
Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

High Performance Pattern Matching on Heterogeneous Platform

Shima Soroushnia1,*, Masoud Daneshtalab1, Juha Plosila1, Tapio Pahikkala1 and
Pasi Liljeberg1

1Department of Information Technology, University of Turku, Finland
{shisor, masdan, juplos, aatapa, pakrli}@utu.fi

Summary

Pattern discovery is one of the fundamental tasks in bioinformatics and pattern recogni-
tion is a powerful technique for searching sequence patterns in the biological sequence
databases. Fast and high performance algorithms are highly demanded in many applica-
tions in bioinformatics and computational molecular biology since the significant increase
in the number of DNA and protein sequences expand the need for raising the performance
of pattern matching algorithms. For this purpose, heterogeneous architectures can be a
good choice due to their potential for high performance and energy efficiency. In this paper
we present an efficient implementation of Aho-Corasick (AC) which is a well known exact
pattern matching algorithm with linear complexity, and Parallel Failureless Aho-Corasick
(PFAC) algorithm which is the massively parallelized version of AC algorithm without fail-
ure transitions, on a heterogeneous CPU/GPU architecture. We progressively redesigned
the algorithms and data structures to fit on the GPU architecture. Our results on different
protein sequence data sets show that the new implementation runs 15 times faster compared
to the original implementation of the PFAC algorithm.

1 Introduction

In the last decade, the exponential growth of biological information, the need to understand
the complex interactions that determine the biological processes and the diversity and intercon-
nectedness of organisms at the molecular level have driven the need for high performance com-
putational biology[1]. Heterogeneous architectures that provide different processing elements
with different characteristics on the same machine are becoming mainstream in high perfor-
mance computing platforms and seem able to cope with these requirements. Such architectures
integrate different multicore CPUs with manycore accelerators (GPGPUs). When running an
application, some parts can execute on CPU while the other parts of the same application run
on the GPU side to benefit from the both processing elements features. Aho-Corasick[2] is one
of the widely used pattern matching algorithms in computational biology applications due to
its linear complexity and ability to match multiple patterns at the same time. The algorithm
works by building a state machine out of patterns and search through the data using the state
machine. It can find all the occurrences of the patterns inside the data in a single pass of data
and that is the main reason for the linear complexity. We developed a high performance par-
allel implementation of the AC algorithm for a heterogeneous computing environment. For

*To whom correspondence should be addressed.

doi:10.2390/biecoll-jib-2014-253 1

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

this purpose, we use the message passing interface (OpenMP) for parallelizing the building of
state machine on shared memory multicore CPU architectures and CUDA for fine grain paral-
lelization of searching on the GPU. To increase the performance of Aho-Corasick algorithm,
PFAC[3] which is the highly parallelized version of Aho-Corasick on GPGPUs has been in-
troduced. In PFAC algorithm, the state machine is built without any failure transition and it
is placed on the global memory. For searching through the data, a thread will be generated
for each single character in the dataset. The total number of threads is equal to the length of
text in dataset. Each thread needs to check the automaton in global memory and processes its
character to see if it can find a valid transition, otherwise the thread will be terminated. In this
paper, we attempt to speed up the PFAC algorithm by rearranging the data placements in the
GPU memories. We also used the heterogeneous programming concept for parallelizing the
building of the state machine using OpenMP.

2 Related works

Many research papers on accelerating pattern matching using GPUs have been published re-
cently as they are becoming increasingly popular for various applications. Different imple-
mentations to the Aho-Corasick algorithm have been proposed to increase the efficiency and
throughput of multiple pattern matching problems. Tumeo et al. [4] has introduced a parallel
version of the AC algorithm for network based applications that process TCP/IP packets. They
assigned a single TCP/IP packet to each CUDA thread, loading it in the shared memory, and
then divide the packet in further chunks assigned to each thread of the thread block. Another
GPU parallelization of AC algorithm has introduced in [5]. They tested their implementation
assuming the case when all data reside initially in the GPU memory and the results are to be left
in this memory. In this implementation, AC DFA (Deterministic Finite Automaton) is stored
in the texture memory. Threads cooperatively read all the data needed to process a block, store
this data in shared memory, and finally read and process the data from the shared memory. They
extended their idea in [6] and tested the AC and Boyer-Moore, which is another exact pattern
matching algorithm that performs the character comparison in reverse order to the desired key-
words [7], in two cases. In the GPU-to-GPU case, they considered several refinements to their
base GPU implementation and measured the performance gain from each refinement. For the
host-to-host case, they analyzed different strategies to reduce the communication cost between
the host and the GPU. Tran et al. [8] has developed a memory efficient parallelization of the AC
algorithm by placing the state transition table on texture memory and loading the data chunks
from global memory to the shared memory. They gained 15 times speedup comparing to the se-
rial execution of the algorithm. Gnort [9] is another GPU implementation of the AC algorithm
for Network Intrusion Detection Systems (NIDS). Each packet is copied to the shared memory
of the Multiprocessor and stream processors search different parts of the packet concurrently.
Another implementation based on Memory Page Size is introduced by Peng et al. [10]. They
split the large scale text into TextSize/PageSize size-fixed pages. All the data are transferred
to the GPU memory and different threads on GPU process different pages using the automaton
which is bound to texture memory. As an experiment of parallelizing the AC algorithm on
heterogeneous CPU-GPU platform, Tumeo et al. [1] has implemented the algorithm on GPU
clusters for the use of DNA analysis applications. They developed a master/slave implementa-

doi:10.2390/biecoll-jib-2014-253 2

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

tion, where the master MPI process distributes the work to the various nodes and GPUs, and the
slaves perform the effective computation. The GPU parallelization is based on partitioning the
input text in multiple chunks and assigning each chunk to a single CUDA thread. To catch the
patterns that go over the border of a single chunk, the chunks can be overlapped for the size of
the longest pattern in the dictionary. The state transition table is bound to the texture memory.
Also Tumeo et al. [10] have extended their previous work [4] on heterogeneous architecture by
developing a master/slave scheduler, where the master MPI process distributes the work, and
the slaves perform the effective computation. PFAC (parallel failure less Aho-Corasick) [11]
is a highly parallelized implementation of the AC algorithm without any failure transition. In
the PFAC algorithm, each character in the text is assigned to a thread and each thread is only
responsible for finding the patterns starting at its own starting position. The state transition
table is placed in the texture memory and data is preloaded to the shared memory. The PFAC
algorithm is then used for implementing serial and parallel Bayesian spam filtering [12]. In
this work, we have modified the AC algorithm by rearranging the placement of data in different
GPU memories comparing to PFAC. We also include heterogeneous programming concept by
using OpenMP interface for building the state machine on a multi-core CPU.

3 Aho-Corasick algorithm

A multi-string matching problem is defined as having a set of patterns Pi = {P1, . . . , Pn}
and we would like to detect all the occurrences of any of the patterns in P in a text stream
T . The Aho-Corasick solution for this problem is to build a Finite State Automaton with the
failure transitions, named pattern matching machine, and run this machine on the text to find
any existence occurrence of the patterns inside the text. The algorithm has two main steps.
First step is building the automaton out of the keywords we need to search for and second step
is traversing the automaton for each character we are reading from the input file to find the
matches. The automaton can be built as a keyword trie in which the nodes represent the state
and the edges between nodes are labeled by characters that cause the transitions between nodes.
These edges are categorized in two types. The forward transition edges and the backtrack edges
that are the output of the failure function. Given a state S that can be reached by traversing the
pattern matching machine using the forward transitions to find the pattern P , the failure function
output for the S is the state that can be reached by longest suffix of P . That mean considering
the cases that the pattern we reached, is a prefix for another pattern in pattern matching machine.

The trie is an efficient implementation of a dictionary of strings. It is also easy to implement a
state machine as a lookup table where the rows represent states and the columns represent input
character, so that each element of matrix shows the next state for the corresponding alphabet in
the current state. Having the information about the current state and next input character, the
machine can determine whether the input character causes a failure transition. If not, then it
makes a transition to the state corresponding to the character.

The complexity of constructing a pattern matching machine and searching the text is linear
to the total length of given patterns and the length of a text, respectively. Figure 1 shows
an example of how the algorithm works. The solid arrows in the state machine represent the
forward transitions and the dotted arrows represent the failure transitions.

doi:10.2390/biecoll-jib-2014-253 3

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

Figure 1: Aho-Corasick State machine and transition table for finding key-words: ABC, ADEC,
CAD.

In the example, the keyword set which we need to construct the automaton for is {ABC, ADEC,
CAD}. We start with the root node and insert each pattern after another. For each pattern Pi,
we need to start from the root and follow the path labeled by the characters of Pi. If the path
ends before we check all the characters of Pi, we have to add new nodes for the rest of the
characters. The last character of Pi should be marked as a final node to detect matches. It can
be seen that the time complexity of building the state machine is linear to the sum of the length
of all the keywords. The state machine then will be mapped to a lookup table. In each state
which is represented as a row, we can find the suitable transition by checking the column which
is matched the character we are facing. After building the state machine, the next phase is to
pass the state machine through the input text. We start from the root and for each character in
the text we follow the path in the state machine. If we reach to a final node, we will report a
match and otherwise the search will be terminated. For the search action the complexity will
be to the length of the text.

4 Implementation

Most of the previous parallelizations of Aho-Corasick algorithm are based on the method that
input stream is divided to the chunks and each chunk is assigned to a separate thread to search
through. An example can be seen in Fig. 2. It illustrates how the data parallelization method
can speed-up the application.

In theory, finding the pattern in parallel with four threads will be four times faster than doing it
sequentially since the four threads are doing the same search on different chunks of data simul-
taneously instead of doing the whole action with a single thread. However, this implementation

doi:10.2390/biecoll-jib-2014-253 4

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

Figure 2: Sequential vs. parallel search.

will face problem when patterns are occurred in the boundary of data as shown in Fig.3. In this
case, none of the threads searching the data chunks which include a part of the keyword can
detect the keyword and the search will miss all the keywords occurring in the boundaries.

Figure 3: Boundary problem.

In this case, the only way to solve this problem is to assign overlapped data chunks to the
threads and the size of this overlap should be equal to the size of the longest keyword. Fig.4
shows how data overlapping can solve the boundary problem. But this approach will lead to
significant performance reduction, specifically in GPU implementation that memory access is
the main issue and has considerable effect on the overall throughput of the system.

Figure 4: Threads with overlapped data to search through.

To overcome this problem, the PFAC algorithm is introduced [11]. In this algorithm, every
character in the input stream is assigned to a thread which is only responsible to find the key-
words beginning at its own starting position. If a thread does not have any valid transition for
the character, the thread will be terminated immediately. But in case of having a valid transition,
thread will continue reading the next character.

Figure 5: PFAC algorithm. Generating a thread for each character in the input stream.

doi:10.2390/biecoll-jib-2014-253 5

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

One of the most important features of PFAC algorithm is that it removes the failure transition
from the Aho-Corasick state machine by assigning a thread for each character. Each thread will
only find its own keyword that starts in its own starting position, so there is no need to have
failure transition anymore. Also the boundary problem that is introduced in the chunk based
approach is somehow solved here as we are not assigning the data chunks to the threads. Fig.
6 shows how PFAC algorithm detects keywords with its failureless state machine.

Figure 6: PFAC Finding the patterns with failureless state machine.

In the above example, assume that we are searching for the keyword ABC in the given text.
A thread is generated for each character in the text and each thread starts from the root and
searches for the keywords starting with its own starting position. First thread which reads Y as
its starting character will be terminated in the first stage as there is no valid transition for Y in
the state machine. Second thread which starts with A, will go to state 1 as its next transition and
reads the next character which is B. B then causes the thread to move to the second state and
by reading next character which is C, thread will report a match while it is in third state. Next
character for t2 is W which causes the termination of the thread as there is no valid transition
from state 3 for W. Next thread which is t3, can not find any valid transition for its starting
character and will be terminated in the first stage. The forth thread will move to state 7 after
reading its first character which is C, but after reading its second character which is W, it will
be terminated since there is no valid transition for W from state 7. The implementation of the
PFAC algorithm is in a way that the state transition table is placed in the texture memory, which
is a part of global memory with an internal 6KB cache in each streaming processor. Then the
input data will be first transferred to the GPUs shared memory and then searching through the
data will be started. Although PFAC eliminates the boundary problem between threads, there
are still boundary problems while prefetching data to the GPUs shared memories and patterns
that are occur in the boundary of data chunks that are going to be loaded to the shared memory
will not be detected without use of overlapping method again [13].

doi:10.2390/biecoll-jib-2014-253 6

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

Figure 7: Boundary problem in PFAC algorithm.

An example is shown in Fig. 7. Pattern AX in the boundary of first two segments will not be
found without overlapping the data chunks. Another issue about the PFAC algorithm is the
memory accesses. Considering the fact that each thread needs to check the next transition for
its input character from transition table which is placed in the texture memory, and also very
limited size of texture cache, for most of the input characters we need to have two memory
accesses. One will happen when reading the character and the other one when checking the
transition table for that character. This problem will become more serious when we have large
set of patterns to search for, which leads to have a larger transition table and more global
memory accesses. Our solution for the aforementioned problem is to store the transition table in
the shared memory of each streaming processor. Threads then start reading the input file as it is
explained in the PFAC algorithm. For limiting the global memory access to once per thread, we
use the fact that threads inside each streaming processor can communicate with each other via
the shared memory. We allocate a small part of the shared memory for communication between
the threads in each streaming processor, so that whenever a thread finds its next transition by
checking the transition table from the shared memory, it will be assigned the value of next
thread for continuing its search. This trend will be continued till each thread finds the keyword
starting at the threads starting position or the termination of the thread due to not having the
next transition. An example of this method is illustrated in the Fig.8. Assume that we are
searching for pattern AB, all the threads will read their value from the global memory and start
searching for the next transition by checking the transition table in the shared memory. As the
thread with the value A will have a next transition and needs B to be its new value, it can have
the value of its next thread instead of reading the value from the global memory.

doi:10.2390/biecoll-jib-2014-253 7

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

Figure 8: Storing the transition table of State machine in shared memory.

This implementation leads to reduction of memory accesses to once per character. Also, as the
threads access to contiguous global memory locations, memory accesses will be coalesced, that
means the device coalesces global memory loads and stores issued by threads of a warp into as
few transactions as possible to minimize DRAM bandwidth. Hence we can use the maximum
bandwidth for fetching data from the global memory and reducing the global memory latency
as much as possible.

5 Experimental results

In this section we will discuss the performance of our heterogeneous implementation with re-
spect to the original implementation of PFAC algorithm. The result for the modified PFAC
algorithm without including the OpenMP part is also presented here to have a better overview
of our modification results. Table 1 shows the comparison between the execution time of dif-
ferent protein datasets on different implementation of the algorithm. We also test the sequential
version of the algorithm with a single thread on CPU. That means a single thread builds the
state machine and starts to search the input data character by character. In sequential version,
the state machine should include the failure function. The memory efficiency of GPU imple-
mentation is much more than sequential version due to removing the failure transitions. We
selected a few sets of protein databases for different animals to assess the presented method.
Execution time and system throughput for different implementations on NVIDIA Tesla C2075
and Intel Xeon Processor E5-2620 are shown below.

doi:10.2390/biecoll-jib-2014-253 8

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

Figure 9: System throughput (Gbps).

Table 1: Execution time for each implementation (DB1: Human (26.635MB), DB2: Mouse
(28.057MB), DB3: ZebraFish (22.59MB), DB4: Alpaca (28.914MB), DB5: Anole Lizard
(59.714MB), DB6: Armadillo (31.04MB))

Modified PFAC + OpenMP Modified PFAC Original PFAC Sequential
DB1 6.23 7.08 7.94 53.06
DB2 6.42 6.9 7.83 55.02
DB3 6.05 7.02 7.95 60.04
DB4 6.91 7.12 8.43 49.65
DB5 9.36 11.88 15.42 107.05
DB6 6.7 7.32 8.62 67.32

Results show the average of 15% speedup for our implementation compared to to the original
PFAC implementation. Figure 9 shows the system throughput calculated using the formula
inputsize/(T (Total)) in Gigabits per second (Gbps). Increasing the size of the data set leads
to have higher throughput.

As can be seen from the figure, the modified PFAC has higher throughput as the result of
reducing the memory accesses by placing the transition table on the shared memory. The effect
of the memory access reduction will be more visible while searching for the longer strings.
Longer strings make larger transition table and so need more memory access.

6 Conclusion

In this paper, we have proposed a heterogeneous parallelization of AC algorithm. We modi-
fied the PFAC algorithm by rearranging the data placement in the GPU memories and using

doi:10.2390/biecoll-jib-2014-253 9

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

OpenMp for parallelizing the building of the state machine. We compared our implementation
with the original PFAC algorithm. The experimental results show the average of 15% speedup.

References

[1] A. Tumeo and O. Villa. Accelerating DNA analysis applications on GPU clusters. In
IEEE 8th Symposium on Application Specific Processors (SASP), pages 71–76. 2010.

[2] A. V. Aho and M. J. Corasick. Efficient String Matching: An Aid to Bibliographic Search.
Commun. ACM, 18(6):333–340, 1975.

[3] C.-H. Lin, S.-Y. Tsai, C.-H. Liu, S.-C. Chang and J.-M. Shyu. Accelerating String Match-
ing Using Multi-Threaded Algorithm on GPU. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–5. 2010.

[4] A. Tumeo, O. Villa and D. Sciuto. Efficient Pattern Matching on GPUs for Intrusion De-
tection Systems. In Proceedings of the 7th ACM International Conference on Computing
Frontiers, CF ’10, pages 87–88. ACM, New York, NY, USA, 2010.

[5] X. Zha and S. Sahni. Multipattern String Matching On A GPU. In 2011 IEEE Symposium
on Computers and Communications (ISCC), pages 277–282. IEEE, 2011.

[6] X. Zha and S. Sahni. GPU-to-GPU and Host-to-Host Multipattern String Matching On A
GPU. IEEE Transactions on Computers, 62:1156–1169, 2012.

[7] J. S. M. Robert S. Boyer. A fast string searching algorithm. Communications of the ACM,
20:762–772, 1977.

[8] N.-P. Tran, M. Lee, S. Hong and M. Shin. Memory Efficient Parallelization for Aho-
Corasick Algorithm on a GPU. In High Performance Computing and Communication
2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on, pages 432–438. 2012.

[9] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos and S. Ioannidis. Gnort: High
Performance Network Intrusion Detection Using Graphics Processors. In R. Lippmann,
E. Kirda and A. Trachtenberg (editors), Recent Advances in Intrusion Detection, volume
5230 of Lecture Notes in Computer Science, pages 116–134. Springer Berlin Heidelberg,
2008.

[10] J. Peng, H. Chen and S. Shi. The GPU-based String Matching System in Advanced AC
Algorithm. In Computer and Information Technology (CIT), 2010 IEEE 10th Interna-
tional Conference on, pages 1158–1163. 2010.

[11] C.-H. Lin, C.-H. Liu, L.-S. Chien and S.-C. Chang. Accelerating Pattern Matching Using
a Novel Parallel Algorithm on GPUs. Computers, IEEE Transactions on, 62(10):1906–
1916, 2013.

doi:10.2390/biecoll-jib-2014-253 10

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 11(3):253, 2014 http://journal.imbio.de/

[12] S. Haseeb, M. Motwani and A. Saxena. Serial and Parallel Bayesian Spam Filtering using
Aho-Corasick and PFAC. International Journal of Computer Applications, 74(17):9–14,
2013.

[13] C. Agarwal, A. Rasool and N. Khare. PFAC Implementation Issues and their Solutions on
GPGPUs using OpenCL. International Journal of Computer Applications, 72(7):52–58,
2013.

doi:10.2390/biecoll-jib-2014-253 11

C
op

yr
ig

ht
20

14
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/

	Introduction
	Related works
	Aho-Corasick algorithm
	Implementation
	Experimental results
	Conclusion
	References

