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Abstract

Spatial database systems and Geographic Information Systems as the
at storing, retrieving, manipulating, querying, and analysing geometri
special data types are necessary to model geometry and to suitably r
base systems. These data types are usually called spatial data types,
also include more complex types like partitions and graphs (networks)
damental abstraction for modeling the geometric structure of objects i
erties and operations. Their definition is to a large degree responsible
data models and the performance of spatial database systems and
expressive power of spatial query languages. This is true regardless
tional, complex object, object-oriented, or some other kind of data m
implementation of spatial data types is probably the most fundamental
tial DBMS. Consequently, their understanding is a prerequisite for an e
components of a spatial database system (like spatial index structures
tial query languages, storage management, and graphical user interf
extensible DBMS providing spatial type extension packages (like spati

The goal of this tutorial is to present the state of the art in the design a
types. First, we summarize the modeling process for phenomena in
categorize the treatment of spatial data types with regard to this model
the types and analyse current proposals for them according to these
the proposed types and the operations defined on them from different
directed towards approaches which provide a formal definition of the
and which offer methods for their numerically and topologically robust 
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1 What are Spatial Data Types (SDTs)?

Spatial data types

• ... are special data types needed to model geometr
geometric data in database systems

• Examples: point, line, region; partitions (maps), graphs (n

• ... provide a fundamental abstraction for modeling the geo
space, their relationships, properties, and operations

• ... are an important part of the data model and the implem

The definition of SDTs

• ... is to a large degree responsible for a successful design

• ... decisively affects the performance of spatial database s

• ... exerts a great influence on the expressiveness of spatia

• ... should be independent from the data model used by a D
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Conclusions

• An understanding of SDTs is a prerequisite

− for an effective construction of important components o
→ spatial index structures, optimizers for spatial da

storage management, graphical user interfaces

− for a cooperation with extensible DBMS providing spatia
→ spatial data blades, cartridges

• The definition and implementation of spatial data ty
fundamental issue in the development of spatial database

Focus of this tutorial: present the state of the art in the design
data types
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Contents of this tutorial

2 Foundations of Spatial Data Modeling

3 Spatial Data Models and Type Systems

4 Formal Definition Methods

5 Tools for Implementing SDTs: Data Structures and Alg

6 Other Interesting Issues and Researchs Trends

Tutorial based on the book:

Markus Schneider, Spatial Data Types for Database
Geometry for Geographic Information Systems, LNCS 128
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2 Foundations of Spatial Data Modeling
2.1 What Needs to Be Represented?

2.2 A Three-Level Model for Phenomena in Space

2.3 Design Criteria for Modeling Spatial Data Types

2.4 Closure Properties and Geometric Consistency

2.5 Organizing the Underlying Space: Euclidean Geome
Geometric Bases

2.6 ADTs in Databases for Supporting Data Model Indep

2.7 Integrating Spatial Data Types into a DBMS Data Mo
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Space

nt about every point in space

use maps (“thematic maps”)

itions into states, districts, ...
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2.1 What Needs to be Represented?

Two views of spatial phenomena:

• objects in space (entity-oriented / feature-based view)

→ vector data, spatial database systems

• space itself (space-oriented / position-based view)

→ raster data, image database systems

We consider:

• modeling single, self-contained objects

• modeling spatially related collections of objects

Objects in space

city Berlin, pop = 4000000,
..., area =

highway A45, ...,
route =

Stateme

• land

• part
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bjects

tions of objects

region

city
lake
district
forest
cornfield

(extent of an object relevant)

bedded network (graph)

highways
railways
rivers
electricity
phone

els
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Fundamental abstractions for modeling single, self-contained o

Fundamental abstractions for modeling spatially related collec

point line

highway
river
cable
route

city
castle
lighthouse
church

(location of object in space
but not its extent relevant)

(connections in space,
movement through space)

partition Spatially em

land use
districts
wards
countries
speech areas

Others: nested partitions, digital terrain mod
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 types: city, state, river

tions: lies_in: city → state,
ow: river → line)

al data types: point, line,
polygon

ations: point-in-polygon test,
intersection

tions: overlay, shortest_path

re types: sets, sequences,
artitions, networks
Markus Schneider, Tutorial “Spatial Data Types“

2.2 A Three-Level Model for Phenomena in Space

city
Object
modeling

Spatial objects

Spatial
modeling

Object

Opera
fl

Spati

Oper

pop name

Structure
modeling

Structure objects

Opera

Structu
p

Spatially-referenced objects
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Finite Resolution,
numerical robustness,
opological correctness

metric
istency

al
ition
Markus Schneider, Tutorial “Spatial Data Types“

2.3 Design Criteria for Modeling Spatial Data Types

t

Extensibility

Closure
properties

General
definition

Data model
independence

Efficiency

Geo
cons

Form
defin

Design of
spatial data types
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2.4 Closure Properties and Geometric Consistency

General definition/structure of spatial objects

Support of geometric consistency constraints for spatially relat

→ spatial objects must be closed under set operations on the 

application-driven requirements

Niedersachsen

Bremen

forma

∪

−

∩

→ SDT definition must offer facilities to enforce such consisten

adjacent regions
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y versus Discrete Geomet-

l × real)

tencies and degeneracies

tations available in computers

Is D on A?

Is D properly con-
tained in the area
below A and B?

What happens if
there is a segment
C between D and
D'?
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2.5 Organizing the Underlying Space: Euclidean Geometr
ric Bases

Euclidean space is continuous (p = (x, y) ∈  IR2)

• basis of Computational Geometry algorithms

But: computer numbers are finite and discrete (p = (x, y) ∈ rea

• → numerical rounding errors → topological inconsis

→ formal SDT definitions must bear in mind the finite represen

B

D'

A

D
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in geometric operations

on
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Solution: avoid computation of any new intersection points with

Two approaches:

• Simplicial complexes

Frank & Kuhn 1986

Egenhofer, Frank & Jackson 1989

• Realms

Güting & Schneider 1993

Schneider 1997

Definition of
spatial types and operations

Treatment of numerical problems up
updates on the geometric basis
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dent of metric positions

 of dimension k

f dimension k−1

implices is either empty or a

nd points of the lines, no two
eometry only recorded once)

a (k+1)-simplex
ndaries of triangles, etc.; no
dary

3-simplex

etc.
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Simplicial Complexes

• topological relations are separately recorded and indepen

• use of k-simplices for representing minimal spatial objects

− construction rule: k-simplex consists of k+1 simplices o

− component of a simplex is called face

• two completeness principles

− completeness of incidence: the intersection of two k-s
face of both simplices
→ no line intersection at points which are not start or e

geometric objects may exist at the same location (g

− completeness of inclusion: every k-simplex is a face of 
→ all point are end points of lines, all lines are bou

isolated points, no lines which are not part of a boun

2-simplex1-simplex0-simplex
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rsection of any two simplices

p of this approach

g representations of spatial

uctures needed to realize (at

plicial complexes
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• Simplicial complex: finite set of simplices such that the inte
is empty or a face

• Advantages

− maintenance of topological consistency

− approach fulfils closure properties

• Drawbacks

− unfortunately: no spatial algebra has been defined on to

− triangulation of space would lead to space-consumin
objects

− no treatment of numerical problems: additional data str
least imprecise) metric operations

correct simplicial complexes no sim



17

ing geometry (all points and

ine segments defined over a

t

r overlap

B
C

D
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Realms

Realm (intuitive notion): description of the complete underly
lines) of an application or application space

Realm (formally): A finite set of points and non-intersecting l
grid such that

• each point and each end point of a segment is a grid poin

• each end point of a segment is also a point of the realm

• no realm point lies within a segment

• any two distinct segments do neither properly intersect no

→ A realm is a spatially embedded planar graph

A



18

ing line segments

h each other

B
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All numerical problems are treated below the realm layer:

• input: application data that are sets of points and intersect

• output: “realmified” data that have become acquainted wit

• basic idea: slightly distort/perturb both segments

B

D'

A

D

Good solution?

A
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BD

C
E

n of segment A with
her segment C
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B

A

D

C
E

A
p

Observations

• Segments can move far away
from their original position by
iterated intersections!

• Topological errors can occur:
point p is now on the wrong
side of A!

Intersectio
some furt
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 & Yao 1986)

e of closure properties

from problems of numerical

jects

leave the realm closure), e.g.,

ifficult, propagation of realm
ts

nts

e “caught” within their
velope

n never cross a grid
int
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Solution: redrawing of segments within their envelope (Greene

Advantages of the realm concept

• definition of distinct SDTs on a common domain, guarante

• protection of geometric computation in query processing
robustness and topological correctness

• enforcement of geometric consistency of related spatial ob

Disadvantages of the realm concept

• no SDT operations possible that create new geometries (
convex_hull, voronoi

• integration of realms into database systems somewhat d
updates to realm-based attribute values in database objec

P Segme

• ar
en

• ca
po
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2.6 ADTs in Databases for Supporting Data Model Indepe

Modeling aspects

• Separation of DBMS data model and application-specific d

• Modularity, conceptual clarity

• Reusability of ADTs for different DBMS data models

• Extensibility of DBMS data models

Implementation aspects

• Modularity, information hiding, exchange of implementatio

• Employment of specialized methods (e.g. Computational G

• Efficiency of data structures for data types and algorithms
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2.7 Integrating Spatial Data Types into a DBMS Data Mod

Integration of single, self-contained spatial objects

• can be realized in a data model independent way (→ ADT

• Basic concept: represent “spatial objects” (i.e., points, lin
DBMS data model with at least one SDT attribute

• DBMS data model must be open for new, user-defined typ

→ ADT support, → data model independence, → extensib

• Example for the relational model:

relation states(sname: string, area: region

relation cities( cname: string, center: poi
cpop: integer)

relation rivers(rname: string, route: line)
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ns cannot be modeled

 constraint by the DBMS

ted into an OO model
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Integration of spatially related collections of objects

• not data model independent

• partitions

− set of database objects with region attribute?

− loss of information: disjointedness or adjacency of regio

− Güting 1988: SDT area, but: no support of this integrity

• networks

− not much research on spatially embedded networks

− e.g., Güting 1994: GraphDB with explicit graphs integra
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f View?

l Objects
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3 Spatial Data Models and Type Systems
3.1 What Has to Be Modeled from an Application Point o

3.2 Classification

3.3 Examples of Spatial Type Systems for Single Spatia

3.4 Partitions
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 View?

), intersect (overlap), meet

side / contains
Markus Schneider, Tutorial “Spatial Data Types“

3.1 What Has to Be Modeled from an Application Point of

Spatial data types

• single, self contained objects: points, lines, regions

• spatially related collections of objects: partitions, networks

Spatial operations

• spatial predicates returning boolean values

− topological relationships
e.g., equal, unequal, disjoint, adjacent (neighboring
(touch), inside (in), outside, covered_by, contains

− metric relationships
e.g., in_circle, in_window

− spatial order and strict order relationships
e.g., behind / in_front_of, above / below, over / under, in

− directional relationships
e.g., north / south, left / right
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axdist, direction, components

, boundary (border), box

, clipping
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Spatial Operations (continued)

• spatial operations returning numbers
e.g., area, perimeter, length, diameter, dist, mindist, m
(cardinality)

• spatial operations returning new spatial objects

− object construction operations
e.g., union, intersection, difference, convex_hull, center

− object transformation operations
e.g., extend, rotate, translate

• spatial operations on sets of spatially related objects

− general operations
e.g., voronoi, closest, compose, decompose

− operations for partitions
e.g., overlay, superimposition, fusion, cover, windowing

− operations for networks
e.g., shortest_path



27

, ... (topological relationships)

Segoufin 1998

(simplex-based model)
Markus Schneider, Tutorial “Spatial Data Types“

3.2 Classification

Concrete Models

• point-based models, e.g.

− Güting 1988 (geo-relational algebra)

− Worboys & Bofakos 1993 (complex regions with holes)

− Egenhofer & Herring 1990, Egenhofer & Franzosa 1991

− Belussi, Bertino & Catania 1997, Grumbach, Rigaux & 
(linear constraint approach)

• discrete models

− Güting & Schneider 1995 (ROSE algebra)

− Frank & Kuhn 1986, Egenhofer, Frank & Jackson 1989 

Abstract Models

• logic (pointless, axiomatic) models, e.g.

− Cui, Cohn & Randell 1993, ... (spatial logic)
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Objects

(based on point set theory)

ions + atomic data types)

: int)

, a pgon value is a polygon

em but by the user

 {point, ext}

tersects is_neighbor_of
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3.3 Examples of Spatial Type Systems for Single Spatial 

(1) Güting 1988 (geo-relational algebra)

• Relational algebra viewed as a many-sorted algebra (relat

• Sorts: rel; int, real, string, bool; point, line, pgon, area

• example relation: states(sname: string, extent: area, cpop

• a point value is a single point, a line value is a polyline
without holes

• special type area for modeling partitions

→ but: partition constraints are not maintained by the syst

• generalizations: reg = {pgon, area}, ext = {line, reg}, geo =

Geometric predicates

=, ≠: geoi × geoi → bool

inside: geo × reg → bool

intersects: ext × ext → bool

is_neighbor_of: area × area → bool inside in
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voronoi

center
Markus Schneider, Tutorial “Spatial Data Types“

Geometric relation operations

intersection: line* × line* → point*

line* × reg* → line*

pgon* × reg* → pgon*

overlay: area* × area* → area*

vertices: ext* → point*

voronoi: point* × reg → area*

closest: point* × point → rel

Operations returning atomic geometric objects

convex_hull: point* → pgon

center: point* → point

ext → point

intersection

convex_hull
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imple polygons
union, difference of polygons

g the intersection of two
l objects must be embedded
lation operation

merically critical operations
ed

data structures + algorithms
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Operations returning numbers

dist: point × point → real

mindist, maxdist: geo × geo → real

diameter: point* → real

length: line → real

perimeter, area: reg → real

Comparison to design criteria

• general definition, closure properties −

• formal definition +

• finite precision arithmetic −

• support for geometric consistency (−)

• efficiency +

• extensibility +

• data model independence −

Remarks

• only s
→ no 

• formin
spatia
in a re

• no nu
includ

• simple
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(based on point set topology)

s to any finite level

sed disc

ibed by a skeleton graph

ions

ts

tersection of any two distinct
s is either empty or a
ton set

osite object has no holes

h

g

f

∪

Markus Schneider, Tutorial “Spatial Data Types“

(2) Worboys & Bofakos 1993

• complex spatial regions with holes and islands within hole

• atom: subset of IR2 that is topologically equivalent to a clo

• base area: aggregation of atoms whose structure is descr

• generic area: recursive construction of complex spatial reg

g

f

e
c

d

a

b

vb

vf

vevd

vc

va

vg

Constrain

• the in
atom
single

• comp

a

c

b

f

e

h

g

d
a

b

e

dc

= −
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boundary, adjacent, centroid,

gions)

ase area

or w of v holds: (a) w ⊂ v,
y of v has finite cardinality
Markus Schneider, Tutorial “Spatial Data Types“

• operations: e.g., equals, intersection, union, difference,
area, perimeter, cardinality, components, connected

Comparison to design criteria

• general definition, closure properties + (only for re

• formal definition +

• finite precision arithmetic −

• support for geometric consistency −

• efficiency ?

• extensibility ?

• data model independence +

b

f

a

edc

g h

Constraints

• for each vertex their successors form a b

• for each vertex v ≠ root and each success
(b) the intersection of w and the boundar
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(based on point set topology)

etween two spatial objects

tation, and scaling

ted regions without holes

ndaries and interiors of two

ersections of ∂A and A° with

re valid)

2, de Hoop & van Oosterom

∂A

A°
Markus Schneider, Tutorial “Spatial Data Types“

(3) Egenhofer & Herring 1990, Egenhofer & Franzosa 1991

• goal: a “complete” collection of topological relationships b

• topological relationships are invariant under translation, ro

• originally: topol. relationships between two simple, connec

• 4-intersection model: 4 intersection sets between bou
objects

Extensions

• 9-intersection model (Egenhofer 1991): consider also int

the exterior / complement A− (→ 92 = 81 combinations, 8 a

• include point and line features (Egenhofer & Herring 199
1992)

boundary ≡

interior ≡
A
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disjointual

y / covers overlap

eet inside / contains
Markus Schneider, Tutorial “Spatial Data Types“

• 4-intersection model

∂A ∩ ∂B ∂A ∩ B° A° ∩ ∂B A° ∩ B° relationship name

∅ ∅ ∅ ∅ A and B are disjoint

∅ ∅ ∅ ≠∅

∅ ∅ ≠∅ ∅

∅ ∅ ≠∅ ≠∅ A contains B / B inside A

∅ ≠∅ ∅ ∅

∅ ≠∅ ∅ ≠∅ A inside B / B contains A

∅ ≠∅ ≠∅ ∅

∅ ≠∅ ≠∅ ≠∅

≠∅ ∅ ∅ ∅ A and B meet

≠∅ ∅ ∅ ≠∅ A and B are equal

≠∅ ∅ ≠∅ ∅

≠∅ ∅ ≠∅ ≠∅ A covers B / B covered_by A

≠∅ ≠∅ ∅ ∅

≠∅ ≠∅ ∅ ≠∅ A covered_by B / B covers A

≠∅ ≠∅ ≠∅ ∅

≠∅ ≠∅ ≠∅ ≠∅ A and B overlap

eq

covered_b

m

42 = 16 combinations, 8 are valid
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Oosterom 1993): consider
ce)

rea / area, line / area, point /
id

, disjoint plus three operators

sh all 52 configurations

elice 1994)

no 1995)
Markus Schneider, Tutorial “Spatial Data Types“

• dimension extended method (Clementini, Felice & van
dimension of the intersection (empty, 0D, 1D, 2D in 2D spa

→ 44 = 256 combinations for each relationship group (a
area, line / line, point / line, point / point), totally 52 are val

too many relationships to be remembered!

alternative: five basic relationships touch, in, cross, overlap
b, f, t to obtain boundaries

one can prove:

− 5 relationships are mutually exclusive

− 5 relationships plus 3 boundary operators can distingui

• consider regions with holes (Egenhofer, Clementini & Di F

• consider composite regions (Clementini, Di Felice & Califa
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oufin 1998
 a linear constraint approach)

tial objects finitely as infinite

planes, i.e., a conjunction of

finite set of convex polygons

{(x, y) | x ≤ 1 ∧ x ≥ -1
∧ y ≤ 1 ∧ y ≥ -1}

{(x, y) | x ≥ -1 ∧ y ≥ -1
∧ x + y − 2 ≤ 0}

p2

two convex polygons

with disjoint components
Markus Schneider, Tutorial “Spatial Data Types“

(4) Belussi, Bertino & Catania 1997, Grumbach, Rigaux & Seg
(based on

• basic idea of the spatial constraint model: represent spa
collections of points satisfying first-order formulas

• a convex polygon is the intersection of a finite set of half
the inequalities defining each half plane

• a non-convex polygon is the union (logical disjunction) of a
(disjunctive normal form (DNF))

{(x, y) | y − x ≤ 0}

p1
p2 DNF repr.:

p1 ∨ p2
p1

half plane representation representation of 

convexification of a polygon polygon 
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 of DNF

CHNF repr.:

q1 − q2
Markus Schneider, Tutorial “Spatial Data Types“

• CHNF (convex with holes normal form) is a generalization

Comparison to design criteria

• general definition, closure properties +

• formal definition +

• finite precision arithmetic (+)

• support for geometric consistency +

• efficiency ?

• extensibility ?

• data model independence −

p1 p2

p4 p3

q1 q2
DNF repr.:

p1 ∨ p2 ∨ p3 ∨ p4
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n a discrete geometric basis)

regions) whose objects are
 discrete geometric domain)

cisely defined operations for
GEO = {point} ∪  EXT)

 OBJ

regions value
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(5) Güting & Schneider 1995 (ROSE algebra) (based o

• ROSE = RObust Spatial Extension

• system of realm-based spatial data types (points, lines,
composed of realm elements (points and segments over a

• ROSE algebra offers a comprehensive collection of pre
manipulating such values, e.g. (let EXT = {lines, regions}, 

∀  geo, geo1, geo2 ∈  GEO, ∀  ext, ext1, ext2 ∈  EXT, ∀  obj ∈

inside: geo × regions → bool

edge-/vertex-inside: regions × regions → bool

area-/edge-disjoint: regions × regions → bool

a points value a lines value a
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 numerically critical, e.g.

nd difference due to general

(no embedding into e.g.

relation operations needed)

lated objects (i.e., database
Markus Schneider, Tutorial “Spatial Data Types“

ROSE algebra also contains operations which are usually

on_border_of: points × ext → bool

border_in_common: ext1 × ext2 → bool

Closure properties are fulfilled for intersection, union, a
definition of spatial data types

intersection: points × points → points

intersection: lines × lines → points

intersection: regions × regions → regions

intersection: regions × lines → lines

plus, minus: geo × geo → geo

Spatial operations for manipulating sets of spatially re
objects) defined by a general “object model interface”

sum: set(obj) × (obj → geo) → geo

closest: set(obj) × (obj → geo1) × geo2 → set(obj)

(also operations for overlay, fusion, and decompose)
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Other operations

vertices: ext → points

contour: regions → lines

interior: lines → regions

no_of_components: geo → int

Comparison to design criteria

• general definition, closure properties +

• formal definition +

• finite precision arithmetic +

• support for geometric consistency +

• efficiency +

• extensibility +

• data model independence +
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(based on logic)

ts, no lines

opological spatial data

reflexitivity of C
symmetry of C

“x is disconnected from y”
“x is a part of y”

“x is identical with y”
“x overlaps y”

“x partially overlaps y”
s externally connected with y”
 a tangential proper part of y”

“x is a nontangential proper
part of y”
Markus Schneider, Tutorial “Spatial Data Types“

(6) Cui, Cohn & Randell 1993

• pointless approach: regions are the basic entities, no poin

• axiomatic approach to representing and reasoning about t

• basic binary relation C(x, y): “x connects with y”

∀ x C(x, y)
∀ xy [C(x, y) → C(y, x)]

• axiomatic formulation of topological relationships

DC(x, y) ≡def ¬ C(x, y)
P(x, y) ≡def ∀ z [C(z, x) → C(z, y)]
x = y ≡def P(x, y) ∧  P(y, x)
O(x, y) ≡def ∃  z [P(z, x) ∧  P(z, y)]
PO(x, y) ≡def O(x, y) ∧ ¬ P(x, y) ∧ ¬ P(y, x)
EC(x, y) ≡def C(x, y) ∧ ¬ O(x, y) “x i
TPP(x, y) ≡def PP(x, y) ∧ ∃  z [EC(z, x) ∧  EC(z, y)] “x is
NTTP(x, y) ≡def PP(x, y) ∧ ¬ ∃  z [EC(z, x) ∧  EC(z, y)]
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en the topological closures of

and pairwise disjoint relations

TTP (inside / contains)

TPP-1 (contains / inside)
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• topological model to interpret the theory: C(x,y) holds wh
regions x and y share a common point

• similar results like Egenhofer et al.: 8 mutually exhaustive

DC (disjoint) TPP (covered_by / covers) N

EC (meet) TPP-1 (covers / covered_by) N
PO (overlap)
= (equal)

Comparison to design criteria

• general definition, closure properties −

• formal definition +

• finite precision arithmetic −

• support for geometric consistency −

• efficiency ?

• extensibility ?

• data model independence +
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egions where each region is
lex structure

mon boundaries

s)

fusion
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3.4 Partitions

• partition: subdivision of the plane into pairwise disjoint r
associated with an attribute having a simple or even comp

• partition implicitly models topological relationships

− neighborhood of different regions which may have com

− disjointedness of different regions (except for boundarie

• application-specific operations

overlay1 overlay2
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superimposition

window

difference
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ions plus some operations on

ns

tion, no control of partition
ndent

label type, i.e., regions of a
have different labels in their

h adjacent regions
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other operations: reclassify, cover, clipping

• Scholl & Voisard 1989

− identification of application-specific operations on maps

− complex object algebra extended by a data type for reg
regions (union, intersection, difference)

− a map is a set of tuples with a region attribute

− elementary region: single polygon, region: set of polygo

− problems: region type not closed under union opera
constraints through the model, deeply data model depe

• Erwig & Schneider 1997

− formal definition of spatial partitions

− basic idea: a partition is a mapping from IR2 to some
partition are assigned single labels, adjacent regions
interior, a boundary is assigned the pair of labels of bot
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ons and that are sufficient to
rations

regions of two partitions and
gion is assigned the pair of
bels on the boundaries are

ither by renaming the label of
more regions to a new label;

nd enumerate the connected

auska 1992, Tomlin 1990
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− three powerful operations that are closed under partiti
express all known (generalized) application-specific ope

intersection: compute the geometric intersection of all
produce a new spatial partition; each resulting re
labels of the original two intersecting regions; la
derived correspondingly

relabel: change the labels of the regions of a partition e
each region or by mapping distinct labels of two or
adjacent regions in the result partition are fused

refine: look with finer granularity on regions and reveal a
components of regions

• other approaches: e.g., Frank 1987, Huang, Svensson & H
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4 Formal Definition Methods
4.1 Why do We Need Formal Definitions?

4.2 Point Set Theory

4.3 Point Set Topology

4.4 Finite Set Theory

4.5 Other Formal Approaches
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objects and operations at the

for a formal definition of

lems of numerical robustness

e implementation level
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4.1 Why do We Need Formal Definitions?

• better understanding of the complex semantics of spatial
designer’s level

• formal definition of SDTs should be directly usable
corresponding spatial operations

• clarity and consistency at the user’s level

• consideration of the finiteness of computers and the prob
and topological correctness

• a first step towards a standardization of spatial data types

• formal specification of SDTs for a possible realization at th



49

points and contains a set of

cupied by that object

points, lines, regions, etc. by
ions

try by numerical computation
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4.2 Point Set Theory

• basic assumption: space is composed of infinitely many
spatial objects

→ each spatial object can be regarded as the point set oc

• analytical geometry is used to represent structures like
numbers and relations between these structures by equat

• use of set operations ∪ , ∩, − for constructing new objects

• topological properties are deduced from analytical geome

• two main problems

− possible anomalies (shown first by Tilove 1980)

Y reg(Y)

dangling line

dangling point

missing line (cut)

missing point (puncture)

missing boundary part
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efinition of intersects

al
n

Regularized
intersection
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− ambiguities when defining topological relationships

x = y := points(x) = points(y)

x inside y := points(x) ⊆ points(y)

x intersects y := points(x) ∩ points(y) ≠ ∅

the definitions of = and inside are both covered by the d

• e.g., Güting 1988, Pullar 1988

Two intersecting Regions objects Convention
intersectio
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and investigates topological

 - = ∅ IR2 = Y° ∪ ∂ Y ∪ Y -

rlying distance or coordinate
s topological transformations

s to spatial objects as regular

reg(Y) :=

 lines and boundary parts

appropriately adding points

ons (A, B regular closed sets)

reg(A − B) ¬ r A := reg(¬ A)

, Egenhofer & Franzosa 1991

Y°
Markus Schneider, Tutorial “Spatial Data Types“

4.3 Point Set Topology

• ... has the same basic assumptions as point set theory
structures of a point set

boundary (∂Y), interior (Y°), closure ( ), exterior (Y -)

 = Y° ∪ ∂ Y Y° ∩ ∂Y = ∅ Y - ∩ ∂Y = ∅ Y° ∩ Y

• ... investigates properties that are independent of an unde
measure (metric) and that are preserved under continuou

• regularization of point sets to avoid anomalies which lead
closed sets

Y is a regular closed set if Y =

effect of interior: elimination of dangling points, dangling

effect of closure: elimination of cuts and punctures by
plus adding boundary points

• geometric operations are equated with regular set operati

A ∪ r B := reg(A ∪ B) A ∩r B := reg(A ∩ B) A −r B :=

• e.g., Worboys & Bofakos 1993, Egenhofer & Herring 1990

Y

Y

Y°
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ng & Schneider 1993, 1995)

ertex_inside, area_disjoint,
eets, adjacent, encloses,

ntersection, plus, minus,
erior, count, dist, diameter,
compose, overlay, fusion

, (area-)inside, edge-inside,
int, (vertex-)disjoint, meet,
_of, border_in_common

face, R-unit, R-block
e-inside, vertex-inside, area-
adjacent, meet, encloses,

int, on, in, touches, intersection,

(n integer grid size)
Markus Schneider, Tutorial “Spatial Data Types“

4.4 Finite Set Theory

Example: Definition layers of Realms and ROSE Algebra (Güti

Integer Arithmetic

Robust
Geometric
Primitives

Realms, Realm-
Based Structures,

and Realm-
Based Primitives

Spatial Data Types
and Spatial Alge-

bra Primitives

ROSE
Algebra

Operations

Objects: points, lines, regions
Operations: =, ≠, inside, edge_inside, v

edge_disjoint, disjoint, intersects, m
on_border_of, border_in_common, i
common_border, vertices, contour, int
length, area, perimeter, sum, closest, de

Objects: points, lines, regions
Operations: union, intersection, difference

vertex-inside, area-disjoint, edge-disjo
adjacent, intersect, encloses, on_border

Objects: R-point, R-segment; R-cycle, R-
Operations: on, in, out, (area-)inside, edg

disjoint, edge-disjoint, (vertex-)disjoint,
intersect, dist, area

Objects: N-point, N-segment
Operations: =, ≠, meet, overlap, intersect, disjo

parallel, aligned

Objects: integers in the range [-2n3, 2n3] 
Operations: +, -, ∗ , div, mod, =, ≠, <, ≤, ≥, >
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ents

od m

ies

 = (p, q) ⇒ p ∈ P ∧ q ∈ P

s ∈ S : ¬  (p in s)

s ≠ t : ¬  (s and t intersect)
∧ ¬  (s and t overlap)
Markus Schneider, Tutorial “Spatial Data Types“

Example: definition of a region object

An R-cycle c is a set of R-segm
S(c) = {s0, ..., sm-1}, such that

(i) ∀ i ∈ {0, ..., m−1} : si meets s(i+1) m

(ii) ∀ i ∈  {0, ..., m−1} : deg(si) = 2

N := {0, ..., n}, n finite and representable

PN := N × N N-points

SN := PN × PN N-segments

P ⊆ PN R-points

S ⊆ SN R-segments

Realm propert

(i) ∀ s ∈ S : s

(ii) ∀ p ∈ P ∀

(iii) ∀ s, t ∈ S,
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c1

c2

⊆  P(c2)

a-inside c2

1) ∩ S(c2) = ∅

ge-inside c2
(c1) ∩ Pon(c2) = ∅

:⇔
) = ∅ ∧  Pin(c2) ∩ P(c1) = ∅

:⇔
-disjoint ∧ S(c1) ∩ S(c2) = ∅

:⇔
joint ∧ Pon(c1) ∩ Pon(c2) = ∅
Markus Schneider, Tutorial “Spatial Data Types“

(iii)

c2 is

• (area-)inside (i, ii, iii)

• edge-inside (ii, iii)

• vertex-inside (iii)
c1.

c1 and c2 are

• area-disjoint (iv, v, vi)

• edge-disjoint (v, vi)

• (vertex-)disjoint (vi)

(ii)

(i)

(iv)

(v)

(vi)

c1 (area-)inside c2 :⇔ P(c1)

c1 edge-inside c2 :⇔ c1 are
∧ S(c

c1vertex-inside c2 :⇔ c1 ed
∧ Pon

c1 and c2 are area-disjoint
Pin(c1) ∩ P(c2

c1 and c2 are edge-disjoint
c1 and c2 are area

c1 and c2 are (vertex-)disjoint
c1 and c2 are edge-dis
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ycle and H =
es such that:

-disjoint

gments of f”
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An R-face f is a pair (c, H) where c is an R-c
{h1, ..., hm} is a (possibly empty) set of R-cycl

(i) ∀ i ∈  {1, ..., m} : hi edge-inside c

(ii) ∀ i, j ∈  {1, ..., m}, i ≠ j : hi and hj are edge

(iii) “no other cycle can be formed from the se
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f’ ∈ F : g’ area-inside f’ )

g2

f0

-faces.

rea-inside g
Markus Schneider, Tutorial “Spatial Data Types“

Let f = (f0, F) and g = (g0, G) be two R-faces. Then

f (area-)inside g :⇔ f0 area-inside g0

∧ ∀ g’ ∈ G : (g’ area-disjoint f0 ∨ ∃

g1

f

f1 f2

g

g0

A regions value F is a set of edge-disjoint R

Let F, G be two regions values.

F (area-)inside G :⇔ ∀ f ∈ F ∃ g ∈ G : f a
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 algebraic system

ansformations

, simplicial complexes)

et topology)

989, Egenhofer 1989

f a set and can be used to

set: subdivision of space into
 left / right, front of / behind)

e: e.g., relationship between

sley1993, Saalfeld 85
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4.5 Other Formal Approaches

• Algebraic Topology

− ... describes the structure of a (topological) space by an

− ... is not based on general set theory

− ... uses properties that are invariant under topological tr

− topological properties are explicitly recorded (simplices

− concepts of boundary and interior (different from point s

− e.g., Frank & Kuhn 1986, Egenhofer, Frank & Jackson 1

• Order Theory, Lattice Theory

− ... allows the comparison of two or more elements o
answer queries of inclusion and containment

− strict order for modeling a hierarchy of elements of a
regions (e.g., political subdivisions), perspectives (e.g.,

− partial order for combining several hierarchies of spac
districts and cultivation areas

− e.g., Kainz 1988, 1989, 1990, Kainz, Egenhofer & Grea
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form ai xi Θ a0

ux & Segoufin 1998

llen’s interval logic

993

i 1=

p

∑
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• Constraint Approach

− first order logic with a point set interpretation

− constraints are linear equations and inequalities of the 

− e.g., Belussi, Bertino & Catania 1997, Grumbach, Riga

• Spatial Logic

− pointless approach, regions as basic entities

− Clarke’s calculus of individuals based on connection, A

− e.g., Randell, Cui & Cohn 1992, Cui, Cohn & Randell 1
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ures and Algorithms
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5 Tools for Implementing SDTs: Data Struct
5.1 Representing SDT Values

5.2 Implementing Atomic SDT Operations
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) so that it can be integrated
t, user interface, etc.), fulfill-

SDT values

ibly) complex data structure

value of a programming
pe

computational geometry

support for each single
no most efficient algorithm,
ticated data structure):
e various requirements of
lgorithms within a data
r each type
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5.1 Representing SDT Values

Goals: Implementation of a spatial type system (spatial algebra
into a DBMS (query processing, storage managemen
ment of the design criteria:

• representations for the types (→ data structures)

• algorithms for the operations (→ algorithms)

DBMS view of SDT values

• treatment like values of other types
w.r.t. generic operations (access,
use in schemas, bulk loading, data
exchange, user interface)

• values of varying and possibly
large size

• persistent storage on disk in one or
more pages

• efficient loading into main memory
(value of a pointer variable there)

Algebra view of 

• some (poss

• use as a
language ty

• support of
algorithms

• no special
operation (
no sophis
reconcile th
different a
structure fo
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page-oriented data structure
es or long fields

size and the exact geometry

x) in the info part

(e.g., area, perimeter, length,

l

rr

qr

rl

sl pl pr ql qrrlsr rr
Markus Schneider, Tutorial “Spatial Data Types“

Support of the DBMS view

• no use of pointer data structures in main memory, use of a
accommodating with DBMS support for large attribute valu

• separation of an SDT value into an info part of small, fixed
part of possibly large, varying size

Support of the algebra view

• representation contains approximations (e.g., bounding bo

• representation contains stored values of unary functions
number of components, etc.) in the info part

• representation contains plane sweep
sequence in the geometric part

small value large value

pr q

sl

pl

sr
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ometry

, Chan & Ng 1997

when they were entered into

l are known in advance and

otherwise a plane sweep has
Markus Schneider, Tutorial “Spatial Data Types“

5.2 Implementing Atomic SDT Operations

General remarks

• in general: use efficient algorithms from Computational Ge

• single steps

− check approximations (filter condition)

− look up stored function values

− use plane sweep

• e.g., Güting, de Ridder & Schneider 1995, Schneider 1997

Special case: implementation of realm-based SDTs

• all spatial objects have been acquainted with each other
the realm (“realmification”)

→ no new intersection points have to be computed, al
occur in both objects

• often a parallel scan of two SDT values is sufficient where
to be used
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event structure is needed, no

two sequences
simple)
Markus Schneider, Tutorial “Spatial Data Types“

• example: intersection: lines × lines → points

• plane sweep is also simpler than usual: only static sweep-
preceding sorting phase

• Güting, de Ridder & Schneider 1995

“classical” plane sweep needed
(complex)

O(n log n + k)

parallel scan on
of halfsegments (

O(n + k)
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6 Other Interesting Issues and Research T
6.1 Other Interesting Issues not Covered in this Tutorial

6.2 Current Research Trends
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d raster data management

1994

ng 1994
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6.1 Other Interesting Issues not Covered in this Tutorial

• data types and operations for image database systems an

• multi-scale modeling / cartographic generalization

e.g., Puppo & Dettori 1995, Rigaux & Scholl 1995

• three-dimensional spatial data modeling

e.g., Pigot 1992, Oosterom, Vertegaal, Hekken & Vijlbrief 

• spatially embedded graphs (networks)

e.g., Erwig 1994, Erwig & Güting 1994, Güting 1991, Güti
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Dao 1997, Erwig, Güting,

daries,

6, Erwig & Schneider 1997,
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6.2 Current Research Trends

• combination of space and time

spatio-temporal databases, moving objects databases

e.g., Worboys 1994, Sistla, Wolfson, Chamberlain &
Schneider & Vazirgiannis 1999, Erwig & Schneider 1999

→ European research project CHOROCHRONOS

• combination of space and uncertainty / vagueness

spatial objects with imprecise / indeterminate / broad boun
vague objects, fuzzy objects

e.g., Clementini & Di Felice 1996, Cohn & Gotts 199
Schneider 1999
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