the notion of primitives to model motor control and learn-
ing by imitation. Future work will involve incorporating a
motor counterpart to the architecture to allow execution of
movements and thus more realistic evaluation.
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[11] Ádám Miklosi. The ethological analysis of imitation.
Biological Review, 74:347–374, 1999.

[12] Mussa-Ivaldi, F. A. Giszter, and E. Bizzi. Linear
combination of primitives in vertebrate motor con-
trol. Proc. Nat. Acad. Sci. USA, 91:7534–7538, 1994.

[13] Monica Nicolescu and Maja J. Matarić. Learning and
interacting in human-robot domains.Special Issue
of IEEE Transactions on Systems, Man, and Cyber-
netics, Part A: Systems and Humans, 31(5):419–430,
2001.

[14] L. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition, 1989.

[15] L. R. Rabiner and B. H. Juang. An introduction
to hidden Markov models.IEEE ASSP Magazine,
January:4–16, 1986.

[16] G. Rizzolatti, L. Gadiga, V. Gallese, and L. Fogassi.
Premotor cortex and the recognition of motor actions.
Cognitive Brain Research, 3:131–141, 1996.

[17] S. Schaal. Is imitation learning the route to humanoid
robots?Trends in Cognitive Sciences, 3(6):233–242,
1999.

[18] S. Schaal and D. Sternad. Programmable pattern gen-
erators. 3rd International Conference on Computa-
tional Intelligence in Neuroscience, Research Trian-
gle Park, NC, pages 48–51, 1998.


