

 International Journal on Electrical Engineering and Informatics ‐ Volume 5, Number 1, March 2013

System Level Design of the Adaptive Arithmetic Encoding Used
in the JPEG 2000 Standard

Ali M. Reza

Department of Engineering, Electrical Engineering Section

United States Coast Guard Academy
New London, CT 06320, U.S.A.

Abstract: Hardware implementation of the JPEG 2000 image compression standard for
real-time image compression requires implementation of the adaptive arithmetic encoder
among other related algorithms. In this work, a system level design for the adaptive
arithmetic encoder used in the JPEG 2000 standard is proposed. This design is based on
the assumption that the bit-sequence and its corresponding context, obtained through bit
modelling for the encoder, are input to the system in their proper order. The output
bit-sequence is also used as input to the encoder bit modelling. The original bit-sequence
provides the context based on the assumption that the first pass is the cleanup pass and
the first context is the Run Length context. All other contexts are recursively evaluated as
arithmetic encoder encodes the bit sequence. The final encoding is lossless and results in
perfect recovery of the original block image when proper decoding algorithm is used.

1. Introduction
 Compression and decompression of the real-time image sequences require hardware
implementation of compression as well as decompression algorithms in the corresponding
hardware platforms. Coding in the JPEG 2000 standard is based on the adaptive arithmetic
coding [1]. During the compression stage, the coding is called encoding and during the
decompression stage, the coding is referred to as decoding. Wavelet coefficients will first go
through what is referred to as bit modelling before the encoding process can take place. We have
already presented a system level design for the wavelet coefficient bit modelling used in the JPEG
2000 standard [2]. In this work, we have developed a particular system level implementation
design for the corresponding adaptive arithmetic encoder. We have also used a similar approach
in designing a system level implementation of the JPEG 2000 decoding algorithm as described
in [3].
 In this design we assume that the compressed bit-sequence and its corresponding context,
obtained through bit modelling for the encoder, are properly input to the system. The final
bit-stream is the output bit-sequence that is resulted from this system. Our main reference in this
work is the JPEG 2000 Part I Final Committee Draft Version 1.0 dated 16 March 2000 [4]. The
relevant part of this reference is Annex C. For the sake of space and brevity of our presentation,
we do not repeat the discussion that is presented in this reference. Interested reader is referred
to pp. 71-84 of [4], namely Section C.1 and C.2 of Annex C. In the following, whenever an
explanation of the method or procedure is given it is always with the aforementioned reference.
 A system level architecture capable of encoding JPEG2000 algorithm is proposed in [5]. In
this work, embedded block coding with optimized truncation (EBCOT), using column-based
coding architecture of tier-1 block coding engine, is discussed. This implementation is based on
hardware descriptive language (HDL) and Xilinx FPGAs. Another VLSI architecture for a
generic block coder with concurrent symbol processing is proposed in [6]. This approach
combines bit plane coder with arithmetic coder to achieve better throughput. A pipelined binary
arithmetic coder architecture is proposed in [7] in order to achieve higher rate than the
conventional architectures. In this work, we propose a system level implementation that takes
advantage of parallelization and trades off hardware for speed to achieve the highest possible
throughput for any VLSI implementation.

Received: February 14th, 2012. Accepted: March 25th, 2013

24

 Efficient hardware implementation of the arithmetic encoding requires several registers,
counters, and look-up-tables (LUTs). We introduce these items along with some circuitry, as we
as we foresee appropriate for this design. At first we present the overall system in- put/output
diagram and then proceed with explanation and design of each individual elements in the system.
With reference to Figure 1, the inputs to this system consist of two input lines one with one-bit
word that is the input bit-sequence coming from the bit modeller and the other one is a five-bit
word that represents the context of the corresponding input bit. With reference to [4], there are
nineteen different contexts that are always represented by unsigned integers between 0 and 18
inclusive. Initially the context for the first compressed bit is assumed to be 18. Contexts 0
through 8 are used for significance propagation and cleanup

Figure 1. Overall structure of the Input/Output relation for the Adaptive Arithmetic Encoder.

Figure 2. RAMs used for MPS and I index to be accessed dynamically and initialized as

specified at the beginning of encoding of each block.

passes, contexts 9 through 13 are used for sign contexts, contexts 14 through 16 are used for the
magnitude refinement coding passes, context 17 is used for Uniform context and context
18 is used for Run-Length context.
 In the following we discuss the structure and functionality of different sub-blocks that are
needed for this design.

2. Registers, Memories, Counters, and Look-Up-Tables (LUTS)
 There is a need for two sets of random-access memories (RAMs) in order to store the values
for the most probable symbol (MPS) and index (I) associated to each context. Since we only
have nineteen different contexts, the size of these RAMs should be 32 (assuming that their size
should be power of 2). The MPS is a one-bit word but the index (I) is a six-bit word. It should be
pointed out that the values used for the index are unsigned integers between 0 and 46. Initially
these two RAMs are set as shown in Figure 2. The ‘Reset’ operation is a little complex and may
take several clock cycles for its completion.
 In our approach, we take the maximum advantage of using look-up-tables (LUTs) for
storage of previously calculated values. This design can benefit from four look-up-tables
(LUTs) in order to store the next most probable symbol (NMPS or Next MPS), the next least
probable symbol (NLPS), current estimate of the least probable symbol (LPS) probability,

Ali M. Reza

25

Figure 3. Structure of the four LUTs and their corresponding values.

i.e., Qe values, and the SWITCH bit. These LUTs should have a capacity of at least 47 (or 64
if the size of these LUTs are restricted to be in powers of 2). Word-lengths in these LUTs are as
follows: Qe is 16−bit, NMPS and NLPS are 6−bit each, and SWITCH is 1−bit. The setup of
these LUTs are explained in Figure 3.
 Operation of the arithmetic encoder depends on two specific registers that are the core of
the system. These registers, referred to as A-register and C-register (Code Register), are
organized as shown in Figure 4. During the encoding operation we need to have a dedicated
register, referred to as B-register, to hold the b bits of the code register (C-register) for
outputting the compressed code as needed. The B-register, not shown, is an 8-bit register that
will be discussed with more details during the analysis of the C-register.
 Details of these registers are decided and designed based on the kind of operations that are
desired for each register. The A-register should accommodate operations like setting the register
to the fixed value of Qe or 0x8000, subtracting Qe from the content of the register, comparing
Qe with the content of the register, and shifting the content of the register to the left by one
bit. These operations are designed in such a way that any of them can only take one clock cycle.
This claim is based on the assumption that the value of Qe is not changed in the previous clock
cycle and the comparison and the subtraction operations are readily

Figure 4. Structures of the two main registers in the operation of the arithmetic encoder.

System Level Design of the Adaptive Arithmetic Encoding Used in the JPEG 2000 Standard

26

Figure 5. Structure of the A-register circuitry. The MUX (multiplexing operation block) is

already registered and there is no need for a specific register for holding Data Out.

Figure 6. Structure of the C-register circuitry along with the two possible ways of getting
the B-register values. Output MUXs are already registered and there is no need for a specific

register to hold data.

 Available at the moment that they are needed. The circuitry of the A-register is shown in
figure 5. Since in some occasions we need to know the state of the MSB of this register, the
MSB value is also used as an output.
 In the case of C-register, there are more operations and internal registers. The circuitry in this
case is shown in Figure 6. In this case there are two registers a 32−bit register and a 8−bit
register. The 32−bit register denoted as C Out represents the current value of the C- register.
On the other hand, the 8−bit register, denoted as B Out represents the compressed byte one
clock cycle after Get B is issued. In this design we assume that the ‘shift-left’ operation is
foreseen before hand and is prepared for use right at the time that it is asked for. Therefore, our
assumption is that all operations are calculated and ready for use at the input of the 8−input
MUX for selection. If this is not true for any of the operations then we need to allow enough
time for their preparation before accepting the content of the C-register as its final value. There
are two simple operations on the B Input that is also included as part of the C-register circuitry.

Ali M. Reza

27

Figure 7. Circuitry for comparison of B value with 0xFF.

 There are two simple operations on the ‘B Out’ that can be carried out properly by using
simple gates or digital comparators. In several situations we need to check if ‘B Out’ is equal to
0xF F . Also, in one case we need to increment B by 1 and then check if B equals to 0xF F
. This last operation can be simplified by conducting a comparison between ‘B Out’ (without
incrementing it) with 0xF E. These operations are explained in Figure 7.
 Finally there is a need for a special counter to properly keep track of the CT parameter. This
parameter keeps track of the compressed bit positions in the C-register. Operations needed for
this counter are setup, decrement and increment. The setup operation works with two inputs.
The ‘Set’ input, which is a 1−bit input, signals the setup operation and the ‘Set Value’ input,
which is a 4−bit input, indicating the value that the counter should be set to. Block diagram
of this counter is shown in Figure 8.

Figure 8. Block diagram of the CT Counter

 For registers, LUTs, RAMs and CT Counter each operation takes only one clock cycle with
the assumptions stated earlier. As we proceed we address those assumptions for the more
complex operations of the decoding process.

3. Circuits Operation
 In this section we first present the sequence of operations in a form of a pseudo code and
then we formulate their proper hardware implementation. Our assumption is that the first bit and
its context is preceded by a ‘START’ signal and the last bit and its context is followed by an
‘END’ signal. Based on the JPEG 2000 standard, the sequence of encoding operations are as
follows:
 First, right at the time that the ‘START’ signal is issued the INITIALIZATION will be
carried on. Then, the sequence of bits along with the corresponding sequence of contexts is
delivered to the decoder. The speed of delivery of the bit-sequence depends on the overall speed
of the encoder and is assumed to come at proper speed. This can be controlled by the way that
the bits are read from memory or, if the bits are arriving at a lower speed, it is assumed that
the bits enter the circuitry as soon as they become available. There might be a need for an input
buffer to regulate the data delivery to the input of the decoder.
 In table 1 the pseudo code of the initialization along with the main operation is presented.
The circuitry for the initialization is shown in figure 9 and the circuitry for the main operation is
shown in figure 10. These processes start by the ‘Start’ signal. The main process ends by the
‘End’ signal. The main process refers to other more detailed processes as discussed in the
following.
 One process that is referred to is the CODELPS operation. The pseudo code for this
operation is shown in table 2. The corresponding circuitry for this operation is shown in

System Level Design of the Adaptive Arithmetic Encoding Used in the JPEG 2000 Standard

28

Table 1. Pseudo Code for The Main Operations
INITIALIZATION:

1- Set A-register to 0x8000: A = 0x8000
2- Set C-register to 0: C = 0
3- Reset All RAMs
4- If ‘B Out’ equals 0xF F (B ? 0xF F),

Set CT-counter to 13 (0xD): (CT = 0xD), Else
Set CT-counter to 12 (0xC): (CT = 0xC)

LOOP:
1- Get Bit ‘D’ and its context ‘CX’
2- Use ‘CX’ as address into all RAMs to get ‘MPS’ and ‘I’
3- Use ‘I’ as address into all LUTs to get Qe, ‘NMPS’, ‘NLPS’, and
‘SWITCH’
4- Calculate C M P S = D · M P S + D· M P S
5- If C M P S = 1,

USE CODEMPS, Else
USE CODELPS

6- If NOT FINISHED,
Go to LOOP, Else
USE FLUSH operations

End LOOP

=

Figure 9. The circuitry for the initialization of the encoding process.

Figure 10. The circuitry of the main operation that includes the Initialization as

the final ending of the encoding procedure.

Ali M. Reza

29

Table 2. Pseudo Code for Codelps Operations
1- Subtract Q e from A to get the new A: A ? (A - Q e)
2- If A < Q e ,

Add Q e to C : C ? (C + Q e), Else
Set A to Qe : A = Qe

3- If ‘SWITCH’ = ‘1’ Change ‘MPS’ to its complement and
store the new value into the corresponding RAM at
the address given by ‘CX’.

4- Set ‘I’ to ‘NLPS’
5- CONDUCT RENORM OPERATIONS

Figure 11. In this operation there is a reference to another operation called RENORM. The
RENORM procedure is discussed after presentation of the CODEMPS operation as follows.

Figure 11. The circuitry for the CODELPS operation.

Table 3. Pseudo Code for CODEMPS Operations
1- Subtract Q e from A to get the new A: A ? (A - Q e)
2- If MSB (Most Significant Bit) of A is ‘1’, Add Qe to C : C

(C + Q e) ,Else Conduct the following:
(a) If A < Q e ,
Set A to Qe : A = Q e , Else
Add Qe to C : C ? (C + Qe)
(b) Set ‘I’ to ‘NMPS’
(c) CONDUCT RENORM OPERATIONS

 The next process that is referred to in the Main process is the CODEMPS operation. The
pseudo code for this operation is shown in table 3. The corresponding circuitry for this operation
is shown in f igure 12.
 The pseudo code of the RENORM operation, which is referred to in both CODELPS and
CODEMPS, is shown in table 4. The corresponding circuitry is shown in figure 13. This set of
operations refers to another operation called BYTEOUT. It is also referring to itself under
certain circumstances, which makes it a recursive operation under this condition.
 The set of operations called BYTEOUT constitutes the stage in which compressed code is
sent out whenever is ready. The pseudo code for this operation is given in table 5. The
corresponding hardware circuitry for this stage is shown in figure 14.

System Level Design of the Adaptive Arithmetic Encoding Used in the JPEG 2000 Standard

30

Figure 12. The circuitry for the CODEMPS operation.

Table 4. Pseudo Code for The Renorm Operations

LOOP:
1- Conduct the following:

(a) Shift left A by 1 bit
(b) Shift left C by 1 bit
(c) Decrement ‘CT’ counter by 1

2- If ‘CT’ is ‘0’, CONDUCT BYTEOUT
OPERATIONS
3- If MSB of A is ‘0’, go to LOOP

Figure 13. The circuitry for the RENORM operation.

Table 5. Pseudo Code for BYTEOUT Operations

=

If B equals to 0x F F (B
?

0xF F),
Conduct the RIGHT operations, Else
If ‘c’ (carry bit in the C-register) is ‘0’

Conduct the LEFT operations, Else
Increment B by 1: B ? B + 1
If B equals to 0xF F ,

Set ‘c’ bit to ‘0’ and conduct the RIGHT operations, Else
Conduct the LEFT operations

RIGHT operations: All simultaneous:
Get B1 (Use ‘c’ bit as part of the 8- bit ‘B Out’)
Set 12 MSBs of the C-register to zeros
Set counter ‘CT’ to 7

LEFT operations: All simultaneous:
Get B2 (Use all the ‘b’ bits as the 8- bit ‘B Out’)
Set 13 MSBs of the C-register to zeros
Set counter ‘CT’ to 8

RIGHT operations: All simultaneous:

=

Ali M. Reza

31

Figure 14. The circuitry for the BYTEOUT operation.

 Finally, at the end of the code block, the procedure that is referred to as FLUSH will be
conducted. The pseudo code for this operation is given in table 6. The corresponding hardware
circuitry is shown in f igure 15.

Table 6. Pseudo Code for FLUSH Operations
Set a temporary register T to A + C : T = A + C
Set 16 LSBs of the C register to ones
If C T , Then subtract 0x8000 from C : C ? (C - 0x8000)
Shift Left C by ‘CT’ bits
CONDUCT BYTEOUT OPERATIONS
Shift Left C by ‘CT’ bits
CONDUCT BYTEOUT OPERATIONS
If B equals to 0xF F (B ? 0xF F),

Discard B, Else
Use B as the final output byte

=

<

Figure 15. The circuitry for the FLUSH operation.

4. Conclusion
 System level design for the hardware implementation of the adaptive arithmetic encoder
used in the JPEG 2000 image compression standard is presented. This implementation is one of
the significant part of the complete hardware implementation of the JPEG 2000 encoding
standard. In this implementation, the bit-sequence and its corresponding context, obtained
through the bit modelling for the encoder, are used as input to the system. The output of this
implementation is the compressed bit-sequence used for storage or transmission of the image.
The final encoding is lossless and results in perfect recovery of the original block image when
is used in conjunction with the corresponding JPEG 2000 decoder.

System Level Design of the Adaptive Arithmetic Encoding Used in the JPEG 2000 Standard

32

References
[1] Marpe, D.; Schwarz, H.; and Wiegand, T., “Context-based adaptive binary arithmetic

coding in the H.264/AVC video compression standard,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 13, No. 7, 2003, pp. 620-636.

[2] Reza, Ali M., “System level design of the coding and modelling of the adaptive arithmetic
coding used in the JPEG 2000,” Accepted for publication in: International Journal of
Information Engineering (IJIE), 2012.

[3] Reza, Ali M., “System level design of the adaptive arithmetic decoding used in the JPEG
2000 standard,” Submitted for publication in: International Journal on Electrical
Engineering and Informatics (IJEEI), 2012.

[4] Coding of Still Pictures: JBIG&JPEG, “JPEG 2000 image coding system,” JPEG 2000
Final Committee Draft Version 1.0, ISO/IEC JTC1/SC29 WG1, JPEG 2000 Editor Martin
Boliek, Coeditors: Charilaos Christopoulos, and Eric Majani, March 16, 2000.

[5] Jahaya, B.A.; Ur Rehman, A.; and Defilippis, I., “Hardware
implementation of JPEG 2000 encoder for video compression.” Proceedings of
International Conference on Intelligent and Advanced Systems (ICIAS), 2007, pp.
1296-1299.

[6] Gupta, Amit Kumar; Nooshabadi, Saeid; Taubman, David; and Dyer, Michael, “Realizing
low-cost high-throughput general-purpose block encoder for JPEG2000”. IEEE
Transactions on Circuits and Systems for Video Technology, Vol.16, No. 7, 2006, pp.
843-858.

[7] Rhu, Minsoo and Park, In-Cheol, “A novel trace-pipelined binary arithmetic
coder architecture for JPEG2000.” Proceedings of IEEE Workshop on Signal
Processing Systems (SiPS), 2009, pp. 243-248.

Disclaimer and Note
The views expressed herein are those of the author and are not to be construed as official or
reflecting the views of the Commandant, the U.S. Coast Guard, the Department of Homeland
Security, or any agency of the U.S. Government.

Ali M. Reza is a member of the Engineering Faculty at the U.S. Coast Guard
Academy. He was formerly a tenured faculty member of the Electrical
Engineering and Computer Science Department at the University of
Wisconsin-Milwaukee where he is currently a Professor Emeritus. Dr. Reza's
specialty is in the general area of Signal Processing. He has conducted research
in array signal processing, signal detection, nonlinear filtering, image
processing, and pattern recognition. In his research, he has applied new
emerging technologies, including artificial neural networks, fuzzy systems,

and genetic algorithms. Dr. Reza is also interested in hardware implementation of signal and
image processing algorithms. Dr. Reza has more than eighty published articles in refereed
journals and conference proceedings.

Ali M. Reza

33

