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ABSTRACT

In this paper we introduce simple metrics for the slew rate of an
RC circuit based on the first two circuit moments. We develop two
new slew metrics, S2M (slew with 2 moments) and scaled S2M,
that provide high accuracy with the advantage of simple closed
form expressions. S2M is very accurate for middle and far end
nodes but it does not perform as well for near end nodes. Scaled
S2M is developed to improve upon S2M for near end nodes and is
shown to be highly accurate for near as well as far end nodes. For
a large set of nets from an industrial 0.18 pm microprocessor,
S2M matches SPICE within 2% on average with 78% of the sinks
having less than 1% error. For the same test cases, the average
error for scaled S2M is less than 3% with 99.4% of the nodes
showing less than 5% error.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids, B.8.2 [Performance
and Reliability]: Performance Analysis and Design Aids

General Terms
Performance, Design

1. INTRODUCTION

On-chip interconnects are modeled as RC circuits and substantial
effort has been expended in the delay prediction of such circuits.
Many of the most common delay metrics are based on an analogy
between non-negative impulse responses of an RC circuit and the
probability density functions (PDF). This analogy stems from the
fact that the impulse response A(#) of an RC circuit (without a
resistive path.to the ground) satisfies the following conditions [1]:

h(1)=0 Vi
mjh(t)dt =1
0

Since these are sufficient conditions for a function to be a PDF,
the impulse response of an RC circuit is a probability density
function. Also, since the step response is the integral of the
impulse response, the step response can therefore be modeled as a
cumulative density function (CDF). The median of a PDF is
defined such that it corresponds to the 50% point of CDF; hence
the 50% delay of an RC circuit under step excitation can be
calculated by computing the median of the impulse response.
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However, it is not trivial to compute the median and hence Elmore
proposed using the mean of the impulse response to model the
50% delay [2]. The mean of the impulse response is given by the
first moment (described later in Section 2) and is very simple to
compute. This has led to the widespread popularity of the Elmore
delay metric in performance optimization and delay calculation.
However, Elmore delay has been shown to be highly inaccurate in
certain cases since it does not consider resistive shielding of
downstream capacitance [7].

To enhance delay model accuracy, model order reduction
techniques such as asymptotic waveform evaluation (AWE) were
developed [4]. Though these techniques provide very high
accuracy, their use in the inner-loop during design optimization is
limited due to the lack of the closed form expressions. Various
two-pole delay metrics based on higher order moments were
proposed to compromise between a complex reduced order model
and a simple first moment based Elmore approximation [5,6]. An
empirical delay metric called D2M was proposed in [7] and was
shown to be highly accurate and very efficient.

In [8,9,10], the authors extended the probability interpretation of
the impulse response of an RC circuit by fitting it to the PDF of
various statistical distributions. Though these approaches show
very high accuracy, they are not as efficient as D2M and require
pre-constructed look-up tables for delay calculation.

Although there has been a large amount of work focused on
accurately modeling 50% delay as described above, the
importance of a good slew metric has been overlooked. Modeling
transition time degradation in RC circuits is an important part of
modeling propagation delay. In static timing analysis, slew must
be propagated to the next stages because gate and interconnect
delays are sensitive to the input slews. Coupling noise and its
impact on timing also strongly depends on the transition times of
aggressor nets. Accurate crosstalk noise modeling therefore
requires precise knowledge of the aggressor slews at the location
of the coupling. As noted in [11], the only slew metric currently
available in the literature is the Elmore based slew metric [12].
This metric is derived from a single dominant pole approximation
and is only as accurate as the first order delay metrics. Elmore [2]
and subsequently Gupta [3] noted that the transition time of an RC
circuit is similar to the standard deviation of the impulse response
but no formal treatment or model investigation has been
performed. In this paper, we propose a new two-moment based
slew metric called S2M (slew with 2 moments), that is highly
accurate and efficient enough for use in physical design
optimization loops. We also propose a modified version of this
metric called scaled S2M that is equally efficient and provides
much better accuracy at near end nodes. Since some existing delay
metrics can be extended to compute slews, we perform a thorough
investigation of the accuracy of various slew metrics for the first
time. The results imply that S2M and scaled S2M exhibit higher
accuracy than Elmore and D2M and are typically more accurate
than the more complex Weibull metric [10].



2. BACKGROUND

The new S2M metric is derived using a probability interpretation
of the impulse response, hence we begin by reviewing some
concepts of circuit moments and probability moments.

Let h(t) be the impulse response of an RC circuit and H(s) be the
Laplace transform of k(7). From the definition of the circuit
moments, we have :

H(s)=my +ms+my,s* +m,s’ +....=kask )
k=0
Also, since H(s) is the Laplace transform of A(z)
T st (=D e )
H(s)= |h@)e "dt = Y ~——s" |t“h(t)dt
froera= 'k
The -th probability moment 77, is defined as
3)

i, = [t h(e)dt
0

By comparing (1) and (2) and using the above definition of the
probability moments, the relationship between the circuit moments
my and the probability moments s, can be expressed as

k
D i,
k!
The circuit moments of an RLC tree can be computed efficiently

by path tracing. The p-th order circuit moment (p>1) of a node i
( m;) in an RLC tree can be expressed as

@

m

m,’; = Z (_ R,C, m;;—l —Ly Ckm;;-z ) ®)
k

Here, summation is taken over all the nodes other than the source

node. Cy is the capacitance at node &k and R; (L;) denote the total

overlap resistance (inductance) in the unique paths from the source

node to the nodes i and k.

The circuit moments can be computed recursively using (5). Since
circuit moments are related to the probability moments, hence
important information about the RC impulse response PDF can be
obtained from these circuit moments. The first probability
moment, which is the negative of the first circuit moment,
represents the mean (1) of a PDF. Higher order probability
moments of the distribution are usually translated into central
moments. The central moments are the moments around the mean
and they contain important geometrical information about the
probability density function. The k-th central moment of a PDF
h(t) with the mean p can be expressed as

e = [0 0 oy ©)
0

Using above definition of the central moments, the first few
central moments can be expressed in terms of circuit moments.
_ 2
My =2y —my
My

g represents the variance of the distribution. It is a measure of the
spread or the dispersion of the curve from the center. y; is the
measure of the skewness of the distribution.

M
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3. THE S2M SLEW METRIC

3.1 Metric Derivation

The central moments of a PDF define its shape characteristics.
Focusing on the slew rate, variance is the most important central
moment as it represents the spread around the mean. This point is
the basis of the new S2M metric.

Since the step response of an RC circuit is a cumulative density
function, it can be modeled by any monotonic function F(2) that
satisfies the following conditions:

0<F()<1
'I_.i{n F=0
LimF(@)=1 ®

t—>w

RC responses resemble an exponential waveform; hence we model
the step response CDF as
-t

F()=1-e" ©

The PDF of the impulse response A(?) corresponding to this CDF
(step response) can be obtained as

h(r) =%F(1) =Tle7r (10

The mean p and the variance p, (=0%) of this impulse response
PDF can be easily computed.

© ~
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M= J—e" di=1,
0%

~t

py = [~y i =2} an
0 [

We have one unknown parameter T, and we obtain its value by
matching the variance in (11) with the variance of actual RC
circuit impulse response (7). This is the key step in our approach

because variance is a measure of slew and it must be preserved for
accurate slew analysis.

t, =2m, - m? (12)

This value of t, can be substituted in (9) and the step response
function F() can be solved for 10 and 90% points. The resulting
slew metric is given by

S2M = (In9)(y/2m, —m]) (13)

Regarding the stability of S2M, it can be seen from the definition
of the second central moment (variance) in (6) that it is positive
for any PDF. Hence the square root term in (12) and (13) is
always defined and the metric is stable.

We point out here that if we obtain t, by matching the first
moment (mean), we obtain a dominant pole approximation where
the dominant pole is the inverse of the Elmore term. The scaled
Elmore delay (In 2 * Elmore) and the Elmore slew metric (In 9 *
Elmore) are based on this dominant pole approximation. It should
also be noted that we do not propose F(?) as an output waveform
model and solving F(?) for 50% delay may not provide accurate
results. Our goal is to find a closed form slew metric that is more
accurate than scaled Elmore but retains most of its simplicity. For
delay calculations, any two moment-based delay metric such as
D2M can be used. In fact, using S2M in conjunction with D2M
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Figure 1. RC circuit response waveforms and their S2M and
D2M approximations.

provides a very efficient way to compute delays and slews without
complex modeling of the output waveform. In static timing
analysis, we are interested only in 50% delay and 10-90% slew
rather than the waveform shape. Modeling approaches such as -
gamma and AWE attempt to capture the entire output waveform
shape but when these waveforms are propagated to the next stages,
they are approximated as saturated ramps; hence the extra
computational cost of such approaches cannot always be justified.

It may also seem that approximating step response with one pole
can cause high error in slew estimation because the actual
response can deviate significantly from a single pole exponential
approximation. Though it is correct that actual waveforms may
deviate from a one pole exponential, their relative spread around
the mean and hence the slew is same because their variances were
preserved during one pole approximation. Figure 1 shows two RC
response waveforms and their S2M and D2M approximations. It is
clear from the plots that in these cases, waveforms deviate
significantly from a one-pole exponential; however, in both the
cases the 10-90% slew is modeled accurately by S2M and 50%
delay is modeled well by D2M. Though neither S2M nor D2M
match the complete output waveform shape, together they can
capture the key delay points needed for timing analysis.

It should be noted here that S2M metric is effectively a scaled
form of the standard deviation of the impulse response. The
potential relationship between slew rate and the standard deviation
of h(t) has been suggested previously in [2,3]. Our S2M metric is
just a simple extension of this relationship.

3.2 The Scaled S2M Metric

S2M works very well for middle and far end nodes (as will be
shown later), however it is not as accurate at near end nodes. In
this section, we propose a modified version of S2M called scaled
S2M, that works extremely well for near as well as far end nodes,
while maintaining the efficiency of S2M.

Scaled S2M is derived using an analogy between S2M as a slew
metric and scaled Elmore (In 2 * Elmore) as a delay metric. Both
these metrics are single pole approximations of an RC response
and can be derived by matching the second and first central
moments of the RC impulse response respectively. However, S2M
is much more accurate in slew prediction than scaled Elmore is in
delay prediction. This is because S2M uses two circuit moments
while scaled Elmore is a simpler single moment based metric.

Another similarity in these metrics is that scaled Elmore uses the
mean to approximate 50% delay (median) while S2M uses the
standard deviation to approximate 10-90% slew. These
approximations are accurate for middle and far end nodes but they
do not hold as well for near end nodes as near end step responses
frequently show long tails due to resistive shielding effects. Step
responses with long tails translate to impulse responses with long
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tails and large skewness (third central moment). Because such
impulse responses are highly asymmetric, using the mean and
standard deviation to approximate the 50% delay and 10-90%
slew becomes inaccurate. Also, near end impulse response PDFs
are highly skewed in the positive direction causing S2M and
scaled Elmore to significantly overestimate slew and delay at
these nodes.

The authors in [7] observed the trend that scaled Elmore
significantly overestimates delay at the near end while slightly
underestimating delay at the far end. Hence they proposed the
D2M metric by introducing an empirical muitiplicative factor
r=-m,/ \/m-z to the scaled Elmore metric. This factor was found

to be much less than one for near end nodes and slightly greater
than one for far end nodes. Using this factor, the accuracy in delay
prediction is vastly improved. S2M also shows a similar trend of
overestimation at near end although it is extremely accurate at far
end nodes. Based on these observations relating scaled Elmore as
a delay metric and S2M as a slew metric, we conclude that a
similar factor can be used to improve near end accuracy. This is
the basis of a second new slew metric called scaled S2M.

Empirically we have found a good multiplicative factor to be
[ m, / Jm, » Which is the square root of the factor proposed to

improve scaled Elmore [7]. This is intuitive since S2M is a
variance-based metric while scaled Elmore is mean-based. Also
S2M shows better accuracy than scaled Elmore and hence the
multiplicative factor for S2M should be less than that for scaled
Elmore (i.e., closer to 1). The new scaled S2M metric is given by

Scaled SzM:——“J_m‘(1n9)(,lzm2 —m) (14)
4 mz

Figure 2 shows a simulated near end RC response and both S2M
and scaled S2M approximations for a difficult near end case. It is
clear that S2M overestimates slew due to the long tail. Scaled
S2M shows much better 10-90% fit for this test case.

The S2M and scaled S2M metrics can be easily extended to ramp
inputs by using the PERI (Probability distribution function
Extension for Ramp Inputs) approach described in [11]. The PERI
technique is based on the fact that when two mutually independent
PDFs are convolved, their mean and central moments add. By
using this simple observation, the authors of [11] propose the
following expression to extend step slew metrics to ramp inputs.

Slew(Ramp) = | Slew’ (step) + T} (15)

Here, T, is the input slew and Slew(step) and Slew(ramp) denote
slew for step and ramp excitation respectively.
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Figure 2. RC circuit response waveform compared to S2M and
scaled S2M approximations.



4. EXPERIMENTAL RESULTS

In this section, we compare our resuits with the Elmore based slew
metric (In 9 * Elmore) and also with other delay metrics that can
be extended to compute slew. Among major delay metrics, only
D2M and Weibull are extendable to slew. Though A-gamma can
also be extended to compute slews it requires extra look-up tables
for 10% and 90% points and the generation of these tables is non-
trivial. Hence, we do not compare our results with 4-gamma.

A.  Simple RC Tree Test Case

First we consider a simple RC tree taken from [7,10] and shown in
Figure 3. Table I shows that S2M results match well with SPICE,
with very high accuracy at far end nodes but relatively larger
errors at near end. Scaled S2M works well for all nodes including
very small errors at the near end. Weibull also shows good match
with SPICE for this test case although it underestimates the near-
end node slew rate by over 10%.

B.  Results on Industrial Nets

Next we consider a large number of RC interconnect examples
from a 0.18 pum high performance microprocessor design. The
total number of sinks considered was 3702. Table II shows the
mean, standard deviation, and error bins for different metrics
(errors are taken as absolute values when computing the mean).
The average error of S2M is much better than all other metrics.
Scaled S2M also shows low average error with the smallest
standard deviation. Since most of the nodes tested are far end
sinks, scaled S2M and S2M show comparable results. Table II
also shows that S2M predicts the slew rate of 78% of the sinks
within 1% of SPICE whereas the other metrics only do so for 1-
12% of cases. Scaled S2M is also highly accurate with 99.4% of
the nets showing less than 5% error.
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Figure 3. A simple RC tree.

Table 1. Comparison between different slew metrics for test
circuit of Figure 3. Slew rates are in ps and error relative to
SPICE is given in parentheses.

Node| Elmore D2M Weibull Scaled S2M Spice
S2M

| 1212 947 1426 1616 1828 1594
(-24%) | (-40.6%) | (-10.5%) | (1.3%) | (14.7%)

2 1502 1333 1663 1655 1865 1707
(-12%) | (-21.9%) | (~2.6%) (—3%) (9.3%)

5 1661 1559 1762 1757 1872 1725
(=3.7%) (—9.6%) (2.1%) (1.8%) (8.5%)

4 1766 1628 1902 1973 2055 1980
(-10.8%) | (-17.8%) | (-3.9%) | (-0.3%) | (3.8%)

5 2188 2207 2164 2159 2149 2158
(1.4%) (2.3%) (0.3%) (0%) (-0.4%)

6 2478 2631 2288 2247 2180 2216
(11.8%) (18.7%) (3.2%) (1.3%) | (-1.6%)

7 2636 2870 2340 2281 2186 2233
(18%) (28.5%) (4.8%) 2.1%) | (-2.1%)

Table IL. Error statistics and Error bins of slew metrics on
industrial nets (at 3702 sinks).

Error Statistics

Elmore | D2M | Weibull | Scaled S2M | S2M
16.1% 124.9%| 5.3% 2.97% 1.3%

Mean

Std. Deviation| 11.3% |18.1% | 3.7% 1.38% 3.1%

Error Bins

Elmore | D2M | Weibull | Scaled S2M | S2M
<1% 1.9% | 0.9% 6%

11.3% 78%
<5% 9% 6.5% | 37.2% 99.4% 93.5%
<10% 20.4% [11.6% | 99.1% 99.9% 97.1%

5. CONCLUSIONS

This paper describes two new metrics to accurately compute the
slew rate at any node in an RC circuit. The metrics, named S2M
and scaled S2M, are simple closed-form functions of the first two
circuit moments. These metrics should be useful in a range of
physical design areas such as noise avoidance during routing, on-
the-fly wire resizing/spacing, and fast checking of slew rate
constraints.
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