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Abstract: This paper deals with electric field characteristics under three-phase voltage in three-
phase gas insulated switchgear (GIS). Three-phase equipment differs from single-phase 
equipment in two aspects: configuration and applied voltage. In this paper the effects of these 
differences on electric field in three-phase GIS are reported. There are periodic changes in the 
electric field magnitude and direction produced by three-phase voltage at any point. While the 
voltage phase varies, the electric field vector changes and rotates continuously. The rotating 
characteristics of the electric field vector in three-phase power apparatus depended on the position 
inside the insulation of the tank. The electric field vector locus is circular, elliptic, or linear. The 
elliptical nature of rotating electric field is expressed as electric field ratio. The mathematic 
description of the rotating electric field is given considering the maximum and the minimum 
electric field and the position inside the insulation. There is no zero electric field under three-
phase voltage. The areal velocity of the electric field vector locus is constant. The electric field 
vector moves slowly in a high electric field area, but moves quickly in a low electric field area. 
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1. Introduction 
 Application of three-phase equipment (three-phase in one tank) such as three-phase gas 
insulated switchgear (GIS) and three-phase gas insulated bus (GIB), has been increasing due to 
its compactness and low cost [1-9]. A three-phase in one-tank design has also been developed 
for 550 kV GIS [7]. Therefore, the knowledge on the electric field inside three-phase electric 
power apparatuses under three-phase voltage is very important. The knowledge on three-phase 
electric field is useful for electric equipment and insulation design and analyzing electric 
phenomena inside the insulation of equipment such as electric stress and internal discharges. 
Three-phase equipment differs from single-phase equipment in two aspects: configuration and 
applied voltage as shown in Figure 1. It can be expected that the electric field characteristic 
will be different from that in single-phase equipment. In this paper the effects of these 
differences on electric field inside three-phase GIS are studied.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The difference between single-phase and three-phase equipment 
 
 

Received: September 3th, 2012.  Accepted: October 30th, 2012 

405



 
 

2. Model of Three-Phase GIS 
 A simplified model of three phase GIS was used in this research. It was composed of a tank 
model 150 mm in diameter, 300 mm in length, 2 mm in thickness, and three-phase conductors 
25 mm in diameter.  
 The electrode system was arranged to simulate three-phase electric field in three-phase 
equipment. The conductors were arranged in an isosceles triangle construction. The layout and 
dimensions of the model are shown in Figure 2. 
 
3. Electric Field Calculation 
 The calculation method of electric field inside three-phase equipment has been developed 
since more than thirty years ago [11-17]. The newest simulation method and the result in three-
phase electric field calculation are described in [17]. 
 In this research the electric fields inside the insulation of the construction were determined 
from a boundary element method simulation: along a circle among the phases and the tank, 
along vertical line starting from the bottom of the tank, along line connecting the centers of 
conductor phases, and around the conductor. The electric field calculation is two dimensional. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Layout of simplified model of three-phase gas insulated switchgear 
 
4. Electric Field Analysis and Discussion 
A. Distribution of Three-phase Electric Field 
 Figure 3 shows the change of electric field distribution with phase of applied voltage. 
Here,θs is the phase angle of S phase of applied voltage. The blue color in the figure reveals 
that the electric field intensity is the lowest, while the red color reveals that the electric field 
intensity is the highest. The electric field distribution pattern varies with phase of applied 
voltage. Every a half cycle the pattern of electric field stress is repetitive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Change of electric field distribution with phase of applied voltage 
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Figure 4. Electric field distributions inside single-phase equipment and three-phase GIS 
 
 Figure 4 shows the difference in electric field distribution between single-phase and three-
phase equipment. The electric field distribution pattern in single-phase equipment is 
independent of phase of applied voltage, while one in three-phase equipment changes with the 
change of applied voltage. 
 
B. Periodic Changes of Electric Field Vector under Three-phase Voltage 
 Figure 5 shows the change in the pattern of the electric field vector at 5 mm below the center 
of the tank during one cycle of applied voltage. It seems that there are periodic changes in 
electric field magnitude and direction produced by three-phase voltage at any point. While the 
voltage phase varies from 0 to 2π, the electric field vector changes and rotates continuously. 
Note, that there is no zero electric field in three-phase construction. When the voltage of one of 
phases equals to zero, the voltage in the other phases is not zero. 
These results differ significantly with the electric field vector characteristics inside single phase 
GIS under single phase voltage. Figure 6 shows the change in the pattern of the electric field 
vector anywhere inside single-phase GIS during one cycle of applied voltage.  
 
 
 
 
 
 
 
 
 
 
 
Figure  5. Pattern of the electric field vector at 5 mm below the center of the tank of three-phase 

GIS during one cycle of applied voltage 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Pattern of the electric field vector during one cycle of applied voltage  
in single-phase GIS 
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 The magnitude of electric field vector changes with the applied voltage, but the electric field 
vector direction is unchanged during half cycle. During the other half cycle, the directions of the 
electric field vector become the opposite. Note, that there are zero electric fields in single-phase 
construction. When the voltage is zero, the electric field is zero. 
  
C. Rotating Characteristics of Three-phase Electric Field Vector  
 Figure 7 shows the change of the electric field vector at 5 mm below the center of the tank 
of three-phase GIS during one cycle of applied voltage in three-phase equipment. The locus is 
drawn based on the pattern of electric field vector in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Locus of the electric field vector at 5 mm below the centre of the tank of three-phase 

GIS during one cycle of applied voltage 
 
 It appears that the electric field vector direction rotates and changes continuously.  The 
electric field locus is circular during one cycle of applied voltage. Note, that there is no zero 
electric field in three-phase construction.   
 These results differ significantly with the electric field vector locus inside single phase GIS 
under single phase voltage. Figure 8 shows the electric field vector locus anywhere inside 
single-phase GIS during one cycle of applied voltage. 
 The magnitude of electric field vector changes with the applied voltage, but the electric 
field vector direction is unchanged during half cycle. During the other half cycle, the direction 
of the electric field vector becomes the opposite. There are zero electric fields in single-phase 
construction. When the voltage is zero, the electric field is zero. 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Locus of the electric field vector during one cycle of applied voltage in  
single-phase GIS 

 
D. Pattern and Locus of Rotating Electric Field Vector  
 Figure 9 shows the locus of the electric field vector at different points. Here, while the 
vector locus is elliptic, its shape varies locally. On the electrode surface the locus is linear 
because the electric field lines are vertical to the conductor surface.  
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 At some regions, for example at point A, the locus is elliptic. Meanwhile, at point B, which 
is 5 mm below the centre of the tank, the locus is truly circular. It is also found that the electric 
field vector locus between the phases and the tank is almost linear, resembling that in a 
single-phase configuration; while that between phases has variations: linear, elliptic, and 
circular. 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Electric field vector loci in isosceles triangle arrangement of three-phase construction 

without particle 
 
E. The Mathematics Description of Rotating Electric Field Vector 
 The rotating electric field at a certain position (x,y) can be described by four parameters: 
the maximum Emax (x,y) and minimum Emin (x,y) field strength, the phase angle of applied 
voltageθmax (x,y) at maximum field Emax (x,y), and field direction φmax (x,y) at maximum 
field [11]. These parameters are illustrated in Figure 10.  
 δV in the figure is defined as the angle that designates the intersection width of the electric 
field vector locus and critical electric field circle Ecr. 
The elliptical nature of rotating electric field is expressed as electric field ratio,η. It is defined 
as the ratio between the magnitudes of the elliptical field along the main axes, 
 η= Emin / Emax (0<η<1) 
 where: 
Emin: minimum electric field intensity at a certain point during a cycle of applied voltage 
Emax: maximum electric field intensity at a certain point during a cycle of applied voltage 
 When the electric field ratioη= 0, the electric field vector locus is linear. When the electric 
field ratio 0 <η< 1, the electric field vector locus is elliptic. When the electric field ratioη= 1, 
the electric field vector locus is circular. 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Rotating electric field parameters 
 
F. Elliptical Nature of The Electric Field Vector Locus 
 The electric field vector locus at different points, those are at the distances 0 mm (A), 5 mm 
(B), 10 mm (C), 15 mm (D), 20mm (E), and 25 mm (F) away from S conductor in the absence 
of particle are shown in Figure 11.The points are laid between S conductor and the center of 
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three-phase GIS. The electric field ratio changes fromη=0 at S conductor surface (point A) to 
η=0.2 at point B,   η=0.4 at point C, η=0.7 at point D, η=1 at point E.  
 Here, while the vector locus is elliptic, its shape varies locally. On the electrode surface (at 
Point A) the locus is linear because the electric field lines are vertical to the conductor surface. 
At some regions, for example at point B, C, D, the locus is elliptic. Meanwhile, at point E, 
which is 5 mm below the center of the tank, the locus is truly circular.  
 If a point approaches the center of the cross section of the tank, the maximum electric field 
reduces; while the minimum electric field increases as shown in Figure 12. The minimum and 
maximum electric fields are same at point E (20 mm from S conductor). The electric field 
vector locus changes from linear to circular when the points keep away from S conductor 
(point A) to the point 5 mm below the center of the three-phase construction (point E). The 
electric field ratio (η) changes from 0 until 1 from point A until E. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. The electric field vector locus at the distances 0 mm (A), 5 mm (B), 10 mm (C), 15 

mm (D), 20mm (E), and 25 mm (F) away from S conductor 
 
 
 
 
 
 
. 
 
 
 
 
 
 
Figure 12. Minimum and maximum electric field from point B (5mm from S conductor) until 

point E(20mm from S conductor) without particle 
 
G. Rotating Electric Field Characteristics 
 Figure 13 illustrates the absolute electric field for three different positions during a cycle of 
the applied voltage Va. Emax at each position is the same, while the electric field ratio ηis 
different, designated by η1, η2, and η3, where η1>η2>η3. 
 It is clear that at a certain position (x,y) inside the three-phase construction, the field is 
rotating with varying magnitudes, i.e, sinusoidal in two perpendicular directions without 
necessarily coinciding at zero crossings. For the same maximum electric field, there may be 
various values of the electric field ratio ηat different positions. 
 The other important characteristic of three-phase electric field is the difference in the 
angular velocity of the applied voltage and the angular velocity of the electric field vector. The 
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