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Abstract. This paper contains a new convergence analysis for the Lewis and Torczon generalized
pattern search (GPS) class of methods for unconstrained and linearly constrained optimization.
This analysis is motivated by a desire to understand the successful behavior of the algorithm under
hypotheses that are satisfied by many practical problems. Specifically, even if the objective function
is discontinuous or extended valued, the methods find a limit point with some minimizing properties.
Simple examples show that the strength of the optimality conditions at a limit point does not depend
only on the algorithm, but also on the directions it uses, and on the smoothness of the objective at
the limit point in question. The contribution of this paper is to provide a simple convergence analysis
that supplies detail about the relation of optimality conditions to objective smoothness properties
and to the defining directions for the algorithm, and it gives previous results as corollaries.
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1. Introduction. Generalized pattern search (GPS) algorithms were defined
and analyzed by Torczon [28] for derivative-free unconstrained optimization on con-
tinuously differentiable functions using positive spanning directions. Lewis and Tor-
czon [24] introduced the idea of using positive spanning directions with GPS. In [23],
they showed that if the objective is continuously differentiable and if the set of di-
rections that define the local search is chosen properly with respect to the boundary
of the feasible region, then the GPS framework and convergence theory extend to
bound constrained optimization. In [25], they show the same results for problems
with a finite number of linear constraints. Both these extensions use the appealing
“barrier” strategy of declaring any infeasible point to be unacceptable as a next iter-
ate. Our purpose here is to provide a new simpler unified analysis for the methods in
[28, 23, 25], and to help elucidate the relationship between the algorithm, the search
directions, and the local smoothness properties of the objective at certain specified
limit points of the algorithm.

The optimization problem considered in this paper is:

min
x∈Ω

f(x) , where f : <n → <∪ {∞} .(1.1)

We assume as in [25] that Ω = {x ∈ <n : ` ≤ Ax ≤ u} where A ∈ Qm×n is a rational
matrix, `, u ∈ {< ∪ {±∞}}m and ` ≤ u.

GPS methods are extremely effective for some engineering design problems with
expensive function evaluations when used with less expensive surrogates [5, 6]. For
these and many other applied problems, a call to the subroutine that evaluates f(x)
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may result unexpectedly in no value being returned even for a feasible x, which we
model as f(x) = ∞. Reasons for this behavior are discussed in [5], where GPS with
surrogates is shown to be effective on a helicopter rotor design example for which
no value is returned roughly 66% of the time. The issue is discussed in a different
algorithmic and application context in [7, 8]. In such instances, we cannot assume
global smoothness, not even continuity. We are not the first to observe that GPS can
work well on nonsmooth problems, but previous convergence theorems do not apply
to such problems.

We view the barrier approach as applying the algorithm not to f , but to the
barrier function fΩ = f+ψΩ, where ψΩ is the indicator function for Ω. It is zero on Ω
and ∞ elsewhere. Clearly then, we do not evaluate f(x) if x is infeasible because we
know that its value is immaterial since the algorithm works with fΩ, and the value of
fΩ is +∞ on all points that are either infeasible or at which f is declared to be +∞:

fΩ(x) =
{
f(x) if x ∈ Ω
∞ else.

The reason that we treat together all the methods in [28, 23, 25] that use the barrier
approach is that by viewing them as the same algorithm applied to fΩ, we can treat
them by corollaries of a single result, Theorem 3.7, that allows for extended values
and other nonsmooth behavior. Our approach is first to identify a class of promising
limit points produced by GPS applied to extended-valued discontinuous functions like
fΩ. To make statements about optimality conditions at these limit points, we work
not with fΩ, but with f . If f is lower semicontinuous at such a limit point, we can
make a weak optimality statement. Then we apply the Clarke calculus [9] locally to f
at such a point to relate progressively stronger optimality conditions to progressively
stronger local smoothness assumptions at the limit point.

Thus, the structure of our results will be that at some limit point whose existence
is asserted independent of certain assumptions, we make those additional assumptions
to draw stronger conclusions. This is standard for Newton or quasi-Newton methods
([27], e.g., Theorem 8.6 pg 216 or virtually all of [22]), but it has not been the norm
for direct search methods.

Specifically, we observe without assuming any smoothness that there is a conver-
gent subsequence of the sequence {xk} of iterates produced by the algorithm. Since
{f(xk)} generated by the algorithm is non increasing, it is convergent to a finite limit
if it is bounded below. Thus, if f is lower semicontinuous at any limit point x̄ of
the sequence of iterates, then f(x̄) ≤ lim infk f(xk) = limk f(xk). Our analysis is of
interest for the heat intercept design problem we give in [21] where f is not continuous
at one of the limit points generated, but a plot (done for our own understanding and
not published) suggests that it is lower semicontinuous.

Again without any smoothness assumptions, we show that there is a limit point x̂
of a subsequence of {xk} consisting of iterates on progressively finer meshes (a formal
definition of the mesh is given in Section 2). These specific iterates of interest are
mesh local optimizers in that they minimize the function on a positive spanning set
of neighboring mesh points. This will be made precise in Section 2.

The directional tests that led GPS to refine the mesh at mesh local optimizers
are exactly that difference quotients are nonnegative for the Clarke generalized direc-
tional derivative at x̂. If the Clarke derivatives exist at x̂, as they will if f is locally
Lipschitz at x̂, then these nonnegative difference quotients pass through the limit to
be nonnegative Clarke derivatives in the directions used.
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Nonnegative directional derivatives in a set of directions are necessary conditions
for optimality, but they are not the usual first order conditions. To get those, we
assume in addition that the generalized gradient of f is a singleton. This extra
smoothness causes the above directional optimality conditions to hold for all directions
in the positive cone of those directions, and this together with the right choice of
directions leads to the familiar first order optimality conditions. We give examples
that supplement those in [1] and show that our results are sharp in that they predict
the behavior of the algorithm.

The remainder of the paper is organized as follows: in the next section, we will
give a brief description of the GPS algorithm class. We adhere to a slightly different,
but equivalent version of the Lewis and Torczon algorithm. In Section 3, we present
the assumptions together with a discussion of our local smoothness conditions, then we
give the key result, some immediate corollaries for unconstrained problems together
with a discussion of these results, and then we go on to the results for the linear
constraints. Section 4 is devoted to some concluding remarks.

2. Generalized pattern search algorithms. Generalized pattern search al-
gorithms for unconstrained or linearly constrained minimization generate a sequence
of iterates {xk} in <n with non-increasing objective function values. Each iteration
is divided into two phases: an optional search and a local poll, defined next.

In the search step, the barrier objective function fΩ is evaluated at a finite
number of points on a mesh (a discrete subset of <n defined below whose fineness
is parameterized by the mesh size parameter ∆k > 0) to try to find one that yields
a lower objective function value than the incumbent. Any strategy may be used to
select the mesh points that are candidates to replace the incumbent, as long as only
finitely many points (including none) are selected.

This is a key point. The search step accommodates whatever heuristics the
user was already using to attack their problem using surrogates. One might do some
random search on the mesh using the surrogate, or, as in the Boeing Design Ex-
plorer software [4], one might apply SQP to the surrogate problem and then move
the solution to a nearby mesh point to choose the candidates at which to evaluate the
expensive objective function in hopes of obtaining a better next iterate. Coope and
Price [11] offer a possibility for a related framework that does not require pushing a
surrogate solution to the mesh for it to become an acceptable trial point. In [13], they
apply the Clarke analysis given here to their related methods.

On the other hand, the freedom of the search step is definitely a theoretical
liability. In [1] and here, there are examples of nonempty searches that spoil chances
for the algorithm to find KKT points and of empty searches that mire the algorithm in
at a poor point when a naive random selection from the current mesh in the search
would generally lead to success. Regardless, this freedom must be retained. Indeed,
for the Boeing example [5, 6], the algorithm with surrogates is much more efficient
than Serafini’s implementation of the Dennis-Torczon MDS/PDS algorithm [14]. This
is not to disparage the MDS algorithm, which is very robust on that example.

Below, we will offer terminology consistent with Coope and Price [12] to replace
the usual “successful/unsuccessful” terminology in the GPS literature. The original
terminology was adequate until it was recognized that the ”unsuccessful” iterations
were the important ones because they produce mesh local optimizers, while successful
iterations produce only improved mesh points, which we define now.

When the incumbent is replaced, i.e., when fΩ(xk+1) < fΩ(xk), or equivalently
when f(xk+1) < f(xk), then xk+1 is said to be an improved mesh point. When the
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search step fails in providing an improved mesh point, the poll step is invoked. This
second step consists of evaluating the barrier objective function at the neighboring
mesh points to see if a lower function value can be found there.

When the poll step fails in providing an improved mesh point, then the current
incumbent solution is said to be a mesh local optimizer (i.e., its objective function
value is less than or equal to that of neighboring mesh points). The algorithm then
refines the mesh by setting the mesh size parameter

∆k+1 = τwk∆k(2.1)

for 0 < τwk < 1, where τ > 1 is a rational number that remains constant over all
iterations, and wk ≤ −1 is an integer bounded below by the constant w− ≤ −1.

A feature first noted in Torczon [28] and also supported in the analysis given
here is that if either the search or poll step produces an improved mesh point, the
current iteration can stop and the new point xk+1 6= xk has a strictly lower objective
function value, the mesh size parameter is kept the same or is increased to carry out
the next search step, and the process is reiterated. The coarsening of the mesh
follows the rule

∆k+1 = τwk∆k(2.2)

where τ > 1 is defined above and wk ≥ 0 is an integer bounded above by w+ ≥ 0. Our
experience with surrogate-based search steps [5], [6] is that a great deal of progress
can be made with few function values, and at least n + 1 function evaluations are
needed only to show local mesh optimality, which indicates that the mesh needs to
be refined (see [24] for defining a minimal number of polling directions).

By modifying the mesh size parameters as above, it follows that for any k ≥ 0,
there exists an integer rk ∈ Z such that

∆k = τ rk∆0.(2.3)

The basic ingredient in the definition of the mesh is a set of positive spanning
directions D in <n (more precisely, nonnegative linear combinations of the elements
of the set D span <n). There is great freedom in choosing these directions, only
the following additional rule needs to be respected: each direction dj ∈ D (for j =
1, 2, . . . , |D|) is the product Gz̄j of the non-singular generating matrix G ∈ <n×n

by an integer vector z̄j ∈ Zn. Note that the same generating matrix is used for
all directions. For convenience, the set D is also viewed as a real n × |D| matrix.
Similarly, we denote the matrix whose columns are z̄j , for j = 1, 2, . . . , |D| by Z̄; we
can therefore write D = GZ̄. At iteration k, the mesh is centered around the current
iterate xk ∈ <n and its fineness is parameterized through the mesh size parameter
∆k as follows

Mk = {xk + ∆kDz : z ∈ Z |D|+ },(2.4)

where Z+ is the set of nonnegative integers. This way of describing the mesh differs
from [28, 23, 25].

At each iteration, some positive spanning matrix Dk composed of columns of D
is used to construct the poll set. We write Dk ⊆ D to signify that the matrix Dk is
composed of columns of D. The poll set is composed of mesh points neighboring the
current iterate xk in the directions of the columns of Dk:

Poll set: {xk + ∆kd : d ∈ Dk}.(2.5)
4



• Initialization:
Let x0 be such that fΩ(x0) is finite. Let D be a positive spanning set, and
let M0 be the mesh on <n defined by ∆0 > 0, and D0 (see equation (2.4)).
Set the iteration counter k to 0.
• Search and poll step:

Perform the search and possibly the poll steps (or only part of them)
until an improved mesh point xk+1 with the lowest so far fΩ value is found
on the mesh Mk defined by equation (2.4).

– Optional search: Evaluate fΩ on a finite subset of trial points on the
mesh Mk defined by equation (2.4) (the strategy that gives the set of
points is usually provided by the user; it must be finite and the set
can be empty).

– Local poll: Evaluate fΩ on the poll set defined in equation (2.5).
• Parameter update:

If the search or the poll step produced an improved mesh point, i.e., a
feasible iterate xk+1 ∈ Mk ∩ Ω for which fΩ(xk+1) < fΩ(xk), then update
∆k+1 ≥ ∆k according to rule (2.2).
Otherwise, fΩ(xk) ≤ fΩ(xk +∆kd) for all d ∈ Dk and so xk is a mesh local
optimizer. Set xk+1 = xk, update ∆k+1 < ∆k according to rule (2.1).
Increase k ← k + 1 and go back to the search and poll step.

Fig. 2.1. A basic GPS algorithm

Rules for selecting Dk may depend on the user’s dynamic intervention during the
current run, or, for example, on the iteration number or the current iterate, i.e.,
Dk = D(k, xk) ⊆ D.

The algorithm is stated formally in Figure 2.1.
The search strategy is the key to effectiveness, as we discussed above. The

convergence analysis is independent of the search step, provided that it is finite and
returns a point (or points) on the mesh. The poll step applied to fΩ, as we will
see, guarantees that the limit point provided by the algorithm satisfies optimality
conditions whose strength depends on the local smoothness of f at the limit point.

3. Convergence analysis. Theorem 3.7 is our main result. It and Theorem 3.1
make no special assumptions about the crucial relationship between the directions D
and the feasible region Ω. This means that they apply to quite general uses of GPS
(see also the remark following Theorem 3.14), but without a connection between Ω and
D, the resulting constrained optimality conditions are weak even when f is smooth.
Theorem 3.9 is the strongest result we expect for stationarity in the unconstrained
case (see [1] for supporting examples).

Since one of the objectives of the paper is to simplify the convergence analysis of
GPS, we include the proofs of all the results leading to our main one, even if some of
them essentially can be found in previous work modulo the slightly different way of
defining the mesh (we indicate the appropriate references).

3.1. Assumptions and smoothness requirements. We make the standard
assumption that all iterates produced by GPS lie in a compact set (see [2, 3, 10, 11,
12, 16, 17, 18]). A sufficient condition for this to hold is that the level set L(x0) =
{x ∈ Ω : f(x) ≤ f(x0)} is compact. We cannot assume that L(x0) is compact because
we allow discontinuities and even f(x) = ∞, and so we do not know that L(x0) is
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closed. However we can assume that L(x0) is bounded so that its closure is compact.
Whatever we assume to ensure that the iterates are in a compact set, this already

implies that there are convergent subsequences of the iteration sequence. This is
enough to say that if f is lower semicontinuous at such a limit point x̄, then f(x̄) ≤
limk f(xk) for the entire iteration sequence. Of course, f can be infinite arbitrarily
near a point where it is lower semicontinuous, which means that there can be points
of the sort mentioned above where f fails to evaluate arbitrarily near x̄, but it also
means that we can say nothing about any derivatives at such an x̄. For that, we will
consider an interesting set of subsequences identified by the algorithm. Specifically,
we will be concerned here, as in [2, 11, 12] with the iterates xk that are mesh local
optimizers for meshes that get infinitely fine. We will use x̄ to denote generic limit
points of the sequence of iterates, and x̂ for limit points of mesh local optimizers
for meshes that get infinitely fine. It is only at mesh local optimizers that ∆k is
reduced. The analysis is simpler if we assume that the mesh size is never coarsened,
since obviously then the meshes become infinitely fine for every sequence of mesh local
optimizers. However, we will not use this assumption since mesh coarsening can lead
more rapidly to a deeper basin than might be found without it.

To summarize, the convergence analysis provided below relies only on the follow-
ing assumptions.

A1: A function fΩ = f +ψΩ : < → <∪{+∞} and x0 ∈ <n (with fΩ(x0) <∞) are
available.
A2: The constraint matrix A is rational.
A3: All iterates {xk} produced by the GPS algorithm lie in a compact set.

We now prove the following result with an immediate, but rather strange impli-
cation - stationary points are the least interesting locally smooth limit points GPS
produces in the sense that all limit points have the same function value but there are
descent directions leading from any locally smooth nonstationary points. Of course,
if all the limit points are stationary points, then all are equally interesting.

Theorem 3.1. Under assumptions A1 and A3, there exists at least one limit
point of the iteration sequence {xk}. If f is lower semicontinuous at such a limit
point x̄, then limk f(xk) exists and is greater than or equal to f(x̄). If f is continuous
at every limit point of {xk}, then every limit point has the same function value.

Proof. Since f is lower semicontinuous at x̄, we know that for any subsequence
{xk}k∈K of the iteration sequence that converges to x̄, lim infk∈K f(xk) ≥ f(x̄),
which is finite. But since the subsequence of function values is a subsequence of a
nonincreasing sequence, they have the same limit inferior. Thus, the entire sequence
is also bounded below by f(x̄), and so it converges.

To prove more, we will need to assume more. In addition to A1-A3, previous work
on pattern search algorithms assumes continuous differentiability of the function f on
a neighborhood of the level set L(x0) = {x ∈ Ω : f(x) ≤ f(x0)} ([2, 23, 25, 28, 11, 12]).
In the unconstrained case, Torczon [28] shows that for GPS there exists a limit point
x̄ satisfying ∇f(x̄) = 0, and our [2] shows the same result for every limit point x̂ of
any sequence of mesh local optimizers for which limk ∆k = 0. Note that since every
limit point of the GPS sequence is a point of continuity in this case, nonstationary
limit points, whose possible existence is show in [1], are very interesting because with
the right search step, or the right choice of directions, one can proceed to a feasible
point with a better value of f . Our analysis below uses the weaker assumption of
strict differentiability (defined in the first paragraph of Section 3.4) at such a limit
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point instead of continuous differentiability on L(x0)).
First we easily show (under no smoothness assumptions) the existence of at least

one limit point of a subsequence of mesh local optimizers on meshes that get infinitely
fine. Then, for those limit points where f is strictly differentiable, we show that the
gradient is zero. To avoid confusion about the relative strength of assuming in the
context of GPS that f is locally Lipschitz, or strictly differentiable at a point, or
continuously differentiable, we will provide examples following Theorems 3.7 and 3.9
for which those results apply and earlier results do not. The proofs of the mesh
refinement results were first given in [28] with a different description of the meshes.

We now proceed with some results on the behavior of the mesh and mesh size
parameter. These results do not depend at all on the smoothness of fΩ; they use
just the definition of the algorithm and integrality of the matrix Z used to construct
the set of directions D. For a different framework, Coope and Price [11] relax the
conditions on the mesh but they assume that the meshes become infinitely fine. This
is an interesting tradeoff that puts the burden for ensuring that the meshes become
infinitely fine into the implementation, but allows for search points off the mesh and
more freedom in the definition of the meshes.

3.2. Mesh refinement. The main result of this section is that there is a subse-
quence of mesh local optimizers for which the mesh size parameter goes to zero. The
first lemma shows that for each mesh Mk defined by 2.4, the minimal distance over
all pairs of distinct mesh points is bounded below by the mesh size parameter ∆k

times a scalar. In the Euclidean norm, the proof involves the smallest singular value
of G [28].

Lemma 3.2. For any integer k ≥ 0, and any norm for which any nonzero integer
vector has norm at least 1, and Mk defined by 2.4,

min
u 6=v∈Mk

‖u− v‖ ≥ ∆k

‖G−1‖
.

Proof. Using equation (2.4), we let u = xk +∆kDzu and v = xk +∆kDzv be two
distinct points on Mk with both zu and zv in Z |D|+ . Then

‖u− v‖ = ∆k‖D(zu − zv)‖ = ∆k‖GZ̄(zu − zv)‖ ≥ ∆k
‖Z̄(zu − zv)‖
‖G−1‖

≥ ∆k

‖G−1‖
.

The last part of the inequality is due to the fact that Z̄(zu − zv) is a nonzero integer
vector, thus its norm is greater than or equal to one.

The separation between mesh points shown by Lemma 3.2 depends on the direc-
tions inD being integer linear combinations of the columns of a fixed nonsingular n×n
generating matrix. For example, in <1 positive integer combinations of the columns
of D = [−1,+π] are a dense subset of the real line. This is not a counterexample to
Lemma 3.2 because the matrix [−1,+π] cannot be written as a scalar multiple of a
1× 2 integer matrix.

The next lemma shows that the mesh size parameters generated by the algorithm
are bounded above (it is similar to a result in [2] for categorical variables).

Lemma 3.3. Under assumptions A1 and A3, there exists a positive integer r+

such that ∆k ≤ ∆0τ
r+

for any integer k ≥ 0.
Proof. Using assumption A3, we let X be a compact set in <n that contains all

iterates, and denote its diameter by γ (i.e., the maximal distance between two of its
7



points). If ∆k > γ ·‖G−1‖, then Lemma 3.2 with (v = xk) ensures that any trial point
u ∈Mk different from xk would have been outside of X . But since no iterate is outside
X , it follows that at any iteration whose mesh size parameter exceeded γ · ‖G−1‖, the
iterate xk is a mesh local optimizer. Thus ∆k is bounded above by γ · ‖G−1‖τw+

and
the result follows by setting r+ large enough so that ∆0τ

r+ ≥ γ · ‖G−1‖τw+
.

The proof of the next result is identical in spirit to that of the same result in
Torczon [28] and adapted in [2] for categorical variables.

Proposition 3.4. Under assumptions A1 and A3, the mesh size parameters
satisfy lim inf

k→+∞
∆k = 0.

Proof. Suppose by way of contradiction that there exists a negative integer ρ
such that 0 < ∆0τ

ρ ≤ ∆k for all k ≥ 0. Combining equation (2.3) with Lemma 3.3
implies that for any k ≥ 0, rk takes its value among the integers of the finite set
{ρ, ρ+ 1, . . . , r+}.

Since xk+1 ∈ Mk, equation (2.4) assures that xk+1 = xk + ∆kDzk for some
zk ∈ Z |D|+ . Using equation (2.3) by substituting ∆k = ∆0τ

rk it follows that for any
integer N ≥ 1:

xN = x0 +
N−1∑
k=1

∆kDzk = x0 + ∆0D
N−1∑
k=1

τ rkzk = x0 +
pρ

qr+ ∆0D
N−1∑
k=1

prk−ρqr+−rkzk

where p and q are relatively prime integers satisfying τ = p
q . Since for any k the term

prk−ρqr+−rkzk appearing in this last sum is an integer, it follows that all iterates lie
on the translated integer lattice generated by x0 and the columns of pρ

qr+ ∆0D.
Therefore, since all iterates belong to a compact set, it follows that there are only

finitely many different iterates, and thus one of them must be visited infinitely many
times. Therefore the rule presented in equation (2.2) is only applied finitely many
times, and the one in equation (2.1) is applied infinitely many times. This contradicts
the hypothesis that ∆0τ

ρ is a lower bound for the mesh size parameter.

3.3. Main convergence result. Since the mesh size parameter shrinks only
when a mesh local optimizer is detected, Proposition 3.4 guarantees that there are
infinitely many mesh local optimizers. The following definition specifies the subse-
quences we use.

Definition 3.5. A subsequence of the GPS iterates consisting of mesh local op-
timizers, {xk}k∈K (for some subset of indices K), is said to be a refining subsequence
if {∆k}k∈K converges to zero.

The following shows the existence of convergent refining subsequences. Notice
that if coarsening of the mesh was not allowed (i.e., w+ is set at 0 in equation (2.2)),
then every subsequence of mesh local optimizers would be a refining subsequence, and
so the next result would be trivial.

Theorem 3.6. Under assumptions A1 and A3, there exists at least one conver-
gent refining subsequence.

Proof. Let K ′′ be the set of indices of iterates that are mesh local optimizers.
Since the mesh is refined only at iterations when a local mesh optimizer is detected,
Proposition 3.4 guarantees that there exists a subset of indices K ′ ⊂ K ′′ for which
{∆k}k∈K′ ↓ 0. Assumption A3 ensures that there exists a subset of indices K ⊂ K ′

for which the subsequence of iterates {xk}k∈K converges.
We show below that the limit of any refining subsequence satisfies directional first

order optimality conditions appropriate to the local smoothness of f . It is shown in [1]
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that even for a continuously differentiable f , the entire iteration sequence might not
converge. There may even be infinitely many limit points, and not all of these limit
points are stationary points.

Next is our basic, but key, result in which we apply Clarke’s [9] generalized direc-
tional derivatives in a very straightforward way to the pattern search analysis. The
results that follow specialize this result. Clarke’s derivative at x̂ in the direction d is
defined for locally Lipschitz functions. Loosely speaking, it is defined to be the limit
superior of the directional derivatives (in the direction d) of sequences converging to
x̂. The precise definition is given in the proof (see equation (3.1)).

Theorem 3.7. Under assumptions A1-A3, if x̂ is any limit of a refining sub-
sequence, and if d is any direction in D for which f at a poll step was evaluated
for infinitely many iterates in the subsequence, and if f is Lipschitz near x̂, then
the generalized directional derivative of f at x̂ in the direction d is nonnegative, i.e.,
f◦(x̂; d) ≥ 0.

Proof. Let {xk}k∈K be a refining subsequence and x̂ its limit point obtained as
in the statement of the Theorem. Since f is locally Lipschitz near x̂, we have from
Clarke [9] by definition that:

f◦(x̂; d) ≡ lim sup
y→x̂, t↓0

f(y + td)− f(y)
t

≥ lim sup
k∈K

f(xk + ∆kd)− f(xk)
∆k

.(3.1)

We need to know that the difference quotients are defined. First note that since f is
Lipschitz near x̂, it must be finite near x̂. Note also that since a main point of the
paper is to allow for extended valued functions and to justify the expedient of dealing
with constraints by declining to evaluate the function f at infeasible points, we made
the hypothesis that f was actually evaluated infinitely many times in the direction d.
Therefore, for k sufficiently large all the poll steps in the direction d, xk + ∆kd, are
feasible. If they had not been, then fΩ would have been infinite there and so f would
not have been evaluated (recall that if x 6∈ Ω, then fΩ(x) is set at +∞ and f(x) is
not evaluated).

Thus, we have that infinitely many of the right hand quotients of (3.1) are defined,
and in fact they are the same as for fΩ. But since they are defined, all of them must
be nonnegative or else the corresponding poll step would have been successful in
identifying an improved mesh point (recall that refining subsequences are constructed
from mesh local optimizers).

In the unconstrained case, there will always be a positive spanning set of directions
that satisfy the hypotheses of the previous theorem. In the constrained case, there
may be no such d if D were defined in a way incompatible with the geometry of the
constraints (see the example in [23]). Thus in the next section, we will appeal to the
construction in [25] to ensure that a sufficiently rich set of directions is used for bound
or linear constraints. Again, we emphasize that GPS is a directional method, and the
choice of directions is crucial.

The following example illustrates Theorem 3.7 on a Lipschitz function. This
function looks like a convex function (quadratic in fact) that has been contaminated
by local noise that decreases in amplitude near the minimizer. This behavior is
common enough in practice to be the target class for implicit filtering algorithms [19].

Example 3.8. Consider the function f : < → < defined as f(x) = x2(2+sin(π
x )).

This function possesses infinitely many local optima near 0. One can show that f is
Lipschitz near 0, but it is not strictly differentiable there, and so certainly it is not
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continuously differentiable. In fact, the generalized gradient satisfies ∂f(0) = [−π, π].
If the GPS algorithm with empty search steps, x0 = 1

3 , ∆0 = 1, D = {−1, 1},
∆k+1 = ∆k when an improved mesh point is found, and ∆k+1 = 1

2∆k when a mesh
local optimizer is detected, is applied to this problem, then the sequence of iterates
{xk} converges to 0, where f◦(0;±1) = π ≥ 0 as Theorem 3.7 guarantees. The proof
of this claim can be seen from Table 3.1.

Table 3.1
In four consecutive iterations, the iterates go from xk = 1

α
, ∆k = 3

α
where α is a positive

integer to xk+4 =
xk
4

, ∆k+4 =
∆k
4

.

k xk f(xk) ∆k f(xk −∆k) f(xk + ∆k) Iteration status

4i 1
α

2
α2

3
α

f( 1−3
α

) ≥ 4
α2 f( 1+3

α
) ≥ 16

α2 mesh local optimizer

4i + 1 1
α

2
α2

3
2α

f( 2−3
2α

) = 1
2α2 f( 2+3

2α
) ≥ 25

4α2 improved mesh point

4i + 2 −1
2α

1
2α2

3
2α

f(−1−3
2α

) ≥ 4
α2 f(−1+3

2α
) = 2

α2 mesh local optimizer

4i + 3 −1
2α

1
2α2

3
4α

f(−2−3
4α

) ≥ 25
16α2 f(−2+3

4α
) = 1

8α2 improved mesh point

4(i + 1) 1
4α

1
8α2

3
4α

Theorem 3.7 is the key to our analysis. The fact that its proof follows so directly
from Clarke’s definition of the generalized directional derivative is because unsuccess-
ful polling at mesh local optimizers belonging to convergent refining sequences pro-
vide exactly the nonnegative difference quotients that Clarke’s derivatives need since
xk → x̂ and ∆k ↓ 0. We believe that this illustrates an intimate relationship between
Clarke’s generalized directional derivatives and the directional algorithm GPS.

3.4. Corollaries for unconstrained optimization. Before we add the com-
plication of choosing directions for linear constraints, we give some corollaries of Theo-
rem 3.7 for the unconstrained case. In addition to the assumption that f is Lipschitz
near x̂, we assume that the generalized gradient of f at x̂ is a singleton. This is
equivalent to assuming that f is strictly differentiable at x̂, i.e., that there exists a
Dsf(x̂) ∈ <n such that lim

y→x̂,t↓0
f(y+tw)−f(y)

t = Dsf(x̂)Tw for all w ∈ <n (see [9],

Proposition 2.2.1 or Proposition 2.2.4). Since the generalized gradient is a singleton
∂f(x̂) = {Dsf(x̂)}, we use the standard notation for the gradient ∇f(x̂) = Dsf(x̂).

Theorem 3.9. Under assumptions A1 and A3, let Ω = <n and x̂ be any limit of
a refining subsequence. If f is strictly differentiable at x̂, then ∇f(x̂) = 0.

Proof. Again from [9], if f is strictly differentiable at x̂, then for any direction
w 6= 0, f◦(x̂;w) = ∇f(x̂)Tw. Now let D̂ be any positive spanning set that is used
infinitely many times in the refining subsequence, there must be at least one since D
is finite. Then by Theorem 3.7, for each d ∈ D̂, 0 ≤ ∇f(x̂)T d. Thus, if we write w as
a nonnegative linear combination of the elements of D̂, then we see immediately that
∇f(x̂)Tw ≥ 0. But the same construction for −w shows that −∇f(x̂)Tw ≥ 0 and so
∇f(x̂) = 0.

The following example, based on a function taken from [20], illustrates the ap-
plicability of Theorem 3.9 by showing that any realization of GPS converges to the
global minimizer for this convex function, which is strictly differentiable at its mini-
mizer, but not continuously differentiable. Previous GPS analysis techniques that use
global continuous differentiability do not apply to this example.

Example 3.10. Consider the convex function f : < → < defined as f(x) =
10



∫ x

0
ϕ(u)du, where

ϕ(u) =
{

u if u ≤ 0
1

1+κ if κ+ 1 > 1
u ≥ κ ∈ Z+.

The function f is Lipschitz near x̂ = 0. It is shown in [20] that f has kinks at 1
κ with

∂f( 1
κ ) = [ 1

κ+1 ,
1
κ ] for κ = 1, 2, . . . The corollary of Proposition 2.2.4 in [9] guarantees

that f is not continuously differentiable near x̂. Furthermore, ∂f(0) reduces to the
singleton {0}, and the same Proposition ensures that f is strictly differentiable at x̂.

Applying Theorem 3.9 guarantees that any instance of any pattern search algo-
rithm with any set of initial parameters generates a subsequence of iterates that con-
verges to the global minimizer x̂ = 0 where ∇f(x̂) = 0, since the function is Lipschitz
everywhere, and 0 is the only point where Clarke’s generalized derivatives are nonneg-
ative in all directions of a positive spanning set.

We certainly are not claiming that the weaker smoothness conditions we use imply
that GPS methods always find a minimizer. This has been known to be false since
the inception of GPS methods. Simple convex counterexamples come from starting
at just the wrong point and choosing just the right ill-suited directions.

This can be seen by considering f(x) = |x1| + |x2| on <2 and starting with
x0 = (1, 0)T with D = {(1, 0)T , (−1, 1)T , (−1,−1)T }. The initial point x0 is a mesh
local optimizer for every ∆ > 0, and so the iteration never moves from x0 with an
empty search step. Our theorem applies to this simple example and describes exactly
what happens; f is regular at x̂ and the directional derivatives along the members of
D are nonnegative.

The following two corollaries assume continuous differentiability. We have dis-
cussed how for our applications, this assumption unlikely to be satisfied, except per-
haps locally. We include these results only to tie our results here to earlier results
that use global continuous differtiabililty. The first corollary strengthens our result
in [2]. It shows that the limit of the gradient for any refining subsequence converges
to zero, even if the subsequence itself does not converge.

Corollary 3.11. Let A1 and A3 hold for Ω = <n and f continuously differen-
tiable on a neighborhood of a compact set containing all the iterates {xk}. Then for
any refining subsequence {xk}k∈K , 0 = limk∈K ∇f(xk).

Proof. If x̂ is any limit point of a refining subsequence, then continuous differen-
tiability implies strict differentiability at x̂ and so ∇f(x̂) = 0 from Theorem 3.9. Since
the continuous image of a compact set is compact, the entire sequence of gradients
of any refining subsequence is in a compact set. Thus, there must be a subsequence
{xk}k∈K′ of the refining subsequence for which limk∈K′ ∇f(xk) = lim supk∇f(xk).
But then {xk}k∈K′ has a convergent subsequence, and its limit point has a zero gradi-
ent because it is a limit point of a refining subsequence, and so 0 = lim supk∇f(xk).

A consequence of the previous result is that under the assumption that f is
continuously differentiable, any limit point of a refining sequence has a zero gradient.

The fact that under the assumption of continuous differentiability the limit of the
gradients of any refining subsequence is zero was pointed out in [15]. Earlier, under
strong restrictions on the algorithm, it was shown in [28] that 0 = limk∇f(xk). One
of those restrictions is that lim ∆k = 0, which we proved above is already is enough
to say that the limit of the gradients at the mesh local optimizers is zero since then
they are a refining subsequence. Thus, we will not discuss the restrictions needed for
the stronger result, since they are too constraining for our class of problems.
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The next corollary is Torczon’s result from [28], strengthened by the same result
from [15].

Corollary 3.12. Let A1 and A3 hold for Ω = <n and f be continuously
differentiable on a neighborhood of a compact set containing all the iterates {xk},
then some limit point x̂ of {xk} satisfies ∇f(x̂) = 0. The limit of the gradients for
any refining subsequence is zero.

Proof. Every refining subsequence is a subsequence of {xk}.
In summary, if assumptions A1 and A3 are satisfied, then the algorithm guaran-

tees the following hierarchy of convergence behavior.
(i) If f is lower semicontinuous at any limit point x̄ of the GPS iteration sequence,

then Theorem 3.1 says that f(x̄) ≤ limk f(xk).
(ii) Every limit point of the iteration sequence at which f is continuous has the

same function value limk f(xk) whether or not it is a stationary point. Thus,
though there is always at least one limit point that is a stationary point,
if GPS produces a nonstationary limit point [1], then it is more promising
than any stationary limit point because they have the same function value,
but there is a descent direction from the nonstationary limit point. The
conclusion is that the directions used were poorly suited to the problem.

(iii) There is at least one x̂ that is a limit point of a refining subsequence i.e., x̂
is a limit point of a sequence of local optimizers on meshes that get infinitely
fine. If the function f is lower semicontinuous but not even Lipschitz near x̂,
then nothing additional to the above is claimed about optimality conditions
satisfied by x̂.

(iv) If f is Lipschitz near x̂, then Theorem 3.7 holds and Clarke’s generalized
derivatives satisfy f◦(x̂; d) ≥ 0 for some directions d ∈ D that form a positive
spanning set. In addition, f(x̂) = limk f(xk) since f is continuous at x̂.

(v) If f is regular1 at x̂, then the directional derivatives satisfy f ′(x̂; d) ≥ 0 for
some directions d ∈ D, a positive spanning set, and f(x̂) = limk f(xk).

(vi) If f is strictly differentiable at x̂, then Theorem 3.9 holds and ∇f(x̂) = 0,
but its function value limk f(xk) is the same as at any other limit point of
the entire GPS iteration sequence at which f is continuous (by (ii)).

(vii) If f is globally continuously differentiable (as assumed in earlier analyses), this
means that every limit point of a refining subsequence is a stationary point
as in item(vi) and that the gradients of a refining subsequence converge to
zero, whether or not the subsequence converges. However, as was shown in
[1], there still can be limit points of the entire GPS iteration sequence that
are not stationary points. Though such points have the same function value
as the stationary points, there is a descent direction from such points that
leads to lower function values.

3.5. Linearly constrained convergence results. In this section, we will con-
sider only the case where Ω is defined through a finite set of linear constraints. In
order to prove the relevant optimality results, we will have to assume that D, even
though finite, is rich enough to generate poll sets that conform to the geometry of
the boundary of Ω. Furthermore, to apply our proof technique, we must ensure that
the spanning sets that reflect this geometry get used infinitely many times as we con-
verge to a point on the boundary. Lewis and Torczon [25] show how to use standard

1The function f is said to be regular at x if for all v, the one-sided directional derivative exists
and coincides with f◦(x; v) (see Clarke [9]).
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linear algebra tools to generate the requisite positive spanning matrices Dk ⊆ D. The
convergence analysis relies on assumption A2, the rationality of the constraint matrix
A.

We pause to remind the reader that for x ∈ Ω, the tangent cone to Ω at x is
TΩ(x) = cl{µ(w−x) : µ ≥ 0, w ∈ Ω}. The normal cone to Ω at x is NΩ(x) and can be
written as the polar of the tangent cone: NΩ(x) = {v ∈ <n : ∀w ∈ TΩ(x), vTw ≤ 0}.
It is the nonnegative span of all the outwardly pointing constraint normals at x.

It would add unnecessary length to this paper to rewrite the construction given
by Lewis and Torczon [25] for D and the choice rule for Dk from D at each iteration
(their notation for Dk is Γk). The construction is presented there quite succinctly
in Section 8 of [25] where they consider implementation issues, including difficulties
inherent to degenerate constraints. We will use the following abstracted version of
their direction choice.

Definition 3.13. A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆
D conforms to Ω for some ε > 0, if at each iteration k and for each y in the boundary
of Ω for which ‖y− xk‖ < ε, TΩ(y) is generated by nonnegative linear combination of
the columns of a subset Dy

k of Dk.
With this definition, we are ready for our next convergence result. Note that if

xk ∈ Ω is not near the boundary, then Dk need only provide a positive spanning set
for <n, which is completely sensible. However, in our experience, it is best not to
take ε too small so that when the iterates approach the boundary with small values
of the mesh size parameter, the rule for selecting the mesh size parameter conforms
to the boundary of Ω. This is mitigated somewhat by allowing variable coarsening of
the mesh as in equation (2.2).

Theorem 3.14. Under assumptions A1-A3, if f is strictly differentiable at a limit
point x̂ of a refining subsequence, and if the rule for selecting the positive spanning
sets Dk = D(k, xk) ⊆ D conforms to Ω for an ε > 0, then ∇f(x̂)Tw ≥ 0 for all
w ∈ TΩ(x̂), and −∇f(x̂) ∈ NΩ(x̂). Thus, x̂ is a KKT point.

Proof. If x̂ is interior to Ω, then the result is just Theorem 3.9, and so we can
proceed directly to the case where x̂ is on the boundary of Ω.

Suppose that the rule for selecting Dk ⊆ D conforms to Ω for some fixed ε > 0,
and that there are finitely many linear constraints, then Dx̂

k generates TΩ(x̂) for large
k ∈ K. It follows that there can only be finitely many different such sets Dx̂

k for
k ∈ K. Let Dx̂ ⊆ D be one of them that occur infinitely many times.

Theorem 3.7 implies that ∇f(x̂)T d ≥ 0 for every column d of Dx̂. But since
every w ∈ TΩ(x̂) is a nonnegative linear combination of the columns of Dx̂, then
∇f(x̂)Tw ≥ 0. To complete the proof, we multiply both sides by −1 and conclude
that −∇f(x̂) is in NΩ(x̂).

Remark 3.15. If f were only assumed to be Lipschitz near x̂, then we could still
conclude as in Theorem 3.7, that f◦(x̂; d) ≥ 0 for every column d of Dx̂.

The following corollary is Lewis and Torczon’s result from [25] which relies on a
stronger differentiability assumption.

Corollary 3.16. If A1 - A3 hold and f is continuously differentiable on a
neighborhood of a compact set containing all the iterates {xk}, and if the rule for
selecting the positive spanning sets Dk = D(k, xk) ⊆ D conforms to Ω for an ε > 0,
then there exists a limit point x̂ of {xk} such that ∇f(x̂)Tw ≥ 0 for all w ∈ TΩ(x̂),
and −∇f(x̂) ∈ NΩ(x̂). Thus, x̂ is a KKT point.

Proof. The proof follows from Theorem 3.14 since every refining subsequence is a
subsequence of {xk} and continuous differentiability implies strict differentiability.
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4. Concluding remarks. This paper puts together ways to choose the direc-
tions and results on properties of the mesh by Lewis and Torczon, some observations
of ours about what is needed to obtain convergence of those algorithms (such as refin-
ing subsequences), and elements of nonsmooth analysis set forth by Clarke. Clarke’s
analysis is perfectly suited to expose the first order optimality conditions at limit
points of certain subsequences of the GPS iterates under weakened assumptions that
correspond to some real problems for which GPS is quite effective.

We believe that our analysis helps confirm an observation of [25] that GPS meth-
ods for general constraints will not be based on the appealingly simple barrier strategy
of placing a high function value on infeasible trial points. This is because to prove the
efficacy of the barrier strategy, the positive spanning set D, from which all the GPS
directions are chosen, is finite and so it cannot be certain to generate the tangent
cone at every boundary point of a non polygonal feasible region that the iteration
approaches.

In [3], we suggest and analyze a GPS algorithm for general constraints based
not on a single objective, but on the new filter approach of Fletcher et al. [16], [17]
and [18]. In [26], Lewis and Torczon give a successive augmented Lagrangian pattern
search approach together with its convergence analysis. Ongoing work by Coope and
Price along the lines of [12] and [13] promises alternatives for general constraints yet
to be realized.

Finally, we wish to acknowledge a helpful referee and Major Mark Abramson
USAF for many insightful comments that improved the presentation.
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