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Abstract—An emerging category of devices at the edge of the
Internet are consumer centric mobile sensing and computing
devices, such as smartphones, music players, and in-vehicle sen-
sors. These devices will fuel the evolution of the Internet of Things
as they feed sensor data to the Internet at a societal scale. In this
paper, we will examine a category of applications that we term mo-

bile crowdsensing, where individuals with sensing and computing
devices collectively share data and extract information to measure
and map phenomena of common interest. We will present a brief
overview of existing mobile crowdsensing applications, explain
their unique characteristics, illustrate various research challenges
and discuss possible solutions. Finally we argue the need for a
unified architecture and envision the requirements it must satisfy.

1 INTRODUCTION

The integration of sensing and embedded everyday
computing devices at the edge of the Internet will
result in the evolution of an embedded Internet or
the Internet of Things. Typical IoT devices include
physical items tagged/embedded with sensors (e.g.
chemical containers with temperature sensors), scis-
sors with IC-tags, and smart meters to remotely
monitor energy consumption. An emerging cate-
gory of edge devices that we believe will result
in the evolution of Internet of Things are con-
sumer centric mobile sensing and computing de-
vices, which are connected to the Internet. These in-
clude smartphones (iPhone, Google Nexus), music
players (iPods), sensor embedded gaming systems
(Wii, XboX Kinect), and in-vehicle sensing devices
(GPS, OBD-II). They have become extremely pop-
ular recently and are potentially important sources
of sensor data. They are typically equipped with
various sensing faculty and wireless capabilities
that allow them to produce data and upload the
data to the Internet. As an example, a sample list

of mobile devices and their corresponding sens-
ing capabilities are provided in Table 1. Future
sensing capabilities on smartphones include ECG
(for medical purposes, e.g. ithlete, H’andy Sana),
poisonous chemical detection (e.g. cell-all), and air-
quality sensors (e.g. Intel’s EPIC, Figure 1).

Different from the ”typical” everyday IoT ob-
jects (e.g., coffee machines) that traditionally lack
computing capabilities, these mobile devices have a
variety of sensing, computing and communication
faculty. They can serve either as a bridge to other
everyday objects, or generate information about the
environment themselves. We believe they will drive
a plethora of IoT applications that elaborate our
knowledge of the physical world.

These applications can be broadly classified into
two categories, personal and community sensing,
based on the type of phenomena being monitored.
In personal sensing applications, the phenomena
is pertaining to an individual. For example, the
monitoring of movement patterns (e.g. running,
walking, exercising) of an individual for personal
record-keeping or healthcare reasons. Another ex-
ample of personal sensing is one that monitors the
transportation modes of an individual to determine
his or her carbon footprint.

On the other hand, community sensing pertains
to the monitoring of large-scale phenomena that
cannot be easily measured by a single individ-
ual. For example, intelligent transportation systems
may require traffic congestion monitoring and air
pollution level monitoring. These phenomena can
be measured accurately only when many individu-
als provide speed and air quality information from
their daily commutes, which are then aggregated
spatio-temporally to determine congestion and pol-



Device Inertial Compass GPS Microphone Camera Proximity Light
iPhone 4 X X X X X X X

Nexus S X X X X X X X

Galaxy S II X X X X X X X

HTC Sensation X X X X X X X

Garmin X X X

ForeRunner 410

TABLE 1
Sensors on various mobile sensing devices

(a) Sensors on Apple’s iPhone 4 (b) Intel’s air quality sensor
that communicates with Blue-
tooth enabled mobile phones

(c) ECG sensor enabled mobile phone,
H’andy Sana

Fig. 1. Sensors on current iPhone 4 and future sensors that will possibly be integrated with mobile phones

lution levels in cities.
Community sensing is also popularly called par-

ticipatory sensing [1] or opportunistic sensing [2].
Participatory sensing requires the active involve-
ment of individuals to contribute sensor data (e.g.
taking a picture, reporting a road closure) related
to a large-scale phenomena. Whereas opportunistic
sensing is more autonomous and user involvement
is minimal (e.g. continuous location sampling with-
out the explicit action from the user). We take
the position that community sensing spans a wide
spectrum of user involvement, with participatory
sensing and opportunistic sensing at the two ends.
We therefore coin the term mobile crowdsensing
(MCS) to refer to a broad range of community
sensing paradigms1.

In the rest of this article, we will survey exist-
ing crowdsensing (both participatory and oppor-
tunistic) applications (Section 2), identify unique
characteristics of MCS applications (Section 3), and
discuss the research challenges they face, their solu-

1. The notion that crowdsensing spans a spectrum from partic-
ipatory sensing to opportunistic was suggested by our colleague
Thomas Erickson

tions and tradeoffs. The research challenges that we
discuss include: (i) Localized analytics, (ii) Resource
limitations, (iii) Privacy, security, and data integrity,
(iv) Aggregate analytics, and (v) Architecture.

2 MOBILE CROWDSENSING APPLICA-
TIONS

In this section, we will briefly discuss existing
mobile crowdsensing applications, which provide a
basis for illustrating various research challenges in
the rest of this article. We classify MCS applications
into three different categories based on the type
of phenomenon being measured or mapped. These
include (i) Environmental, (ii) Infrastructure, and (iii)
Social.

In environmental MCS applications, the phenom-
ena are those of the natural environment. Exam-
ples include measuring pollution levels in a city,
water levels in creeks, and monitoring wildlife
habitats. Such applications enable the mapping of
various large scale environmental phenomena by
involving the common man. An example prototype
deployment for pollution monitoring is Common
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Sense [3]. Common Sense uses specialized hand-
held air quality sensing devices that communicate
with mobile phones (using Bluetooth) to measure
various air pollutants (e.g. CO2, NOx). These de-
vices when deployed across a large population, col-
lectively measure the air quality of a community or
a large area. Similarly, one can utilize microphones
on mobile phones to monitor noise levels in com-
munities. Another example is CreekWatch devel-
oped by IBM Almaden Research Center. It monitors
water levels and quality in creeks by aggregating
reports from individuals, such as pictures taken at
various locations along the creek, or text messages
about the amount of trash. Such information can be
used by the water control boards to track pollution
levels in water resources.

Infrastructure applications involve the measure-
ment of large scale phenomena related to public
infrastructure. Examples include measuring traffic
congestion, road conditions, parking availability,
outages of public works (e.g. malfunctioning fire
hydrants, broken traffic lights), and real-time transit
tracking. Early MCS deployments measured traf-
fic congestion levels in cities, examples of which
include MIT’s CarTel [4] and Microsoft Research’s
Nericell [5]. CarTel utilizes specialized devices in-
stalled in cars to measure the location and speed of
cars and transmit the measured values using public
WiFi hotspots to a central server. This central server
can then be queried to provide information such as
least delay routes or traffic hotspots. On the other
hand, Nericell utilizes individuals’ mobile phones
to not only determine average speed or traffic
delays, but also detect honking levels (especially in
countries like India where honking is common) and
potholes on roads. Another example is ParkNet [6],
an application that detects available parking spots
in cities using ultrasonic sensing devices installed
on cars combined with smart phones.

Finally, the third category is social applica-
tions, where individuals share sensed information
amongst themselves. As an example, individuals
can share their exercise data (e.g. how much time
one exercises in a day) and compare their exercise
levels with the rest of the community. They can use
this comparison to help improve their daily exercise
routines. Example deployments include BikeNet [7]
and DietSense [8]. In BikeNet, individuals measure
location and bike route quality (e.g. CO2 content
on route, bumpiness of ride) and aggregate the
data to obtain “most” bikeable routes. In DietSense,

individuals take pictures of what they eat and share
it within a community to compare their eating
habits. A typical use case for this is for a community
of diabetics to watch what other diabetics eat and
control their diet or provide suggestions to others.

To summarize, the functioning of typical MCS
applications is illustrated in Figure 2, which depicts
a number of research challenges as functional com-
ponents.

3 MCS: UNIQUE CHARACTERISTICS

We will first illustrate the unique characteristics
of MCS applications that differentiate them from
traditional mote-class sensor networks. This will
provide the reader with an idea about the research
challenges faced by MCS applications.

Compared to traditional mote-class sensor net-
works, mobile crowdsensing has a number of
unique characteristics that bring both new oppor-
tunities and problems. First, today’s mobile devices
have significantly more computing, communica-
tion and storage resources than mote-class sen-
sors, and they are usually equipped with multi-
modality sensing capabilities. These will enable
many applications that require resources and sens-
ing modalities beyond current mote-class sensors
possess. Second, millions of mobile devices are
already “deployed in the field”: people carry these
devices wherever they go and whatever they do.
By leveraging these devices, we could potentially
build large scale sensing applications efficiently
(cost and time). For example, instead of installing
road-side cameras and loop detectors, we can col-
lect traffic data and detect congestion levels using
smartphones carried by drivers. Such solutions re-
duce the cost of deployment of specialized sensing
infrastructure.

The dynamic conditions of the set of mobile
devices and the need for data reuse across different
applications in MCS are also quite different from
those of traditional sensor networks. In MCS, the
population of mobile devices, the type of sensor
data each can produce, and the quality in terms
of accuracy, latency, confidence can change all the
time due to device mobility, variations in their
energy levels and communication channels, and
device owners’ preferences. Identifying the right set
of devices that can produce the desired data and
instructing them to sense with proper parameters
to ensure desired quality is a complex problem. In
traditional sensor networks, the population and the
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Fig. 2. Typical functioning of MCS applications. Raw sensor data are collected on devices and processed
by local analytic algorithms to produce consumable data for applications. The data may then be modified to
preserve privacy and is sent to the backend for aggregation and mining.

data they can produce are mostly known apriori,
thus controlling the data quality is much easier.
The same sensor data have been used for different
purposes in many existing MCS applications. For
example, the accelerometer readings have found us-
age in transportation mode identification, pothole
detection, human activity pattern extraction. To ef-
ficiently support multiple concurrent applications,
it is critical to identify common data needs and
support the reuse of sensor data across applications.
In contrast, a conventional sensor network is typ-
ically intended for a single application and reuse
for vastly different purposes is rarely needed.

Because devices are owned and carried by indi-
vidual users, humans are usually involved in the
loop. On one hand, the intelligence and mobility
of humans can be leveraged to help applications
collect higher quality or semantically complex data
that may otherwise require sophisticated hardware
and software. For example, humans can easily iden-
tify available street parking spots and report with
pictures or text messages, whereas an ultrasound
based scanning system not only requires special
hardware but also sophisticated processing algo-

rithms to ensure the reliability of data. On the
other hand, humans naturally have privacy con-
cerns and personal preferences that are not nec-
essarily aligned with the end goals of the MCS
applications. The user may not want to share sensor
data that contains or reveals private and sensitive
information, such as their current location.

Another important implication for human in-
volvement are incentives. Participating individuals
(devices) may incur energy, monetary costs or even
explicit efforts on the owner of the device for sens-
ing, processing and communicating of desired data.
Unless there are strong enough incentives, the own-
ers may not be willing to contribute their resources.
For MCS applications to succeed, there have to
be appropriate incentive mechanisms to recruit,
engage, and retain human participants. Elaboration
on incentive mechanisms and other people-oriented
tools are beyond the scope of this paper, since our
focus is on system challenges.

4 LOCALIZED ANALYTICS

Various sensors such as GPS, accelerometer, micro-
phone and camera are available on mobile devices.

4



The OS allows applications to access the sensors
and extract raw sensing data from them. However,
depending on the nature of the raw data and the
needs of applications, the physical readings from
sensors may not be suitable for the direct con-
sumption of applications. Many times, some local
analytics performing certain primitive processing
of the raw data on the device are needed. They
produce intermediate results which are sent to the
backend for further processing and consumption.
For example, in a pothole detection [5] application,
a local analytic computes spikes from 3-axis accel-
eration sensor data to determine potential potholes.

The motivation of such local analytics are two-
fold. First, the kind of processing performed leads
to appropriately summarized data, thus consuming
lesser energy and bandwidth than transmitting the
raw sensor readings. This is a well-known tradeoff
in conventional mote-class sensor networks: using
computation to save energy/bandwidth. Second, it
reduces the amount of processing that the backend
has to perform. Further, if the mobile devices in a
societal scale deployment transmit raw sensor data,
the backend can easily be overwhelmed. Finally,
some applications are delay sensitive and transmit-
ting raw sensor data on intermittently connected
channels can be time consuming as compared to
that of sending processed sensor data.

The main challenge in local analytics is finding
heuristics and designing algorithms to achieve the
desired function. One category of functions is data
mediation, such as filtering of outliers, elimination
of noise, or filling in data gaps. For example, GPS
samples acquired may not be accurate or missing
(due to lack of line of sight), in which event,
outliers need to be eliminated or missing samples
extrapolated.

Another common category of functions are con-
text inference. Examples of context include trans-
portation mode (whether the user in on a car, bus,
train, or on foot), the kinetic modes of humans
(walking, standing, jogging, running), the social
settings (e.g., in a meeting, having a phone call,
watching TV, etc.), or the occurrence of certain
events in the surrounding environments (e.g., pot-
holes on road, stop-and-go traffic, loud noise lev-
els). The heuristics and algorithms needed can be
quite application specific. Hence, the exact algo-
rithm used for context inference depend on the
nature of the application and the characteristics
of the context. The current practice is to develop

analytics solely for one application. This could
leads to an ”explosion” of analytics when many
crowdsensing applications co-exist. Each analytic is
working individually and there is possibility that
they may be accessing the same sensor, or involve
similar computation in their inference.

5 RESOURCE LIMITATIONS: ENERGY,
BANDWIDTH, AND COMPUTATION

Even though they possess much more computing,
bandwidth, and energy resources than mote-class
sensors, mobile devices nevertheless face resource
limitations. Resource constraints in traditional sen-
sor networks have been well studied. However,
MCS applications introduce new aspects in this
regard.

First, the set of devices that are collecting sen-
sor data are highly dynamic in availability and
capabilities. Due to this highly dynamic nature,
modeling and predicting the energy, bandwidth
requirements to accomplish a particular task is
harder than traditional sensor networks. Second,
when there are a large number of available de-
vices with diverse sensing capabilities, identifying
and scheduling sensing and communication tasks
among them under resource constraints is more
complex.

Another interesting aspect is the interdependen-
cies between various types of sensory data due to
multi-modality sensing capabilities. Different types
of data can be used for the same purpose, but
with different quality and resource consumption
tradeoffs. Leveraging these differences to improve
the quality while minimizing resource consumption
is a novel challenge. For example, location data can
be provided using GPS, WiFi, and GSM, with de-
creasing levels of accuracy. Compared to WiFi and
GSM, continuous GPS location sampling drains the
battery faster. One approach to this problem uses
low duty cycling to reduce energy consumption
of high quality sensors (i.e., GPS), and alternates
between high and low quality sensors depending
on the energy levels of the device (e.g. sample WiFi
often when battery level is less than 70%). This
approach trades off data quality and accuracy for
energy.

The existence of multiple concurrent applications
that require data of different types also compli-
cates resource allocation. A mobile device can be
sampling various sensors (e.g. GPS, accelerome-
ter, air quality) on behalf of different applications.
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The approach proposed by CarTel prioritizes data
collection tasks. Depending on the priority of the
application that requires sensor data, the sampling
rate of other sensors can be reduced (or the sensor
completely switched off). For example, during peak
travel times, a community may be more interested
in obtaining traffic congestion levels as opposed
to air or noise pollution levels. As a result, the
air/noise sensors sample much less frequently or
can be shut down.

A drawback of existing solutions such as low
duty cycling are that they are designed for their
particular application context and do not scale
when many different applications co-exist. An im-
portant challenge for large scale deployment of
MCS applications is that the resource constraints
need to be addressed in a holistic manner. How
do multiple applications on the same device uti-
lize energy, bandwidth, and computation resources
without significantly affecting the data quality of
each other? How does scheduling of sensing tasks
occur across multiple devices with diverse sensing
capabilities and availabilities (which can change
dynamically)? We believe that these questions need
to be answered before MCS applications can be
deployed on a large scale.

6 PRIVACY, SECURITY, AND DATA IN-
TEGRITY

An important aspect of MCS applications is that
they potentially collect sensitive sensor data per-
taining to individuals. For example, GPS sensor
readings can be utilized to infer private informa-
tion about the individual, such as the routes they
take during their daily commutes, home, and work
locations [9]. On the other hand, these GPS sen-
sor measurements (from daily commutes) shared
within a larger community can be used to obtain
traffic congestion levels in a given city [4]. Thus, it
is important to preserve the security and privacy
of an individual, but at the same time enable MCS
applications. It is also necessary to ensure that
an individual’s sensor data is not revealed to un-
trustworthy third parties. A problem that arises
from the opt-in nature of crowdsensing applications
is when malicious individuals contribute erroneous
sensor data (e.g. falsified GPS readings), maintain-
ing the integrity of sensor data collected is an
important problem. In what follows, we will briefly
touch on these challenges.

A popular approach for preserving privacy of
the data is that of anonymization [10] which re-
moves any identifying information from the sen-
sor data before sharing it with a third party. The
drawback of such an approach is that anonymized
GPS (or location) sensor measurements can still
be used to infer the frequently visited locations
of an individual and derive their personal details.
Another approach for preserving privacy is secure
multiparty computation [11], where cryptographic
techniques are used to transform the data in order
to preserve privacy. Such cryptographic techniques
are compute intensive and are not scalable be-
cause they require the generation and maintenance
of multiple keys, which also leads to higher en-
ergy consumption. We believe that data perturbation
based approaches, which add noise to sensor data
before sharing it with the community to preserve
privacy of an individual, are appropriate. The data
perturbation approaches [12], [13] rely on adding
noise in such a manner that the privacy of an
individual is preserved, but at the same time it is
possible to compute the statistics of interest with
high accuracy (due to the nature of the noise being
added). For example, in a weight watchers applica-
tion, it is important to compute the average weight
of the population. Each individual i is sensitive
to revealing his or her weight (wi) and perturbs
it by adding a random number (ri), which is
drawn from a known distribution with zero mean.
Although individual weights are perturbed and
appear random, when these values are averaged,
the randomized component (

∑
ri) vanishes (given

sufficient number of individuals) and the average
weight of the community can be computed with a
high degree of accuracy.

Data integrity, ensuring the integrity of sensor
data generated by individuals, needs to be ad-
dressed by MCS applications. Some approaches
have been proposed in existing literature [14], [15],
which rely on co-located infrastructure as a wit-
ness. Such an approach relies on inputs from the
installation of expensive infrastructure, which can
be prohibitive and unavailable at times. Another
approach is to sign the sensor data (by trusted
hardware installed on mobile phones). However,
this approach is potentially problematic as the
verification has to be done even in the software.
For example, a GPS location may be perturbed by
adding noise for privacy reasons or audio sensor
data may be processed to conserve energy.
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We make a few observations in regard to privacy,
security, and data integrity for MCS applications.
First, we observe that privacy is very user specific,
that is each individual has a different perception of
privacy. For example, one person may be willing
to share his or her location information continu-
ously whereas another may not. Developing pri-
vacy techniques that address variation in individual
preferences is needed. Further, a generic pertur-
bation technique or a framework of perturbation
techniques need to be developed such that privacy
and security can be achieved in a generic setting
independent of the nature of the data being shared.
Finally, real world MCS deployments must address
the data integrity problem in order to provide
meaningful conclusions from the aggregate sensor
data.

7 AGGREGATE ANALYTICS

The local analytics running on mobile devices only
analyze data on the given device. MCS applications
rely on analyzing the data from a collection of mo-
bile devices, identifying spatio-temporal patterns.
For example, the transportation authority of a city
may be interested in the spatial distribution of traf-
fic hot spots around the road network, and how the
distribution evolves over various time scales. Such
insight can help them better coordinate the traffic
lights to ease traffic depending on the time of the
day, and better plan future road expansions in the
long term to reduce congestion. Another example is
for public works maintenance. Citizens can report
problems in public facilities, such as broken water
pipes, dysfunctional traffic lights. Such reports can
be used by the maintenance personnel to infer (to
a certain degree) the impact and severity of the
incident to help prioritize and schedule the repair
resources.

The patterns may also help users build models
and make predictions about the physical or social
phenomena being observed. One example is the
monitoring of pollutants such as car exhaust. An
important aspect of environment protection is to
build models to understand the dissemination of
pollutants in the air, soil and water. By collecting
large amount of data samples about air pollutants
such as car exhaust, one can not only monitor the
concentration of pollution, but also detect patterns
to model how the concentration evolves spatially
and temporally as temperature, humidity and wind

change. These models can help the environmental
authority forecast and provide alerts to the public.

The challenge in identifying patterns from large
amount of data is usually application specific and it
involves certain data mining algorithms. Depend-
ing on the amount of incoming data, and the delay
sensitivity of applications, there are two possible
approaches for data mining. One is a traditional
approach where data is stored in a database first
and then one can apply various mining algorithms
against the database to detect patterns. However, if
the amount of continuous data input is too much
for storage, or the application requires fast detec-
tion of patterns, stream data mining algorithms
may be required. Such algorithms take as input con-
tinuous data streams and identify patterns, without
the need to first store the data. Data mining algo-
rithms are domain specific and the exact algorithms
will be closely related to the application and are out
of scope of this paper.

8 ARCHITECTURE

In this section, we illustrate the current state of the
architecture of existing MCS applications and point
out its drawbacks. Currently, a typical MCS ap-
plication has two application specific components,
one on the device (for sensor data collection and
propagation) and the second in the backend (or
cloud) for the analysis of the sensor data to drive
the MCS application. This architecture is depicted
in Figure 3. We refer to this as application silos
because each application is built ground-up and
independent from each other. There is no common
component even though each application faces a
number of common challenges in data collection,
resource allocation and energy conservation.

Such an architecture hinders the development
and deployment of MCS applications in several
ways. First, it is hard to program an application. To
write a new application, the developer has to ad-
dress challenges in energy, privacy, and data quality
in an ad hoc manner, reinventing the wheel all the
time. Further, he may need to develop different
variants of local analytics if he wants to run the ap-
plication on heterogeneous devices using different
OSes. Second, this approach is inefficient. Applica-
tions performing sensing and processing activities
independently without understanding the conse-
quences on each other will result in low efficiency
on an already resource constrained platform. There
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Further Reading
As such, extensive research has been conducted in each of the above addressed problems and we provide some further
readings in this break-out box.
Localized Analytics

• Cooperative transit tracking using GPS-enabled smart-phones, A. Thiagarajan et. al., In Proceedings of SenSys 2010,
pp. 85-98.

• Sensing meets mobile social networks: The design, implementation, and evaluation of the CenceMe application, E.
Miluzzo et. al., In Proceedings of SenSys 2008, pp. 337-350.

Resource Limitations

• Accurate, low-energy trajectory mapping for mobile devices, A. Thiagarajan et. al., In Proceedings of NSDI 2011.
• Energy-delay tradeoffs in smartphone applications, Moo-Ryong Ra et. al., In Proceedings of MobiSys 2010, pp. 255-270.
• Augmenting mobile 3G using WiFi: Measurement, design, and implementation, A. Balasubramanian, R. Mahajan, and

A. Venkataramani, In Proceedings of MobiSys 2010, pp. 209-222.

Privacy, Security, and Data Integrity

• I am a sensor, and I approve this message, S. Saroiu and A. Wolman, In Proceedings of HotMobile 2010, pp. 37-42.
• Toward trustworthy mobile sensing, P. Gilbert, L. Cox, J. Jung, D. Wetherall, In Proceedings of HotMobile 2010, pp.

31-36.
• Opportunistic sensing: security challenges for the new paradigm, A. Kapadia, D. Kotz, and N. Triandopoulos, In

Proceedings of COMSNETS 2009, pp. 127-136.

Aggregate Analytics

• MoveMine: Mining moving object data for discovery of animal movement patterns, Z. Li, et. al., In ACM Transactions
on Intelligent Systems and Technology, August 2010

• iMap: Indirect measurement of air pollution with cellphones, M. Demirbas et. al., In Proceedings of PerCom, 2009, pp.
1-6.

Architecture

• NORS: An open source platform to facilitate participatory sensing with mobile phones, D. Trossen and D. Pavel, In
Proceedings of MobiQuitous 2007, pp. 1-8.

• PEIR, the personal environmental impact report, as a platform for participatory sensing systems research, M. Mun
et. al., In Proceedings of MobiSys 2009, pp. 55-68.

• A Rich Services Approach to CoCoME, B. Demchak et. al., In LNCS, vol. 5153, pp. 85-115, August 2008.

Fig. 3. Existing MCS applications take an ”application silo” approach where each application is built
from scratch without any common component even though they face many common challenges. Such
an architecture hinders the development of new MCS applications and we envision a unifying architecture
should address its limitations.
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is a high likelihood of duplicating sensing and pro-
cessing across multiple applications. For example,
traffic sensing, air and noise pollution all require
location information, but these applications would
each do its own sampling without reusing the same
data samples. Further, there is no collaboration or
coordination across devices. Devices may not all
be needed (e.g. traffic sensing in a given location)
especially when the device population is dense.
Finally, the current architecture is not scalable. Only
a small number of applications can be accommo-
dated on each device (e.g. limitations imposed by
the device operating system, human capacity to
keep track of a large number of applications). Also,
the data gathered from societal-scale sensing may
overwhelm network and backend server capacities,
thus making the current architecture non-scalable.

We envision that a unifying architecture could
address the current limitations of how MCS appli-
cations are developed and deployed. It will satisfy
the common needs for multiple different appli-
cations. First, it should allow application devel-
opers to specify their data needs in a high level
language. It should identify common data needs
across applications to avoid duplicate sensing and
processing activities on devices. Second, it should
automatically identify the set of devices that can
provide the desired data, and produce instructions
to configure the sensing activities on devices prop-
erly. When dynamic changes happen, it should
adapt the set of chosen devices and sensing instruc-
tions to ensure the desired data quality. Finally, to
avoid writing different versions of local analytics
on heterogeneous devices, a layer that can shield
the differences in physical sensor access APIs and
provide the same API upwards is necessary. This
makes it possible to reuse the same local analytics
across different device platforms, assuming these
platforms all support a common programming lan-
guage such as Java.

9 CONCLUSIONS AND FUTURE WORK

In conclusion, we have identified a category of
IoT applications that rely on data collection from
large number of mobile sensing devices such as
smartphones, which we termed mobile crowdsens-
ing (MCS). We presented several MCS applications,
such as CarTel, Nericell, ParkNet, BikeNet, and
DietSense. We then identified the unique character-
istics of MCS, presented several research challenges
of MCS and discussed their solutions briefly. We

also note that due to space limitations, we have
not presented all of the existing work (in terms
of applications as well as the individual research
challenges). We are currently exploring a unified
architecture for collecting and processing sensor
data from mobile sensing devices at a societal scale.
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